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Abstract

Biological research often involves testing a growing number of null hypotheses as new data are accumulated over time.
We study the problem of online control of the familywise error rate, that is testing an a priori unbounded sequence of
hypotheses (p-values) one by one over time without knowing the future, such that with high probability there are no
false discoveries in the entire sequence. This paper unifies algorithmic concepts developed for offline (single batch)
familywise error rate control and online false discovery rate control to develop novel online familywise error rate
control methods. Though many offline familywise error rate methods (e.g., Bonferroni, fallback procedures and Sidak’s
method) can trivially be extended to the online setting, our main contribution is the design of new, powerful, adaptive
online algorithms that control the familywise error rate when the p-values are independent or locally dependent in time.
Our numerical experiments demonstrate substantial gains in power, that are also formally proved in an idealized
Gaussian sequence model. A promising application to the International Mouse Phenotyping Consortium is described.

Keywords
Online multiple testing, FWER control, null proportion adaptivity, discarding conservative nulls

I Introduction

Modern genomics studies typically require large scale multiple hypotheses testing, which are sometimes conducted in
an online manner (meaning one or few hypotheses at a time), not as a big large batch of hypotheses tested all at once.
Thus, the family of tested hypotheses is continually growing over time, due to the accumulation of data (both types
and amounts). For example, one international scientific project, the International Mouse Phenotyping Consortium
(IMPC), aims to create and characterize the phenotype of 20,000 knockout mouse strains; this was launched in
September 2011, and was projected to take 10 years. Available datasets and the resulting family of hypotheses con-
stantly grow as new knockouts are studied, while discovery-inspired downstream analyses are conducted along the
way. Thus we are faced with a nonstandard multiple hypothesis testing problem, one in which the nature or number of
hypotheses (or p-values) is not known in advance but become known one at a time. This exemplifies the challenge of
online hypothesis testing, where at each step the scientist must decide whether or not to reject the current null
hypothesis without knowing the future hypotheses or their outcomes (rejected or not).

Formally, online multiple testing refers to the setting in which a potentially infinite stream of hypotheses
H,, H,,... (respectively p-values Py, P,,...) is tested one by one over time. It is important to distinguish the
aforementioned setup from sequential hypothesis testing, where a single hypothesis is repeatedly tested as new
data are collected. Our setup zooms out one level, and it is the hypotheses that appear one at a time, each one
summarized by a p-value.

'Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
Department of Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA

Corresponding author:
Jinjin Tian, Department of Statistics and Data Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213-3815, PA, USA.
Email: jinjint@andrew.cmu.edu


https://orcid.org/0000-0003-3537-6430
mailto:jinjint@andrew.cmu.edu
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/0962280220983381
journals.sagepub.com/home/smm
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0962280220983381&domain=pdf&date_stamp=2021-01-07

Tian and Ramdas 977

At each step ¢ € N, one must decide whether to reject the current null hypothesis H, or not, without knowing
the outcomes of all the future tests. Typically, we reject the null hypothesis when P, is smaller than some threshold
o, Let R(T) represent the set of rejected null hypotheses by time 7, and vlls be the unknown set of true null
hypotheses; then, V(T) = R(T) NH, is the set of incorrectly rejected null hypotheses, also known as false dis-
coveries. Denoting V(T) = [V(T)|, some error metrics are the false discovery rate (FDR), familywise error rate
(FWER) and power which are defined as

FDR(T) :E[W(VT()T')W], FWER(T) = Pr {V(T) > 1}, .
power(7T) =E 7“-[6 ;_;(j(T”

It is arguably of interest to control the FDR or FWER at each time below a prespecified level o € (0, 1), while
maximizing power. Such a goal is also essential with respect to providing a reliable resource for downstream
analysis along the way. Notice that FWER(T) is monotonically nondecreasing in T, therefore controlling FWER
(T) at each T € N is equivalent to controlling limz_,., FWER(T). Therefore, we drop the index 7, and only
discuss techniques controlling limz_,.. FWER(T).

There is a large variety of procedures for (A) offline (single batch) FDR control,' ® (B) online FDR control,*”®
and (C) offline FWER control.' > However, the online FWER problem is underexplored; for example, in their
seminal online FDR paper, Dean Foster and Robert Stine* only mention in passing that for online FWER
control, one can simply use an online Bonferroni method (that they term Alpha-Spending). We first point out
that offline FWER procedures can be easily extended to have online counterparts (like Sidak’s and fallback
methods). However, our main contribution is to derive new “adaptive” procedures for online FWER control
that are demonstrably more powerful under independence or local (in time) dependence assumptions.

In experiments, we find that our online extensions of classical offline FWER control methods like Sidak'? and
fallback'>'* have a fairly negligible power improvement over Alpha-Spending when non-nulls are interspersed
randomly over time. Also, as presented in Figure 1, these algorithms are sub-optimal when they encounter a non-
vanishing proportion of non-nulls, or a significant proportion of conservative null*.* In contrast, our adaptive
discarding (ADDIS) algorithms are more powerful online FWER control methods that adapt to both an
unknown fraction of non-nulls and unknown conservativeness of nulls (Section 3.3 and Figure 2). As shown in
Figure 1, ADDIS-Spending is significantly more powerful than Alpha-Spending, online Sidak, online fallback,
etc. We are able to theoretically justify this power superiority in an idealized Gaussian model (Section 4), and also
confirm it in the real IMPC dataset we mentioned earlier (Section 5.2). Although these powerful new adaptive
methods require independence to have valid FWER control, they can be easily generalized to handle “local
dependence”, an arguably more realistic dependence structure in practice (Section 3.4).
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Figure |. Statistical power and FWER versus fraction of non-null hypotheses 4 for Alpha-Spending (online Bonferroni) and our new
algorithms (ADDIS-Spending, Online Fallback and Online Sidak) at target FWER level o = 0.2 (solid black line). The curves above the
horizontal line at 0.2 display the achieved power of each methods versus 74, while the lines below 0.2 display the achieved FWER of
each methods versus m,. The experimental setting is described in Section 5.1: all observations are Gaussians, we set the alternative
mean yu, = 4 for both figures, but we set the null mean py = 0 for the left figure and py = —1 for the right figure (hence the right
nulls are conservative, the left nulls are not). These figures show that (a) all considered methods control the FWER at level 0.2, (b)
Online Sidak and Fallback provide negligible improvement compared to the naive Alpha-Spending, and (c) ADDIS-Spending is much
more powerful than other algorithms in both settings.
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Figure 2. Historical context comparing offline and online FWER methods.

1.1 Paper outline

In Section 2, we extend some offline FWER methods to the online setting, and prove their FWER control. Then
we derive ADDIS-Spending in Section 3, while we present its generalizations to handle local dependence in
Section 3.4. Section 4 contains theoretical results about the statistical power of the online FWER control proce-
dures (both known and newly derived), particularly Section 4.1 derives optimal choices for hyperparameters of
naive Alpha-Spending within an idealized Gaussian setup, and Section 4.2 provides some theoretical justification
of ADDIS-Spending being more powerful than naive Alpha-Spending. Numerical studies are included in Section
5 to empirically demonstrate the improved power of our new methods using both synthetic and real data. In the
end, we also present several extensions of our main contribution, together with interesting follow-up directions for
future work in Section 6.

2 Online extensions of classical offine FWER control methods

One may regard Alpha-Spending as an online generalization of Bonferroni correction. Specifically, for FWER
level o, given an infinite nonnegative sequence {y;}., that sums to one, Alpha-Spending tests individual hypoth-
esis H; at level

% = o 2

In this section, we seek online variants of other offline FWER methods such as Holm’s'® and Hochberg’s
methods'"; fallback procedure'? and alpha-recycling;'* and Sidak correction.'* Gladly, most of the methods (like
Sidak, fallback and its generalization) can be trivially extended to online setting, while maintaining strong FWER
control, while some of them (like Holm and Hochberg) which depend on ordering are hard to incorporate with the
online setting. In the following, we present two general classes of algorithms which uniformly improve Bonferroni,
together with numerical analysis of their performance. Specifically, those algorithms are Online Sidak (requires
independence), an online analog of the Sidak correction'®; and Online Fallback (works under arbitrary depen-
dence), an online analog of the generalized fallback.'” We expect more online procedures to be developed from
offline methods in the future.

2.1 Online Sidak

Under independence, one well-known improvement of Bonferroni is the Sidak correction.ll3 Given m different null
hypotheses and FWER level o, the Sidak method uses the testing level 1 — (1 — o))" for each hypothesis.
Analogously, Online Sidak chooses an infinite nonnegative sequence {7;}., which sums to one and tests each

hypothesis H; at level

wii=1—(1—a) 3)
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Just as Sidak is only slightly less stringent than Bonferroni, Online Sidak also improves very little of Alpha-
Spending, as shown in Figure 3. In addition, Online Sidak also requires independence for valid FWER control, as

stated below.

Proposition 1. Online Sidak controls FWER in a strong sense if the null p-values are independent of each other, and is
at least as powerful as the corresponding Alpha-Spending procedure.

Proof. The probability of no false discovery among all infinite decisions is

H{VZO}ZE“IIRW}ZIIU—“J

i€Ho i€Hy

= [0y =( -2y >1-a
i€Hy

Further, since o; > 7,0, Online Sidak is at least as powerful as the corresponding Alpha-Spending procedure.2.2

Online fallback procedures
The fallback procedure'? and its graphical generalization'> for offline FWER control can be easily extended to

the online setting, improving the power of Alpha-Spending by “recycling” the significance level of previous
rejections. Below, we briefly present the online variants of the generalized fallback,'® specifically named Online

Fallback.

2.2.1 Online fallback
For FWER level «, Online Fallback chooses an infinite sequence {y;};°, that sums to one, and tests each H; at

level

i—1

o 1= ;00 + Z Wi i Ricou 4)
=1

where R; = 1p, <4, and {wk,}ioik+1 being some infinite sequence that is nonnegative and sums to one for all k € N.
Specifically, we call {wi;};°,,, the transfer weights for the k-th hypothesis.
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Figure 3. Statistical power and FWER for Alpha-Spending, Online Sidak, Online Fallback-1 and Online Fallback at target FWER level
o = 0.2 (solid black line). The curves above line 0.2 display the power of each method, while the lines below 0.2 display the FWER of
each method. The specific experimental setting follows those in Section 5.1, with few alterations. The main experimental setting is
described in Section 5.1, while we allow 74 to be different for each hypotheses H;, and denote it as my; instead. We set uy =0, uy = 4
for all the figures, and we set 1y, = f for i less than | Tr| and s, = 0 otherwise. Particularly, we set f € {0.1,0.2,...,0.9} for the left
figure, while f = 0.1 for the right figure; and we set r=| for the first figure, and r € {0.1,0.12,...,0.26} for the right figure. The
underlying {y,}°, is {6/n%2}", for all the methods, and particularly we set {wi}, ., with wi; = y,_, for all k € N in Online Fallback.
These figures show that (a) all the considered methods do control FWER at level 0.2; (b) the new methods (Online Sidak, Online
Fallback-1 and Online Fallback) have almost the same power as Alpha-Spending given evenly distributed non-nulls; and (c) Online
Fallback-1 and Online Fallback have noticeable power improvement over Alpha-Spending when non-nulls cluster in the beginning of
the testing sequence, with greater improvement if the non-nulls are more compact in the beginning of the testing sequence.
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Note that when we choose {wy;};-, 41 With wy; = 1x—; 1, the individual testing level of Online Fallback reduces to
o 1= oy; + Rim10ti—y (5)

for all i > 2, and o) = ay;, which happens to be the offline fallback procedure'? applying on the infinite hypoth-
eses sequence. We specifically refer to this procedure as Online Fallback-1.

The following Proposition states the FWER control of Online Fallback and is proved in Appendix A. In fact,
Online Fallback can be treated as an instantiation of a more general sequential rejection principle,'® and
Proposition 2 follows trivially from their results. However, we present a more tangible proof for Proposition 2
from a separate direction, since it allows us to get more insights about the connection between the offline methods
and their online variants.

Proposition 2. Online Fallback controls FWER for arbitrarily dependent p-values, and is at least as powerful as the
corresponding Alpha-Spending procedure.

Though Proposition 2 states the power superiority of Online Fallback over Alpha-Spending, one may have the
intuition that the power improvement of Online Fallback over Alpha-Spending would be minor when one
encounters randomly arriving signals, since much of the recycled significance levels are inevitably wasted on
the nulls. Figure 3 demonstrates this intuition, where the left figure describes the setting of randomly arrived
signals and plot against varied signal frequency f, while the right figure describes the setting of clustered signals at
the beginning of the sequence and plot against varied cluster range r. As shown in the left figure of Figure 3, where
the non-nulls are evenly distributed, Online Fallback has basically the same power with Alpha-Spending.
Meanwhile, in the extreme case when the beginning of the sequence consists of only non-nulls (e.g. when r=1
in the right figure), Online Fallback (especially Online Fallback-1) is much more powerful than Alpha-Spending,
while this advantage diminishes fast as more non-nulls plug in the signal cluster (i.e. as r increases).

The above new online FWER control methods are guaranteed to be uniformly more powerful than Alpha-
Spending, though the improvements are usually minor, except for extreme cases when the non-nulls are clustered
at the beginning of the testing sequence. This motivates the development of a new class of algorithms in the
following section.

3 Adaptive discarding (ADDIS) algorithms

In Section 2, we refine Alpha-Spending by refining its offline variants. Since we find that the resulting methods
rarely improve power much over Alpha-Spending, we refine Alpha-Spending from another angle in this section,
directly addressing main sources of looseness in the proof of its FWER control. We end up with a series of new
adaptive algorithms that are much more powerful than Alpha-Spending, though at the cost of requiring inde-
pendence. We ease the requirement in Section 3.4 to allow the methods to handle a local (in time) dependence
structure, which is a more reasonable dependence structure to assume for the online setting.'’

First, we explain the looseness in the proof of FWER control of Alpha-Spending. Recall the Alpha-Spending
procedure in equation (2). Its FWER is controlled because an even stronger error metric, the per-family wise error
rate (PFER) is also controlled at o

PFER :=E[/] = E[Z 1P,<x,} = E[lp <) 2 > 2 S o= (6)

i€Ho i€Ho i€Ho ieEN

(One can verify that FWER < PFER by Markov’s inequality.) The first obvious loose point in the proof
above may be enforcing PFER control while aiming for FWER control. However, it turns out this looseness is
negligible under independence, which we formally prove in Appendix I; in short, the improvement is of order o2,
which is a lower order term, and this phenomenon can also be observed in Figure 3 where Online Sidak (FWER)
has a very slight advantage over Alpha-Spending (PFER).

The two labeled inequalities in equation (6) introduce the main sources of looseness: the PFER of Alpha-
Spending may be far less than o (and hence the power would be much lower than necessary) if either of the two
inequalities is loose. Specifically, the first inequality (A) would be loose if the null p-values are very conservative,
and the second inequality (B) would be loose if there are a large number of non-nulls. These facts expose two
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weaknesses of Alpha-Spending: it will become suboptimal when it encounters conservative nulls or a constant
fraction (like 20%) of non-nulls, and both are arguably quite likely in real applications. These weaknesses are also
problems for the methods derived in Section 2, since they have almost the same power with Alpha-Spending in
those simulations.

By addressing these two weaknesses, we develop a more powerful family of methods called ADDIS-Spending,
which are adaptive discarding algorithms that not only benefit from adaptivity to the fraction of nulls, but also
gain by exploiting conservative nulls (if they exist). Instead of directly presenting the ADDIS-Spending algorithm,
we first introduce the idea of discarding and adaptivity in Section 3.1 and Section 3.2, respectively, each address-
ing one of the looseness mentioned above, and in Section 3.3 we combine the ideas together to develop our
ADDIS-Spending algorithm, which addresses both loosenesses. There is a price to pay for these improvements.
Alpha-Spending works even when the p-values are arbitrarily dependent, but the idea of discarding and adaptivity
essentially requires independence between p-values. We ease this requirement later in Section 3.4, by generalizing
our ADDIS-Spending algorithm to handle a local dependence structure.

Before we proceed, it is useful to set up some notation. Recall that P; is the p-value resulted from testing
hypothesis H;. Given infinite sequences {,},°,, {4;},2, and {o,},°,, where every element is in (0, 1), define the
indicators

Sj=1p<vy, Ci=lp<y, Ri=1p<y ()

which, respectively, indicate whether H; is selected for testing (used for adapting to conservative nulls), whether H;
is a candidate for rejection (used for adapting to fraction of nulls), and whether H, is rejected. Accordingly define
R];,Z{R],...,R[}, C];,Z{C[,...,C,} and Sl;[:{Sl,...,S,}. Similarly, let
R={ieN:R=1},C={ieN:C;=1},S={ie N:S;,=1}. In what follows, we say o, 4, and 7, are
“predictable with respect to some filtration F'”, or just “predictable” for short, to mean that they are measurable
with respect to F'~!, meaning that they are mappings from F'~! to (0, 1). The form of F~! may change across
algorithms and it is denoted as o(+), that is a sigma field generated by certain random variables.

3.1 Discarding conservative nulls

Here, we develop a method named Discard-Spending to address the first looseness (A) in equation (6) due to
overlooking the conservativeness of null p-values. Specifically, we consider the null p-values to be uniformly
conservative as defined below, which include uniform nulls (the ideal case) and the majority of conservative
nulls (realistic case).

Definition 1. (Uniformly conservative) A null p-value P is said to be uniformly conservative if for all x,t € [0, 1]

Pr{P < xt|P <1} <x ®)

The above condition is easy to interpret; for example when 1 = 0.6 and x=0.5, it means the following—if we
know that P is at most 0.6, then it is more likely between [0.3,0.6] than in [0,0.3]. As an obvious first example,
uniform null p-values are uniformly conservative. As for more general examples, note that the definition in
equation (8) is mathematically equivalent to requiring that for the CDF F of the p-value P, we have

F(tx) < xF(tr) for all x,7 € [0,1] )

Hence, null p-values with convex CDF are uniformly conservative.
Moreover, noting that monotonically nondecreasing density implies convex CDF for null p-values, Zhao et al.?
presented the following Proposition 3.

Proposition 3. For a one-dimensional exponential family with true parameter 0 < 0y, the p-value resulting from the
uniformly most powerful (UMP) test of Hy : 0 < 0y versus Hy : 0 > 0y is uniformly conservative.

In particular, the corresponding nulls in Proposition 3 are exactly uniform at the boundary of the null set
(0 = 0y), while conservative at the interior. Since the true underlying state of nature is rarely exactly at the
boundary, it is common in practice to encounter uniformly conservative nulls that are indeed conservative.
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One simple example following Proposition 3 is the one-sided test of Gaussian mean, where we test the null
hypothesis Hy : u < 0 against the alternative H; : u > 0 with observation Z~N(g, 1). From Proposition 3, the
p-value resulting from UMP test, that is P = ®(—Z) is uniformly conservative, and is conservative if 4 < 0, while
the conservativeness increases as u decreases, where @ is the standard Gaussian CDF. Another simple example is
the two-sided test of Gaussian mean, where we test the null hypothesis Hy : |1| < € against the alternative H; :
|| > e with observation Z~N(u,1). From Proposition 3, the p-value resulting from the UMP test, that is
P =2®(—|Z| + ¢), is uniformly conservative, and is conservative if |u| < ¢, while the conservativeness increases
as |u| decreases.

Remark 1. The uniformly conservative condition is also known as the uniform conditional stochastic order (UCSO)
relative to uniform distribution U(0, 1).>'%1

There have been some works addressing uniformly conservative p-values in the offline setting,*'® which both
boil down to one simple idea: discard (do not test) large p-values, and test the others after some rescaling. In
particular, Zhao et al.® used it in the global null test setting whileEllis et al.'® used it with regard FWER/FDR
control. It has recently been utilized for more powerful online FDR control by Tian and Ramdas.” Here we extend
this discarding idea to online setting for FWER control, stated specifically as the following Discard-Spending
algorithm.

3.1.1 Discard-Spending
Recalling the definitions in and right after equation (7), we call any online FWER algorithm as a Discard-
Spending algorithm if it updates the o; in a way such that {«;};°, satisfies the following conditions: (1) o; is
predictable, where the filtration F'~! = (R1i-1,S1.i-1); (2) 1; is predictable, and «; < 7; for all i € N and
% &
— = —S,' < 1
- T; Z = ( 0)
€S ieN
Note that condition (10) does not conflict with the predictability condition of {z;};-, and {o;}:*,, even though it
apparently requires knowing the whole sequence. In fact, since o;, 7;, S; > 0, achieving condition (10) is equivalent
to maintaining

t

NGO Ol

a'’ = —S; < 11
;:1 . (11)

for each 1 € N.
In other words, o;.,7,+1 are chosen such that CALNE o1 < o, depending only on information till time ¢. To
better demonstrate how to construct such o1, 7,41, we show an explicit example of Discard-Spending algorithm:
« Choose a nonnegative sequence {y;};=, that sums to one, given any predictable {t;};°,, and we test every H; at the
adapted level

o = a1y, where 1(i) =14 S;. (12)

Jj<i

It is easy to check that, by the above definition «; < 7;, and «; is F'~!-measurable for all i € N. With simple
algebra, we also have

Z% = Z“”/z(i) = ZO“/;(,')S:‘ = OCZ Y=o (13)

icS ! i€S iEN 1eN

where we use the observation that #(i 4+ 1) = (i) + 1 if and only if S;=1 under our construction. Therefore,
example (12) is a Discard-Spending algorithm.
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On the other hand, condition (10) implies that Discard-Spending is equivalent to the following strategy: if
P; > 1;, then we do not test it (we discard it, which essentially means not to move forward in the {«;};°, sequence),
and if P; < 1;, we test P; at some level o; € (0, 1) satisfying equation (10).

Next, we prove the claim that general Discard-Spending algorithms control FWER.

Proposition 4. Discard-Spending controls PFER and thus FWER in a strong sense when the null p-values are
uniformly conservative as defined in equation (8), while being independent of each other and of the non-nulls.

Proof. We prove this theorem mainly using the law of iterated expectation and the uniform conservative property
of null p-values. Recall that V is the number of false discoveries, which can be written as V' = Z R;S;, using the

fact that o; < o < t; by construction. Therefore i€H
E[V] =Y E[RS] =Y E[E[RS:|S;, F]]
i€Ho i€Hoy
= E[E[R|S;=1,FPr{s, =1
i€Hy
P; i -
= ZE{Pr {— < %P < 1, F 1}Pr {S;, = 1}]
£ Ti Ti
i€Hy
where we used linearity of expectation twice.
Note that the property of uniformly conservative nulls in equation (8) gives us
P; X X .
Pr {; < ; |P; < y} < ;, for all i € Hy, and constants x < y € [0, 1] (15)

Under the independent assumption among all p-values, the following variant of equation (15) also holds true

P; i i Xi ;
Pr{_§£|p[§yh}“’l}gi,forallze’Ho (16)
Vi Vi Vi

where x; and y; are some predictable random variables with respect to filtration ' (i.e. x;, y; € ). Following a
similar reasoning, the validity of null p-values can be rephrased under the independence assumption as

Pr {Pi < zi|]-'[_1} < z;, for all i € Hy, and nonnegative z; € Fi-l (17)

Using the above observations, and the fact that «;,7; € F'~', we have for i € H,

P A ‘
E[Pr {—‘ <Ap < ri,F’_]}Pr {s; = 1}} < E|:ﬁpr (s, = 1}}
Ti Ti T

O

_]E{]E[IPI.QJSi_ 1,7 Pr {S; =1} (18)

Ti
Sm}"HH ZEFIP;ST,]
o

1

~E[E[ X1
T

1

where we use the law of iterated expectation in the last step. Plugging equation (18) back in equation (14), we have

E[V] < ZE{%lP&,} —E

i€Hy !

3 ﬁ] 215[21] < (19)

icHons U ics Ui

by construction. Therefore, PFER < « and thus FWER < « as claimed.
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Discarding can lead to higher power when there are many conservative nulls. However, inequality (i) in
equation (19) will be really loose if we have |Hy N S| < |S|, meaning that most of the contents of S are non-
nulls, which is possible since the indices in S are those with small p-values. Figure 4 demonstrates both the
strength and weakness of Discard-Spending, where we use o; as described in the concrete example (12) mentioned
above, and set 7; = 0.5 and y, = %5 for all i.

3.2 Adaptivity to unknown proportion of nulls

Here, we develop a method to address the second looseness (B) in equation (6), which is due to lack of adjustment
for the proportion of true nulls. Related ideas have been proposed during the development of offline FWER
methods, which can be improved by incorporating an estimate of the true null proportion. This led to a series of
adaptive methods like the adaptive Bonferroni,?**! and other generalizations like adaptive Sidak, adaptive Holm
and adaptive Hochberg, which are rigorously proved to have FWER control.”> >* Inspired by those efforts, we
introduce the Adaptive-Spending procedure next, which could be regarded as an online variant of adaptive
Bonferroni.

3.2.1 Adaptive-spending
Recalling the definitions in and right after equation (7), we call any online FWER algorithm as an Adaptive-

Spending algorithm if it updates «; in a way such that {o;};, satisfies the following conditions: (i) o, is predictable,

where the filtration F"~! = ¢(Ry.i_1, C1_1); (i) for a predictable sequence {4:},, we have
% %
}: ~—§: 1-C) < a (20)
{ i
P =l

Following the similar reasoning in Section 3.1, condition (20) does not conflict with the predictability condition
of {4;};2, and {&;};=,, even though it apparently requires knowing the whole sequence. To better demonstrate how
to construct such sequences in the online fashion, we show an explicit example of Adaptive-Spending algorithm:

* Choose a nonnegative sequence {y;};-, that sums to one, given any predictable {1;};,, we test every H; at the

adapted level

= ol = iy where 1) =1+ 3 (1~ C) @
j<i
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Figure 4. Statistical power and FWER versus fraction of non-null hypotheses 74 for Discard-Spending and Alpha-Spending at target
FWER level o = 0.2 (solid black line). The curves above line 0.2 display the power of each method versus 74, while the lines below 0.2
display the FWER of each method versus 7. The experimental setting is described in Section 5.1: we set 1, = 4 for both figures, but
Uy = —2 for the left figure and uy = 0 for the right figure (hence the left nulls are conservative, the right nulls are not). These figures
show that: (a) Discard-Spending do control FWER at level 0.2; (b) Discard-Spending is more powerful than naive Alpha-Spending when
the nulls are conservative (as shown in the left figure); (c) Discard-Spending loses power when a high proportion of non-nulls is
encountered (as shown in the right figure).
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It is easy to check above that by the above construction, «; is F'~'-measurable for all i € N. With simple
algebra, we additionally have

Ol

= Z Uiy = Z“%(i)(l -C)= OCZ V=0 (22)
iZC

! ieN teN

where we use the observation that 7(i+ 1) = #({) + 1 if and only if C;=0 under our construction. Therefore,
equation (21) is an Adaptive-Spending algorithm.

From condition (20) we can similarly simplify Adaptive-Spending as the following strategy: whenever P; < 4;,
we don’t lose any error budget for testing it at level o;; but whenever P; > Z;, we lose «;/(1 — /;) from our error
budget.

Next, we prove the FWER control of Adaptive-Spending.

Proposition 5. Adaptive-Spending controls PFER and thus FWER, when the null p-values are independent of each
other and of the non-nulls.

Proof. We prove the PFER (and hence FWER) control of Adaptive-Spending mainly using the law of iterated
expectation and the fact that the null p-values are valid, i.e. Pr {P; < x} < x for any x € [0,1] and i € H,.
Recalling that 7 is the number of false discoveries, using the law of iterated expectation, we have

E[V] = ]E|:Z lPi<Oti:| = ZE[EDP:'SW |‘Fi71]] (23)

i€Hy i€Hy

Note that the validity of null p-values gives us equation (17) as explained in the proof of Proposition 4, and
therefore we have

i G i) ,
ity 0 71] £ 5o € [122%

f"‘” =E {oci —111’_>i] (24)

where the last equality follows from the law of iterated expectation. Plugging equation (24) back in equation (23),
we have

lpy>s Lpys, o
ElV < Ela,——| < E ——" =K < a 25
H_;HO { 1—1,] l; 1_1,-] li%]_z,.] (25)

Therefore, PFER < o and thus FWER < o as claimed.

Adaptive procedures can improve power substantially if there is a non-negligible proportion of signals.
However, their power can also suffer considerably if the null p-values are very conservative, since inequalities
(i) and (ii) in equation (24) would be extremely loose when Pr {P; < x} < x and Pr {P; > x} > | — x. These
strengths and weaknesses of Alpha-Spending are demonstrated in Figure 5, where we use «; as described in the
concrete example (21) mentioned above, and set 4; = 0.5 and 7; = -%; for all i € N,

3.3 Combining the two ideas: ADDIS-Spending, an adaptive discarding
alpha-spending algorithm

From the discussion in Sections 3.1 and 3.2, we find adaptivity and discarding both have their strength and
weakness; however, these are complementary. Therefore, we next combine those two ideas for a more sophisti-
cated online FWER control method. Specifically, we present the following ADDIS-Spending algorithm, where
“ADDIS” stands for “ADaptive DIScarding”. In the following Sections 4 and 5, we demonstrate the power
superiority of ADDIS-Spending over Alpha-Spending, with both theoretical justifications in Section 4.2, and
numerical analysis using synthetic and real data in Section 5.
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Figure 5. Statistical power and FWER versus fraction of non-null hypotheses 7, for Adaptive-Spending, Alpha-Spending at target
FWER level o = 0.2 (solid black line). The curves above line 0.2 display the power of each method versus 74, while the lines below 0.2
display the FWER of each methods versus m4. The p-values are drawn in the same way as described in Section 5.1: we set u, = 4 for
both figures, but yy = 0 for the left figure and py € {0, —0.3, —1, —1,5} for the right figure (hence the left nulls are conservative, the
right nulls are not). These figures show that: (a) Adaptive-Spending do control FWER at level 0.2; (b) Adaptive-Spending is more
powerful than naive Alpha-Spending when there are many non-nulls (as shown in the left figure); (c) Adaptive-Spending loses power
when many conservative nulls are encountered (as shown in the right figure).

3.3.1 ADDIS-Spending
Recall the definitions in and right after equation (7). We call any online FWER control method as an ADDIS-
Spending algorithm if it updates individual testing level o; in a way satisfying the following conditions: (1) «; is
predictable, where the filtration F'~! = o(Ri.i-1, Cr.im1, S1.i-1); (2) predictable sequences {t;}.-, and {4;}, are
such that 4; < 1; and o; < 1; for all i and

o o

\Qi i) =
/1,' iNZl'—/Li

ies\e i T

Following the similar reasoning in Section 3.1, condition (26) does not conflict with the predictability condition
of {t:};2,, {4}~ and {o;},, even though it apparently requires knowing the whole sequence. To better dem-
onstrate how to construct such sequences, we show an explicit example of ADDIS-Spending algorithm:

* Choose a nonnegative sequence {y;};-, that sums to one, given any predictable {t;}:°,, we test every H; at the
adapted level

o = o(T; — /li)yt(i), where (i) = 1 + Z(Sj -G) (27)

Jj<i

It is easy to check above that by the above construction «; < t;, and o; is F~measurable for all i € N. With
simple algebra, we additionally have

S =Y w = Yy m(Si—C) =)y =a (28)

ieS\C ieN teN

where we use the observation that #(i + 1) = #(i) + 1 if and only if S;= 1 and C;= 0 under construction. Therefore,
equation (27) is an ADDIS-Spending algorithm.

ADDIS-Spending can be regarded as a unification of the Adaptive-Spending and Discard-Spending algorithms
we mentioned earlier: when setting /; = 0 for all i, ADDIS-Spending recovers Discard-Spending; and when setting
7; =1 for all i, ADDIS-Spending recovers Adaptive-Spending. At a high level, the advantages of ADDIS-
Spending come from this unification of adaptivity and discarding. We obtained similar success in the ADDIS
algorithm for online FDR control’ suggesting that our work may be regarded as a variant of ADDIS for a more
stringent error metric. Finally, we prove the FWER control of ADDIS-Spending.
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Theorem 1. ADDIS-Spending controls the PFER (hence FWER) when null p-values are uniformly conservative as
defined in equation (8), while being independent of each other and of the non-nulls.

Theorem 1 is actually a special case of a more general version Theorem 2 that we are going to introduce later in
Section 3.4, where we relax the independence assumption to local dependence, which includes independence as a
special case. Therefore, we omit the proof for the special case and present the proof for the more general version
later.

3.4 Handling local dependence

In Section 3.3, we introduced ADDIS-Spending, a new powerful variants of Alpha-Spending, though at the cost
of requiring independence among the p-values, while naive Alpha-Spending works even when p-values are arbi-
trarily dependent. Indeed, the assumption of independence is rarely met in real applications: tests that occur
nearby in time may share the same dataset; null hypotheses are often constructed given the information of recent
testing results, etc. On the other hand, arbitrary dependence between sequential p-values is also arguably unrea-
sonable: the dataset used for testing or the testing results from the distant past is usually considered having no
impact on the current testing. In light of this, we consider another dependence structure that is more realistic—
local dependence, first proposed by Zrnic et al.,'” and is defined as follows

For all i € N, there exists L; € N, such that P;LP;_;,_1,Pi_r,2,...,P1 (29)

where {L;}7, is a sequence of constants that we refer to as lags. The lags can depend on the experiment being run
and on the sources of data, but not on the data themselves. Implicitly, P; may be arbitrarily dependent on
Pi_1,...,Pi_r, and in particular, when L; = 0 for all i, assuming local dependence reduces to assuming indepen-
dence. It may be simplest to think of L; = L to be fixed, but formally we assume for simplicity that ;.| < L; + 1.
For example, the latter requirement avoids the case that Ps is independent of Py, P> (if Ls = 2) while Py is
arbitrarily dependent on P;, P> (if Ls = 5). We refer readers to the paper'’ for more detailed definition and
discussions.

Here, we give simple alterations of the procedures in Section 3 that allows them to deal with local dependence.
The way we accomplish this is to follow the “principle of pessimism”.!” Specifically, this principle suggests
ignoring what really happened in the previous L, steps when deciding what to do at time ¢, and hallucinate a
pessimistic outcome for those steps instead. Formally, the alterations we made for procedures in Section 3 insist
that

T, A € Flmt for all i€ N (30)

while still satisfying the other requirements in the corresponding original definitions.

As for concrete examples to implement the altered procedures described above, we present the altered concrete
example of ADDIS-Spending in equation (27): we choose {y,};°, as an infinite nonnegative sequence that sums to
one, we test each H; at predictable level

o = ot — A)y, where (i) =1+ Lin(i—1)+ > -G (31)

j<i—L;

Note that when L;=0 for all 7, that is the local dependence structure reduces to independence, the above
modified procedures reduce to ADDIS-Spending in equation (27).

We now present the PFER (and hence FWER) control of altered ADDIS-Spending for local dependence in
Theorem 2, which is proved in Appendix B.

Theorem 2. Altered ADDIS-Spending controls PFER (and hence FWER) in a strong sense when the null p-values
are uniformly conservative as defined in equation (8) and follow the local dependence defined in equation (29).
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4 Statistical power

We now study the statistical power of Alpha-Spending and ADDIS-Spending under an idealized Gaussian setting
with randomly arriving signals. Specifically, in Section 4.1 we examine the power of Alpha-Spending, and we
derive some optimal choices of the underlying {y;};-, in a certain range, for either fixed or varying signal strength
and density. Then we provide theoretical justification for the benefits of adaptivity and discarding in Section 4.2:
we prove that if {y;};°, lies in the aforementioned optimal range, ADDIS-Spending is more powerful than Alpha-
Spending.

Before we proceed with the analysis of power, it is useful to set up a few definitions.

Definition 2. (q-series and log-q-series) For any ¢ > 1, we call an infinite sequence {7,}:-, which is nonnegative and
sums to one as q-series if y; oc i~ for all i, and similarly, as a log-g-series if y; < 1/ilog?i for all i.

Definition 3. (Gaussian mean testing problem) We call the problem of testing a possibly infinite sequence of
hypotheses {H;};-, as Gaussian mean testing problem, if each observation Z; follows the following mixed
distribution

7 Xi+p,  with probability 74;
"7\ X;+ uy, with probability 1 — 7y

where constants p, >0, uy < 0, 74 € (0,1) for all 4, X%N(O 1), and we test the null hypothesis H;: u; < 0,

where y, = E[Z]].

Recalling Section 3.1, if the p-values calculated are one-sided that is P; = (D_l(—Z;), then we know that the
nulls are uniformly conservative as defined in equation (8), strictly conservative when P; = ®~!(—Z2;), and uni-
form when p, = 0.

In the following, we only consider the online Gaussian mean testing problem described above. We compare the
algorithms that are presented as concrete examples of each method, which are formulas (2) and (27) for Alpha-
Spending and ADDIS-Spending, respectively, with the same underlying sequence {y;};-,. Also, for simplicity, we
use the number of true discoveries D as one of the performance measures. Note that D is the numerator inside the
expectation of the power function (1). Since the denominator inside the expectation of the power function in
equation (1) remains the same for different algorithms given the same testing sequence, the expectation of numer-
ator D may arguably serve as a nice substitution for power function in respect of comparison. Hence we refer E[D]
also as the power of online FWER control methods in this section.

4.1 Getting optimal power using naive Alpha-Spending

In this section, we derive optimal choices of {y;}:2, in the range of ¢-series for Alpha-Spending with regard to the
Gaussian mean testing problem in Definition 3. As we discussed before, the expectation of number of true
discoveries serves as a reasonable measurement for comparing the power of testing procedures. Recall that D
is the number of true discoveries. In the Gaussian mean testing problem, we have
o0
=0 Z]E[lp,ga,,ieHﬂ = ZPY {Pi < aj,i € Hy}

=E ZlP,-goc,-,ieHg
=l =l (32)

= ZWA®(®71 )+ i) ZﬂA‘D )+ Ha)
P

2

where @ is the standard Gaussian CDF, and (i) is true due to the fact that each entry in the summation is
nonnegative, and the last step uses the fact that o; = ay; for all 7 in Alpha-Spending. Additionally, for each
N € N, we denote Ey[D] as the expectation of true discoveries among the first N hypotheses, which means

Z s @O () + ) (33)
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It is obvious that the power of Alpha-Spending does not depend on puy, therefore we only consider how to
choose {y;};-, to optimize the power given different y4 and 7 4. Specifically, we derive that for the Gaussian mean
testing problem in Definition 3 using Alpha-Spending, the optimal sequence {y;};=, in the range of ¢-series will be
g = 1" for any choice of y, >0 and n4 € (0,1). This result provides some heuristic of choosing {y;}:=,: one
should resort to log-¢g-series for higher power when applicable. The formal results are stated in the following
Theorem 3.

Theorem 3. Recall the definition of E[D] and Ey|D)] in equations (32) and (33). For Alpha-Spending (2) at level
a < 1/2, if the underlying sequence {y;};=, is a g-series where q > 1, then for the Gaussian mean testing problem in
Definition 3, we have

(a) For N > 2, Ex[D] is a unimodal function, first increasing with q and then decreasing with q. Additionally,
defining

q"(N, ) = argsup,. | Ex[D] (34)

we have that ¢*(N, u,) is monotonically decreasing with N for any u, > 0, and

dim g (N ) =1 (35)

« E[D] is finite for any fixed q, and is a function monotonically decreasing with q.

Theorem 3 in fact suggests that the slower {y,}:°, is decaying, the higher the power will get, which corresponds to
our intuition that the power will be higher if we protect the ability to detect the signals in the long run, or we try not to
run out of our total budget too fast. However, if the testing process stops at a certain point, then sequence {y,}, that
decays too slow will hurt the power, since the testing will not get the benefit from the long run. This trade-off implies
that there is an optimal sequence, which is not decaying too slow or too fast, making the testing process achieve the
highest power. Theorem 3 provides theoretical verification for those intuitions and is proved in Appendix D.

Therefore, when we have no prior information on the hypotheses, which means we could only treat the non-
null fraction and the non-null mean as some fixed arbitrary value, we could always resort to the sequence {y,}l |
that sums to one with slower decay rate to obtain higher power of Alpha-Spending. For example, among ¢-series,
we should choose ¢ as close to one as possible, and one should resort to log-g-series for higher power.

The above results are all in the regime of fixed signal strength and density, which is a bit unrealistic in practice,
though potentially suitable for deriving interpretable heuristics. For completeness, we also go beyond the setting
of fixed signal strength and density: in Appendix E, we consider different u,; and n; for each i in Definition 3,
and we show that, if {u,;};°, and {n4};°, satisfy some reasonable conditions, then there exists a function 4 with
closed form, such that y; = h(my;, 1 4;) achieves the highest power. We refer readers to Appendix E for details.

4.2 The adaptive discarding methods are more powerful

In Section 4.1, we showed that the optimal choice of {y,}:2, for Alpha-Spending in the range of ¢g-series and log-¢-
series for the Gdussmn mean testing problem with fixed 51gnd1 strength and density lies in the regime of log-¢-
series. Here, we show that in this regime, ADDIS-Spending is provably more powerful than Alpha-Spending.
For simplicity, we consider fixed t; and /,, that is t7; = v and 4; = A for all i € N, and we denote the number of
discoveries from ADDIS-Spending as Dappis (4, 7), and Dgpend for Alpha-Spending. Below, we demonstrate that as
long as the hyper-parameters A and 7 are reasonably chosen (i.e. in ranges we derived in the following, which depend
only on the distribution of p-values), ADDIS-Spending is guaranteed to be more powerful than Alpha-Spending.

Theorem 4. For the Gaussian mean testing problem in Definition 3, if the underlying {y;}:°, is a log-q-series as defined
in Definition 2 with q> 1, then there exists some ¢* such that with probability one,

E[Dappis(4,7)] > E[Dgpend] for all 2 € [0,¢") and all 7 € (¢, 1],s.t.t—4 < 1 (36)

Additionally, c¢* increases with m4, p4 and uy, and equals one when uy = 0.
The corresponding proof is in Appendix F. Theorem 4 indicates that, as long as we have reasonable prior
information about signal strength, density and conservativeness of nulls, we can utilize them for better design of
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hyperparameters 1 and 7 in ADDIS-Spending, such that higher power over Alpha-Spending can be achieved. As
for a more tangible recommendation for users, we observe the combination t = 0.8 and A = ot perform well in our
empirical studies as we discuss next, and is the most robust choice across various signal settings as shown in the
greedy evaluation in Appendix J.2. Appendix J.2 can be taken as a reference table for scientists to make the best
use of ADDIS-Spending in practice, as we cover settings of various signal density and nulls conservativeness
there. As Theorem 4 provides the theoretical justification for the benefits of discarding and adaptivity in terms of
power, in the following Section 5 we provide numerical analysis with both simulations and real data example to
confirm these benefits.

5 Numerical studies

5.1 Simulations

In this section, we provide some numerical experiments to compare the performance of ADDIS-Spending,
Discard-Spending, Adaptive-Spending, and Alpha-Spending. In particular, for each method, we provide empirical
evaluations of its power while ensuring that the FWER remains below a chosen value.

Specifically, in the following, we aim to control the FWER under « = 0.2 and estimate the FWER and power
by averaging over 2000 independent trials. The constant sequences t; = 0.8 in Discard-Spending, 1; =« in
Adaptive-Spending, and 7; = 0.8, 2; = at = 0.16, in ADDIS-Spending for all i € N were found to be generally
successful, so as our default choice in this section and we drop the index for simplicity. Additionally, we choose
the infinite sequence y; o 1/(i + 1)log(i 4+ 1) for all i € N as default, which could be substituted by any constant
infinite sequence that is nonnegative and sums to one.

In what follows, we show the power superiority of ADDIS-Spending over all other three methods, especially
under settings with both nonnegligible number of signals and conservative nulls. Specifically, we consider the
simple experimental setup of Gaussian mean testing problem in Definition 3 with 7= 1000 components, where the
nulls are uniformly conservative from the discussion in Section 3.1.

We ran simulations for uy € {0,-0.5,—1,—1.5}, u, € {4,5}, and =4 € {0.1,0.2,...,0.9}, to see how the
changes in conservativeness of nulls and true signal fraction may affect the performance of algorithms. The results
are shown in Figure 6, which indicates that (1) FWER is under control for all methods in all settings; (2) ADDIS-
Spending enjoys appreciable power increase as compared to all the other three methods in all settings; (3) the more
conservative the nulls are (the more negative py is), or the higher the fraction of non-nulls is, the more significant
the power increase of ADDIS-Spending is.

Here for conciseness, we only present results with some default parameter choices under canonical settings,
which turn out working pretty well in establishing the strength of our methods and confirm the theoretical results
in Section 4.2, though they may not be optimal in obtaining high power. We conduct more thorough empirical
studies with different parameters choices under other practical cases in Appendix J, where we demonstrate con-
sistent power superiority of ADDIS-Spending.

In particular, to provide more intuition of suitable hyper-parameters, we show the influence of different {y;}
choices empirically in Appendix J.1, which confirms our theoretical results in Section 4.1 that slow-decaying
sequences lead to higher power; we explore greedily on feasible t and 4 choices in Appendix J.2 to depict optimal
combination of them, and find that promising region corresponds to our theoretical finding in Section 4.2. On the
other hand, in order to show generality of our methods under other practical settings, in Appendix J.3 we
demonstrate consistent success of our methods in the two-sided problem, a common problem formulation in
many areas like genomics; we show the consistent validity and superiority of our methods under more strict
FWER level requirement in Appendix J.4, a desired requirement in areas that need serious risk control; we
reassure similar success of our methods under various strength of local dependence in Appendix J.5, a
common dependence structure that happens in practice when independence assumption breaks.

00
i=1

5.2 Application to the international mouse phenotyping consortium

In the following, we introduce the application of ADDIS-Spending to real-life data about International Mouse
Phenotyping Consortium (IMPC). The IMPC coordinates a large study to functionally annotate every protein
coding gene by exploring the impact of the gene knockout on the resulting phenotype. Statistically speaking, for
each phenotype i, people test the null hypothesis H;'): “the knockout of gene j will not change the phenotype i”

versus its alternative, via comparing the unmutated mouse (control case) to the mouse with gene j knockout. Since
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Figure 6. Statistical power and FWER versus fraction of non-null hypotheses 74 for ADDIS-Spending, Discard-Spending, Adaptive-
Spending and Alpha-Spending at target FWER level oo = 0.2 (solid black line). The lines above the solid black line are the power of each
method versus 7y, and the lines below are the FWER of each method versus m4. The p-values are drawn using the Gaussian model as
described in the text, while we set pyy = —0.5 in plot (a), uy = —1 in plot (b), uy = —1.5 in plot (c), and py = 0 in plots (d) and (e);
and we set p, = 4 in plots (a) to (d), and 4, =5 in plot (). Therefore nulls in (a), (b) and (c) are conservative, and the conser-
vativeness is increasing, while the nulls in (d) and (e) are not conservative (uniform).

the dataset and resulting hypotheses constantly grow as new knockouts are studied, and a positive test outcome
could lead to some following up medical research that is hard to be revised afterwards, it is natural to view this as
an online testing problem as the ones considered in the previous sections.

We follow the analysis done by Karp et al.,® which resulted in a set of p-values for testing genotype effects.
These are available at the Zenodo repository,” organized by Robertson.?® This particular dataset admits a natural
local dependence structure: the hypotheses are tested in small batches, with each batch using a different group of
mice. Figure 7(a) demonstrates this local dependence structure via showing the first 5000 —log,, transformed p-
values: the transformed p-values are ordered by the time that its corresponding data samples are collected, and the
adjacent batches are distinguished using different colors.

Due to this online nature and local dependence structure of the data, we hence apply the modified version of
ADDIS-Spending described in Section 3.4, using lags L; that corresponds to the size of blocks that p-value P;
belongs to. Since we do not know the underlying truth, we only report the number of discoveries and argue that
the corresponding FWER are all under control following our theoretical results. Figure 7(b) shows the power
advantage of ADDIS-Spending over Alpha-Spending and Online-Fallback, where we use the same underlying
{9,335, sequence with y; oc 1/i'"! (similar qualitative behavior is shown in Appendix J.1 with y; oc 1/i), and the
default setting = = 0.8, 4 = 0.16 for ADDIS-Spending in comparison.

The above real data example again supports our key idea: utilizing the independence or local dependence
structure to incorporate with adaptability and discarding can improve the power of online testing procedure much.

6 Conclusion and discussion

Modern biology studies often require testing hypotheses in a sequential manner, and how to control familywise error
rate in this setting leads to the statistical problem of online FWER control. This paper derives new algorithms for
online FWER control, a problem for which no systematic treatment exists in the literature to the best of our knowl-
edge. While we describe several new methods, each improving on Alpha-Spending (online Bonferroni) in different
ways, the most promising of these in experiments seems to be ADDIS-spending, a new adaptive discarding algorithm
that adapts to both unknown number of non-nulls and conservativeness of the nulls.
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Figure 7. Figure (a) shows the barplot of —log,, transformed p-values, where the p-values are ordered in time, and each adjacent
batche is distinguished with different colors. Figure (b) shows the number of discoveries versus FWER level, using different algorithms
(Alpha-Spending, Online-Fallback, ADDIS-Spending).

Though we find that ADDIS-Spending is the most promising method within current practices, we are also
wondering whether there exists universal refinements over ADDIS-Spending. It is known that for any offline
global null testing methods, there exists a closure such that the power of it is unimprovable. So we are wondering
whether there exists similar logic for online multiple testing. We provide some initial attempts on developing the
variant of the closure principle for online multiple testing in Appendix H. Several questions still remain: Is our
proposed principle essentially unimprovable? Also, is the closure of an online method still be an online method? If
not always, then what are the cases in which it is? We leave these as open questions for future work.

The application of adaptivity and discarding go much beyond the main contribution of this paper: they can
also be applied to methods in Section 2 to develop more powerful variants. We provide some concrete examples
and corresponding proofs for their FWER control in Appendix G for interested readers.

Throughout this paper, we mainly discuss the online algorithms for controlling FWER. In real applications,
many prefer to control k-FWER instead, in order to obtain a less stringent error control. The A~-FWER is defined
as Pr {V > k}, which reduces to FWER as k=1. It is straightforward that for any methods that have PFER
control, changing the sum of the test levels to ko will assure k-FWER controlled at level o, simply using Markov’s
equality. Therefore, all our new algorithms that provably have PFER control may easily be extended to &-FWER
control methods.

7 Code and data availability

The code to reproduce all figures is accessible at Github repository, and the real dataset is available at Zenodo
repository, organized by Robertson.’® Additionally, an R package called onlineFDR?’ developed by David
Robertson and the authors of this paper (among others), contains current state of arts in all aspect of online
multiple testing, including online FWER control and also the new algorithms proposed here.
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Notes

a. The marginal distribution of a null p-value P is typically assumed to satisfy Pr {P < x} < x for all x € [0, 1]. Ideally,
equality holds, but in practice, null p-values are often conservative, meaning that Pr {P < x} < x.
b. The Zenodo repository can be accessed at https://zenodo.org/record/2396572.
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