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Online control of the familywise
error rate
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Abstract
Biological research often involves testing a growing number of null hypotheses as new data are accumulated over time.
We study the problem of online control of the familywise error rate, that is testing an a priori unbounded sequence of
hypotheses (p-values) one by one over time without knowing the future, such that with high probability there are no
false discoveries in the entire sequence. This paper unifies algorithmic concepts developed for offline (single batch)
familywise error rate control and online false discovery rate control to develop novel online familywise error rate
control methods. Though many offline familywise error rate methods (e.g., Bonferroni, fallback procedures and Sidak’s
method) can trivially be extended to the online setting, our main contribution is the design of new, powerful, adaptive
online algorithms that control the familywise error rate when the p-values are independent or locally dependent in time.
Our numerical experiments demonstrate substantial gains in power, that are also formally proved in an idealized
Gaussian sequence model. A promising application to the International Mouse Phenotyping Consortium is described.
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1 Introduction

Modern genomics studies typically require large scale multiple hypotheses testing, which are sometimes conducted in
an online manner (meaning one or few hypotheses at a time), not as a big large batch of hypotheses tested all at once.
Thus, the family of tested hypotheses is continually growing over time, due to the accumulation of data (both types
and amounts). For example, one international scientific project, the International Mouse Phenotyping Consortium
(IMPC), aims to create and characterize the phenotype of 20,000 knockout mouse strains; this was launched in
September 2011, and was projected to take 10 years. Available datasets and the resulting family of hypotheses con-
stantly grow as new knockouts are studied, while discovery-inspired downstream analyses are conducted along the
way. Thus we are faced with a nonstandardmultiple hypothesis testing problem, one in which the nature or number of
hypotheses (or p-values) is not known in advance but become known one at a time. This exemplifies the challenge of
online hypothesis testing, where at each step the scientist must decide whether or not to reject the current null
hypothesis without knowing the future hypotheses or their outcomes (rejected or not).

Formally, online multiple testing refers to the setting in which a potentially infinite stream of hypotheses
H1;H2; . . . (respectively p-values P1;P2; . . .) is tested one by one over time. It is important to distinguish the
aforementioned setup from sequential hypothesis testing, where a single hypothesis is repeatedly tested as new
data are collected. Our setup zooms out one level, and it is the hypotheses that appear one at a time, each one
summarized by a p-value.
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At each step t 2 N, one must decide whether to reject the current null hypothesis Ht or not, without knowing
the outcomes of all the future tests. Typically, we reject the null hypothesis when Pt is smaller than some threshold
at. Let RðTÞ represent the set of rejected null hypotheses by time T, and !lls be the unknown set of true null
hypotheses; then, VðTÞ # RðTÞ \H0 is the set of incorrectly rejected null hypotheses, also known as false dis-
coveries. Denoting VðTÞ ¼ jVðTÞj, some error metrics are the false discovery rate (FDR), familywise error rate
(FWER) and power which are defined as

FDRðTÞ # E VðTÞ
jRðTÞj _ 1

! "
; FWERðTÞ # Pr​ VðTÞ % 1

# $
;

powerðTÞ # E jHc
0 \RðTÞj
jHc

0j

" # (1)

It is arguably of interest to control the FDR or FWER at each time below a prespecified level a 2 ð0; 1Þ, while
maximizing power. Such a goal is also essential with respect to providing a reliable resource for downstream
analysis along the way. Notice that FWER(T) is monotonically nondecreasing in T, therefore controlling FWER
(T) at each T 2 N is equivalent to controlling limT!1 FWERðTÞ. Therefore, we drop the index T, and only
discuss techniques controlling limT!1 FWERðTÞ.

There is a large variety of procedures for (A) offline (single batch) FDR control,1–3 (B) online FDR control,4–9

and (C) offline FWER control.10–12 However, the online FWER problem is underexplored; for example, in their
seminal online FDR paper, Dean Foster and Robert Stine4 only mention in passing that for online FWER
control, one can simply use an online Bonferroni method (that they term Alpha-Spending). We first point out
that offline FWER procedures can be easily extended to have online counterparts (like Sidak’s and fallback
methods). However, our main contribution is to derive new “adaptive” procedures for online FWER control
that are demonstrably more powerful under independence or local (in time) dependence assumptions.

In experiments, we find that our online extensions of classical offline FWER control methods like Sidak13 and
fallback12,14 have a fairly negligible power improvement over Alpha-Spending when non-nulls are interspersed
randomly over time. Also, as presented in Figure 1, these algorithms are sub-optimal when they encounter a non-
vanishing proportion of non-nulls, or a significant proportion of conservative null*.a In contrast, our adaptive
discarding (ADDIS) algorithms are more powerful online FWER control methods that adapt to both an
unknown fraction of non-nulls and unknown conservativeness of nulls (Section 3.3 and Figure 2). As shown in
Figure 1, ADDIS-Spending is significantly more powerful than Alpha-Spending, online Sidak, online fallback,
etc. We are able to theoretically justify this power superiority in an idealized Gaussian model (Section 4), and also
confirm it in the real IMPC dataset we mentioned earlier (Section 5.2). Although these powerful new adaptive
methods require independence to have valid FWER control, they can be easily generalized to handle “local
dependence”, an arguably more realistic dependence structure in practice (Section 3.4).

(a) (b)

Figure 1. Statistical power and FWER versus fraction of non-null hypotheses pA for Alpha-Spending (online Bonferroni) and our new
algorithms (ADDIS-Spending, Online Fallback and Online Sidak) at target FWER level a ¼ 0:2 (solid black line). The curves above the
horizontal line at 0.2 display the achieved power of each methods versus pA, while the lines below 0.2 display the achieved FWER of
each methods versus pA. The experimental setting is described in Section 5.1: all observations are Gaussians, we set the alternative
mean lA ¼ 4 for both figures, but we set the null mean lN ¼ 0 for the left figure and lN ¼ &1 for the right figure (hence the right
nulls are conservative, the left nulls are not). These figures show that (a) all considered methods control the FWER at level 0.2, (b)
Online Sidak and Fallback provide negligible improvement compared to the naive Alpha-Spending, and (c) ADDIS-Spending is much
more powerful than other algorithms in both settings.
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1.1 Paper outline

In Section 2, we extend some offline FWER methods to the online setting, and prove their FWER control. Then
we derive ADDIS-Spending in Section 3, while we present its generalizations to handle local dependence in
Section 3.4. Section 4 contains theoretical results about the statistical power of the online FWER control proce-
dures (both known and newly derived), particularly Section 4.1 derives optimal choices for hyperparameters of
naive Alpha-Spending within an idealized Gaussian setup, and Section 4.2 provides some theoretical justification
of ADDIS-Spending being more powerful than naive Alpha-Spending. Numerical studies are included in Section
5 to empirically demonstrate the improved power of our new methods using both synthetic and real data. In the
end, we also present several extensions of our main contribution, together with interesting follow-up directions for
future work in Section 6.

2 Online extensions of classical offline FWER control methods

One may regard Alpha-Spending as an online generalization of Bonferroni correction. Specifically, for FWER
level a, given an infinite nonnegative sequence fcig

1
i¼1 that sums to one, Alpha-Spending tests individual hypoth-

esis Hi at level

ai :¼ aci: (2)

In this section, we seek online variants of other offline FWER methods such as Holm’s10 and Hochberg’s
methods11; fallback procedure12 and alpha-recycling;14 and Sidak correction.13 Gladly, most of the methods (like
Sidak, fallback and its generalization) can be trivially extended to online setting, while maintaining strong FWER
control, while some of them (like Holm and Hochberg) which depend on ordering are hard to incorporate with the
online setting. In the following, we present two general classes of algorithms which uniformly improve Bonferroni,
together with numerical analysis of their performance. Specifically, those algorithms are Online Sidak (requires
independence), an online analog of the Sidak correction13; and Online Fallback (works under arbitrary depen-
dence), an online analog of the generalized fallback.15 We expect more online procedures to be developed from
offline methods in the future.

2.1 Online Sidak

Under independence, one well-known improvement of Bonferroni is the Sidak correction.13 Given m different null
hypotheses and FWER level a, the Sidak method uses the testing level 1& ð1& aÞ

1
m for each hypothesis.

Analogously, Online Sidak chooses an infinite nonnegative sequence fcig
1
i¼1 which sums to one and tests each

hypothesis Hi at level

ai :¼ 1& ð1& aÞci (3)

Figure 2. Historical context comparing offline and online FWER methods.
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Just as Sidak is only slightly less stringent than Bonferroni, Online Sidak also improves very little of Alpha-
Spending, as shown in Figure 3. In addition, Online Sidak also requires independence for valid FWER control, as
stated below.

Proposition 1. Online Sidak controls FWER in a strong sense if the null p-values are independent of each other, and is
at least as powerful as the corresponding Alpha-Spending procedure.

Proof. The probability of no false discovery among all infinite decisions is

Pr ​ V ¼ 0f g ¼ E
Y

i2H0

1Pi>ai

! "
%

Y

i2H0

ð1& aiÞ

¼
Y

i2H0

ð1& aÞci ¼ ð1& aÞ

X

i2H0ci % 1& a

Further, since ai > cia, Online Sidak is at least as powerful as the corresponding Alpha-Spending procedure.2.2
Online fallback procedures

The fallback procedure12 and its graphical generalization15 for offline FWER control can be easily extended to
the online setting, improving the power of Alpha-Spending by “recycling” the significance level of previous
rejections. Below, we briefly present the online variants of the generalized fallback,15 specifically named Online
Fallback.

2.2.1 Online fallback
For FWER level a, Online Fallback chooses an infinite sequence fcig

1
i¼1 that sums to one, and tests each Hi at

level

ai :¼ ciaþ
Xi&1

k¼1

wk;iRkak (4)

where Ri ¼ 1Pi ( ai , and fwkig1i¼kþ1 being some infinite sequence that is nonnegative and sums to one for all k 2 N.
Specifically, we call fwkig1i¼kþ1 the transfer weights for the k-th hypothesis.

Figure 3. Statistical power and FWER for Alpha-Spending, Online Sidak, Online Fallback-1 and Online Fallback at target FWER level
a ¼ 0:2 (solid black line). The curves above line 0.2 display the power of each method, while the lines below 0.2 display the FWER of
each method. The specific experimental setting follows those in Section 5.1, with few alterations. The main experimental setting is
described in Section 5.1, while we allow pA to be different for each hypotheses Hi, and denote it as pAi instead. We set lN # 0;lA # 4
for all the figures, and we set pAi ¼ f for i less than bTrc and pAi ¼ 0 otherwise. Particularly, we set f 2 f0:1; 0:2; . . . ; 0:9g for the left
figure, while f # 0:1 for the right figure; and we set r¼ 1 for the first figure, and r 2 f0:1; 0:12; . . . ; 0:26g for the right figure. The
underlying fcig

1
i¼1 is f6=p2i2g

1
i¼1 for all the methods, and particularly we set fwkig1i¼kþ1 with wki ¼ ci&k for all k 2 N in Online Fallback.

These figures show that (a) all the considered methods do control FWER at level 0.2; (b) the new methods (Online Sidak, Online
Fallback-1 and Online Fallback) have almost the same power as Alpha-Spending given evenly distributed non-nulls; and (c) Online
Fallback-1 and Online Fallback have noticeable power improvement over Alpha-Spending when non-nulls cluster in the beginning of
the testing sequence, with greater improvement if the non-nulls are more compact in the beginning of the testing sequence.

Tian and Ramdas 979



Note that when we choose fwkig1i¼kþ1 with wki ¼ 1k¼i&1, the individual testing level of Online Fallback reduces to

ai :¼ aci þ Ri&1ai&1 (5)

for all i % 2, and a1 ¼ ac1, which happens to be the offline fallback procedure12 applying on the infinite hypoth-
eses sequence. We specifically refer to this procedure as Online Fallback-1.

The following Proposition states the FWER control of Online Fallback and is proved in Appendix A. In fact,
Online Fallback can be treated as an instantiation of a more general sequential rejection principle,16 and
Proposition 2 follows trivially from their results. However, we present a more tangible proof for Proposition 2
from a separate direction, since it allows us to get more insights about the connection between the offline methods
and their online variants.

Proposition 2. Online Fallback controls FWER for arbitrarily dependent p-values, and is at least as powerful as the
corresponding Alpha-Spending procedure.

Though Proposition 2 states the power superiority of Online Fallback over Alpha-Spending, one may have the
intuition that the power improvement of Online Fallback over Alpha-Spending would be minor when one
encounters randomly arriving signals, since much of the recycled significance levels are inevitably wasted on
the nulls. Figure 3 demonstrates this intuition, where the left figure describes the setting of randomly arrived
signals and plot against varied signal frequency f, while the right figure describes the setting of clustered signals at
the beginning of the sequence and plot against varied cluster range r. As shown in the left figure of Figure 3, where
the non-nulls are evenly distributed, Online Fallback has basically the same power with Alpha-Spending.
Meanwhile, in the extreme case when the beginning of the sequence consists of only non-nulls (e.g. when r¼ 1
in the right figure), Online Fallback (especially Online Fallback-1) is much more powerful than Alpha-Spending,
while this advantage diminishes fast as more non-nulls plug in the signal cluster (i.e. as r increases).

The above new online FWER control methods are guaranteed to be uniformly more powerful than Alpha-
Spending, though the improvements are usually minor, except for extreme cases when the non-nulls are clustered
at the beginning of the testing sequence. This motivates the development of a new class of algorithms in the
following section.

3 Adaptive discarding (ADDIS) algorithms

In Section 2, we refine Alpha-Spending by refining its offline variants. Since we find that the resulting methods
rarely improve power much over Alpha-Spending, we refine Alpha-Spending from another angle in this section,
directly addressing main sources of looseness in the proof of its FWER control. We end up with a series of new
adaptive algorithms that are much more powerful than Alpha-Spending, though at the cost of requiring inde-
pendence. We ease the requirement in Section 3.4 to allow the methods to handle a local (in time) dependence
structure, which is a more reasonable dependence structure to assume for the online setting.17

First, we explain the looseness in the proof of FWER control of Alpha-Spending. Recall the Alpha-Spending
procedure in equation (2). Its FWER is controlled because an even stronger error metric, the per-family wise error
rate (PFER) is also controlled at a

PFER :¼ E V½ * ¼ E
X

i2H0

1Pi ( ai

! "
¼

X

i2H0

E 1Pi ( ai½ * (
ðAÞ X

i2H0

ai (
ðBÞX

i2N
ai ¼ a (6)

(One can verify that FWER ( PFER by Markov’s inequality.) The first obvious loose point in the proof
above may be enforcing PFER control while aiming for FWER control. However, it turns out this looseness is
negligible under independence, which we formally prove in Appendix I; in short, the improvement is of order a2,
which is a lower order term, and this phenomenon can also be observed in Figure 3 where Online Sidak (FWER)
has a very slight advantage over Alpha-Spending (PFER).

The two labeled inequalities in equation (6) introduce the main sources of looseness: the PFER of Alpha-
Spending may be far less than a (and hence the power would be much lower than necessary) if either of the two
inequalities is loose. Specifically, the first inequality ðAÞ would be loose if the null p-values are very conservative,
and the second inequality ðBÞ would be loose if there are a large number of non-nulls. These facts expose two
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weaknesses of Alpha-Spending: it will become suboptimal when it encounters conservative nulls or a constant
fraction (like 20%) of non-nulls, and both are arguably quite likely in real applications. These weaknesses are also
problems for the methods derived in Section 2, since they have almost the same power with Alpha-Spending in
those simulations.

By addressing these two weaknesses, we develop a more powerful family of methods called ADDIS-Spending,
which are adaptive discarding algorithms that not only benefit from adaptivity to the fraction of nulls, but also
gain by exploiting conservative nulls (if they exist). Instead of directly presenting the ADDIS-Spending algorithm,
we first introduce the idea of discarding and adaptivity in Section 3.1 and Section 3.2, respectively, each address-
ing one of the looseness mentioned above, and in Section 3.3 we combine the ideas together to develop our
ADDIS-Spending algorithm, which addresses both loosenesses. There is a price to pay for these improvements.
Alpha-Spending works even when the p-values are arbitrarily dependent, but the idea of discarding and adaptivity
essentially requires independence between p-values. We ease this requirement later in Section 3.4, by generalizing
our ADDIS-Spending algorithm to handle a local dependence structure.

Before we proceed, it is useful to set up some notation. Recall that Pj is the p-value resulted from testing
hypothesis Hj. Given infinite sequences fstg1t¼1; fktg

1
t¼1 and fatg1t¼1, where every element is in (0, 1), define the

indicators

Sj ¼ 1Pj ( sj ; Cj ¼ 1Pj ( kj ; Rj ¼ 1Pj ( aj (7)

which, respectively, indicate whether Hj is selected for testing (used for adapting to conservative nulls), whether Hj

is a candidate for rejection (used for adapting to fraction of nulls), and whether Hj is rejected. Accordingly define
R1:t ¼ fR1; . . . ;Rtg; C1:t ¼ fC1; . . . ;Ctg and S1:t ¼ fS1; . . . ;Stg. Similarly, let
R ¼ fi 2 N : Ri ¼ 1g; C ¼ fi 2 N : Ci ¼ 1g; S ¼ fi 2 N : Si ¼ 1g. In what follows, we say at, kt and st are
“predictable with respect to some filtration F t”, or just “predictable” for short, to mean that they are measurable
with respect to F t&1, meaning that they are mappings from F t&1 to (0, 1). The form of F t&1 may change across
algorithms and it is denoted as rð+Þ, that is a sigma field generated by certain random variables.

3.1 Discarding conservative nulls

Here, we develop a method named Discard-Spending to address the first looseness ðAÞ in equation (6) due to
overlooking the conservativeness of null p-values. Specifically, we consider the null p-values to be uniformly
conservative as defined below, which include uniform nulls (the ideal case) and the majority of conservative
nulls (realistic case).

Definition 1. (Uniformly conservative) A null p-value P is said to be uniformly conservative if for all x; s 2 ½0; 1*

Pr ​ P ( xs jP ( sf g ( x (8)

The above condition is easy to interpret; for example when s ¼ 0:6 and x¼ 0.5, it means the following—if we
know that P is at most 0.6, then it is more likely between ½0:3; 0:6* than in ½0; 0:3*. As an obvious first example,
uniform null p-values are uniformly conservative. As for more general examples, note that the definition in
equation (8) is mathematically equivalent to requiring that for the CDF F of the p-value P, we have

FðsxÞ ( xFðsÞ for all x; s 2 ½0; 1* (9)

Hence, null p-values with convex CDF are uniformly conservative.
Moreover, noting that monotonically nondecreasing density implies convex CDF for null p-values, Zhao et al.3

presented the following Proposition 3.

Proposition 3. For a one-dimensional exponential family with true parameter h ( h0, the p-value resulting from the
uniformly most powerful (UMP) test of H0 : h ( h0 versus H1 : h > h0 is uniformly conservative.

In particular, the corresponding nulls in Proposition 3 are exactly uniform at the boundary of the null set
(h ¼ h0), while conservative at the interior. Since the true underlying state of nature is rarely exactly at the
boundary, it is common in practice to encounter uniformly conservative nulls that are indeed conservative.
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One simple example following Proposition 3 is the one-sided test of Gaussian mean, where we test the null
hypothesis H0 : l ( 0 against the alternative H1 : l > 0 with observation Z,Nðl; 1Þ. From Proposition 3, the
p-value resulting from UMP test, that is P ¼ Uð&ZÞ is uniformly conservative, and is conservative if l < 0, while
the conservativeness increases as l decreases, where U is the standard Gaussian CDF. Another simple example is
the two-sided test of Gaussian mean, where we test the null hypothesis H0 : jlj ( " against the alternative H1 :
jlj % " with observation Z,Nðl; 1Þ. From Proposition 3, the p-value resulting from the UMP test, that is
P ¼ 2Uð&jZjþ "Þ, is uniformly conservative, and is conservative if jlj < ", while the conservativeness increases
as jlj decreases.

Remark 1. The uniformly conservative condition is also known as the uniform conditional stochastic order (UCSO)
relative to uniform distribution U(0, 1).3,18,19

There have been some works addressing uniformly conservative p-values in the offline setting,3,18 which both
boil down to one simple idea: discard (do not test) large p-values, and test the others after some rescaling. In
particular, Zhao et al.3 used it in the global null test setting whileEllis et al.18 used it with regard FWER/FDR
control. It has recently been utilized for more powerful online FDR control by Tian and Ramdas.9 Here we extend
this discarding idea to online setting for FWER control, stated specifically as the following Discard-Spending
algorithm.

3.1.1 Discard-Spending
Recalling the definitions in and right after equation (7), we call any online FWER algorithm as a Discard-
Spending algorithm if it updates the ai in a way such that faig1i¼1 satisfies the following conditions: (1) ai is
predictable, where the filtration F i&1 ¼ rðR1:i&1;S1:i&1Þ; (2) si is predictable, and ai < si for all i 2 N and

X

i2S

ai
si
#

X

i2N

ai
si
Si ( a (10)

Note that condition (10) does not conflict with the predictability condition of fsig1i¼1 and faig1i¼1, even though it
apparently requires knowing the whole sequence. In fact, since ai; si;Si % 0, achieving condition (10) is equivalent
to maintaining

âðtÞ :¼
Xt

i¼1

ai
si
Si ( a (11)

for each t 2 N.
In other words, atþ1; stþ1 are chosen such that âðtÞ þ atþ1 ( a, depending only on information till time t. To

better demonstrate how to construct such atþ1; stþ1, we show an explicit example of Discard-Spending algorithm:
• Choose a nonnegative sequence fcig

1
i¼1 that sums to one, given any predictable fsig1i¼1, and we test every Hi at the

adapted level

ai :¼ asictðiÞ; where tðiÞ ¼ 1þ
X

j< i

Sj: (12)

It is easy to check that, by the above definition ai < si, and ai is F i&1-measurable for all i 2 N. With simple
algebra, we also have

X

i2S

ai
si
¼

X

i2S
actðiÞ ¼

X

i2N
actðiÞSi ¼ a

X

t2N
ct ¼ a (13)

where we use the observation that tðiþ 1Þ ¼ tðiÞ þ 1 if and only if Si¼ 1 under our construction. Therefore,
example (12) is a Discard-Spending algorithm.
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On the other hand, condition (10) implies that Discard-Spending is equivalent to the following strategy: if
Pi > si, then we do not test it (we discard it, which essentially means not to move forward in the faig1i¼1 sequence),
and if Pi ( si, we test Pi at some level ai 2 ð0; 1Þ satisfying equation (10).

Next, we prove the claim that general Discard-Spending algorithms control FWER.

Proposition 4. Discard-Spending controls PFER and thus FWER in a strong sense when the null p-values are
uniformly conservative as defined in equation (8), while being independent of each other and of the non-nulls.

Proof. We prove this theorem mainly using the law of iterated expectation and the uniform conservative property
of null p-values. Recall that V is the number of false discoveries, which can be written as V ¼

X

i2H0

RiSi, using the
fact that ai ( a ( si by construction. Therefore

E V½ * ¼
X

i2H0

E RiSi½ * ¼
X

i2H0

E E RiSi jSi;F i&1
% &% &

¼
X

i2H0

E E Ri jSi ¼ 1;F i&1
% &

Pr ​ Si ¼ 1f g
% &

¼
X

i2H0

E Pr ​
Pi

si
( ai

si
jPi ( si;F i&1

' (
Pr ​ Si ¼ 1f g

! "
(14)

where we used linearity of expectation twice.
Note that the property of uniformly conservative nulls in equation (8) gives us

Pr ​
Pi

y
( x

y
jPi ( y

' (
( x

y
; for all i 2 H0; and constants x ( y 2 ½0; 1* (15)

Under the independent assumption among all p-values, the following variant of equation (15) also holds true

Pr ​
Pi

yi
( xi

yi
jPi ( yi;F i&1

' (
( xi

yi
; for all i 2 H0 (16)

where xi and yi are some predictable random variables with respect to filtration F i (i.e. xi; yi 2 F i&1). Following a
similar reasoning, the validity of null p-values can be rephrased under the independence assumption as

Pr ​ Pi ( zi j F i&1
# $

( zi; for all i 2 H0; and nonnegative zi 2 F i&1 (17)

Using the above observations, and the fact that ai; si 2 F i&1, we have for i 2 H0

E Pr ​
Pi

si
( ai

si
jPi ( si;F i&1

' (
Pr​ Si ¼ 1f g

! "
( E ai

si
Pr​ Si ¼ 1f g

! "

¼ E E ai
si
1Pi ( si jSi ¼ 1;F i&1

! "
Pr ​ Si ¼ 1f g

! "

¼ E E ai
si
1Pi ( si jSi;F i&1

! "! "
¼ E ai

si
1Pi ( si

! "
(18)

where we use the law of iterated expectation in the last step. Plugging equation (18) back in equation (14), we have

E V½ * (
X

i2H0

E ai
si
1Pi ( si

! "
¼ E

X

i2H0\S

ai
si

" #
(
ðiÞ

E
X

i2S

ai
si

! "
( a (19)

by construction. Therefore, PFER ( a and thus FWER ( a as claimed.
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Discarding can lead to higher power when there are many conservative nulls. However, inequality (i) in
equation (19) will be really loose if we have jH0 \ Sj - jSj, meaning that most of the contents of S are non-
nulls, which is possible since the indices in S are those with small p-values. Figure 4 demonstrates both the
strength and weakness of Discard-Spending, where we use ai as described in the concrete example (12) mentioned
above, and set si ¼ 0:5 and ci ¼ 6

p2i2 for all i.

3.2 Adaptivity to unknown proportion of nulls

Here, we develop a method to address the second looseness ðBÞ in equation (6), which is due to lack of adjustment
for the proportion of true nulls. Related ideas have been proposed during the development of offline FWER
methods, which can be improved by incorporating an estimate of the true null proportion. This led to a series of
adaptive methods like the adaptive Bonferroni,20,21 and other generalizations like adaptive Sidak, adaptive Holm
and adaptive Hochberg, which are rigorously proved to have FWER control.22–24 Inspired by those efforts, we
introduce the Adaptive-Spending procedure next, which could be regarded as an online variant of adaptive
Bonferroni.

3.2.1 Adaptive-spending
Recalling the definitions in and right after equation (7), we call any online FWER algorithm as an Adaptive-
Spending algorithm if it updates ai in a way such that faig1i¼1 satisfies the following conditions: (i) ai is predictable,
where the filtration F i&1 ¼ rðR1:i&1;C1:i&1Þ; (ii) for a predictable sequence fkig1i¼1, we have

X

i62C

ai
1& ki

#
X

i2N

ai
1& ki

ð1& CiÞ ( a (20)

Following the similar reasoning in Section 3.1, condition (20) does not conflict with the predictability condition
of fkig1i¼1 and faig1i¼1, even though it apparently requires knowing the whole sequence. To better demonstrate how
to construct such sequences in the online fashion, we show an explicit example of Adaptive-Spending algorithm:

• Choose a nonnegative sequence fcig
1
i¼1 that sums to one, given any predictable fkig1i¼1, we test every Hi at the

adapted level

ai :¼ að1& kiÞctðiÞ; where tðiÞ ¼ 1þ
X

j< i

ð1& CjÞ (21)

Figure 4. Statistical power and FWER versus fraction of non-null hypotheses pA for Discard-Spending and Alpha-Spending at target
FWER level a ¼ 0:2 (solid black line). The curves above line 0.2 display the power of each method versus pA, while the lines below 0.2
display the FWER of each method versus pA. The experimental setting is described in Section 5.1: we set lA ¼ 4 for both figures, but
lN ¼ &2 for the left figure and lN ¼ 0 for the right figure (hence the left nulls are conservative, the right nulls are not). These figures
show that: (a) Discard-Spending do control FWER at level 0.2; (b) Discard-Spending is more powerful than naive Alpha-Spending when
the nulls are conservative (as shown in the left figure); (c) Discard-Spending loses power when a high proportion of non-nulls is
encountered (as shown in the right figure).
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It is easy to check above that by the above construction, ai is F i&1-measurable for all i 2 N. With simple
algebra, we additionally have

X

i 62C

ai
1& ki

¼
X

i 62C
actðiÞ ¼

X

i2N
actðiÞð1& CiÞ ¼ a

X

t2N
ct ¼ a (22)

where we use the observation that tðiþ 1Þ ¼ tðiÞ þ 1 if and only if Ci¼ 0 under our construction. Therefore,
equation (21) is an Adaptive-Spending algorithm.

From condition (20) we can similarly simplify Adaptive-Spending as the following strategy: whenever Pi ( ki,
we don’t lose any error budget for testing it at level ai; but whenever Pi > ki, we lose ai=ð1& kiÞ from our error
budget.

Next, we prove the FWER control of Adaptive-Spending.

Proposition 5. Adaptive-Spending controls PFER and thus FWER, when the null p-values are independent of each
other and of the non-nulls.

Proof. We prove the PFER (and hence FWER) control of Adaptive-Spending mainly using the law of iterated
expectation and the fact that the null p-values are valid, i.e. Pr ​ Pi ( xf g ( x for any x 2 ½0; 1* and i 2 H0.
Recalling that V is the number of false discoveries, using the law of iterated expectation, we have

E V½ * ¼ E
X

i2H0

1Pi ( ai

! "
¼

X

i2H0

E E 1Pi ( ai j F i&1
% &% &

(23)

Note that the validity of null p-values gives us equation (17) as explained in the proof of Proposition 4, and
therefore we have

E E 1Pi ( ai j F i&1
% &% &

(
ðiÞ

E ai½ * (
ðiiÞ

E aiE
1Pi>ki

1& ki
j F i&1

! "! "
¼ E ai

1Pi>ki

1& ki

! "
(24)

where the last equality follows from the law of iterated expectation. Plugging equation (24) back in equation (23),
we have

E V½ * (
X

i2H0

E ai
1Pi>ki

1& ki

! "
( E

X

i2N
ai
1Pi>ki

1& ki

" #
¼ E

X

i62C

ai
1& ki

" #
( a (25)

Therefore, PFER ( a and thus FWER ( a as claimed.
Adaptive procedures can improve power substantially if there is a non-negligible proportion of signals.

However, their power can also suffer considerably if the null p-values are very conservative, since inequalities
(i) and (ii) in equation (24) would be extremely loose when Pr ​ Pi ( xf g - x and Pr​ Pi > xf g . 1& x. These
strengths and weaknesses of Alpha-Spending are demonstrated in Figure 5, where we use ai as described in the
concrete example (21) mentioned above, and set ki ¼ 0:5 and ci ¼ 6

p2i2 for all i 2 N.

3.3 Combining the two ideas: ADDIS-Spending, an adaptive discarding
alpha-spending algorithm

From the discussion in Sections 3.1 and 3.2, we find adaptivity and discarding both have their strength and
weakness; however, these are complementary. Therefore, we next combine those two ideas for a more sophisti-
cated online FWER control method. Specifically, we present the following ADDIS-Spending algorithm, where
“ADDIS” stands for “ADaptive DIScarding”. In the following Sections 4 and 5, we demonstrate the power
superiority of ADDIS-Spending over Alpha-Spending, with both theoretical justifications in Section 4.2, and
numerical analysis using synthetic and real data in Section 5.
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3.3.1 ADDIS-Spending
Recall the definitions in and right after equation (7). We call any online FWER control method as an ADDIS-
Spending algorithm if it updates individual testing level ai in a way satisfying the following conditions: (1) ai is
predictable, where the filtration F i&1 ¼ rðR1:i&1;C1:i&1;S1:i&1Þ; (2) predictable sequences fsig1i¼1 and fkig1i¼1 are
such that ki < si and ai < si for all i and

X

i2SnC

ai
si & ki

#
X

i2N

ai
si & ki

ðSi & CiÞ ( a (26)

Following the similar reasoning in Section 3.1, condition (26) does not conflict with the predictability condition
of fsig1i¼1; fkig

1
i¼1 and faig1i¼1, even though it apparently requires knowing the whole sequence. To better dem-

onstrate how to construct such sequences, we show an explicit example of ADDIS-Spending algorithm:
• Choose a nonnegative sequence fcig

1
i¼1 that sums to one, given any predictable fsig1i¼1, we test every Hi at the

adapted level

ai :¼ aðsi & kiÞctðiÞ; where tðiÞ ¼ 1þ
X

j< i

ðSj & CjÞ (27)

It is easy to check above that by the above construction ai < si, and ai is F i&1-measurable for all i 2 N. With
simple algebra, we additionally have

X

i2SnC

ai
si & ki

¼
X

i2SnC
actðiÞ ¼

X

i2N
actðiÞðSi & CiÞ ¼ a

X

t2N
ct ¼ a (28)

where we use the observation that tðiþ 1Þ ¼ tðiÞ þ 1 if and only if Si¼ 1 and Ci¼ 0 under construction. Therefore,
equation (27) is an ADDIS-Spending algorithm.

ADDIS-Spending can be regarded as a unification of the Adaptive-Spending and Discard-Spending algorithms
we mentioned earlier: when setting ki # 0 for all i, ADDIS-Spending recovers Discard-Spending; and when setting
si # 1 for all i, ADDIS-Spending recovers Adaptive-Spending. At a high level, the advantages of ADDIS-
Spending come from this unification of adaptivity and discarding. We obtained similar success in the ADDIS
algorithm for online FDR control9 suggesting that our work may be regarded as a variant of ADDIS for a more
stringent error metric. Finally, we prove the FWER control of ADDIS-Spending.

Figure 5. Statistical power and FWER versus fraction of non-null hypotheses pA for Adaptive-Spending, Alpha-Spending at target
FWER level a ¼ 0:2 (solid black line). The curves above line 0.2 display the power of each method versus pA, while the lines below 0.2
display the FWER of each methods versus pA. The p-values are drawn in the same way as described in Section 5.1: we set lA ¼ 4 for
both figures, but lN ¼ 0 for the left figure and lN 2 f0;&0:3;&1;&1; 5g for the right figure (hence the left nulls are conservative, the
right nulls are not). These figures show that: (a) Adaptive-Spending do control FWER at level 0.2; (b) Adaptive-Spending is more
powerful than naive Alpha-Spending when there are many non-nulls (as shown in the left figure); (c) Adaptive-Spending loses power
when many conservative nulls are encountered (as shown in the right figure).
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Theorem 1. ADDIS-Spending controls the PFER (hence FWER) when null p-values are uniformly conservative as
defined in equation (8), while being independent of each other and of the non-nulls.

Theorem 1 is actually a special case of a more general version Theorem 2 that we are going to introduce later in
Section 3.4, where we relax the independence assumption to local dependence, which includes independence as a
special case. Therefore, we omit the proof for the special case and present the proof for the more general version
later.

3.4 Handling local dependence

In Section 3.3, we introduced ADDIS-Spending, a new powerful variants of Alpha-Spending, though at the cost
of requiring independence among the p-values, while naive Alpha-Spending works even when p-values are arbi-
trarily dependent. Indeed, the assumption of independence is rarely met in real applications: tests that occur
nearby in time may share the same dataset; null hypotheses are often constructed given the information of recent
testing results, etc. On the other hand, arbitrary dependence between sequential p-values is also arguably unrea-
sonable: the dataset used for testing or the testing results from the distant past is usually considered having no
impact on the current testing. In light of this, we consider another dependence structure that is more realistic—
local dependence, first proposed by Zrnic et al.,17 and is defined as follows

For all i 2 N; there exists Li 2 N; such that Pi?Pi&Li&1;Pi&Li&2; . . . ;P1 (29)

where fLig1i¼1 is a sequence of constants that we refer to as lags. The lags can depend on the experiment being run
and on the sources of data, but not on the data themselves. Implicitly, Pi may be arbitrarily dependent on
Pi&1; . . . ;Pi&Li and in particular, when Li # 0 for all i, assuming local dependence reduces to assuming indepen-
dence. It may be simplest to think of Li # L to be fixed, but formally we assume for simplicity that Liþ1 ( Li þ 1.
For example, the latter requirement avoids the case that P5 is independent of P1, P2 (if L5 ¼ 2) while P6 is
arbitrarily dependent on P1, P2 (if L6 ¼ 5). We refer readers to the paper17 for more detailed definition and
discussions.

Here, we give simple alterations of the procedures in Section 3 that allows them to deal with local dependence.
The way we accomplish this is to follow the “principle of pessimism”.17 Specifically, this principle suggests
ignoring what really happened in the previous Lt steps when deciding what to do at time t, and hallucinate a
pessimistic outcome for those steps instead. Formally, the alterations we made for procedures in Section 3 insist
that

ai; si; ki 2 F i&Li&1; for all i 2 N (30)

while still satisfying the other requirements in the corresponding original definitions.
As for concrete examples to implement the altered procedures described above, we present the altered concrete

example of ADDIS-Spending in equation (27): we choose fcig
1
i¼1 as an infinite nonnegative sequence that sums to

one, we test each Hi at predictable level

ai :¼ aðsi & kiÞctðiÞ; where tðiÞ ¼ 1þ Li ^ ði& 1Þ þ
X

j< i&Li

Sj & Cj (31)

Note that when Li¼ 0 for all i, that is the local dependence structure reduces to independence, the above
modified procedures reduce to ADDIS-Spending in equation (27).

We now present the PFER (and hence FWER) control of altered ADDIS-Spending for local dependence in
Theorem 2, which is proved in Appendix B.

Theorem 2. Altered ADDIS-Spending controls PFER (and hence FWER) in a strong sense when the null p-values
are uniformly conservative as defined in equation (8) and follow the local dependence defined in equation (29).
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4 Statistical power

We now study the statistical power of Alpha-Spending and ADDIS-Spending under an idealized Gaussian setting
with randomly arriving signals. Specifically, in Section 4.1 we examine the power of Alpha-Spending, and we
derive some optimal choices of the underlying fcig

1
i¼1 in a certain range, for either fixed or varying signal strength

and density. Then we provide theoretical justification for the benefits of adaptivity and discarding in Section 4.2:
we prove that if fcig

1
i¼1 lies in the aforementioned optimal range, ADDIS-Spending is more powerful than Alpha-

Spending.
Before we proceed with the analysis of power, it is useful to set up a few definitions.

Definition 2. (q-series and log-q-series) For any q> 1, we call an infinite sequence fcig
1
i¼1 which is nonnegative and

sums to one as q-series if ci / i&q for all i, and similarly, as a log-q-series if ci / 1=ilogqi for all i.

Definition 3. (Gaussian mean testing problem) We call the problem of testing a possibly infinite sequence of
hypotheses fHig1i¼1 as Gaussian mean testing problem, if each observation Zi follows the following mixed
distribution

Zi ¼
Xi þ lA with probability pA;
Xi þ lN; with probability 1& pA

'

where constants lA > 0; lN ( 0; pA 2 ð0; 1Þ for all i, Xi,
iid
Nð0; 1Þ, and we test the null hypothesis Hi : li ( 0,

where li ¼ E Zi½ *.
Recalling Section 3.1, if the p-values calculated are one-sided that is Pi ¼ U&1ð&ZiÞ, then we know that the

nulls are uniformly conservative as defined in equation (8), strictly conservative when Pi ¼ U&1ð&ZiÞ, and uni-
form when lN ¼ 0.

In the following, we only consider the online Gaussian mean testing problem described above. We compare the
algorithms that are presented as concrete examples of each method, which are formulas (2) and (27) for Alpha-
Spending and ADDIS-Spending, respectively, with the same underlying sequence fcig

1
i¼1. Also, for simplicity, we

use the number of true discoveries D as one of the performance measures. Note that D is the numerator inside the
expectation of the power function (1). Since the denominator inside the expectation of the power function in
equation (1) remains the same for different algorithms given the same testing sequence, the expectation of numer-
ator Dmay arguably serve as a nice substitution for power function in respect of comparison. Hence we refer E D½ *
also as the power of online FWER control methods in this section.

4.1 Getting optimal power using naive Alpha-Spending

In this section, we derive optimal choices of fcig
1
i¼1 in the range of q-series for Alpha-Spending with regard to the

Gaussian mean testing problem in Definition 3. As we discussed before, the expectation of number of true
discoveries serves as a reasonable measurement for comparing the power of testing procedures. Recall that D
is the number of true discoveries. In the Gaussian mean testing problem, we have

E D½ * ¼ E
X1

i¼1

1Pi ( ai;i2Hc
0

" #
¼ðiÞ

X1

i¼1

E 1Pi ( ai;i2Hc
0

% &
¼

X1

i¼1

Pr ​ Pi ( ai; i 2 Hc
0

# $

¼
X1

i¼1

pAUðU&1ðaiÞ þ lAÞ ¼
X1

i¼1

pAUðU&1ðaciÞ þ lAÞ
(32)

where U is the standard Gaussian CDF, and (i) is true due to the fact that each entry in the summation is
nonnegative, and the last step uses the fact that ai ¼ aci for all i in Alpha-Spending. Additionally, for each
N 2 N, we denote EN D½ * as the expectation of true discoveries among the first N hypotheses, which means

EN D½ * :¼
XN

i¼1

pAUðU&1ðaciÞ þ lAÞ (33)
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It is obvious that the power of Alpha-Spending does not depend on lN, therefore we only consider how to
choose fcig

1
i¼1 to optimize the power given different lA and pA. Specifically, we derive that for the Gaussian mean

testing problem in Definition 3 using Alpha-Spending, the optimal sequence fcig
1
i¼1 in the range of q-series will be

q ¼ 1þ for any choice of lA > 0 and pA 2 ð0; 1Þ. This result provides some heuristic of choosing fcig
1
i¼1: one

should resort to log-q-series for higher power when applicable. The formal results are stated in the following
Theorem 3.

Theorem 3. Recall the definition of E D½ * and EN D½ * in equations (32) and (33). For Alpha-Spending (2) at level
a < 1=2, if the underlying sequence fcig

1
i¼1 is a q-series where q> 1, then for the Gaussian mean testing problem in

Definition 3, we have
(a) For N % 2; EN D½ * is a unimodal function, first increasing with q and then decreasing with q. Additionally,

defining

q/ðN; lAÞ # argsupq>1EN D½ * (34)

we have that q/ðN; lAÞ is monotonically decreasing with N for any lA > 0, and

lim
N!1

q/ðN; lAÞ ¼ 1 (35)

• E D½ * is finite for any fixed q, and is a function monotonically decreasing with q.
Theorem 3 in fact suggests that the slower fcig

1
i¼1 is decaying, the higher the power will get, which corresponds to

our intuition that the power will be higher if we protect the ability to detect the signals in the long run, or we try not to
run out of our total budget too fast. However, if the testing process stops at a certain point, then sequence fcig

1
i¼1 that

decays too slow will hurt the power, since the testing will not get the benefit from the long run. This trade-off implies
that there is an optimal sequence, which is not decaying too slow or too fast, making the testing process achieve the
highest power. Theorem 3 provides theoretical verification for those intuitions and is proved in Appendix D.

Therefore, when we have no prior information on the hypotheses, which means we could only treat the non-
null fraction and the non-null mean as some fixed arbitrary value, we could always resort to the sequence fcig

1
i¼1

that sums to one with slower decay rate to obtain higher power of Alpha-Spending. For example, among q-series,
we should choose q as close to one as possible, and one should resort to log-q-series for higher power.

The above results are all in the regime of fixed signal strength and density, which is a bit unrealistic in practice,
though potentially suitable for deriving interpretable heuristics. For completeness, we also go beyond the setting
of fixed signal strength and density: in Appendix E, we consider different lAi and pAi for each i in Definition 3,
and we show that, if flAig

1
i¼1 and fpAig1i¼1 satisfy some reasonable conditions, then there exists a function h with

closed form, such that ci ¼ hðpAi; lAiÞ achieves the highest power. We refer readers to Appendix E for details.

4.2 The adaptive discarding methods are more powerful

In Section 4.1, we showed that the optimal choice of fcig
1
i¼1 for Alpha-Spending in the range of q-series and log-q-

series for the Gaussian mean testing problem with fixed signal strength and density lies in the regime of log-q-
series. Here, we show that in this regime, ADDIS-Spending is provably more powerful than Alpha-Spending.

For simplicity, we consider fixed si and ki, that is si ¼ s and ki ¼ k for all i 2 N, and we denote the number of
discoveries from ADDIS-Spending asDADDISðk; sÞ, andDspend for Alpha-Spending. Below, we demonstrate that as
long as the hyper-parameters k and s are reasonably chosen (i.e. in ranges we derived in the following, which depend
only on the distribution of p-values), ADDIS-Spending is guaranteed to be more powerful than Alpha-Spending.

Theorem 4. For the Gaussian mean testing problem in Definition 3, if the underlying fcig
1
i¼1 is a log-q-series as defined

in Definition 2 with q> 1, then there exists some c/ such that with probability one,

E DADDISðk; sÞ½ * % E Dspend½ * for all k 2 ½0; c/Þ and all s 2 ðc/; 1*; s:t:s&k < 1 (36)

Additionally, c/ increases with pA, lA and lN, and equals one when lN ¼ 0.
The corresponding proof is in Appendix F. Theorem 4 indicates that, as long as we have reasonable prior

information about signal strength, density and conservativeness of nulls, we can utilize them for better design of

Tian and Ramdas 989



hyperparameters k and s in ADDIS-Spending, such that higher power over Alpha-Spending can be achieved. As
for a more tangible recommendation for users, we observe the combination s ¼ 0:8 and k ¼ as perform well in our
empirical studies as we discuss next, and is the most robust choice across various signal settings as shown in the
greedy evaluation in Appendix J.2. Appendix J.2 can be taken as a reference table for scientists to make the best
use of ADDIS-Spending in practice, as we cover settings of various signal density and nulls conservativeness
there. As Theorem 4 provides the theoretical justification for the benefits of discarding and adaptivity in terms of
power, in the following Section 5 we provide numerical analysis with both simulations and real data example to
confirm these benefits.

5 Numerical studies

5.1 Simulations

In this section, we provide some numerical experiments to compare the performance of ADDIS-Spending,
Discard-Spending, Adaptive-Spending, and Alpha-Spending. In particular, for each method, we provide empirical
evaluations of its power while ensuring that the FWER remains below a chosen value.

Specifically, in the following, we aim to control the FWER under a ¼ 0:2 and estimate the FWER and power
by averaging over 2000 independent trials. The constant sequences si # 0:8 in Discard-Spending, ki # a in
Adaptive-Spending, and si # 0:8; ki # as ¼ 0:16; in ADDIS-Spending for all i 2 N were found to be generally
successful, so as our default choice in this section and we drop the index for simplicity. Additionally, we choose
the infinite sequence ci / 1=ðiþ 1Þlogðiþ 1Þ2 for all i 2 N as default, which could be substituted by any constant
infinite sequence that is nonnegative and sums to one.

In what follows, we show the power superiority of ADDIS-Spending over all other three methods, especially
under settings with both nonnegligible number of signals and conservative nulls. Specifically, we consider the
simple experimental setup of Gaussian mean testing problem in Definition 3 with T¼ 1000 components, where the
nulls are uniformly conservative from the discussion in Section 3.1.

We ran simulations for lN 2 f0;&0:5;&1;&1:5g; lA 2 f4; 5g, and pA 2 f0:1; 0:2; . . . ; 0:9g, to see how the
changes in conservativeness of nulls and true signal fraction may affect the performance of algorithms. The results
are shown in Figure 6, which indicates that (1) FWER is under control for all methods in all settings; (2) ADDIS-
Spending enjoys appreciable power increase as compared to all the other three methods in all settings; (3) the more
conservative the nulls are (the more negative lN is), or the higher the fraction of non-nulls is, the more significant
the power increase of ADDIS-Spending is.

Here for conciseness, we only present results with some default parameter choices under canonical settings,
which turn out working pretty well in establishing the strength of our methods and confirm the theoretical results
in Section 4.2, though they may not be optimal in obtaining high power. We conduct more thorough empirical
studies with different parameters choices under other practical cases in Appendix J, where we demonstrate con-
sistent power superiority of ADDIS-Spending.

In particular, to provide more intuition of suitable hyper-parameters, we show the influence of different fcig
1
i¼1

choices empirically in Appendix J.1, which confirms our theoretical results in Section 4.1 that slow-decaying
sequences lead to higher power; we explore greedily on feasible s and k choices in Appendix J.2 to depict optimal
combination of them, and find that promising region corresponds to our theoretical finding in Section 4.2. On the
other hand, in order to show generality of our methods under other practical settings, in Appendix J.3 we
demonstrate consistent success of our methods in the two-sided problem, a common problem formulation in
many areas like genomics; we show the consistent validity and superiority of our methods under more strict
FWER level requirement in Appendix J.4, a desired requirement in areas that need serious risk control; we
reassure similar success of our methods under various strength of local dependence in Appendix J.5, a
common dependence structure that happens in practice when independence assumption breaks.

5.2 Application to the international mouse phenotyping consortium

In the following, we introduce the application of ADDIS-Spending to real-life data about International Mouse
Phenotyping Consortium (IMPC). The IMPC coordinates a large study to functionally annotate every protein
coding gene by exploring the impact of the gene knockout on the resulting phenotype. Statistically speaking, for
each phenotype i, people test the null hypothesis H

ðiÞ
j : “the knockout of gene j will not change the phenotype i”

versus its alternative, via comparing the unmutated mouse (control case) to the mouse with gene j knockout. Since
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the dataset and resulting hypotheses constantly grow as new knockouts are studied, and a positive test outcome
could lead to some following up medical research that is hard to be revised afterwards, it is natural to view this as
an online testing problem as the ones considered in the previous sections.

We follow the analysis done by Karp et al.,25 which resulted in a set of p-values for testing genotype effects.
These are available at the Zenodo repository,b organized by Robertson.26 This particular dataset admits a natural
local dependence structure: the hypotheses are tested in small batches, with each batch using a different group of
mice. Figure 7(a) demonstrates this local dependence structure via showing the first 5000 &log10 transformed p-
values: the transformed p-values are ordered by the time that its corresponding data samples are collected, and the
adjacent batches are distinguished using different colors.

Due to this online nature and local dependence structure of the data, we hence apply the modified version of
ADDIS-Spending described in Section 3.4, using lags Li that corresponds to the size of blocks that p-value Pi

belongs to. Since we do not know the underlying truth, we only report the number of discoveries and argue that
the corresponding FWER are all under control following our theoretical results. Figure 7(b) shows the power
advantage of ADDIS-Spending over Alpha-Spending and Online-Fallback, where we use the same underlying
fcig

1
i¼1 sequence with ci / 1=i1:1 (similar qualitative behavior is shown in Appendix J.1 with ci / 1=i2), and the

default setting s ¼ 0:8; k ¼ 0:16 for ADDIS-Spending in comparison.
The above real data example again supports our key idea: utilizing the independence or local dependence

structure to incorporate with adaptability and discarding can improve the power of online testing procedure much.

6 Conclusion and discussion

Modern biology studies often require testing hypotheses in a sequential manner, and how to control familywise error
rate in this setting leads to the statistical problem of online FWER control. This paper derives new algorithms for
online FWER control, a problem for which no systematic treatment exists in the literature to the best of our knowl-
edge. While we describe several new methods, each improving on Alpha-Spending (online Bonferroni) in different
ways, the most promising of these in experiments seems to be ADDIS-spending, a new adaptive discarding algorithm
that adapts to both unknown number of non-nulls and conservativeness of the nulls.

(a) (b)

(d) (e)

(c)

Figure 6. Statistical power and FWER versus fraction of non-null hypotheses pA for ADDIS-Spending, Discard-Spending, Adaptive-
Spending and Alpha-Spending at target FWER level a¼ 0.2 (solid black line). The lines above the solid black line are the power of each
method versus pA, and the lines below are the FWER of each method versus pA. The p-values are drawn using the Gaussian model as
described in the text, while we set lN ¼ &0:5 in plot (a), lN ¼ &1 in plot (b), lN ¼ &1:5 in plot (c), and lN ¼ 0 in plots (d) and (e);
and we set lA ¼ 4 in plots (a) to (d), and lA ¼ 5 in plot (e). Therefore nulls in (a), (b) and (c) are conservative, and the conser-
vativeness is increasing, while the nulls in (d) and (e) are not conservative (uniform).
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Though we find that ADDIS-Spending is the most promising method within current practices, we are also
wondering whether there exists universal refinements over ADDIS-Spending. It is known that for any offline
global null testing methods, there exists a closure such that the power of it is unimprovable. So we are wondering
whether there exists similar logic for online multiple testing. We provide some initial attempts on developing the
variant of the closure principle for online multiple testing in Appendix H. Several questions still remain: Is our
proposed principle essentially unimprovable? Also, is the closure of an online method still be an online method? If
not always, then what are the cases in which it is? We leave these as open questions for future work.

The application of adaptivity and discarding go much beyond the main contribution of this paper: they can
also be applied to methods in Section 2 to develop more powerful variants. We provide some concrete examples
and corresponding proofs for their FWER control in Appendix G for interested readers.

Throughout this paper, we mainly discuss the online algorithms for controlling FWER. In real applications,
many prefer to control k-FWER instead, in order to obtain a less stringent error control. The k-FWER is defined
as Pr ​ V % kf g, which reduces to FWER as k¼ 1. It is straightforward that for any methods that have PFER
control, changing the sum of the test levels to ka will assure k-FWER controlled at level a, simply using Markov’s
equality. Therefore, all our new algorithms that provably have PFER control may easily be extended to k-FWER
control methods.

7 Code and data availability

The code to reproduce all figures is accessible at Github repository, and the real dataset is available at Zenodo
repository, organized by Robertson.26 Additionally, an R package called onlineFDR27 developed by David
Robertson and the authors of this paper (among others), contains current state of arts in all aspect of online
multiple testing, including online FWER control and also the new algorithms proposed here.
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Figure 7. Figure (a) shows the barplot of &log10 transformed p-values, where the p-values are ordered in time, and each adjacent
batche is distinguished with different colors. Figure (b) shows the number of discoveries versus FWER level, using different algorithms
(Alpha-Spending, Online-Fallback, ADDIS-Spending).
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Notes

a. The marginal distribution of a null p-value P is typically assumed to satisfy Pr​ P ( xf g ( x for all x 2 ½0; 1*. Ideally,
equality holds, but in practice, null p-values are often conservative, meaning that Pr​ P ( xf g - x.

b. The Zenodo repository can be accessed at https://zenodo.org/record/2396572.

References

1. Benjamini Y and Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J
Royal Stat Soc Ser B (Stat Methodol) 1995; 57: 289–300.

2. Storey J. A direct approach to false discovery rates. J Royal Stat Soc Ser B (Stat Methodol) 2002; 64: 479–498.
3. Zhao Q, Small DS and Su W. Multiple testing when many p-values are uniformly conservative, with application to testing

qualitative interaction in educational interventions. J Am Stat Assoc 2018; 114: 1291–1304.
4. Foster D and Stine R. a-investing: a procedure for sequential control of expected false discoveries. J Royal Stat Soc Ser B

(Stat Methodol) 2008; 70: 429–444.
5. Aharoni E and Rosset S. Generalized a-investing: definitions, optimality results and application to public databases. J

Royal Stat Soc Ser B (Stat Methodol) 2014; 76: 771–794.
6. Javanmard A and Montanari A. Online rules for control of false discovery rate and false discovery exceedance. Ann Stat

2018; 46: 526–554.
7. Ramdas A, Yang F, Wainwright M, et al. Online control of the false discovery rate with decaying memory. In: Advances in

neural information processing systems, Long Beach, United States, 4-9 December 2017, pp.5655–5664.
8. Ramdas A, Zrnic T, Wainwright M, et al. SAFFRON: an adaptive algorithm for online control of the false discovery rate.

In: Proceedings of the 35th international conference on machine learning, Stockholm, Sweden, 10-15 July 2018, vol. 80,
pp.4286–4294.

9. Tian J and Ramdas A. ADDIS: adaptive algorithms for online FDR control with conservative nulls. In: Proceedings of the
33rd conference on neural information processing systems, Vancouver, Canada, 9-12 December 2019.

10. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat 1979; 6: 65–70.
11. Hochberg Y. A sharper bonferroni procedure for multiple tests of significance. Biometrika 1988; 75: 800–802.
12. Wiens BL and Dmitrienko A. The fallback procedure for evaluating a single family of hypotheses. J Biopharmaceut Stat

2005; 15: 929–942.
13. !Sidák Z. Rectangular confidence regions for the means of multivariate normal distributions. J Am Stat Assoc 1967; 62:

626–633.
14. Burman CF, Sonesson C and Guilbaud O. A recycling framework for the construction of Bonferroni-based multiple tests.

Stat Med 2009; 28: 739–761.
15. Bretz F, Maurer W, Brannath W, et al. A graphical approach to sequentially rejective multiple test procedures. Stat Med

2009; 28: 586–604.
16. Goeman JJ and Solari A. The sequential rejection principle of familywise error control. Ann Stat 2010; 38: 3782–3810.
17. Zrnic T, Ramdas A and Jordan M. Asynchronous online testing of multiple hypotheses. arxiv preprint arxiv 1812.05068

2018.
18. Ellis JL, Pecanka J and Goeman J. Gaining power in multiple testing of interval hypotheses via conditionalization.

Biostatistics 2020; 21: e65–e79.
19. Whitt W. Uniform conditional stochastic order. J Appl Probabil 1980; 17: 112–123.
20. Schweder T and Spjøtvoll E. Plots of p-values to evaluate many tests simultaneously. Biometrika 1982; 69: 493–502.
21. Hochberg Y and Benjamini Y. More powerful procedures for multiple significance testing. Stat Med 1990; 9: 811–818.
22. Finner H and Gontscharuk V. Controlling the familywise error rate with plug-in estimator for the proportion of true null

hypotheses. J Royal Stat Soc: Ser B (Stat Methodol) 2009; 71: 1031–1048.
23. Guo W. A note on adaptive Bonferroni and Holm procedures under dependence. Biometrika 2009; 96: 1012–1018.
24. Sarkar SK, GuoW and Finner H. On adaptive procedures controlling the familywise error rate. J Stat Plan Inference 2012;

142: 65–78.
25. Karp NA, Mason J, Beaudet AL, et al. Prevalence of sexual dimorphism in mammalian phenotypic traits. Nat Commun

2017; 8: 1–12.
26. Robertson DS, Wildenhain J, Javanmard A, et al. onlineFDR: an R package to control the false discovery rate for growing

data repositories. Bioinformatics 2019; 35: 4196–4199.
27. Robertson DS, Ramdas A, Javanmard A, et al. onlineFDR: Online FDR control, 2019. R package 1.3.6, https://dsrobert

son.github.io/onlineFDR/index.html (accessed February 2020).

Tian and Ramdas 993

https://zenodo.org/record/2396572
https://dsrobertson.github.io/onlineFDR/index.html
https://dsrobertson.github.io/onlineFDR/index.html

