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Nonparametric Iterated-Logarithm Extensions of the
Sequential Generalized Likelihood Ratio Test

Jaehyeok Shin , Aaditya Ramdas, and Alessandro Rinaldo

Abstract—We develop a nonparametric extension of the
sequential generalized likelihood ratio (GLR) test and corre-
sponding time-uniform confidence sequences for the mean of a
univariate distribution. By utilizing a geometric interpretation of
the GLR statistic, we derive a simple analytic upper bound on the
probability that it exceeds any prespecified boundary; these are
intractable to approximate via simulations due to infinite horizon
of the tests and the composite nonparametric nulls under con-
sideration. Using time-uniform boundary-crossing inequalities,
we carry out a unified nonasymptotic analysis of expected sam-
ple sizes of one-sided and open-ended tests over nonparametric
classes of distributions (including sub-Gaussian, sub-exponential,
sub-gamma, and exponential families). Finally, we present a flex-
ible and practical method to construct time-uniform confidence
sequences that are easily tunable to be uniformly close to the
pointwise Chernoff bound over any target time interval.

Index Terms—Sequential analysis, testing, maximum likelihood
detection, error probability.

I. INTRODUCTION

CONSIDER the following setup for open-ended sequential
testing: we observe i.i.d. data sequentially from an infi-

nite stream X1, X2, . . . generated by an unknown distribution
P over the real line with finite first moment and belonging to
large nonparametric class of distributions. We wish to test a
one-sided hypothesis about its mean µ :=

∫
xdP(x) by decid-

ing, at each time point, whether to reject the null hypothesis
or instead to continue sampling, possibly indefinitely. With a
slight abuse of notation, we denote with Pµ and Eµ the prob-
ability and expectation when the mean of the data generating
distribution is equal to µ. (In many parametric models, one
can safely assume that there is a one to one map between
Pµ and µ and, therefore, that the mean value parametrization
is well-defined, but in the nonparametric settings considered
in this paper there could be more than one distribution with
the same mean µ; as discussed in Remark 2 below, this does
not affect the validity of our results.) For a fixed α ∈ (0, 1),
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we are concerned with developing level α open-ended tests
—also known as tests with power one [1]—for the one-sided
hypothesis problem about µ of the form

H0 : µ ≤ µ0 vs. H1 : µ > µ1, for some µ1 ≥ µ0. (1)

Formally, a level α open-ended test consists of a stopping time
N with respect to the natural filtration generated by the data,
which satisfies the constraints

Bounded type-1 error: Pµ(N < ∞) ≤ α, if µ ≤ µ0,

Asymptotically power one: Pµ(N < ∞) = 1, if µ > µ1. (2)

At each time n, we either stop and reject the null if N = n
or continue sampling if N > n. In particular, when µ ≤ µ0,
we never stop with probability at least 1 − α. The case of
µ0 = µ1 in which there is no separation between the null and
alternative hypothesis will be of special interest.

The possibility of sampling indefinitely is characteristic of
tests of power one [2], and stems from allowing for arbitrar-
ily small signal strengths (or, equivalently of no separation
between the null and the alternative). This might initially
be viewed as an undesirable property. However, open-ended
tests are typically adaptive to the underlying signal strength
and will stop early when µ is much larger than µ1. Indeed,
open-ended tests not only have practical applications such as
post-marketing drug and vaccine safety surveillance [3] but
also serve as building blocks of more complicated sequential
analyses. For instance, if we want to relax the power one con-
straint to a level β ∈ (0, 1) of type-2 error control, we can
introduce another stopping time M corresponding to a level β
open-ended test with swapped null and alternative hypotheses.
Then, the minimum of the two stopping times N and M can
be used as a sequential testing procedure that simultaneously
controls type-1 and type-2 error at level α and β, respectively.
In this case, with probability 1 the procedure will stop in finite
time under both the null and alternative hypotheses.

The expected sample size EµN under an alternative dis-
tribution with mean µ > µ1 is a traditional and widely
used measure to quantify the performance of a sequential
testing procedure satisfying the error constraints in (2); see,
e.g., [2], [4]–[6]. In particular, the smaller the expected time
to rejection under the alternative, the better the test. In para-
metric settings, if the testing problem is simple, i.e., if it takes
the form

H0 : µ = µ0 vs H1 : µ = µ1 (3)

for some µ0 &= µ1, then the optimal testing procedure is the
sequential probability ratio test (SPRT), originally put forward
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by Wald [7] and further studied by Wald and Wolfowitz [4]. In
detail, based on observations X1, X2, . . . , the one-sided SPRT
is defined by the stopping time

N := inf{n ≥ 1 : log Ln(µ1, µ0) ≥ A}, (4)

where A ≥ 0 is an appropriately chosen threshold and
Ln(µ1, µ0) is the likelihood ratio (LR) statistic given by

Ln(µ1, µ0) :=
n∏

i=1

pµ1(Xi)

pµ0(Xi)
. (5)

Here pµ1 and pµ0 are the probability densities functions (with
respect to a common dominating measure) of the data gener-
ating distributions under the alternative and null hypothesis,
respectively. If the threshold A is chosen to satisfy the con-
straint in (2), then the one-sided SPRT is optimal in the sense
that it minimizes Eµ1 N, the expected sample size for a rejec-
tion under the alternative, among all test satisfying the error
constraints; see, e.g., [4], [8].

More generally, one may wish to design a sequential test
that satisfies the error constraints (2) while nearly minimiz-
ing the expected sample size uniformly over many possible
null and alternatives distributions. However, it is well known
that in this composite setting the SPRT does not yield such a
guarantee [9], [10].

A natural way to extend the SPRT to accommodate com-
posite null and alternative hypotheses in parametric settings is
to use the generalized likelihood ratio (GLR) statistic:

GLn(µ1, µ0) :=
supµ>µ1 or µ≤µ0

∏n
i=1 pµ(Xi)

supµ≤µ0

∏n
i=1 pµ(Xi)

. (6)

(Note that the above GLR statistic cannot be smaller than one
by definition.) The one-sided sequential GLR (SGLR) test can
then be defined by the stopping time

Ng := inf{n ≥ 1: log GLn(µ1, µ0) ≥ gα(n)}, (7)

where gα : N → [0,∞) is a boundary function, appropri-
ately chosen to ensure that the error constraints in (2), namely
supµ≤µ0

Pµ(Ng < ∞) ≤ α and infµ>µ1 Pµ(Ng < ∞) = 1, are
fulfilled.

For exponential families, Farrell [5] derived a sharp asymp-
totic lower bound on the expected sample size of any compos-
ite sequential test satisfying the constraint (2) in the moderate
confidence regime in which the testing level α is fixed but
µ1 approaches µ0. The author further proposed a procedure
to threshold the GLR statistic that attains this lower bound
in the limit as the gap |µ1 − µ0| → 0, but did not pro-
vide an explicit boundary function gα . Lorden [11] obtained
an explicit boundary and nonasymptotic bounds on the test-
ing errors and the expected sample sizes for well-separated
alternatives (µ1 > µ0); see Section III-A.

Remark 1: Throughout the paper, we will follow the con-
vention from the sequential analysis literature of using the
term asymptotic to describe a vanishing separation between
the null and the alternative hypotheses or a vanishing value
of α. Accordingly, we will say that a result holds nonasymp-
totically when it holds for all finite values of µ0, µ1 or α and
not only in the limit.

In the more challenging non-separated case (µ1 = µ0),
virtually all of the existing SGLR tests are designed under
parametric assumptions. In this case, one may hope to calibrate
a boundary to a desired level α using simulations, but this is
a non-trivial task for one-sided, open-ended tests because the
type-1 error guarantee must hold for an infinite time horizon.
Further, in nonparametric settings, the choice of which dis-
tribution to use is itself not obvious. Our analytic boundaries
solve these issues. Also, most older works only deliver asymp-
totic analyses of error bounds and of expected sample sizes in
the high-confidence regime where α → 0; see, e.g., [10], [12].
In contrast, our boundaries allow for a thorough nonasymptotic
analysis in this setting.

It is also important to point out that the recent literature
on best-arm identification has produced several time-uniform
law of iterated logarithm (“finite LIL”) bounds that allow for
nonasymptotic analyses of type-1 error bounds with explicit
boundary functions; see [13]–[17]. However, most existing
boundaries are of a rigid form and are difficult to tune to
be as tight as possible over any target time interval. Further,
the expected sample sizes of corresponding testing procedures
have been studied mostly in the asymptotic framework of the
high confidence regime in which α → 0 but µ is fixed. As
a result, nonasymptotic expected sample size analyses for the
“moderate confidence regime” (fixed α, µ → µ0) are not
yet thoroughly studied beyond the (sub-)Gaussian case. In
this paper, we bring to bear and sharpen tools from this line
of work and apply them in novel ways to the problem of
designing SGLR tests.

Below we outline our main contributions, which advance
both the theory and practice of sequential testing based on the
GLR statistic. A technical summary of our results can be also
found in Table I in the Discussion Section V.

1) We design new SGLR tests that satisfy the error con-
straints in (2) with an explicit boundary function that
are applicable in nonparametric settings in which a like-
lihood function is not available. Specifically, we present
a unified analysis of sequential testing for sub-Gaussian,
sub-exponential, and exponential family distributions
(among others) via a new geometric interpretation of
GLR statistics.

2) We derive novel nonasymptotic bounds on the sample
size for the SGLR tests that hold both in expectation and
with high probability and are valid under any alterna-
tive. Though our results apply to nonparametric families
of distributions, the bounds match in rate the known
lower bounds for exponential family distributions in
the moderate confidence regime where α is fixed and
|µ1 − µ0| → 0.

3) Leveraging the duality between sequential tests and
confidence sequences [15, Sec. 6], we develop a flex-
ible method to construct confidence sequences which
can be easily tuned to be uniformly close to the
fixed-sample Chernoff bound on prespecified time
intervals.

The rest of the paper is organized as follows. In Section II,
we introduce the sub-ψM family of distributions, a nonpara-
metric generalization of the exponential family which includes
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sub-Gaussian, sub-exponential, and exponential family distri-
butions as special cases. Section III presents the sequential
GLR-like (SGLR-like) test, which is a nonparametric counter-
part of the SGLR test for the sub-ψM family of distributions.
We then derive nonasymptotic bounds on expected sample
sizes, which demonstrate that the proposed SGLR-like test
can detect the alternative signal in a sample efficient way. In
Section IV, we introduce a flexible method to build anytime-
valid confidence sequences that can be tuned to be close to
the pointwise Chernoff bound on target time intervals. We con-
clude with a brief summary of our contribution and discussions
on future directions. In the interest of space, we defer proofs
and simulations to the supplement.

II. GLR STATISTIC FOR THE EXPONENTIAL FAMILY AND

ITS NONPARAMETRIC EXTENSION

Before presenting our main results in full generality and in
order to build some intuition for our results, we first review
the GLR statistic in the standard setting of exponential fami-
lies of distributions. Consider a natural exponential family of
distributions with densities of the form

pθ (x) = exp{θx − B(θ)}, θ ∈ % ⊂ R, (8)

with respect to a reference Borel measure ν on the real line,
where % ⊂ {θ ∈ R :

∫
eθxν(dx) < ∞} is the natural parameter

space and B : % → R is a strictly convex function given by
θ *→ B(θ) =

∫
eθxν(dx). Throughout, we assume % to be

nonempty and open. For each natural parameter θ ∈ %, let
µ = µ(θ) be the corresponding mean parameter

µ =
∫

xpθ (x)ν(dx).

It is well known [18] that, under the stated assumptions,
there is a one-to-one correspondence between natural and
mean parameters via µ = ∇B(θ), where throughout the
manuscript, for a differentiable univariate function f , ∇f will
refer to its derivative function. Therefore, we can reparam-
eterize the exponential family based on the mean parameter
space M := {∇B(θ) : θ ∈ %}, so that, each point µ ∈ M will
uniquely identify the density pµ := p(∇B)−1(µ).

When the samples X1, X2, . . . are i.i.d. from a distribution
in the family, for any µ0, µ1 ∈ M, the likelihood ratio (LR)
statistic based on first n samples is defined by

Ln(µ1, µ0) :=
n∏

i=1

pµ1(Xi)

pµ0(Xi)
. (9)

For fixed choices of µ0 and µ1, it is well-known that the
normalized log LR statistics can be expressed as a function of
the sample mean X̄n = 1

n

∑n
i=1 Xi in two equivalent forms as

follows:
1
n

log Ln(µ1, µ0) = KL
(
X̄n, µ0

)
− KL

(
X̄n, µ1

)
(10)

= KL(µ1, µ0) + ∇zKL(z, µ0)|z=µ1

(
X̄n − µ1

)
,

(11)

where KL(z1, z2) is the Kullback-Leibler (KL) divergence
from pz2 to pz1 , for z1, z2 ∈ M. For the completeness, we

Fig. 1. Illustration of normalized log LR and GLR statistics for exponential
family distributions. The dashed blue line corresponds to the normalized log
LR statistic as a function of the sample mean X̄n which is tangent to the
KL divergence function at µ1. The red line shows the normalized log GLR
statistic which is equal to the KL divergence for X̄n > µ1 and its “clipped”
tangent line for X̄n ≤ µ1, respectively.

derive the above identities in Appendix A in the supplementary
material. From the first expression in (10), we see that the nor-
malized LR statistic is equal to the difference between the KL
divergences from the distribution in the family parametrized
by the sample mean X̄n to the one corresponding to the null
and alternative hypotheses. Perhaps more importantly for our
derivations below, the second expression in (11) shows that
the normalized log LR statistic, as a function of X̄n, is also
the tangent line to the KL divergence function z *→ KL(z, µ0)

at z = µ1. See Figure 1 for an illustration.
Now, recall that we are concerned with one-sided composite

testing problem

H0 : µ ≤ µ0 vs H1 : µ > µ1, (12)

where µ1 ≥ µ0 ∈ M. From the expression of the LR statistic
in (10), it can be easily shown that the corresponding GLR
statistic is given by

GLn(µ1, µ0) = sup
z>µ1

Ln(z, µ0) ∨ 1.

Using the alternative expression of the LR statistic in (11), we
conclude that the normalized log GLR statistic can be written
as 1

n log GLn(µ1, µ0) := f (X̄n;µ1, µ0), where

f (z;µ1, µ0)

:=
{ [

KL(µ1, µ0) + ∇zKL(z, µ0)|z=µ1(z − µ1)
]
+ if z ≤ µ1

KL(z, µ0) if z > µ1
.

(13)

Figure 1 depicts the normalized log LR (dashed blue line)
and GLR statistics (red line) based on the first n samples, as
functions of X̄n. In particular, the normalized log GLR statistic
is equal to the KL divergence between pX̄n

and pµ0 when X̄n >

µ1 and to its tangent line at µ1, clipped at zero, otherwise.
The above expression for the normalized GLR statistic

and its simple but revealing geometric interpretation provide
the conceptual underpinning and intuition for much of the
contributions made in this article. In the next subsection,
we introduce a class of distributions, called sub-ψ distri-
butions [19], [20] that exhibit analogous GLR statistic for
the testing problem at hand and thus can be viewed as a
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natural nonparametric generalization of the exponential family
distributions.

A. Extensions to the Sub-ψM Family Distributions

In this section we will assume throughout some familiarity
with basic concepts from convex analysis; see, e.g., [21]. Let
M be an open, convex subset of R such that, for each µ ∈ M,
there exists an extended real-valued convex function ψµ that
is finite and strictly convex on a common closed supporting
set ' ⊂ R and differentiable on its nonempty interior 'o

containing 0, with ψµ(0) = 0 and ∇ψµ(0) = µ. We also
assume that, for each µ ∈ M, the convex conjugate of ψµ,
denoted with ψ∗

µ, is finite and differentiable on M.
For any µ ∈ M, a collection P of probability distributions

over the real line is said to be a sub-ψµ family if, for each
P ∈ P , supp(P) ⊂ M, EX∼P[X] = µ and

logEX∼P
[
eλX] ≤ ψµ(λ), ∀λ ∈ '. (14)

We will denote such class with Pψµ . Notice that, for each
µ ∈ M, Pψµ is a nonparametric statistical model and the set
M plays the role of all possible mean parameters of interest.
Finally, we will write

PψM :=
⋃

µ∈M

Pψµ

for the collection of all sub-ψµ families as µ ranges in M,
which we will then refer to as a sub-ψM family of distributions.

We will further require that a sub-ψM family satisfies the
following order-preserving property for the Bregman diver-
gences arising from the conjugate functions ψ∗

µ.
Definition 1: For each µ ∈ M, let Dψ∗

µ
(·, ·) be the Bregman

divergence with respect to ψ∗
µ. We say a sub-ψM family

of distributions has an order-preserving class of Bregman
divergences if

Dψ∗
z0

(µ1, z0) ≥ Dψ∗
µ0

(µ1, µ0) (15)

holds for any z0, µ0, µ1 ∈ M such that µ1 ≤ µ0 ≤ z0 or
z0 ≤ µ0 ≤ µ1.

At a high-level, the order-preserving property implies that
the Bregman divergence expresses a natural ordering of a sub-
ψM family with respect to the mean parametrization. This
ordering is naturally suited to handle the hypothesis test-
ing problem we are studying. As an important special case,
sub-Gaussian distributions with a common variance parame-
ter σ 2 form a sub-ψM family with an order-preserving class
of Bregman divergence where M = ' = R,ψµ(λ) =
λµ + σ 2

2 λ
2 and Dψ∗

µ0
(µ1, µ0) = 1

2σ 2 (µ1 − µ0)
2. Another

important example of a sub-ψM family of distributions with
an order-preserving class of the Bregman divergences is
the family of Bernoulli distributions where we have M =
(0, 1),' = R,ψµ(λ) = log(1−µ+µeλ) and Dψ∗

µ0
(µ1, µ0) =

KL(µ1, µ0) = µ1 log(µ1
µ0

) + (1 − µ1) log( 1−µ1
1−µ0

). These two
examples are representative distributions belonging to the
following two large nonparametric classes of distributions.

1) Additive sub-ψ distributions: A sub-ψM family is said
to be additive if for any µ ∈ M,

ψµ(λ) − λµ = ψ0(λ) := ψ(λ) for all λ ∈ R. (16)

It can be checked that sub-Gaussian and sub-exponential
distributions are instances of additive sub-ψ distribu-
tions. For each additive sub-ψ distribution, the Bregman
divergence can be expressed as Dψ∗

µ0
(µ1, µ0) =

ψ∗(µ1 − µ0) for each µ1, µ0 ∈ M.
2) Exponential family-like (EF-like) sub-B distributions:

A sub-ψM family of distributions is called an EF-like
sub-B family if there exists an extended real-valued
convex function B which is finite, strictly convex and
differentiable on ' := (∇B)−1(M) such that, for each
µ ∈ M,

ψµ(λ) = B
(
λ+ θµ

)
− B

(
θµ
)
, ∀λ ∈ R, (17)

where θµ := (∇B)−1(µ). All exponential family distri-
butions and sub-Gaussian distributions are instances of
EF-like sub-B distributions. In fact, for exponential fam-
ily of distributions, it is immediate to see that each ψµ

is the logarithm of the moment generating function. For
each EF-like sub-B distribution, the Bregman divergence
can be written as Dψ∗

µ0
(µ1, µ0) = DB∗(µ1.µ0), which,

for a class of exponential families with densities satis-
fying (8) is equal to the dual of the KL divergence; see,
e.g., [22].

From the expressions of the Bregman divergence described
above, it follows that all additive sub-ψ and EF-like sub B
families have classes of Bregman divergences satisfying the
order-preserving property. For completeness, this fact and
related properties of sub-ψM family of distributions are proven
in Appendix A in the supplementary material.

We now describe how to construct LR- and GLR-like statis-
tics for the nonparametric class of distributions PM in ways
that mirror exactly the derivation of the LR and GLR statistics
in exponential families, as described in the previous section.
We will assume throughout that X1, X2, . . . is a sequence
of independent, though not necessarily identically distributed,
random variables with the same but unknown finite mean
µ, each drawn from a distribution belonging to a common
sub-class Pψµ of a sub-ψM family of distributions.

Remark 2: Slightly overloading notation, we denote with
Pµ and Eµ the probability and expectation for the stochas-
tic process (Xn)n∈N. That is, every statement written with
respect to Pµ and Eµ refers to the case where each indepen-
dent observation of the underlying stochastic process (Xn)n∈N
has a distribution in Pψµ with the same mean µ. We empha-
size that, because of the nonparametric nature of our models,
the observations need not be identically distributed. Further,
since there could be more than one distribution with mean µ,
every statement related to Pµ and Eµ should be understood as
a reference to any possible sub-ψµ distribution of (Xn)n∈N.

Now, consider the following test for the mean:

H0 : µ = µ0 vs H1 : µ = µ1, (18)

for some µ1, µ0 ∈ M. Let λ1 := ∇ψ∗
µ0

(µ1), and define

Ln(µ1, µ0) := exp
{
n
[
λ1X̄n − ψµ0(λ1)

]}
. (19)

The above expression has the same form of the likelihood
ration statistics (9) for parametric exponential families. Thus,
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with a slight abuse of notation, we refer to Ln(µ1, µ0) as the
LR-like statistic for the above simple hypothesis testing based
on first n samples.

Just like in the case of an exponential family, for a sub-ψM
family of distributions, the normalized log LR-like statistics
can be re-written as
1
n

log Ln(µ1, µ0) = Dψ∗
µ0

(
X̄n, µ0

)
− Dψ∗

µ0

(
X̄n, µ1

)
(20)

= Dψ∗
µ0

(µ1, µ0) + ∇zDψ∗
µ0

(z, µ0)|z=µ1

(
X̄n − µ1

)
,

(21)

where Dψ∗
µ0

(z1, z2) is the Bregman divergence from z2 to z1
with respect to ψ∗

µ0
for z1, z2 ∈ M. See Appendix A in the

supplementary material for details. Thus, similarly to the expo-
nential family case, the normalized LR-like statistic is equal
to the difference between two Bregman divergences, one from
each hypothesis, to the sample mean. Also, from the sec-
ond expression in (21), we can check that the normalized log
LR-like statistic is given by the tangent line to the Bregman
divergence function z *→ Dψ∗

µ0
(z, µ0) at z = µ1. This is not a

coincidence. Recall that every exponential family distribution
is an EF-like sub-B distribution. In this case, the correspond-
ing LR and LR-like statistics are equal to each other since,
for any µ0, µ1 ∈ M,

Dψ∗
z (µ1, µ0) = DB∗(µ1, µ0) = KL(µ1, µ0), ∀z ∈ M. (22)

Finally, based on the definition of the LR-like statistic, for the
one-sided testing problem

H0 : µ ≤ µ0 vs H1 : µ > µ1,

with µ1 ≥ µ0 ∈ M, the GLR-like statistic is defined by

GLn(µ1, µ0) := sup
z>µ1

Ln(z, µ0) ∨ 1. (23)

From the expressions of LR statistic in (21), we can derive
a closed form expression for the normalized log GLR-like
statistic 1

n log GLn(µ1, µ0) := f (X̄n;µ1, µ0), where

f (z;µ1, µ0)

:=






[
Dψ∗

µ0
(µ1, µ0) if z ≤ µ1

+∇zDψ∗
µ0

(z, µ0) |z=µ1 (z − µ1)
]

+
Dψ∗

µ0
(z, µ0) if z > µ1

(24)

This expression matches exactly the one for the normalized
GLR statistics in exponential families given in (13) and in
fact recovers it as a special case since for exponential families
the Bregman divergence correspond to the KL divergence.

See Figure 2 for an illustration of the relationship between
normalized log LR-like and GLR-like statistics based on first
n samples which is identical to the exponential family case in
Figure 1. The dashed blue line corresponds to the normalized
log LR-like statistic as a function of the sample mean X̄n which
is tangent to the Bregman divergence function at µ1. The red
line shows the normalized log GLR-like statistic which is equal
to the Bregman divergence for X̄n > µ1 and its “clipped”
tangent line for X̄n ≤ µ1, respectively. Since both LR- and
GLR-like statistics depend only on the sample mean X̄n and

Fig. 2. Illustration of normalized log LR-like and GLR-like statistics for
the sub-ψM family of distributions. The dashed blue line corresponds to the
normalized log LR-like statistic as a function of the sample mean X̄n which
is tangent to the Bregman divergence function at µ1. The red line shows the
normalized log GLR-like statistic which is equal to the Bregman divergence
for X̄n > µ1 and its “clipped” tangent line for X̄n ≤ µ1, respectively.

not on the entire history, we can update both test statistics
(at each step) using constant time and memory. This prop-
erty makes it possible to run sequential tests and confidence
sequences introduced below in a fully online fashion.

III. SGLR-LIKE TEST FOR SUB-ψM FAMILY

DISTRIBUTIONS

We now describe sequential tests based on the GLR-like
statistics for one-sided hypotheses

H0 : µ ≤ µ0 vs H1 : µ > µ1, (25)

for some fixed µ1 ≥ µ0 ∈ M.
Consider the settings described in the previous section and

let α ∈ (0, 1) be fixed. A level α SGLR-like test is defined by
a stopping time of the form

NGL := inf{n ≥ 1 : log GLn(µ1, µ0) ≥ gα(n)}, (26)

where gα is a given, positive function on [1,∞). In particular,
if µ1 = µ0 then the SGLR-like test can be simplified to

NGL = inf
{

n ≥ 1 : X̄n ≥ µ0, nDψ∗
µ0

(X̄n, µ0) ≥ gα(n)
}
. (27)

At each time point, we check if the stopping criteria are
met and, if so, we reject the null hypothesis. In general, by
the law of large numbers, if gα(n)/n → 0 as n → ∞, then
the power one guarantee Pµ(NGL < ∞) = 1 can be easily
satisfied for each µ > µ1. However, it is a nontrivial task
to design a proper boundary function gα satisfying the type-1
error control

sup
µ≤µ0

Pµ(NGL < ∞) ≤ α. (28)

To tackle this challenge, we develop a general methodology to
bound the boundary crossing probability of the event in (26).
This result plays a key role in building the SGLR-like test.

Theorem 1: Let the boundary function g : [1,∞) → [0,∞)

satisfy the following conditions:
1) g is nonnegative and nondecreasing;
2) the mapping t *→ g(t)/t is nonincreasing on [1,∞) and

limt→∞ g(t)/t = 0.
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Then, for any sub-ψM family of distributions, the crossing
probability under the null is such that

sup
µ≤µ0

Pµ(∃n ≥ 1 : log GLn(µ1, µ0) ≥ g(n)) (29)

≤
{

e−g(1) if Dψ∗
µ0

(µ1, µ0) ≥ g(1),

infη>1
∑Kη

k=1 e−g(ηk)/η otherwise,
(30)

where, for any η > 1, Kη ∈ N ∪ {0,∞} is defined by

Kη := inf
{

k ∈ {0} ∪ N : Dψ∗
µ0

(µ1, µ0) ≥ g(ηk)

ηk

}
. (31)

The second boundary value for the probability of the curve-
crossing event in the expression (30) is obtained using a
technique known as “stitching” or “peeling” (see, e.g., [15])
that is designed to derive uniform probabilistic guarantees over
an infinite time horizon. Roughly speaking, the time course is
divided into geometrically spaced time epochs, and in each of
them, a line crossing inequality is derived. The final bound
is obtained by appropriately stitching together these separate
linear boundaries. The parameter η > 1 is the ratio of adja-
cent “intrinsic time” (accumulated variance) epochs used in the
stitching process. A smaller value of η yields a better approx-
imation of the curve-crossing events but requires controlling
a larger number (namely, Kη) of line-crossing events. The
optimal choice of η minimizing the bound achieves the optimal
balance for this trade-off. The infimum over η > 1 in the
bound explicitly shows how to choose the best η. The stitch-
ing construction is only required when Dψ∗

µ0
(µ1, µ0) ≥ g(1).

In the other case, it is sufficient to use a single line-crossing
inequality. See Appendix B in the supplementary material for
a detailed explanation and a formal proof.

Remark 3: In the above theorem, we follow the convention
that inf ∅ = ∞. From the two conditions assumed for the
boundary function g, we can check that Kη = 0 if and only
if Dψ∗

µ0
(µ1, µ0) ≥ g(1) and Kη = ∞ if and only if µ1 = µ0

for each η > 1.
Remark 4: If the mapping µ → ψµ(λ) is concave for each

fixed λ, it is possible to extend Theorem 1 to a broader class
of stochastic processes. In detail, let (Xi)i∈N be a real-valued
process adapted to an underlying filtration (Fi)i∈{0}∪N such
that, conditioned on Fi−1, each Xi follows a sub-ψµi distri-
bution with µi := E[Xi | Fi−1]. That is, for each i ∈ N and
λ ∈ R,

logE
[
eλXi | Fi−1

]
≤ ψµi(λ) a.s. (32)

Let Pµ0 be the set of probability distributions of (Xi)i∈N such
that 1

n

∑n
i=1 µi := µ̄n ≤ µ0 for all n. Then, it is possible to

show that

sup
P∈Pµ0

P(∃n ≥ 1 : log GLn(µ1, µ0) ≥ g(n)) (33)

≤
{

e−g(1) if Dψ∗
µ0

(µ1, µ0) ≥ g(1)

infη>1
∑Kη

k=1 e−g(ηk)/η otherwise.
(34)

Note that the concavity condition for sub-ψµ function is
satisfied by all additive sub-ψ distributions and many impor-
tant exponential families with discrete support, including
Bernoulli, Poisson, Geometric and Negative binomial with
known number of failures (Appendix B in the supplementary
material).

In the following subsections we will deploy Theorem 1 to
develop SGLR-like tests for the one-sided hypothesis (25).
We will analyze separately the case in which the null and
alternative hypotheses are well-separated (µ1 > µ0), and the
case of no separation (µ1 = µ0).

A. SGLR-Like Tests for Well-Separated Alternatives

In this subsection, we focus on the scenario where µ1 is
strictly larger than µ0. In many applications, this separation
condition can be derived from prior knowledge of the under-
lying distribution or from requirements on the minimal effect
sizes one seeks to detect. Furthermore, even if we intend to
run an open-ended testing procedure, there might be an upper
limit on the sample size due to time and budget constraints on
the experiment. In this case, the separation of null and alterna-
tive hypotheses can be imposed indirectly by the upper limit
because if the null and alternative hypotheses are too close
to each other then no fixed-level test can detect such a small
separation given the upper limit on the sample size; see [23].
In Remark 6 below, we will present a natural way of choosing
the boundary of the alternative space for µ1 given an upper
limit on sample size nmax for the sequential testing procedure
proposed in this subsection.

Now, choosing a constant boundary g ∈ R+, Theorem 1
immediately yields that

sup
µ≤µ0

Pµ(∃n ≥ 1 : log GLn(µ1, µ0) ≥ g)

≤
{

e−g if D1 ≥ g,

infη>1

⌈
logη

(
g

D1

)⌉
e−g/η otherwise,

(35)

where D1 := Dψ∗
µ0

(µ1, µ0).
Remark 5: For the constant boundary case, the term in the

upper bound that depends on the infimum over η > 1 can be
rewritten as

inf
η>1

⌈
logη

(
g

D1

)⌉
e−g/η = inf

k∈N
k exp

{

−g
(

D1

g

)1/k
}

. (36)

The right expression can be evaluated efficiently since it
optimizes over integers, not reals.

For any given level α ∈ (0, 1], let gα(µ1, µ0) > 0 be a con-
stant boundary value that makes the right hand side of (35)
equal to α. The boundary value gα(µ1, µ0) can be numeri-
cally computed using equation (36). Alternatively, as shown
in Appendix C in the supplementary material, gα(µ1, µ0) can
be upper bounded as follows:

gα(µ1, µ0) ≤ inf
η>1

{
η log

(
1
α

[
1 + 2 logη

(
η
√
η

αD1 log η
∨ 1

)])}
.

(37)
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This bound is slightly loose but useful for the numerical
computation of gα(µ1, µ0).

Based on gα(µ1, µ0), let NGL(gα, µ1, µ0) be the stopping
time of the SGLR-like test defined by

NGL(gα, µ1, µ0) := inf{n ≥ 1 : log GLn(µ1, µ0) ≥ gα(µ1, µ0)}.
(38)

By Theorem 1, we can check that NGL(gα, µ1, µ0) induces a
valid level α test. Furthermore, from Lorden’s inequality [24],
we can derive a nonasymptotic upper bound on the expected
sample size under any alternative distribution, as shown next.

Theorem 2: Let NGL(gα, µ1, µ0) be the stopping
time of the SGLR-like test defined in (38). Then,
supµ≤µ0

Pµ(NGL(gα, µ1, µ0) < ∞) ≤ α. Furthermore,
if the observations X1, X2, . . . are i.i.d. then, for any
µ ≥ µ1 ∈ M, we have

Eµ

[
NGL(gα, µ1, µ0)

]
≤ gα(µ1, µ0)

Dψ∗
µ0

(µ, µ0)
+
[
σµ∇ψ∗

µ0
(µ)

Dψ∗
µ0

(µ, µ0)

]2

+ 1,

(39)

where σ 2
µ := supP∈ψµ

∫
(x − µ)2dP is the maximal variances

of all the probability distributions in the sub-ψµ class which
can be upper bounded as σ 2

µ ≤ ∇2ψµ(0) = 1/∇2ψ∗
µ(µ).

In the special but highly relevant case of σ 2-sub-Gaussian
distributions, the upper bound on the expected sample size
in (39) can be written as

Eµ

[
NGL(gα, µ1, µ0)

]
≤ 2σ 2[gα(µ1, µ0) + 2

]

(µ − µ0)2 + 1. (40)

The proof of Theorem 2 can be found in Appendix B in the
supplementary material.

Under the same setting of well-separated hypotheses,
Lorden [11] investigated the properties of the SGLR test for
exponential family distributions with a constant boundary. For
any constant g > 0, Lorden proved that

sup
µ≤µ0

Pµ(n ≥ 1 : log GLn(µ1, µ0) ≥ g)

≤
{

e−g if KL(µ1, µ0) ≥ g,(
1 + g

KL(µ1,µ0)

)
e−g otherwise.

(41)

In fact, the above bound can be immediately extended to hold
also over sub-ψM families by replacing the KL divergence
term KL(µ1, µ0) with the Bregman divergence Dψ∗

µ0
(µ1, µ0).

To compare our result with Lorden’s bound, let gL
α(µ1, µ0)

be the smallest boundary value one can obtain from Lorden’s
bound in (41) for any given α. In general, neither our choice
gα(µ1, µ0) nor Lorden’s choice gL

α(µ1, µ0) dominates the
other one. However, in the moderate confidence regime where
α is fixed and µ1 → µ0, our bound increases at an exponen-
tially slower rate compared to the one stemming from Lorden’s
gL
α(µ1, µ0). In detail, we can check that in the moderate

confidence regime we have

gL
α(µ1, µ0) = O

(
log
(

1/Dψ∗
µ0

(µ1, µ0)
))

, (42)

gα(µ1, µ0) = O
(

log log
(

1/Dψ∗
µ0

(µ1, µ0)
))

, (43)

Fig. 3. Boundary values gL
α(µ1, µ0) (black lines) and gα(µ1, µ0) (red lines)

for level α GLR tests based on Lorden’s (41) upper bounds grow significantly
faster than our (35) upper bounds.

where the log-log dependency makes it possible to apply our
testing method to cases in which the separation is exponen-
tially small. This is well illustrated in Fig. 3 by comparing the
curves |µ1 −µ0|−1 *→ gL

α and |µ1 −µ0|−1 *→ gα for a normal
distributions with σ = 1 (notice that the separation is shown
on a log-scale). From the plot, we can check that, even for the
exponentially small separation (i.e., |µ1 − µ0| ≈ 10−10), the
boundary value remains at a practical level.

The log-log dependency of the boundary value gα(µ1, µ0)

and the corresponding upper bound on the expected sample
size in Theorem 2 are sharp since, in the worst case where µ =
µ1, the bounds on the expected sample size can be shown to be
asymptotically tight in exponential families of distributions. In
detail, for an exponential family of distributions parameterized
by the mean parameter µ ∈ M and a given level α ∈ (0, 1], let
N be a stopping time such that Pµ0(N < ∞) ≤ α for a fixed
µ0 ∈ M. Then, by Farrell’s theorem on open-ended tests [2],
[5], the expected sample size under alternative sequences can
be lower bounded as:

lim sup
µ1→µ0

(|µ1 − µ0|2/2σ 2
µ0

)Eµ1 N

log log(1/|µ1 − µ0|)
≥ Pµ0(N = ∞)

≥ 1 − α, (44)

where σ 2
µ0

:= ∇2B(θµ0) is the variance of the probability dis-
tribution at µ = µ0. Using the Taylor series expansion of B∗

and the fact that KL(µ1, µ0) = DB∗(µ1, µ0), we see

KL(µ1, µ0) = DB∗(µ1, µ0)

= B∗(µ1) − B∗(µ0) − ∇B∗(µ0)(µ1 − µ0)

= 1
2
∇2B∗(µ0)(µ1 − µ0)

2 + o
(
|µ1 − µ0|2

)

= 1
2σ 2

µ0

(µ1 − µ0)
2 + o

(
|µ1 − µ0|2

)
,

where the last equality is due to the fact that ∇2B∗(µ0) =
[∇2B(θµ0)]

−1. Farrell’s lower bound in (44) then yields

lim sup
µ1→µ0

KL(µ1, µ0)Eµ1 N
log log(1/KL(µ1, µ0))

≥ Pµ0(N = ∞)

≥ 1 − α. (45)
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Therefore, we conclude that the log-log dependence in (43)
and in the corresponding upper bound on the expected sample
size in (35) cannot be avoided.

The upper bound on the expected sample size in Theorem 2
is not fully adaptive to the underlying true but unknown mean
parameter µ since the boundary value gα(µ1, µ0) depends
on the boundary of the alternative space µ1 instead of each
alternative mean value µ itself. Although we can make the
separation gap |µ1 − µ0| between null and alternative spaces
double-exponentially small while maintaining the threshold
gα(µ1, µ0) at a practical level, it is an interesting and prac-
tically relevant problem to design a SGLR-like test whose
expected sample size is fully adaptive to the unknown alter-
native distribution. In the next subsection, we address this
question using the boundary-crossing probability bound in
Theorem 1.

B. SGLR-Like Tests With No Separation

Below we consider the case of no separation (i.e., µ0 = µ1)
between the null and alternative spaces in the one-sided test:

H0 : µ ≤ µ0 vs H1 : µ > µ0. (46)

From the order-preserving property of the Bregman diver-
gence, the log GLR-like statistic based on the first n obser-
vations can be written as nDψ∗

µ0
(X̄n, µ0)1(X̄n ≥ µ0) and

the upper bound on the boundary crossing probability from
Theorem 1 is of the form

sup
µ≤µ0

Pµ

(
∃n ≥ 1 : X̄n ≥ µ0, nDψ∗

µ0
(X̄n, µ0) ≥ g(n)

)

≤ inf
η>1

∞∑

k=1

exp
{
−g(ηk)/η

}
. (47)

Since the right hand side now involves an infinite sum, we
cannot use a constant function g for the boundary function.
In fact, from the law of iterated logarithm, we know that the
boundary function g must increase at least at a log-log scale
as the number of samples n goes to infinity to get a nontrivial
bound on the crossing probability.

For simplicity, in order to build SGLR-like tests at level
α ∈ (0, 1], we will consider the boundary function

gc
α(n) := c

[
log(1/α) + 2 log

(
logc cn

)]
, (48)

where c > 1 is a fixed constant. Then, using (47),

sup
µ≤µ0

Pµ

(
∃n ≥ 1 : X̄n ≥ µ0 ,

nDψ∗
µ0

(X̄n, µ0) ≥ c
[
log(1/α) + 2 log

(
logc cn

)])

≤ inf
η>1

∞∑

k=1

exp
{
− c
η

log(1/α)

}
1

(
1 + k logc η

)2c/η

≤ α

∞∑

k=1

1
(1 + k)2 = α

(
π2

6
− 1

)
≤ α. (49)

Hence, a level α open-ended sequential testing procedure
for (46) can be obtained based on the stopping time

NGL
(
gc
α, µ0

)
:= inf

{
n ≥ 1 : X̄n ≥ µ0 , nDψ∗

µ0

(
X̄n, µ0

)

≥ c
[
log(1/α) + 2 log

(
logc cn

)]}
. (50)

Unlike the scenario analyzed in the previous subsection,
however, Lorden’s inequality is no longer applicable to the
non-constant, non-linear boundary gc

α . Below we present
novel, nonasymptotic probabilistic bounds on the stopping
time NGL(gc

α, µ0) under the alternative, which we can then
use to provide a high-probability bound on the sample size.
We remark that the finite-sample feature of our bounds sets it
apart from other results in the literature, which for the most
part have relied on asymptotic arguments.

To derive the desired probabilistic bounds, we rely on a
notion of divergence between two sub-ψM distributions having
different mean parameters µ > µ0 given by

D∗
ψ∗(µ,µ0) := max

{
Dψ∗

µ0

(
z∗, µ0

)
, Dψ∗

µ

(
z∗, µ

)}
, (51)

where z∗ = z∗(µ,µ0) is the minimizer of the function

z ∈ M *→ f (z) := max
{

Dψ∗
µ0

(z, µ0), Dψ∗
µ
(z, µ)

}
, (52)

which is also equal to the unique solution of the equation
Dψ∗

µ0
(z, µ0) = Dψ∗

µ
(z, µ) with respect to z ∈ M. For the

exponential family case, the divergence (51) was introduced
by Wong [25] to characterize the asymptotic behavior of the
SGLR test under the alternative. For a concrete example, if the
two distribution belongs to a sub-Gaussian class with common
variance parameter σ 2 then

D∗
ψ∗(µ,µ0) = 1

4
Dψ∗

µ0
(µ,µ0) = 1

8σ 2 (µ − µ0)
2,

while for Bernoulli distributions, we instead have

1
2
(µ − µ0)

2 ≤ D∗
ψ∗(µ,µ0)

≤ µ log
(

µ

µ0

)
+ (1 − µ) log

(
1 − µ

1 − µ0

)
.

Note that the D∗
ψ∗ divergence satisfies D∗

ψ∗(µ0, µ0) = 0 and
D∗
ψ∗(µ,µ0) = D∗

ψ∗(µ0, µ) for any µ,µ0 ∈ M. Using D∗
ψ∗ ,

we can formulate the following high probability bound on the
stopping time NGL(gc

α, µ0) under the alternative.
Theorem 3: For any fixed µ > µ0 ∈ M, δ ∈ (0, 1] and

c > 1, define Thigh(δ) by

Thigh(δ) := inf

{

t ≥ 1 :
c
[
log(1/δ) + 2 log

(
logc ct

)]

D∗
ψ∗(µ,µ0)

≤ t

}

. (53)

Then, for any δ ∈ (0,α), we have

Pµ

(
NGL

(
gc
α, µ0

)
≤ Thigh(δ)

)
≥ 1 − δ. (54)

Also, Thigh(δ) can be upper bounded by max(1, A), where

A = 2c
D∗

µ

log(1/δ) + 2c
D∗

µ

log
(

2 logc

(
2c2

log c

)
+ 2

[
logc

(
1/D∗

µ

)]
+

)
,

(55)

with D∗
µ := D∗

ψ∗(µ,µ0).
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The proof of Theorem 3 can be found in Appendix B in
the supplementary material. As a consequence, we have the
following upper bound on the expected sample size:

Eµ

[
NGL(gc

α, µ0)
]

≤ 1 + 2c
D∗

µ

log(1/α)

+ 2c
D∗

µ

log
(

2 logc

(
2c2.5

log c

)
+ 2

[
logc

(
1/D∗

µ

)]
+

)
,

(56)

Note that both bounds, in probability and in expectation,
are fully adaptive to the true alternative parameter µ via the
divergence D∗

µ := D∗
ψ∗

µ0
(µ,µ0). For exponential family dis-

tributions, the above upper bound matches Farrell’s optimal
rate given in (44) up to a constant factor under the moderate
confidence regime in which µ → µ0 and α is fixed.

IV. CONFIDENCE SEQUENCES VIA GLR-LIKE STATISTICS

Previously, we discussed how to build open-ended sequen-
tial testing procedure for the one-sided testing problem based
on the general upper bound on the boundary crossing probabil-
ity given in Theorem 1. Relying on the same bound, we can
construct confidence sequences for µ. A level α confidence
sequence for µ is a sequence of sets {CIn}n∈N such that

Pµ(∀n ≥ 1 : µ ∈ CIn) ≥ 1 − α, ∀µ ∈ M. (57)

For any chosen boundary g and mapping µ0 *→ µ1(µ0) with
µ1 > µ0, each CIn is defined by

CIn :=




µ0 ∈ M : log GLn(µ1, µ0) < g(n),

or inf
η>1

1∨Kη∑

k=1

exp
{
−g
(
ηk
)
/η
}

> α




, (58)

where Kη is given in (31). Of course, different choices of
the boundary function g and of the mapping µ0 *→ µ1(µ0)

result in confidence sequences of different shapes. For any
such choice, the above construction of CIn is guaranteed to
yield a valid level α confidence sequence since

Pµ(∀n ≥ 1 : µ ∈ CIn) = 1 − Pµ(∃n ≥ 1 : µ /∈ CIn)

≥ 1 − Pµ(∃n ≥ 1 : log GLn(µ1(µ), µ) ≥ g(n))

·1



 inf
η>1

1∨Kη∑

k=1

exp
{
−g(ηk)/η

}
≤ α





≥ 1 −



 inf
η>1

1∨Kη∑

k=1

exp
{
−g(ηk)/η

}




·1



 inf
η>1

1∨Kη∑

k=1

exp
{
−g(ηk)/η

}
≤ α





≥ 1 − α,

for each µ ∈ M where the second-to-last inequality comes
from the bound in Theorem 1. In this section, we present a
slightly generalized version of Equation (35) to obtain confi-
dence sequences that are valid over N and uniformly close to
the Chernoff bound on chosen finite time intervals.

A. Confidence Sequence Uniformly Close to the Chernoff
Bound on Finite Time Intervals

Recall that for each n and α ∈ (0, 1], the (pointwise)
Chernoff bound for sub-ψM distributions takes the form

Pµ

(
X̄n ≥ µε

)
≤ e

−nDψ∗
µ

(µε ,µ)
, (59)

for any fixed µε > µ ∈ M. Since the mapping z *→ Dψ∗
µ
(z, µ)

is increasing on [µ,∞)∩M, by letting g := nDψ∗
µ
(µε, µ), the

Chernoff bound can be written as

Pµ

(
X̄n ≥ µ, nDψ∗

µ
(X̄n, µ) ≥ g

)
≤ e−g, (60)

for any fixed µ ∈ M.
As discussed in Section III, from the law of iterated loga-

rithm, we know that the above bound cannot be extended to
an anytime-valid bound. That is, there is no time-independent
boundary having a nontrivial upper bound on the boundary-
crossing probability

Pµ

(
∃n ≥ 1 : X̄n ≥ µ, nDψ∗

µ
(X̄n, µ) ≥ g

)
, (61)

for all µ ∈ M. However, in virtually all practical cases,
there exists an effective limit on the duration of the exper-
iment and therefore on the sample size. And conversely, we
often impose a minimum sample size requirement to, e.g.,
meet prespecified accuracy requirements, or to stabilize the
experiment or to take account seasonality effects. As a result,
in many situations, practitioners may find it desirable to use
anytime confidence sequences that are uniformly close to the
optimal pointwise Chernoff bound on a prespecified finite time
interval [nmin, nmax]. We next describe such a guarantee.

Theorem 4: For any g > 0 and µ0 ∈ M, define

n0 := inf

{

n ≥ 1 : sup
z∈M,z>µ0

Dψ∗
µ0

(z, µ0) ≥ g/n

}

. (62)

For any n0 ≤ nmin < nmax ∈ N, let µ1 < µ2 be solutions on
(µ0,∞) ∩ M of the equations

g
nmax

= Dψ∗
µ0

(µ1, µ0) and
g

nmin
= Dψ∗

µ0
(µ2, µ0) (63)

respectively. Then, the boundary crossing probability for the
likelihood ratio process is such that

Pµ0

(

∃n ≥ 1 : sup
z∈(µ1,µ2)

log(Ln(z, µ0) ∨ 1) ≥ g

)

≤ e−g1(nmin > n0) + inf
η>1

⌈
logη

(
nmax

nmin

)⌉
e−g/η. (64)

Remark 6: If n0 = nmin < nmax, we can get rid of µ2 in
the supremum in the boundary crossing probability in (64). In
this case, the above inequality is reduced to the usual constant
boundary crossing inequality from Section III-A with a specif-
ically chosen alternative µ1 given by g

nmax
= Dψ∗

µ0
(µ1, µ0).

From the perspective of the duality between sequential tests
and confidence sequences, this observation tells us that if we
have a practical upper limit of the sequential testing proce-
dure described in Section III-A, it is natural to use the value
µ1 given by gα

nmax
= Dψ∗

µ0
(µ1, µ0) as the boundary of the alter-

native space where α ∈ (0, 1] is the target level of the test and

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 22,2021 at 23:59:05 UTC from IEEE Xplore.  Restrictions apply. 



700 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021

Fig. 4. Illustration of the boundary-crossing events and related regions
H(µ1, µ0), H(µ2, µ0) and R(µ0) in (65).

gα is the constant boundary which makes the right hand side
of (64) equal to α.

Note that the event on the left hand side can be written as
{
∃n ≥ 1 :

(
X̄n,

g
n

)
∈ H(µ2, µ0) ∩ R(µ0) ∩ H(µ1, µ0)

}

=
{
∃n ∈ [1, nmin) :

(
X̄n,

g
n

)
∈ H(µ2, µ0)

}

∪
{
∃n ∈ [nmin, nmax] :

(
X̄n,

g
n

)
∈ R(µ0)

}

∪
{
∃n ∈ (nmax,∞) :

(
X̄n,

g
n

)
∈ H(µ1, µ0)

}
, (65)

where the set R(µ0) is defined by

R(µ0) :=
{
(z, y) ∈ M × [0,∞) : y ≤ Dψ∗

µ0
(z, µ0), z ≥ µ0

}
,

(66)

and H(µ1, µ0) and H(µ2, µ0) are halfspaces contained in and
tangent to R(µ0) at (µ1, g/nmax) and (µ2, g/nmin), respec-
tively. See Figure 4 for an illustration of H(µ1, µ0), H(µ2, µ0)

and R(µ0).
In particular, on the time interval [nmin, nmax], the boundary-

crossing event can be written as
{
∃n ∈ [nmin, nmax] : nX̄n ≥ µ0, Dψ∗

µ0
(X̄n, µ0) ≥ g

}
.(67)

Therefore, we can check that the confidence sequence based
on Theorem 4 is anytime-valid and uniformly close to the
pointwise Chernoff bound on the time interval [nmin, nmax].

More generally, we may have a sequence of time intervals
{[n(k)

min, n(k)
max]}K

k=1 on which we want the confidence sequence
to be uniformly closer to the pointwise Chernoff bound. In
this case, we can extend the bound in Theorem 4 as follows.

Corollary 1: Choose a sequence of boundary values
{g(k)}K

k=1, µ0 ∈ M and sequence of time intervals
{[n(k)

min, n(k)
max]}K

k=1 with n0 := n(0)
max ≤ n(1)

min < n(1)
max ≤ · · · ≤

n(K)
min < n(K)

max. For each k ∈ [K], let µ
(k)
1 < µ

(k)
2 be solutions

on (µ0,∞) ∩ M to the equations:

g(k)

n(k)
max

= Dψ∗
µ0

(µ
(k)
1 , µ0), and

g(k)

n(k)
min

= Dψ∗
µ0

(µ
(k)
2 , µ0). (68)

Then, the boundary crossing probability can be bounded as

Pµ0



∃n ≥ 1, ∃k ∈ [K] : sup
z∈(µ

(k)
1 ,µ

(k)
2 )

log(Ln(z, µ0) ∨ 1) ≥ g(k)





≤
K∑

k=1

[
e−g(k)

[
1(n(k)

min > n(k−1)
max )

]
+ inf
η>1

⌈
logη

(
n(k)

max/n(k)
min

)⌉
e−g(k)/η

]
.

(69)

Remark 7: If n(k−1)
max = n(k)

min for each k ∈ [K], the inequal-
ity (69) can be viewed as a piecewise constant boundary
crossing probability of the form

Pµ0

(
∃n ≥ 1 : supz≥µ

(K)
1

log(Ln(z, µ0) ∨ 1) ≥ gc(n)
)

≤ ∑K
k=1

[
infη>1

⌈
logη

(
n(k)

max

n(k)
min

)⌉
e−g(k)/η

]
, (70)

where gc(n) is a piecewise constant function defined by

gc(n) :=
K∑

k=1

min
{

g(k−1), g(k)
}
1
(

n = n(k)
min

)

+ g(k)1
(

n ∈ (n(k)
min, n(k)

max)
)

+ min
{

g(k), g(k+1)
}
1
(

n = n(k)
max

)
. (71)

Here, we set g(0) := g(1) and g(K+1) := g(K). Note that if
all boundary values {g(k)}K

k=1 are equal to each other, then
the above inequality recovers the constant boundary-crossing
inequality in Section III-A with a specifically chosen alterna-
tive µ

(K)
1 . In fact, the right hand side of the above inequality

provides a sharper bound, since it allows us to choose different
η for each k.

In what follows, we focus on the single time interval case in
Theorem 4 for simplicity, but the arguments can be straight-
forwardly extended to the case of multiple time intervals in
Corollary 1.

To convert the upper bound on the boundary-crossing prob-
ability in (64), for a given α ∈ (0, 1], let gα be the constant
boundary which makes the upper bound in (64) less than or
equal to α. The boundary value gα can be efficiently computed
using the fact

inf
η>1

⌈
logη

(
nmax

nmin

)⌉
e−g/η = inf

k∈N
k exp

{

−g
(

nmin

nmax

)1/k
}

. (72)

As shown in the previous section, in the moderate confidence
regime where α is fixed and nmax/nmin → ∞, we can check
that gα = O(log log(nmax/nmin)). Therefore, in practice, we
can still compute a boundary value gα even for an expo-
nential large nmax/nmin. Also, since gα scales with respect
to the ratio between two ends points of the time interval
instead of its length, the confidence sequence can be designed
to be uniformly close to the pointwise Chernoff bound on
a time interval of exponentially large length. This property
is of course especially useful when designing a large-scale
experimentation.

For a given gα , the corresponding confidence sequence is

CIn :=






{

µ0 ∈ M :
L2(X̄n − µ2)

< gα
n − gα

nmin

}

if n ∈ [1, nmin),

{

µ0 ∈ M :
Dψ∗

µ0
(X̄n, µ0)

< gα
n or X̄ < µ0

}

if n ∈ [nmin, nmax],
{

µ0 ∈ M :
L1(X̄n − µ1)

< gα
n − gα

nmax

}

if n ∈ (nmax, ∞),

(73)
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where Li := ∇zDψ∗
µ0

(z, µ0) |z=µi for each i = 1, 2. Recall that
both µ1 and µ2 depend on µ0 via (63).

As a sanity check, we can verify that [X̄n,∞) ⊂ CIn for
each n ∈ N, since ∇zDψ∗

µ0
(z, µ0) > 0 for any z > µ0. We

can also check that the width of the confidence sequence (the
distance from the left end point to the sample mean) does
not shrink to zero even if n → ∞ which implies that the
confidence sequence can be loose outside of the target time
interval [nmin, nmax]. Therefore, in practice, we recommend
using the time interval of large enough size to cover the entire
intended duration of experimentation.

Note that, for additive sub-ψ classes, µ1 and µ2 have the
following simple relationships:

µ1 = µ0 + ψ∗−1
+

(
gα

nmax

)
:= µ0 +.1 (74)

µ2 = µ0 + ψ∗−1
+

(
gα

nmin

)
:= µ0 +.2, (75)

where ψ∗−1
+ is the inverse function of z *→ ψ∗(z)1(z ≥ 0).

We can also check Li = ∇ψ∗(.i) for each i = 1, 2.
Using this observation, we can derive confidence sequence

for additive sub-ψ families in explicit form:

CIn :=






(
X̄n −.2 − L−1

2

(
gα
n − gα

nmin

)
, ∞

)
if n ∈ [1, nmin),(

X̄n − ψ∗−1
+

( gα
n

)
, ∞

)
if n ∈ [nmin, nmax],

(
X̄n −.1 − L−1

1

(
gα
n − gα

nmax

)
,∞

)
if n ∈ (nmax, ∞).

(76)

For sub-Gaussian distributions with a parameter σ 2, this
reduces to

CIn :=






(
X̄n − σ

√
2gα
nmin

[
1
2

( nmin
n + 1

)]
,∞

)
if n ∈ [1, nmin),(

X̄n − σ

√
2gα

n , ∞
)

if n ∈ [nmin, nmax],
(

X̄n − σ
√

2gα
nmax

[
1
2

( nmax
n + 1

)]
,∞

)
if n ∈ (nmax, ∞).

(77)

Remark 8: For additive sub-ψ distributions, the sequence
of intervals defined in (76) can be applied to the time-varying
mean case described in Remark 4. That is, for any chosen
α ∈ (0, 1], the confidence sequence in (76) satisfies

P(∃n ≥ 1 : µ̄n ∈ CIn) ≥ 1 − α, (78)

where (µ̄n)n≥1 is the sequence of running averages of condi-
tional means, defined by

µ̄n := 1
n

n∑

i=1

E
[
Xi | Fi−1

]
. (79)

In general, there is no closed form expression for the confi-
dence sequence. However, if a sub-ψM family of distributions
has order-preserving Bregman divergences, then for any given
data, the mapping µ0 *→ Dψ∗

µ0
(X̄n, µ0)1(X̄n ≥ µ0) is non-

increasing. Therefore, on the target time interval [nmin, nmax],
the confidence sequence given in (73) is an open-interval and
it can be efficiently computed by binary search.

Outside of the target time interval, however, the confidence
sequence is not necessarily an open interval. To avoid this

potentially undesirable feature, below we introduce a sufficient
condition under which we can guarantee that an EF-like sub-B
family of distributions admits a confidence sequence consisting
of open intervals.

Proposition 1: For a given EF-like sub-B family of distribu-
tions, suppose ∇B is a convex function. Then, for any data, the
mapping µ0 *→ Ln(µ1, µ0) is nonincreasing on (−∞, X̄n]∩M
where µ1 is a function of µ0, and any d > 0, as defined by
the solution of the equation

Dψ∗
µ0

(µ1, µ0)1(µ1 ≥ µ0) = d. (80)

Consequently, the corresponding confidence sequence in (73)
is an open-interval for each n.

The proof of Proposition 1 can be found in Appendix C
in the supplementary material. For example, Poisson,
Exponential, and Negative binomial (with a known number of
failures) distributions are sub-classes of EF-like sub-B fam-
ilies satisfying the condition in Proposition 1, and thus we
can efficiently compute confidence sequences by using binary
search. On the other hand, Bernoulli distribution does not sat-
isfies the condition, and thus we need to use a grid-search to
compute the confidence sequence on the outside of the target
time interval.

B. Tighter Confidence Sequences via Discrete Mixtures

Confidence sequences based on nonnegative mixture of
martingales have been extensively studied [7], [15], [16],
[26]–[28]. However, as discussed in [15], different choices of
mixing methods yield different boundaries, and each confi-
dence sequence is typically tighter and looser on some time
intervals than others, so there is no time-uniformly dominating
one.

From this point of view, it is an interesting question
to choose a proper mixing method to obtain a confi-
dence sequence with a desired shape, satisfying application-
specific constraints. This subsection explains how we can
use confidence sequences based on GLR-like statistics in the
previous subsection to design discrete mixture-based con-
fidence sequences that are almost uniformly close to the
Chernoff bound on finite target time intervals.

The confidence sequences in the previous subsection
are built on the constant boundary-crossing probability in
Theorem 4, which is based on a GLR-like curve-crossing time.
In this subsection, we will demonstrate that, for any GLR-
like curve-crossing time, we can also build a discrete mixture
of martingales such that the corresponding crossing time is
always smaller than or equal to the GLR-like one. Therefore,
we can always construct a tighter confidence sequence by
using the discrete mixture-crossing time compared to the GLR-
like one. Consequently, the shape of the obtained discrete
mixture martingale based confidence sequence is dominated by
the GLR-like based one, whose overall shape can be tailored
to the specific application at hand.

To elaborate, for any α ∈ (0, 1] and target time interval
[nmin, nmax], let gα be a positive value such that the upper
bound in (64) is less than or equal to α. If n0 < nmin = nmax
then both GLR-like and discrete mixture-crossing events are
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equal to the line-crossing event given by
{

∃n ≥ 1 :
Dψ∗

µ0
(µ1, µ0)

+∇zDψ∗
µ0

(z, µ0) |z=µ1 (X̄n − µ1) ≥ gα
n

}

, (81)

which is equal to the pointwise Chernoff bound at n = nmin =
nmax, and thus gα can be chosen as log(1/α). Therefore, in
the rest of this subsection, we only consider the nontrivial case
n0 ≤ nmin < nmax, where gα is a positive value such that

e−gα1(nmin > n0) + inf
η>1

⌈
logη

(
nmax

nmin

)⌉
e−gα/η ≤ α. (82)

For a fixed gα , let ηα > 1 be the value attaining the
infimum in the LHS of the above inequality. From the equiv-
alent expression of infη>17logη(

nmax
nmin

)8e−gα/η in (72), we have
ηα = (nmax/nmin)

1/Kα where

Kα := arg min
k∈N

k exp

{

−gα

(
nmin

nmax

)1/k
}

. (83)

Next, for each k = 0, 1, . . . , Kα , let zk be the function of µ0
defined as the solution of the following equation:

Dψ∗
µ0

(zk, µ0) = gα
nminηk

α

, zk > µ0. (84)

Finally, for given n samples, define a nonnegative random
variable Mn(µ0;α) by

Mn(µ0;α) := e−gα1(nmin > n0)Ln(z0(µ0), µ0)

+ e−gα/ηα
Kα∑

k=1

Ln(zk(µ0), µ0). (85)

Above, each Ln(zk(µ0), µ0) is the LR-like statistic for
H0 : µ = µ0 vs H1 : µ = zk(µ0), given by

Ln(zk(µ0), µ0) = exp
{

n
[

gα
nminηk

α

+ Lk
[
X̄n − zk(µ0)

]]}
, (86)

where Lk := ∇Dψ∗
µ0

(z, µ0) |z=zk(µ0) for each k = 0, 1, . . . , Kα .
In particular, for additive sub-ψ family, each Ln(zk(µ0), µ0)

can be expressed as

Ln(zk(µ0), µ0) = exp
{

n
[

gα
nminηk

α

+ Lk
[
X̄n − µ0 −.k

]]}
, (87)

where .k := ψ∗−1
+ ( gα

nminηk
α
) and Lk := ∇ψ∗(.k)).

Now, let M0(µ0;α) := e−gα1(nmin > n0) +
Kαe−gα/ηα ∈ (0,α]. Then, under any sub-ψµ0 distribution,
{Mn(µ0;α)/M0(µ0;α)}n≥0 is a nonnegative supermartingale
with respect to the natural filtration. Therefore, by letting

CIM
n := {µ0 ∈ M : Mn(µ0;α)/M0(µ0;α) < 1/α},

we have a discrete mixture confidence sequence which is
uniformly tighter than the GLR-like one.

Corollary 2: For any α ∈ (0, 1], the sequence of intervals
{CIM

n }n∈N is a valid level α confidence sequence satisfying

Pµ

(
∀n : µ ∈ CIM

n
)

≥ 1 − α, ∀µ ∈ M. (88)

Furthermore, we have CIM
n ⊂ CIn for each n ∈ N where

{CIn}n∈N is the confidence sequence based on GLR-like statis-
tics in (73) which is uniformly close to the pointwise Chernoff
bound on the target time interval [nmin, nmax].

Fig. 5. Ratio of widths of the confidence intervals to the pointwise and
asymptotically valid normal confidence intervals based on the central limit
theorem. The black solid line corresponds to the pointwise and nonasymp-
totically valid Chernoff bound. Red and green solid lines come from the
stitching and normal mixture method in [1], [15]. The rest of lines are based
on our GLR-like confidence sequences for sub-Gaussian distributions in (77)
and their discrete mixture counterparts with different choices of target time
intervals ([1, 105] and [5 × 103, 4 × 105]). See Section IV-C for the details
of these confidence sequences.

Since gα and Kα do not depend on µ0, using Proposition 1
we can check that each CIM

n is an open interval for every
additive sub-ψ family and EF-like sub-B family of distribu-
tions with convex ∇B. Therefore, we can efficiently compute
each confidence interval by binary-search. However, for gen-
eral sub-ψM family of distributions, we may need to rely on
grid-search methods to compute each confidence interval.

C. Examples of Sub-Gaussian Confidence Sequences

To illustrate the practicality of confidence sequences based
on GLR-like statistics and corresponding discrete mixtures, in
Figure 5, we calculate ratios of widths of confidence intervals
to the pointwise and asymptotically valid normal confidence
intervals based on the central limit theorem.1 Here, we use the
sub-Gaussian with σ = 1 for simplicity and set α = 0.025.

The black solid line corresponds to the pointwise,
nonasymptotically valid Chernoff bound. Red and green solid
lines come from the stitching and normal mixture methods
in [1], [15] where each confidence intervals for stitching CIST

n
and normal mixture method CINM

n is given by

CIST
n :=

(

X̄n − 1.7√
n

√

log log(2n) + 0.72 log
(

5.2
α

)
,∞

)

CINM
n :=



X̄n −
√

2
(

1
n

+ ρ

n2

)
log
(

1
2α

√
n + ρ

ρ
+ 1

)
,∞



,

where we set ρ = 1260 by following the setting
in [15, Fig. 9]. Note that the original normal mixture confi-
dence interval in [1] did not have a closed form expression. In
this subsection, we use the explicit closed form upper bound
in [15] for simplicity. The rest of lines are based on our

1The R code to reproduce all the plots and simulation results of the paper
is available on the repository https://github.com/shinjaehyeok/SGLRT_paper.
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TABLE I
SUMMARY OF BOUNDARY CROSSING PROBABILITIES AND EXPECTED SAMPLE SIZES. (D1 := Dψ∗

µ0
(µ1, µ0), Dµ := Dψ∗

µ0
(µ, µ0),

D∗
1 := D∗

ψ∗
µ0

(µ1, µ0) AND D∗
µ := D∗

ψ∗
µ0

(µ1, µ0))

GLR-like confidence sequences for sub-Gaussian distributions
in (77) and their discrete mixture counterparts. For ‘GLR-
like 1’ and ‘Discrete Mixture 1’ lines, we set [nmin, nmax] =
[1, 105]. For ‘GLR-like 2’ and ’Discrete Mixture 2’, we use
[nmin, nmax] = [5 × 103, 4 × 105]. Vertical dotted lines are
corresponding to the lines n = 1, 5 × 103, 105. We can check
both GLR-like confidence sequences are uniformly close to
the pointwise Chernoff bound on their target time intervals
and, as Corollary 2 tells, each discrete mixture counterpart
has uniformly smaller widths of confidence intervals on its
target time interval.

V. DISCUSSION

We have presented nonasymptotic analyses of sequential
tests and confidence sequences based on GLR-like statistics,
which can be viewed as a nonparametric generalization of the
GLR statistic. Our main contribution is to provide a unified
nonasymptotic framework for the sub-ψM family of distri-
butions by leveraging a novel geometrical interpretation of
GLR-like statistics and of the corresponding time-uniform
concentration inequalities. In Table I, we provide a technical
summary of our results by displaying the boundary crossing
probabilities for the sequential tests and confidence sequences
developed in the paper along with the corresponding expected
sample sizes for the moderate confidence regime (fixed α,
µ,µ1 → µ0). In the table, we set D1 := Dψ∗

µ0
(µ1, µ0),

Dµ := Dψ∗
µ0

(µ,µ0) and similarly for D∗
1 := D∗

ψ∗
µ0

(µ1, µ0)

and D∗
µ := D∗

ψ∗
µ0

(µ1, µ0).
There remain several important open problems. First,

although we have mainly focused on the case where each
sample in a data stream X1, X2, . . . , is an independent ran-
dom variable with the same mean, as we discussed in
Remarks 4 and 8, some of the presented analyses can be
naturally extended to a real-valued process (Xi)i∈N adapted
to a filtration (Fi)i∈{0}∪N where the conditional expectation

µi := E[Xi | Fi−1] can vary over time. However, except for
additive sub-ψ classes, it is unclear how to extend the expected
sample size analysis of SGLR-like tests and the construction of
the confidence sequences to the time-varying mean case. For
example, the nonasymptotic upper bound on the expected sam-
ple size of SGLR-like test in Theorem 2 is only applicable to
the i.i.d. random variables. Also, except for the additive sub-ψ
case, the confidence sequence in Section IV is not applicable
in time-varying settings. Generalizing these analyses to a more
flexible nonparametric setting is an important open direction.

Second, the SGLR-like tests derived here and the corre-
sponding confidence sequences are applicable only to the
univariate case in which the underlying data stream is a real-
valued sequence. It is a natural to inquire whether one can
generalize the SGLR-like tests and confidence sequences to
multiple sources based multivariate data streams. If we have
multiple independent univariate data stream then there is a
simple method to combine upper bounds on boundary cross-
ing probabilities for univariate data stream in Theorem 1
into a multivariate one. To be specific, let K be the num-
ber of independent univariate data streams. For each a ∈
[K], let {Xa

Na(t)
}t≥0 be a sequence of independent observa-

tions from a sub-ψµa distribution where Na(t) is the number
of sample from the a-th distribution at time t ≥ 0. We
assume Na(t) ≥ 1 for each a ∈ [K] and t ≥ 0. Define
GLa

t (µ
a
1, µ

a
0) be the GLR-like statistic based on Na(t) sam-

ples from the a-th distribution up to time t. Then, from
Theorem 1, we can find a boundary function ga

α such that
the following inequality holds for all α ∈ (0, 1] and for each
a ∈ [K]:

P0
(
∃t ≥ 0 : log GLa

t (µ
a
1, µ

a
0) ≥ ga

α(Na(t))
)

≤ α, (89)

where P0 is a null distribution of K independent data
streams. Suppose each boundary function can be decom-
posed as ga

α(n) = f a(n) + ha(α) where f a is a nonneg-
ative function on N which does not depends on α and
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ha is a nonnegative and nonincreasing function on (0, 1]
such that limα→0 ha(α) = ∞. Then, for each ε > 0,
we have the following upper bound on the boundary-
crossing probability for the multiple sources of univariate data
streams:

P0

(

∃t ≥ 0 :
K∑

a=1

log GLa
t (µ

a
1, µ

a
0) ≥

K∑

a=1

f a(Na(t)) + ε

)

≤ P0

(
K∑

a=1

ha(Ua) ≥ ε

)

, (90)

where each Ua is an independent Uniform[0, 1] random
variable. Since the right hand side only depends on K
independent uniformly distributed random variables, we can
evaluate the probability of right hand side via a simple
Monte Carlo simulation. See Appendix C in the supplemen-
tary material for the derivation of the above inequality. It is
an interesting open question whether we can derive similar
upper bound for general multiple sources of multivariate data
streams.
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