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Bone Adaptation-Driven Design of
Periodic Scaffolds
This work introduces a computational method for designing bone scaffolds for maximum
bone growth. A mechanobiological model of bone adaptation is used to compute the
bone growth, taking into account the shape of the defect, the applied loading, and the exist-
ing density distribution of the bone in which the scaffold has been implanted. Numerical
homogenization and a geometry projection technique are used to efficiently obtain surro-
gates of the effective elastic and diffusive properties of the scaffold as a function of the scaf-
fold design and the bone density. These property surrogates are in turn used to perform
bone adaptation simulations of the scaffold–bone system for a sampling of scaffold
designs. Surrogates of the bone growth in the scaffold at the end of the simulated time
and of the strain energy of the scaffold at implantation time are subsequently constructed
from these simulations. Using these surrogates, we optimize the design of a scaffold
implanted in a rabbit femur to maximize volume bone growth into the scaffold while ensur-
ing a minimum stiffness at implantation. The results of the optimization demonstrate the
effectiveness of the proposed method by showing that maximizing bone growth with a con-
straint on structural compliance renders scaffold designs with better bone growth than what
would be obtained by only minimizing compliance. [DOI: 10.1115/1.4050928]

Keywords: design of engineered materials system, simulation-based design, structural
optimization

1 Introduction
Bone scaffolds are porous materials designed to offer an alterna-

tive to natural bone for use in bone grafting [1]. Bone grafting is a
surgical procedure in which donor bone is implanted to replace
bone that is too severely compromised to heal on its own [2].
This damage may be caused by trauma or disease, or may be con-
genital. No matter the cause, the damage can be very debilitating
[2,3]. The bone graft fills the damaged region or the bone defect.
The graft then provides the necessary support for the growth of
new bone in the defect [4]. Bone grafts are one of the most
common transplantation procedures performed in the world,
second only to blood transfusions globally [5]. More than four
million procedures are performed annually worldwide, and
demand is forecasted to increase as the populations of many indus-
trialized nations age [6].
In the face of increasing demand, the current sources of graft

material have serious limitations. The preferred source is the
patient, in which case the procedure is known as an autograft [4].
However, the volume of bone available for autografts is inherently
limited. Only so much material can be removed before the function-
ality of the donor bone is compromised, limiting their use to smaller
defects [1,7]. Moreover, autografts require that the patient undergo
a surgery to remove the bone in addition to the implantation
surgery, adding the potential for complications at the donor site
[1,7,8]. The primary alternative to autografts are allografts. In an
allograft, the source of bone is a donor other than the person receiv-
ing the graft [7]. Allografts only require a single surgery on the
patient and are not subject to the same defect size restrictions
as autografts. However, allografts are plagued by a shortage of
donor material, high costs, and elevated risks of disease transfer
and rejection by the patient [2,7].
In light of the limitations of these two options, significant

research efforts have been devoted to bone substitutes in recent

years. Their clinical application remains limited, owing principally
to difficulties in their design and manufacture [9,10]. This difficulty
stems from the complex and frequently conflicting requirements
any bone substitute must meet. Bone growth is a relatively demand-
ing metabolic process. As such, the growth of new blood vessels
into the defect is essential to facilitate the transport of nutrients,
cells, and waste to and from the healthy bone surrounding the
defect (the growth front) [11,12]. Thus, to ensure that the defect
fully heals, a certain level of porosity must be maintained by the
scaffold throughout the healing process. Simultaneously, a degree
of mechanical compliance must be maintained, as bone growth typi-
cally requires stimulation in the form of mechanical loading to
occur [11,13]. Scaffolds which are too stiff shield the bone from
mechanical stress, inhibiting growth within the scaffold and poten-
tially causing resorption of the surrounding bone [10,14]. Opposing
these goals is the need for structural stability of the scaffold.
Mechanical failure of the scaffold in vivo is not acceptable. Further-
more, excessive deformation impedes angiogenesis, slows the for-
mation of bone, and results in a prolonged healing period [2,15].
Increasing the porosity of the scaffold for better angiogenesis
and increased mechanical stimulation necessarily reduces its load
bearing capacity and stiffness. Further complicating matters,
every defect is different in terms of its shape and the loading to
which it is subjected.
Previous works have used computational optimization techni-

ques to design the scaffold and attempt to address these challenges.
Efforts have proceeded along two main veins: the design of the unit
cell of a periodic scaffold and the design of complete scaffolds.
Works in the former vein typically assume the scaffold to be com-
posed of a single unit cell that is repeated to fill up the defect region
and attempt to find the optimal design for that unit cell (cf. Refs.
[14,16–21]). Works in the latter vein have sought instead to opti-
mize the entire scaffold for a particular defect (cf. Refs. [22–25]).
This requires a more involved analysis but allows the structure to
be optimized for the local stress distribution unique to a given ana-
tomical location and defect shape.
Nearly all of these works have focused on the mechanical prop-

erties of the scaffold. The biological requirements of bone growth
tend to be treated as structural constraints, if considered at all [9].
This approach overlooks some of the most important aspects of
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the scaffold’s design, since bone growth requires certain biological
prerequisites to occur at all [11]. Moreover, even if the initial con-
ditions of the scaffold are favorable for bone growth, that does not
guarantee that they will remain so as the bone adapts [9]. Several
authors have employed finite element-based mechanobiological
simulations to investigate the effect of scaffold geometry on bone
growth over time [26–30]. These studies all show a strong link
between the scaffold’s architecture and how well the bone heals.
This link has been corroborated by animal studies [27,29].
In spite of the importance of considering the biological aspects of

bone growth, the application of these models to scaffold design has
been very limited to date. In Ref. [12], a scaffold unit cell is opti-
mized so that the rate of bone growth is matched to the rate of
scaffold resorption. The goal is to ensure an adequate measure of
mechanical stimulus, and support is available throughout the bone
growth process. Mechanobiological considerations are incorporated
in the design of optimized scaffolds in Ref. [19], which focuses on
the optimization of the rod diameter of a rhombicuboctahedral unit
cell with the objective of maximizing bone growth before the com-
bined bone–scaffold is so stiff that it inhibits further growth.
The focus of this work is to employ a full transient mechanobio-

logical simulation of bone growth to optimize a ceramic scaffold
composed of a periodic rectilinear lattice [31] (Fig. 1). The use of
such a simulation allows the changes in mechanical and diffusivity
properties of the scaffold resulting from bone growth over the
course of the recovery period to be accounted for. The objective
of the optimization is to maximize the bone growth volume fraction
(defined as the fraction of the void space within the scaffold that is
filled with bone) at the end of a specified growth period. This objec-
tive function is selected since it is directly related to the purpose of
the scaffold, which is to support bone growth and consequently
improve healing. A constraint on maximum structural compliance
at the time of implantation is imposed to ensure that the scaffold
has sufficient stiffness to carry the loads in the absence of bone
growth. The design variables correspond to the geometric configu-
ration of the scaffold, which can be controlled during manufacturing
and implantation.
To analyze the bone and scaffold, we obtain homogenized

mechanical and diffusion properties of the lattice, for which we
build a surrogate model as a function of the design variables.
Using homogenized properties circumvents the need to generate a
body-fitted mesh for each scaffold design. This is desirable
because a body-fitted mesh with adequate element size would
have a very large number of elements and would thus incur a
large computational cost for the analysis. The construction of the
properties surrogates is motivated by the computational cost of
the homogenization procedure itself, since properties must be
updated for every element in the scaffold mesh for every time-step
of the transient simulation and for every iteration of the optimiza-
tion. These surrogates can be inexpensively evaluated and allow
for a highly efficient simulation. Moreover, they only need to be

computed once for a given design configuration of the scaffold
unit cell. Finally, a surrogate of the bone growth volume fraction
as a function of the scaffold design parameters is created by per-
forming the mechanobiological simulation for a sampling of scaf-
fold designs. This surrogate can be exercised to understand the
effects of the scaffold design parameters on the bone growth and
the scaffold stiffness and to optimize the scaffold design. Using
this surrogate model, the optimal scaffold parameters are then
found and validated using the simulation.
The rest of this manuscript is organized as follows. Sections 2

and 3 present the details of the formulation and the computational
implementation, respectively, including the construction of the sur-
rogate of the effective properties of the scaffold, the construction of
the surrogates for bone growth and scaffold stiffness, and the scaf-
fold optimization. An example of the proposed methodology is pre-
sented in Sec. 4, and we draw conclusions of this work in Sec. 5.

2 Formulation and Implementation
Our approach to the periodic scaffold optimization is to use a

two-level surrogate model as outlined in Sec. 1. The first surrogate
model is of the effective properties of the scaffold, which we obtain
via numerical homogenization (cf. Refs. [33–35]). Instead of using
a body-fitted mesh that conforms to the geometry of the scaffold
rods, we use the geometry projection method [36–38] to perform
the analysis on a fixed grid. The geometry projection method
allows us to move the rods and change their size freely without
re-meshing [39]. This speeds the homogenization process and
allows it to be fully automated. We detail this methodology in
Sec. 2.3.
The second surrogate model is of the strain energy of the scaffold

at the time of implantation and of the percent bone growth into the
scaffold. The latter is obtained using a finite element-based mechan-
obiological simulation of bone growth in the scaffold. We adapt the
bone growth model from the literature, which simulates bone
growth in an implanted scaffold using a homogenized model of
the elastic and diffusion properties of the scaffold. As mentioned
in Sec. 1, methodology is computationally efficient because it
avoids the need to use a conforming mesh of the scaffold in the
simulation, which would lead to a large number of elements and
consequently a substantial computational expense. The details of
this second surrogate are provided in Sec. 2.4.
For both the homogenization and simulations, several common

assumptions are made. We assume that both the bone and the scaf-
fold material behave as linear isotropic materials in terms of diffu-
sivity and elasticity; that no plastic deformation or brittle failure of
the bone or scaffold occurs during the growth period; that the scaf-
fold is bonded to the bone (i.e., no slippage or separation occurs at
the scaffold–bone interface); that during the simulated healing
period, both bone and scaffold resorption are negligible; that the dif-
fusivity of bone is directly proportional to its normalized permeabil-
ity [27]; and finally, that the diffusivity of the ceramic is negligible
relative to that of the bone.

2.1 Scaffold Geometry. We start our formulation by describ-
ing the geometric parameterization of the simple rectilinear scaffold
considered in this work (Fig. 1). The rods in each layer are perpen-
dicular to those of the adjacent layers. This gives the scaffolds a
distinctive grid pattern if viewed perpendicular to the plane of the
layers. This type of scaffold can be readily manufactured with bio-
compatible ceramic inks using robotic deposition techniques such
as direct ink writing (DIW) [32]. In this work, we assume that the
scaffold is constructed using such a robotic deposition method. Fun-
damentally, this method works by extruding (depositing) a colloidal
ceramic suspension, or ink, out of a robotically positioned nozzle
[40]. While extrudable, the suspension maintains its shape and
can bridge small gaps without the aid of support material. The
part structure is then built up layer by layer, similar to conventional
fusion deposition modeling (FDM) printers for plastics. Once the

Fig. 1 An 8 mm diameter ceramic scaffold manufactured via
DIW [32]
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structure is complete, the part is sintered. For our purposes, we
assume that the distortion of the rod cross sections at rod intersec-
tions is negligible. Additionally, we restrict our consideration to
scaffolds with uniform rod spacing and with rods that have a circu-
lar cross section. A unit cell of this type of scaffold is shown in
Fig. 2.
As in Ref. [31], two dimensionless values parameterize the

geometry of the unit cell: the diameter-to-separation ratio

d/l : =
d
l

(1)

and the overlap fraction

α : = 1 −
a
d

(2)

where d is the rod diameter, l is the in-plane separation between
consecutive rods in the same layer, and a is the out-of-plane separa-
tion of rods in adjacent layers. Since the scaffold is sintered after
deposition, we note that these overlapping regions bond the rods
together. These bonds can be assumed fully effective in terms of
mechanical properties. The third geometric parameter considered
is the pore size ps. This parameter has units of length and gives
the scaffold microstructure a scale relative to the overall size of
the scaffold.
In addition to the three preceding geometric parameters, the ori-

entation θ of the scaffold relative to the defect is also considered.
For simplicity, only rotation about the out-of-plane axis is consid-
ered. Rectilinear scaffolds are stiffest along the axes of their rods,
much in the same way that the lamina of a fiber reinforced compos-
ite is stiffest along the axis of the fibers. The stiffness rapidly
decreases as the direction of loading rotates away from this axis,

since rods are increasingly loaded in bending as opposed to
tension or compression. The orientation parameter allows the effec-
tive stiffness of the scaffold to be tailored to the loading, even if the
scaffold microstructure parameters are fixed, as shown in Ref. [22].
Examples of scaffolds with different values of the four geometric
parameters are shown in Fig. 3.

2.2 Bone Growth Model. As previously mentioned, bone
requires a certain amount of load or stimulus as well as an adequate
supply of osteoblasts to grow. Osteoblasts are the cells which spe-
cialize in the repair and maintenance of bone, which are responsible
for the actual growth process [11]. However, as new bone is depos-
ited, the distribution of stresses in the bone and ease of fluid
transport (i.e., diffusivity) change even under a constant stimulus.
This means modeling the transient bone growth is required to char-
acterize the performance of a scaffold. As mentioned in Sec. 1, the
bone growth model adopted in this work is based on that of Refs.
[11,27,41]. Some aspects of this model, as we detail in subsequent
sections, are adapted to the rectilinear scaffolds considered here.
This model uses strain energy density as a measure of mechanical
stimulation, and diffusion as a model of cell transport. Based on
the mechanical stimulus received and the relative concentration of
cells at a point, the bone deposited there is estimated.
It is worth noting that there are other bone growth models

which have been proposed, such as a curvature-based model

Fig. 2 Unit cell of the rectilinear scaffold (enclosed by dashed
lines) with rods shown in gray. z is the direction perpendicular
to the deposited layers, and θ is the orientation about the z
axis. The in-plane cross sections ((a) and (b)) are perpendicular
to the xy plane and to each other. The out-of-plane cross
section ((c) and (d )) is normal to the z axis. θ also corresponds
to the angle between the axes of the rods in alternating layers
and the x and y axes, respectively.

Fig. 3 Rectilinear scaffold designs with different values of the
geometric parameters. All the design samples in a row are of
the same overall size and are identical except for the value of
the variable explicitly noted. Units are not provided for ps as
the purpose of this figure is only to provide a visual comparison
of the effect of varying one design parameter at a time.
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(cf. Ref. [30]), a damage response-based model (cf. Ref. [42]), and a
tissue-differentiation model (cf. Ref. [26]). These all take into
account different factors in determining how bone grows. The
curvature-based model determines the soft tissue growth rate on a
surface based on its curvature and extrapolates bone growth from
that [30]. The damage response model estimates the damage that
occurs to bone under loading and uses that to estimate growth.
This model allows bone to grow with anisotropic properties accord-
ing to its stress state and allows for resorption of bone which is
under-stressed [42]. The tissue differentiation model seeks to esti-
mate how cells within a region will diffuse and differentiate, then
calculates how much and what kind of tissue grows based on the
cell type and concentration [26]. However, unlike all of these
models, the one we use has been quantitatively verified in terms
of bone growth [27].
The bone growth model consists of a finite element-based simu-

lation that estimates the density change in bone on an element-wise
basis. The bone is assumed to have an infinite supply of osteoblasts
that is not depleted by the bone growth process. A linear static
analysis on the bone–scaffold assembly is performed to determine
the stress distribution, and a transient mass diffusion analysis is
conducted to determine the concentration of osteoblasts in each
element. At every time-step during the healing period, the density
and material properties of each element are updated.
The analysis region Ω is separated into two domains: scaffold

(Ωs) and bone (Ωb), with Ω =Ωs ∪ Ωb and Ωs ∩ Ωb =∅. A
simple diagram of the domains is presented in Fig. 4. The bone
domain contains all the pre-existing bones surrounding the scaffold.
The scaffold domain consists of the scaffold itself and any bone that
grows within it. The material properties of the two domains are cal-
culated differently. Any elements in the bone domain are henceforth
referred to as bone elements and any in the scaffold domain as scaf-
fold elements. The calculations pertaining to these domains are
covered in Sec. 2.2.1 for bone and Sec. 2.2.2 for the scaffold.
However, the density update, which we now describe, is the same
for both regions.
As the density update is done on each element, we compute all

relevant local quantities at the element centroid and assume that
they are uniform within the element. Therefore, while the expres-
sions shown in the following can be computed at any point x∈
Ω, in the implementation they are computed at each element cen-
troid. The density for each time-step is computed using the update

ρt+Δt(x) =min (ρ̂b, ρt(x) + ρ̇(x)Δt) (3)

where ρt+Δt and ρt denote the bone density at times t+Δt and t,
respectively, and ρ̂b is the maximum possible density of bone,
cf. Table 1.
It should be noted that the upper limit on bone density in (3) is an

artifact of the numerical bone adaptation scheme. In vivo, the
maximum bone density would be naturally limited by the depletion
of the available surface for bone to grow on, and thus there would be
no need to impose such a limit. In our numerical scheme, however,
the approximation of the specific surface S available for bone to
grow (discussed in Sec. 2.2.2) is not exactly zero when the bone
density attains its maximum value ρ̂b, and consequently the bone
growth rate of (4) would not be exactly zero as it would be in

vivo. Moreover, it is numerically possible that the magnitude of
the bone density rate of (4) and the time-step Δt in (3) are such
that the density update of (3) exceeds the maximum density
value. To prevent these situations, in a similar manner as in
Ref. [27], we impose the maximum density limit in (3).
A small minimum allowable bone density ρ̃b is also imposed

everywhere to ensure that the mechanical properties of bone are
not zero, which leads to an ill-posed mechanical analysis. This
situation can arise when determining the initial bone density from
a micro-computed tomography (micro-CT) scan based on attenua-
tion values (see Sec. 3.1). Moreover, the bone density also
appears in the denominator of the mechanical stimulus of (7) dis-
cussed in the following paragraphs. To avoid a division by zero,
we thus also assign ρ0 = ρ̃b for all x∈Ωs.
The rate of change in bone density ρ̇(x) is computed at each time-

step as [27]

ρ̇(x) = SeffS(x)ṙ(x)ρ̂b (4)

where S is the specific surface area in element e. Seff is an empirical
constant that represents what fraction of the available surface area
actually supports bone growth. S is calculated differently for the
bone and scaffold domains and will be covered in subsequent sec-
tions. Likewise, Seff has different values for the two regions.
The bone density growth rate is calculated as [27]

ṙ(x) = csn(x)(Ψ(x) −Ψ∗ − w) if Ψ(x) − Ψ∗ > w
0 otherwise

{
(5)

where ṙ is the deposition rate of bone in units of length per unit
time; n is the normalized concentration of osteoblasts (with
n(x ∈ Ωb) = 1); Ψ is the mechanical stimulus at element e; Ψ* is
an empirical constant representing a reference stimulus level; w is
an empirical constant representing the half-width of the dead zone
around the reference level where neither bone growth nor resorption
occur; and cs is an empirical constant.
The concentration in the scaffold, n(x ∈ Ωs), is determined via a

mass diffusion analysis by solving Fick’s second law

∂n
∂t

= μΔn (6)

where μ is the diffusivity tensor andΔ is the Laplacian operator. We
note that this equation has the same form as the heat equation and
so is equivalent to a simplified unsteady heat conduction problem.

Fig. 4 Schematic of the bone and scaffold domains. The geom-
etry of the bone and scaffold domains is arbitrary.

Table 1 Bone growth model constants

Variable Description Values Units Source

m Empirical weighting factor
for mechanical stimulus

4 [11,46,47]

Ψ* Reference mechanical
stimulus

50 MPa/6 h [27]

w Dead zone half-width of
mechanical stimulus

12.5 MPa/6 h [27]

cs Sensitivity to mechanical
stimulus

0.02 μm/MPa [41]

ρ̂b Maximum achievable bone
density

1.92 g/cm3 [41]

ρ̃b Minimum allowed bone
density

0.05 g/cm3 [41]

Sbeff Effective specific surface
area for a bone element

0.2 [27]

Sseff Effective specific surface
area of a scaffold element

0.6 [27]

D̂b Maximum diffusivity of
bone

100 mm2/6 h [27]

C Kozeny constant of bone 0.022 [27]
D0 Lower bound diffusivity 0.001 mm2/6 h –
ξ Smooth max parameter to

avoid division by zero
0.0001 –

121701-4 / Vol. 143, DECEMBER 2021 Transactions of the ASME



The computation of the diffusivity tensor for the bone and scaffold
regions is detailed in Secs. 2.2.1 and 2.2.2, respectively. The
mechanical stimulus for N loadings is found via [11]

Ψ(x) = ρ̂b
ρt(x)

( )2 ∑N

i=1

ni!σi(x)m
( )1/m

(7)

where ni is the number of cycles of loading i the bone experiences
per unit time, !σi is the effective stress for loading i, and m is an
empirical weighting factor [11]. We note that the second factor on
the right-hand side of this expression is similar to a p-norm that
approximates the largest effective stress among all loading
scenarios. Thus, this mechanical stimulusmodel assumes that the sti-
mulus is driven by the largest effective stress (the true maximum is
attained when m→∞). The first factor, on the other hand, renders
a larger stimulus for smaller values of the bone density ρt. Note
that this factor also means the bone density can never be allowed
to be exactly zero anywhere, else a division by zero will occur. We
thus impose a minimum bone density everywhere, denoted as ρ̃b.
The effective stress is computed as [43]

!σ(x) =
'''''''''''''''
2EAvg(x)W(x)

√
(8)

where W is the strain energy density. EAvg is the average of the
material’s Young’s moduli. In the case of an isotropic material, it
simplifies to the elastic modulus. The values for all empirical con-
stants used herein are shown in Table 1.

2.2.1 Bone Region Update. The elastic modulus and Poisson’s
ratio in the bone region, x∈Ωb, are obtained via [41]

E(x) = 2014(ρt(x))
2.5, ρt(x) < 1.2 g/cm3

1763(ρt(x))
3.2, ρt(x) ≥ 1.2 g/cm3

{
(9)

ν(x) = 0.2, ρt(x) < 1.2 g/cm3

0.32, ρt(x) ≥ 1.2 g/cm3

{
(10)

where E is the elastic modulus in MPa, ν is the Poisson’s ratio, and
ρt is the bone density. This model assumes that the elastic properties
of bone are isotropic (albeit heterogeneous), as in Ref. [27]. The
specific surface in the bone region is calculated using [44]

S(x ∈ Ωb) = Sb(x) = 32.3ϕ(x) − 93.9ϕ(x)2 + 134ϕ(x)3

− 101ϕ(x)4 + 28.8ϕ(x)5 (11)

which has units of mm−1, with

ϕ(x) = 1 −
ρt(x)
ρ̂b

(12)

being the porosity of the bone. The effective fraction of specific
surface area for the bone region is denoted as Seff (x ∈ Ωb) = Sbeff
and its value is listed in Table 1. Note that in our implementation,
ϕ never attains a value of 1 due to the lower bound on the bone
density, namely, 0 ≤ ϕ ≤ ϕmax = 1 − ρ̃b/ρ̂b.
The diffusion properties of the bone are updated at every time-

step for the mass diffusion analysis. The diffusivity of bone is
estimated via [27]

D(x) = D̂b
k(x)
k̂b

(13)

where

k(x) =
Cϕ3(x)
S(x)2

(14)

is the permeability of bone as determined by the Kozeny equation,
C is the Kozeny constant of bone, and D̂b is the maximum diffusiv-
ity of bone (Table 1). The maximum permeability of bone, k̂b, is
computed using (14) and (11) by setting ϕ=ϕmax. Here too it is

assumed that bone is isotropic, thus μ(x)=D(x)I in (6), where I
is the identity two-tensor.

2.2.2 Scaffold Region Update. Due to the arrangement of
layers in the rectilinear scaffold considered here (shown in
Fig. 1), where rods in alternating layers form a right angle, we
expect the elasticity and diffusivity tensors of a homogenized mate-
rial that behave in the bulk as the scaffold to be orthotropic. We
detail in Sec. 2.3 the efficient computation of these homogenized
properties. The homogenized moduli of the scaffold are used in
(8) to compute the effective stress.
As we are using a homogenized material to model the scaffold, an

assumption built in the update of (3) in the scaffold region is that
when bone grows at a point x, it entirely fills in the scaffold at
that point. That is, at time t, if ρt > ρ̃b, the interstitial space at x
does not contain void regions and is full of bone with density ρt.
Note that this lower bound ρ̃b is imposed for numerical reasons
(cf. Sec. 2.2), since if the bone density is zero, then the mechanical
stimulus (7) is undefined. In reality, when the scaffold is implanted,
the bone density inside the scaffold is clearly zero. This assumption
of a uniform bone distribution is reasonable for a small enough
finite element size.
To account for the rotation θ of the scaffold about the axis per-

pendicular to the deposited layers in the bone adaptation analysis,
the homogenized elasticity and diffusion tensors computed using
the surrogates described in Sec. 2.3 are rotated according to

Ĉijkl = RipR jqRkrRls CH
pqrs (15)

μ̂ij = RipR jq μ
H
pq (16)

respectively, where the summation convention is used. R is the
rotation matrix given by

R =
cos θ −sin θ 0
sin θ cos θ 0
0 0 1







 (17)

which assumes that the out-of-plane axis of the scaffold is the
three-axis. This would be the z axis as shown in Fig. 3. Note that
we are not rotating the unit cells relative to one another, but
rather rotating the scaffold as a whole with all its unit cells. This
is depicted in the fourth row of Fig. 3.
We estimate the specific surface area for the rectilinear scaffold

region as

S(x ∈ Ωs) = Ss(x) =
ρ̃b

ρt(x)
Ss0 + Sb(x) (18)

where

Ss0 =
2πd(l − 2αd)

V
=
π(ps + d(1 − 2α))

(1 − α)l2
(19)

is an approximation of the specific surface of the empty scaffold,
with V= 2al2 the volume of the unit cell and

ps = l − d (20)

the pore size. Equation (18) corresponds to an approximate interpo-
lation between two extremes: the first corresponds to the absence of
bone in the scaffold, in which case ϕ=ϕmax≈ 1, Sb(x)≈ 0 and
ρt = ρ̃b, and therefore Ss ≈ Ss0 . The second case occurs when
the scaffold is occupied by fully dense bone, ρt = ρ̂b, in which
case 0 < ρ̃b/ρ̂b ≪ 1 and consequently Ss(x)= Sb(x)≈ 0. Therefore,
as bone starts growing inside the scaffold, the available surface
area for additional bone to grow starts decreasing.
The effective elastic and diffusive properties of the scaffold are

independent of its length scale and dependent only on the dimen-
sionless parameters d/l and α. However, as seen in (19), changes
in the length scale (e.g., the pore size) affect the specific surface
area S. Since the rate of change of bone density depends on S,
cf. (4), the bone growth depends on the length scale. This is
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consistent with empirical evidence that certain pore size ranges
favor bone growth in scaffolds [45]. When the bone has reached
the maximum density ρ̂b so that ϕ≈ 1, the scaffold’s specific
surface Ss is approximately zero and therefore the rate of change
in bone density of (5) is approximately zero.
The effective fraction of the specific surface area for the scaffold

region is given by Seff (x ∈ Ωs) = Sseff , see Table 1. The diffusi-
vity of the scaffold is directly obtained via homogenization, i.e.,
μ(x)= μH(x), see Sec. 2.3.

2.3 Scaffold Properties Surrogate Model. To compute the
expressions of Sec. 2.2.2, we construct a surrogate model of the
effective elastic and diffusivity properties of the scaffold as func-
tions of the geometric parameters. This allows for the efficient,
off-line computation of the properties for any value of the scaffold
design parameters during the bone growth simulations. The geomet-
ric variables of the scaffold used as inputs for the surrogate are d/l,
α, and ps (in μm).
In addition to these variables, we also consider the effect of bone

ingrowth. Thus, the bone density within the interstitial spaces of the
scaffold (ρ) is also an input to the surrogate. This is an important
feature of our model, since as bone grows into the scaffold in the
bone growth simulation, it provides an increasing amount of
mechanical support and reduces the diffusivity. The mechanical
properties of the bone in the interstitial region of the unit cell are
computed using the expressions of Sec. 2.2.1. In this aspect, our
model improves on the approximation of effective properties used
in Ref. [27], since in that work the effect of bone growing in the
scaffold is only taken into account as a change in the local porosity
and specific surface area of the scaffold, which indirectly assumes
that the properties of bone growing inside the scaffold are the
same as those of the scaffold material.
To build the scaffold properties surrogate, we perform numerical

homogenization of the scaffold–bone periodic unit cell using finite
element analysis (FEA) for a number of designs (i.e., combinations
of values of d/l, α, and ρ). This method is commonly used to
approximate the effective bulk properties of periodic lattice struc-
tures such as the scaffolds considered here [48]. It is worth noting
that this method considers the material to be infinitely periodic
and thus it ignores the actual shape of the entire scaffold, which
would be manufactured to fit the shape of the bone defect. For
instance, if the defect shape is cylindrical, as the one considered
in the example of Sec. 4, then a cylinder-shaped scaffold such as
the one shown in Fig. 1 would be manufactured. Nevertheless,
since the size of the scaffold unit cell considered here is small rela-
tive to the size of the defect, we assume that the homogenized prop-
erties are a reasonable approximation of the effective properties at
any point within the scaffold. This assumption is typically made
in, for instance, homogenization-based topology optimization tech-
niques for multi-scale design.
To efficiently generate the finite element model for these designs,

we employ the geometry projection method [36,37]. This method
projects the geometry of the unit cell onto a density field discretized
on a fixed finite element grid. This allows us to circumvent the chal-
lenge and expense of generating a body-fitted mesh for every differ-
ent design.
In the geometry projection method, geometric primitives

described by high-level parameters are mapped onto a density
field. This is then discretized onto a fixed mesh for analysis. Here,
the rods in the scaffold unit cell are represented as cylinders, param-
eterized by the cylinder’s axis endpoint positions and its radius. The
unit cell is meshed with a regular grid of hexahedral elements, see
Fig. 5. The projected density ηqe corresponding to rod q for each
element e in this mesh is computed as (see, for example, Ref. [38])

ηqe =

1, dqe ≤ −rf
1
2
+
1
4

dqe
rf

( )3

−
3dqe
4rf

, −rf < dqe < rf

0, dqe ≥ rf





(21)

where dqe is the signed distance from the centroid of element e to the
boundary of rod q, and rf is the radius of the smallest sphere that
circumscribes the element. Equation (21) is a smooth approximation
of the Heaviside function (cf. Ref. [38]). The reader is referred to
Refs. [37,38] for expressions to compute the signed distance as a
function of the rod geometric parameters.
The projected density in regions where rods intersect is given by

the maximum of the projected densities for the intersecting rods.
We replace the non-differentiable maximum function with a
smooth approximation. Here, we use the smooth maximum intro-
duced in Ref. [39]:

ηe =

∑nbar
q=0 H̃(dqe, ε)ηqe∑nrod
q=0 H̃(dqe, ε) + ξ

(22)

where ξ is a small positive number to avoid division by zero for
elements outside the rods, nrod= 6 is the number of rods in the
unit cell, and H̃ is the smooth approximation of the Heaviside func-
tion given by

H̃(x, ε) =

1, x < −ε
1
2
−

x
2ε

+
1
2π

sin
−πx
ε

( )
, −ε ≤ x ≤ ε

0 otherwise





(23)

The parameter ɛ in this expression corresponds to the width of the
transition region (from 0 to 1) of the smooth Heaviside; here it is set
equal to d/100. A reason to use this particular smooth maximum

Fig. 5 Geometry projection of unit cell. (a) Projected density ηe
on unit cell mesh. (b) ηe=0.5 iso-surface.
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approximation is that ηe≤ 1, which is not the case for other approx-
imations (e.g., the p-norm employed in Ref. [49]), which may
render values larger than 1 and subsequently produce negative
effective diffusivity values.
The elements in the mesh are sized to keep them as close to cubic

as possible while maintaining a minimum of 20 elements per side of
the unit cell. An example of the geometry projection for a unit cell is
shown in Fig. 5.
As in density-based topology optimization techniques, we use the

projected density to define an element-uniform ersatz material with
elasticity tensor given by

Ce = Cb(ρ) + ηe(Cr − Cb(ρ)) (24)

where Cb and Cr are the elasticity tensors of bone (computed using
the expressions in Sec. 2.2.1) and the material of the rods, respec-
tively. We note that the values of the bone density ρ and therefore
of Cb are the same for the entire unit cell. We also note that since a
very small but positive bone density is specified in the scaffold in
the initial conditions (for the reasons outlined in Sec. 2.2), a zero
elasticity tensor is not possible and thus the analysis is well posed.
Similarly, the ersatz diffusivity tensor is given by

μi = μb(ρ) + ηe(μ0 − μb(ρ)) (25)

where μb is the diffusivity tensor of bone (computed using the
expressions in Sec. 2.2.1) and μ0=D0I is a non-zero but small dif-
fusivity tensor to prevent an ill-posed analysis (since we assume that
the material of the rods has zero diffusivity); the value ofD0 is listed
in Table 1.
To compute the effective elastic properties of the scaffold, we use

asymptotic homogenization (cf., for example, Refs. [35,50]). For a
given scaffold design, this requires six finite element analyses of the
unit cell corresponding to six applied unit strains ɛ;0(ij)= ei⊗ ej
(with ei the unit vector along the ith coordinate) and with periodic
boundary conditions imposed on all six faces. The components of
the homogenized elasticity tensor are given by

CH
ijkl =

1
V

∫

V

Cpqrs ε0(ij)pq − ε(ij)pq
( )

ε0(kl)rs − ε(kl)rs

( )
dv (26)

where Cpqrs are the components of the ersatz elasticity tensor of
(24), V is the unit cell volume, and ɛ;(ij) is the strain resulting
from the analysis with applied ɛ;0(ij) [33].
Similarly, to perform the homogenization of the diffusivity

tensor, three unit concentration gradients ∇c0(i) = ei are imposed,
and the components of the homogenized tensor are given by

μHij =
1
V

∫

V

μlm c0(i),l − c(i),l
( )

c0(j),m − c(j),m
( )

dV (27)

where μlm are the components of the ersatz diffusivity tensor of (25),
and ∇c(i) is the concentration gradient resulting from the analysis
with applied ∇c0(i) [33].
The numerical implementation of the homogenization analysis

was done in MATLAB version R2019b, which is based on the imple-
mentations of Refs. [33,34]. The rods are assumed to be made of a
hydroxyapapatite/tricalcium phosphate (HA/TCP) mixture, with an
elastic modulus of 10 GPa and Poisson’s ratio of 0.25 [27].
To build a surrogate model, a parametric sweep was conducted

for bone density ρ ∈ {0.05, 0.06, . . . , 1.85, ρ̂b} g/cm3, rod
overlap α∈ {0.05.0.1,…, 0.45}, and rod diameter to separation
ratio d/l∈ {0.2, 0.3,…, 0.8}, for a total of 1260 combinations.
The d/l and α ranges are derived from known limitations in manu-
facturing. The pore size limits are based on the range of pore sizes
over which bone has been found to grow best in a scaffold [51]
Accordingly, the surrogate model should only be considered valid
in this range. The surrogate model employed for the scaffold–
bone effective properties is a piecewise-multilinear interpolation
[52]. This model was chosen due to its simplicity and to avoid

the oscillations other models exhibited between reference points.
Plots of some of the homogenized properties are shown in Fig. 6.

2.4 Bone Growth Surrogate Model. The purpose of the
bone growth surrogate model is to efficiently approximate the quan-
tities of interest in the scaffold design (e.g., the stiffness at the time
of implantation and the bone growth at observation time) as a func-
tion of the scaffold design parameters. The mechanobiological
simulation is computationally expensive, with run times typically
measured in hours. Although analytical sensitivities could be
employed for the optimization, their derivation and computational
implementation are quite involved, particularly since this is a time
marching problem. Furthermore, this would require smoothing of
some of the non-differentiable functions in the bone growth
model, for instance, the bone density growth rate of (5) and the
bone mechanical properties of (9) and (10). Since there are only
four design parameters (namely, α, d/l, θ, and ps), we therefore

Fig. 6 Plots of some of the homogenized scaffold properties.
The plots on the left correspond to the properties of an empty
scaffold; the ones on the right correspond to the properties of a
scaffold filled with fully dense bone. In-plane and out-of-plane
are as defined in Fig. 2. (a) In-plane elastic modulus. (b) Out-
of-plane elastic modulus. (c) In-plane diffusivity. (d ) Unit cell
axis reference.
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choose to employ a surrogate model here and defer the computation
of analytical sensitivities for future work. Another advantage of
using the surrogate is that we can choose a priori the number of
computational bone adaptation simulations to run, and these
simulations can be performed in parallel. The optimization is subse-
quently performed using the surrogate model. As customary, a full-
fledged bone adaptation simulation of the optimal scaffold found
with the surrogate is then performed.
To create the surrogate model, bone adaptation simulations were

performed for a Latin hypercube sampling (LHS) of the design
space. The ranges α∈ [0.05, 0.45], d/l∈ [0.2, 0.8], ps∈ [100,
500] μm, and θ∈ [0, π/2] rad were used. Note that, because of the
rods in alternating layers of the rectilinear scaffold are perpen-
dicular, it is only necessary to consider an orientation θ within
one quadrant.
To select the surrogate model to fit the data, k-fold cross valida-

tion was employed (cf. Ref. [53]). This is performed by first ran-
domizing the order of the simulation results, then subdividing the
results into subgroups (or folds) of k members each. The surrogate
model is fitted to all of the data minus one of the subgroups. The
inputs of the subgroup left out are then plugged into the fitted sur-
rogate model, and the predicted results are compared with the
known output values from the subgroup. This process is repeated
for every subgroup [54]. The suitability of a surrogate model is
determined based on how well the surrogate performs across all
subgroups [53]. In our case, we chose the model that exhibits the
highest minimum R2 value across all folds. As detailed in Sec.
4.2, the surrogate model selected based on this procedure for the
example presented in this paper is Kriging.
We construct surrogates of three quantities from the bone adap-

tation simulation. The first is the strain energy of the scaffold at
time of implantation (t0), given by

U0 =
1
2

∫

Ωs

[σ(x) : ε(x)]|t=0 dv ≈
∑

e∈Ωs

se|t=0 (28)

where se is the element strain energy. This quantity is equivalent to
half of the structural compliance of the scaffold and is an inverse
measure of stiffness. It is important because it relates to the
ability of the scaffold to sustain loads upon implantation.
The other quantities approximated via surrogates relate to bone

growth. The first corresponds to mass bone growth fraction at the
final simulated time (tf), given by

mf : =

∫

Ωs

ρt(x)|t=tf dv
∫

Ωs

ρ̂b dv
≈
∑

e∈Ωs
ρe|t=tf ve∑

e ρ̂bve
(29)

where ρe is the bone density of element e and ve is the element
volume. A value of mf = 1 is obtained if the scaffold is full of
bone at its maximum density (ρ = ρ̂b at the final simulation time).
Henceforth, we will refer to t0 as the “implantation time” and tf as
the “final time.” This fraction is commonly used to quantify bone
growth in the literature (see, for example, Ref. [27]).
One possible way to define what complete osteointegration

means is to have a mass bone growth fraction of 1 everywhere in
the scaffold. In this situation, fully dense bone occupies the entire
scaffold. However, a more realistic definition may be to require
that bone occupies the entire scaffold, but not necessarily at the
maximum density. The latter definition is more consistent with
the fact that the bone itself is not fully dense everywhere. The
majority of reported in vivo studies have shown insufficient bone
growth, with growth only in the scaffold periphery, which has
been postulated to be due to insufficient vascularization [55,56].
This lack of vascularization leads to a shortage of oxygen and
glucose needed for viable tissue and causes tissue necrosis. To
better capture the ability of the bone to occupy all of the interstitial
space in the scaffold regardless of density, we define a volume bone

growth fraction at the final simulated time as

vf : =

∫

Ωs

H(ρt(x) − ρthr)|t=tf dv
∫

Ωs

dv

≈
∑

e∈Ωs
H(ρe − ρthr)|t=tf ve∑

e ve

(30)

whereH is the Heaviside function H(x) = {0 if x < 0, 1 otherwise},
whose role is to ensure that only elements with a bone density equal
to or greater than a specified threshold bone density ρthr are counted
in the sum. That is, vf is a volume fraction of the interstitial space in
the scaffold that has some bone growth at the final simulation time.
How exactly ρthr is selected is covered in more detail in Sec. 3.1. In
Sec. 4, we report these bone growth fractions as percentages, Gv=
100 vf and Gm= 100 mf.
As detailed in Sec. 4.3, we employ these surrogates to optimize

the scaffold design. The goal of the optimization is ensuring to max-
imize the bone growth at the final simulation time while ensuring
that the scaffold possesses enough stiffness at implantation time.

3 Implementation
To demonstrate our methodology, we consider a cylindrical scaf-

fold implanted in an adult rabbit femur. The scaffold has a 6 mm
diameter and it goes through the bone perpendicular to the frontal
plane (approximately 10 mm in length).

3.1 Methods. Micro-CT images of a rabbit femur were
acquired from the harvested femur of a male white New Zealand
rabbit weighing approximately 3.5 kg. Prior to euthanization, the
animal was housed in an individual cage with ad libitum access
to food and water. Care and use of the animal are adhered to
University of Connecticut’s Institutional Animal Care and Use
Committee guidelines. The left femur of the rabbit was dissected
and stored fresh frozen until the time of the scan. For micro-CT
imaging, the femur was bisected with a rotary tool at the mid-
diaphyseal region. The proximal portion was discarded, and only
the distal portion is modeled in the simulation. The specimen was
scanned using a μCT50 (Scanco Medical, Switzerland) after posi-
tioning it vertically in the cylindrical container. The scanning pro-
tocol included 1000 projections, an energy of 55 V, an intensity
of 145 μA, and a voxel size of 34.4 μm. The geometry was extracted
using 3D SLICER 4.10.2. The hole where the scaffold is implanted
was created in the imported geometry and not in the physical
sample. Computer-aided design (CAD) models of the femur and
scaffold regions created in 3D SLICER are shown in Figs. 7 and 8,
respectively. The facets shown in these figures do not correspond
to the finite element mesh used for the analysis but to the tessellated
boundary representation created from the micro-CT scan.
It is important to note that the exact geometry of the scaffold itself

(i.e., the rods) is not modeled in the mechanobiological simulation.
Instead, this region is assigned a homogenized material with
properties equivalent to those of a scaffold composed of a specified
unit cell design filled entirely with bone at a given density. These
properties are derived from the scaffold surrogate (cf. Sec. 2.3),
and they are updated on an element-by-element basis at each time-
step of the transient mechanobiological simulation. Thus, the recti-
linear scaffold structure is not visible in Fig. 8.
The initial bone density distribution for the femur was derived

from the micro-CT scan data. Figure 9(a) shows a slice of the
femur scan. Micro-CT scans are effectively 3D maps of the x-ray
attenuation of the sample, typically recorded in Hounsfield units
[57]. The attenuation of bone has been found to be directly pro-
portional to its density [58,59]. Thus, we may calculate the
bone density from the attenuation values in the micro-CT scan as
ρvoxel=mζvoxel+ b, where m and b are empirical constants specific
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to a given micro-CT scanner and combination of scan settings, and
ζvoxel is the attenuation value. Ordinarily, m and b are found using
calibration phantoms. However, the micro-CT scan was not fur-
nished with any calibration information, so we approximated m
and b asm = ρ̂b/max (ζ) and b= 0, where ζ is the vector of all atten-
uation values in the scan. These values were then mapped to the
mesh of the femur by assigning to each element the density of
the micro-CT scan voxel closest to the element’s centroid. The
density values mapped in this way onto the meshed femur corre-
sponding to the slice of Fig. 9(a) are shown in Fig. 9(b).
We also use the initial density field obtained from the micro-CT

scan to determine a reasonable value for the bone density threshold
ρthr of (30), below which we consider element to be primarily
unmineralized soft tissue that should not be counted towards bone
growth. This visual selection of a threshold was done because
there is no widely agreed upon density cutoff value for what
should be considered bone in a micro-CT scan [60]. Indeed, the
cutoff values in some studies are determined by visual inspection
of the micro-CT scan as we did [61,62]. A variety of different
values have been used in micro-CT imaging studies, typically
given either as a percentage of the maximum attenuation in the
scan or in mg/ml of hydroxyapatite (HPA) [60]. The latter can be
interpreted as the attenuation of a calibration phantom that contains
concentration of HPA, a common type of calibration phantom
for bone. Example thresholds in literature vary from 320 mg/ml
HPA to 960 mg/ml HPA, and from 11% to 54%. This corresponds
to a bone density range of 0.2 g/cm3 to >1.6 g/cm3 [60,63]. Thus,
we chose ρthr to be approximately equal to the trabecular bone
density in the region where the scaffold is implanted, which is
roughly 0.75 g/cm3. This is within the range of cutoff values
reported for studies targeting trabecular bone, equivalent to a
threshold of 39%.

3.2 Implementation of Bone Adaptation Analysis. Both dif-
fusion and mechanical analyses were performed using ABAQUS [64].
We employed user subroutines to ensure that the time stepping for
a single bone adaptation simulation was done in a single run, as
opposed to invoking a new ABAQUS analysis at each time-step to
avoid the overhead and make the simulation more efficient. The
pseudocode for the simulation procedure is presented in Fig. 10.
To perform the mechanical and diffusion analyses simulta-

neously, we employed the combined heat transfer-static analysis
in ABAQUS. While the solver does support mass diffusion analysis,
the required element types are not compatible with those of a
static analysis, so they could not both be accomplished in a single
run. Moreover, it is not possible to change diffusion properties
while the simulation is running, which is necessary since the effec-
tive elastic and diffusive properties of the bone–scaffold system
change over time. As noted in Sec. 2.2, with the specific heat and
material density set to unity, a heat transfer analysis is identical to
a diffusion analysis, and the user subroutine UMATH allows to
set the properties in between time-steps. The thermal conductivity
of the material was thus used as the analog for diffusivity and tem-
perature for concentration. The UEXTERNALDB subroutine was
used to pause the analysis between load steps to calculate the new
material properties, and the UMAT and UMATH subroutines
were used to update the material properties in the analysis.
The ORIENT subroutine was used to compute the rotation of the

scaffold elasticity and conductivity tensors arising from the scaffold
orientation angle θ corresponding to (15) and (16), respectively.
The calculation of the effective properties was performed using a
PYTHON script.
A single loading case corresponding to hopping was considered,

with an estimated force magnitude of 184 N [65], and a load fre-
quency of 6000 cycles per 6 h applied to the femur for the duration
of the simulation. The simulated time period starts at the completion
of the implantation procedure or implantation time (t0= 0 days) and
ends at 28 days later (tf = 28 days) at the final time [27]. The simu-
lation thus comprises 113 time-steps (including the initial state).

Fig. 8 Scaffold region/bone defect. This is the region the scaf-
fold is expected to occupy and into which we hope to induce
bone growth.

Fig. 9 Micro-CT scan slice and corresponding bone densities
mapped to the FEA mesh. (a) CT scan and (b) FEA femur model.

Fig. 7 Femur geometry with defect, no scaffold. The femur
geometry is derived from the micro-CT scan. (a) XY view and
(b) YZ view.
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The force was split between the two condyles and applied as a
surface traction spread over several nodes on each condyle. The
tractions are parallel to the sagittal plane, and they form a 55 deg
angle with respect to a line perpendicular to the femur’s transverse
plane. Zero-displacement boundary conditions were applied at the
cut surface of the femur. The boundary conditions for the mechan-
ical analysis are shown in Fig. 11.
For the diffusion analysis, the bone of the femur surrounding the

scaffold is treated as a source of osteoblasts, with a fixed normalized
concentration of 1. The scaffold is assumed to have a zero initial
osteoblast concentration at implantation [27]. The coefficient of
thermal expansion is set to zero for both bone and scaffold to
ensure the temperature, which is the proxy quantity for concentra-
tion, does not affect the mechanical analysis.

The femur and scaffold are meshed with 225,022 linear tetrahe-
dral elements for coupled temperature–displacement analysis. The
meshed model is shown in Fig. 12.

4 Results
In the following, we describe the numerical design of experi-

ments employed to build the surrogate models of bone growth
and strain energy, and the optimization of the scaffold based on
these surrogates.

4.1 Latin Hypercube Sampling. We performed a full bone
adaptation simulation for the 81 designs of the LHS. Scatter plots
of volume and mass bone growth and strain energy for these runs
are shown in Fig. 13. These plots show the combined effect of
two variables on the responses of interest. Where multiple
markers may overlap, the one attaining the largest bone growth
value is plotted in the foreground.
Several important trends appear in the results. From the perspec-

tive of the scaffold performance, we aim to have maximum bone
growth (i.e., red markers) at the final time for a given strain
energy at implantation time. The red markers are the largest
across all the d/l plots of Fig. 13, which indicates that there is a
trade-off between either of the bone growth measures and stiffness.
Figure 13 also shows that d/l has the largest effect on bone growth.
Values of d/l approaching the lower bound of 0.2 show the greatest
bone growth as measured by either volume or mass. Conversely,
values of d/l approaching the upper bound of 0.8 render the
highest stiffness.
Another interesting observation is that while pore size has some

effect on bone growth, it is not as significant of a driver as d/l.
Indeed, varying the pore size along the bounds ps∈ [100,
500] μm for the stiffest scaffold with d/l= 0.8 does not render as
significant an improvement in bone growth as compared to
simply decreasing d/l, which is an indication that stiffness is the
major driver of bone growth. Pore size still has some effect; this
is expected because the specific surface area of (4) does depend
on the actual dimensions of the scaffold, with smaller pores yielding
a larger specific surface area. The bone thus has a larger surface to
grow on and less volume to fill. However, decreasing pore size nec-
essarily reduces the diffusivity of the scaffold, making the growth
front harder to reach by the biological actors involved in bone
growth [21,27,51]. We do not see much of an effect here,
however, likely because the range of pore sizes was deliberately
chosen for good bone growth as mentioned in Sec. 2.3.

Fig. 10 Pseudocode for the mechanobiological analysis loop

Fig. 11 Femur mechanical boundary conditions. Again, as in
Figs. 7 and 8, no mesh is shown. The arrows indicate the direc-
tion and region of application of the knee joint load to the
femur. The triangular markers at the cut plane of the femur indi-
cate an encastre boundary condition across its surface. (a) XY
view and (b) YZ view.
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It is notable that the simulation results indicate there is some
freedom to select d or l. As the d/l ratio is unitless, the designer
may choose either (though not both) to suit the application
without compromising bone growth. This observation has important
manufacturing and mechanical repercussions. For instance, a rod
diameter that is more amenable to the manufacturing process (e.g.,
one that renders less variability in dimensions and produces less
manufacturing defects) can be selected largely independently of
the impact on bone growth. Moreover, a larger d requires fewer
rods in a scaffold of the same size as compared to one with
smaller d for the same d/l, which would decrease the deposition
time. Another consideration is that rods with smaller d may
exhibit a larger compressive strength due to size effects in the case
of brittle materials (such as HA/TCP). Therefore, a scaffold with
smaller rods (but the same overall volume fraction) may be stronger
in compression. Moreover, if there are more rods in the scaffold,
there is more redundancy should a rod break, and thus the scaffold
would be better from the point of view of fail-safe design.
Another important observation from the simulations is that

large values of ps may hinder growth. Since all the other defining
geometric variables are dimensionless in our parameterization,
pore size establishes the length scale of the unit cell. Per the square-
cube law, the surface area increases quadratically and volume cubi-
cally as the scale of an object increases. Therefore, the specific
surface area of the empty scaffold Ss0 in (19) is inversely pro-
portional to pore size (assuming all other dimensions are held
constant). Thus, if ps is large then the specific surface area S for
the scaffold region of (18) will be small (since Sb≈ 0 in the
empty scaffold). Consequently, the rate of change in bone density
of (4) will be reduced.

Finally, we note that there seems to be little difference between
the interaction plots for the mass and the volume bone growth frac-
tions in Fig. 13. This is an indication that, at least for the problem
considered in this work, larger bone mass equates to larger occupied
volume. We note, however, that this may not be the case in other
situations, where fully dense bone may quickly form around the
periphery of the scaffold and subsequently stop growing towards
the center of the scaffold. In that case, the mass growth fraction
may be larger than the volume growth fraction, since the latter
can be considered an inverse measure of void space in the scaffold
with no or limited bone growth. We should note, however, that there
is a more noticeable difference between the two measures when
considering the effect of individual parameters, as discussed in
the following section.

Fig. 13 Scatter plots of bone growth and strain energy for the
scaffolds in the LHS. Each marker is colored based on its
(a) volume or (b) mass growth percentage at t= tf. Marker size
indicates strain energy of the scaffold at implantation.
(a) Volume growth and (b) mass growth.

Fig. 12 The meshed femur and scaffold assembly, showing ele-
ments in the bone region Ωb and in the scaffold region Ωs (cylin-
drical region towards distal end of femur).
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We postpone our observations on the effect of the overlap ratio α
and the orientation θ on bone growth to the following section, where
their influence can more clearly be observed.

4.2 Surrogate Model. A surrogate model was fitted to the runs
of the LHS for all performance metrics (U0, Gm, and Gv) using the
Surrogate Modeling Toolbox (SMT) for PYTHON [66]. Using k-fold
cross validation, a Kriging model was chosen for U0 and Gm, and a
Kriging partial least-square model was used for Gv. The default
parameters were used, with constant regression functions, squared
exponential correlation functions, and a hyperparameter value of
0.01. These models rendered worst-case R2 values of 0.998,
0.997, and 0.949, respectively.
In Fig. 14, we can see a two-parameter contour plot of a 20-level,

4-factor full-factorial sampling of the surrogates. The color in each
plot of the figure with parameters x1 and x2 in the axes corresponds
to the maximum bone growth fraction that can be obtained with x1
and x2 fixed and the remaining two parameters being design
variables.
Figure 14 confirms the previously made observations about the

effect of d/l and ps on bone growth (which is expected since the sur-
rogate is built on the LHS data). However, two additional observa-
tions become more evident in this figure.

The first is that the orientation θ has almost no effect on bone
growth. This occurs because the largest bone growth occurs in the
scaffolds with lower d/l, and for these scaffolds it can be readily
shown via the surrogates that the magnitude and variation of Eavg
in (8) with respect to θ are relatively small for most of the angle
range, with higher values attained around θ= 0 (which is equal to
those for θ= π/2). While the insensitivity of bone growth to orien-
tation may hold for the particular defect geometry, loading and
boundary conditions considered in our example, it most likely
cannot be generalized to other cases. It is possible that higher sen-
sitivity could be observed in other situations—e.g., a defect in a flat
bone situated in a region loaded primarily in tension.
The second observation is the effect of the overlap fraction α on

bone growth. Although its effect is clearly not as important as that
of d/l, it can be observed from Fig. 14 that the smallest α, the largest
the bone growth. This makes sense from a stiffness point of view,
since decreasing α decreases the stiffness of the scaffold, and as
the strong influence of d/l on growth indicates, a more compliant
scaffold fosters higher growth.
In the surrogate for volume growth of Fig. 14, there is some jag-

gedness in the θ versus d/l plot as d/l→ 0.8. It is unclear what causes
this phenomenon, but it is possible it may be the result of oscilla-
tions in the surrogate model between training points. Additionally,
the ps versus d/l plot displays a region of slightly elevated volume
growth around d/l= 0.65 and ps= 450 μm. This seems to indicate a
beneficial interaction between the parameters which is not readily
apparent in Fig. 13(a).
To further examine how each individual parameter affects bone

growth, we plot the largest bone growth value that can be obtained
for the parameter, as shown in Fig. 15. The curves in Fig. 15 can
thus be interpreted as growth limit curves, i.e., the upper bound
each variable places on bone growth. Each point in these curves
represents the maximum achievable bone growth if the scaffold
is optimized with the parameter corresponding to the curve held
fixed and all other parameters as design variables. Any point
(x, y) in each curve is the result of an optimization run performed
using the surrogates, where y is the maximal bone growth obtained
by fixing the value of the parameter of the curve to x and varying all
other parameters. For example, each point in the curve correspond-
ing to d/l is the result of a maximization of growth with the value
of d/l fixed and with α, ps, and θ as design variables. All parameters
are normalized as ẑ = (z − zmin)/(zmax − zmin), where [zmin, zmax] is
the range of the parameter (cf. Sec. 2.4). Each optimization was
run with a basin-hopping algorithm with a Newton conjugate
gradient method as an local optimizer. Both implementations
were from the SciPy library [67].
As previously observed, d/l is by far the most influential design

variable, while α and ps have a more moderate effect. As already
concluded from the previous discussion, θ seems to have the least
influence, especially for mass growth. Unlike the interaction
plots of Figs. 13 and 14, the curves of Fig. 15 reveal differences
between the mass and volume growth fractions. First, d/l and α
have a more pronounced effect on the volume growth fraction
than on the mass growth fraction. These curves also show that
while the maximum possible volume and mass growth fractions
are similar, the former varies over a greater range. This greater
range of growth values indicates there is more volume growth to
be gained by optimizing the scaffold design. Finally, the d/l limit
curve for volume growth is not monotonic, which is likely due to
the arbitrary choice of the bone density threshold ρthr of (30). The
lack of monotonicity of volume growth with respect to the design
variables justifies the use of a non-gradient-based method for the
exploration stage of the optimization (a gradient-based method is
subsequently used for exploitation). Interestingly, the d/l curve is
non-monotonic for the mass growth as well. This is likely due to
an increased specific surface area at high d/l due to (20) partially
compensating for their high stiffness.
As noted in Sec. 2.4, in addition to trying to maximize bone

growth, we also must ensure that the scaffold has sufficient stiffness
to sustain the loads at the time of implantation. Figure 16 shows

Fig. 14 Filled contour plots of scaffold bone growth as pre-
dicted by the surrogate model. (a) Volume growth and (b) mass
growth.
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the Pareto front between the bone growth measures and the strain
energy. The Pareto fronts show a clear trade-off between strain
energy and growth. In general, strain energy is proportional to
growth. This makes sense since bone growth is stimulated by
mechanical strain. Comparing the LHS simulation runs to the
Pareto front, we observe that even at fixed strain energy, there is con-
siderable latitude to improve bone growth as measured by either
volume or mass bone growth. An agglomeration of data points is
present along the vertical axis of the volume growth measure
Pareto front (Fig. 16(a)). This is due to designs where the bone
growth never exceeds the stipulated threshold bone density ρthr.

4.3 Optimization. We now seek to demonstrate that the surro-
gate models can be used to improve the performance of the scaffold.
Unfortunately, there are no in vivo rabbit studies that report bone
growth in rectilinear scaffolds. Such research would provide a com-
parison with experimental data. There are, on the other hand, in vivo
studies of this type of scaffolds implanted in pig mandibles (cf.
Refs. [32,68,69]). Another study examined a scaffold of this type
in sheep [30]. However, several of the model parameters and the
loadings are not presently available for either sheep or pigs, and
therefore we cannot apply our model to these cases. A comparison
to experimental data is therefore postponed to future work.
As we lack experimental data for a proper comparison, we

instead demonstrate the efficacy of the proposed design procedure
by comparing the optimized scaffold to a reference scaffold,
which we choose to have the same dimensions as the scaffolds
used in the in vivo study of Lan Levengood et al. [32]. That is,
we assume that the bone adaptation model is correct (an assumption

that is reasonable in light of the comparison of this model to exper-
imental data made in Ref. [27]), and we only examine the extent of
the improvement that can be attained with the proposed design
methodology. The in vivo study of Lan Levengood et al. [32] con-
siders scaffolds implanted in pig mandibles; since the magnitudes
of the loads experienced by the scaffold in the pig mandible are
significantly larger than those of the scaffold in the rabbit femur,
it is reasonable to assume that the reference scaffold has sufficient
stiffness in the latter setting. We also note that the parameter
values of the reference scaffold (listed in Table 2) are not too far
from the midpoint values of the ranges considered in the LHS for
each parameter.
We use the surrogate models to find the scaffold design that max-

imizes the volume growth fraction subject to the constraint that
the stiffness at the time of implantation is no smaller than that of
the reference scaffold. The parameters derived from the surrogate
model optimization as well as those for the reference scaffold
were then evaluated using the full mechanobiological simulation.
The performance of the optimized and reference scaffolds is listed
in Table 2. As before, the surrogate optimization is performed
using a basin-hopping algorithm, this time with a constrained
trust region method as the local optimizer. The change in local opti-
mizer is required by the addition of a stiffness constraint. Both are
part of the SciPy library [67]. The performance predicted by the sur-
rogate model shows a reasonable agreement with the values found
via the full simulation. The estimated mass and volume bone growth
were 15.3% and 34.6%, respectively, compared to the simulation
derived 18% and 36.6%. The bone density of both designs at the
final time tf is shown in Fig. 17.

Fig. 16 Pareto front of bone growth versus strain energy. The
front (circular markers) was generated using the surrogate
model, with runs in the LHS sample (cross markers) overlaid
for reference. (a) Volume growth and (b) mass growth.

Fig. 15 Maximum-growth or growth limit curves for each param-
eter. Parameters are normalized by their ranges considered in
the LHS sampling. (a) Volume growth and (b) mass growth.
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The optimized design is slightly stiffer than the reference design
with more than 50% increase in mass growth fraction and nearly
120% increase in volume growth fraction. That the two scaffolds
have similar stiffnesses but the optimized scaffold exhibits greater
bone growth highlights an important result: optimizing the scaffold
with regard to stiffness as a bulk material, which is the approach
taken in the vast majority of scaffold design strategies published
to date, does not necessarily guarantee maximum bone growth.
The optimized scaffold also has a larger terminal rate of bone
growth (Ġv(t = tf ) and Ġm(t = tf )), as shown in Fig. 18. Neither
scaffold has reached a steady state at the end of the simulation
period, therefore it is possible that the optimized scaffold will
reach even greater bone growth after the 28-day period considered
in our simulation.

5 Conclusions
Using a full mechanobiological simulation of bone growth, we

optimized a rectilinear scaffold to maximize osteointegration.
This growth-optimized scaffold exhibits greater bone growth
when compared to a reference scaffold design that has been used
in published in vivo studies (albeit in a different animal). Although
this work presents a single case study, it is evident from the
performance of the optimized design that incorporating bone adap-
tation directly into the optimization and designing the scaffold as a
structure (i.e., taking into account the shape of the defect and the
loading) can lead to significant improvements in bone growth.
These findings require in vivo validation, which is the subject of
ongoing work.
The proposed design methodology can be readily applied to

other scaffold configurations and manufacturing processes. It has
no theoretical restriction on the number of design variables, so it
may be applied to any scaffold which can be geometrically param-
eterized and homogenized. The latter condition requires periodicity
of the scaffold structure, which is a limitation of the method.
However, there is no restriction on the shape and size of the scaffold
that may be considered. The method also has a computational con-
straint; the number of simulations required to fit the bone growth
surrogate grows exponentially with the number of design parame-
ters, and so in practice the method is restricted by the available
computational resources.
Several mechanobiological aspects of bone–scaffold design were

not considered in this study and will be considered in future
research. These include considerations such as stress and fatigue
life of the bone–scaffold system and bone resorption. Moreover,
modern manufacturing techniques afford far more flexibility in scaf-
fold architecture than the rectilinear configuration examined here.
Incorporating these considerations will expand the design space
and thus potentially render better osteointegration, and they will
increase the clinical viability of these scaffolds.
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