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While traditional multiple testing procedures prohibit adaptive analysis
choices made by users, Goeman and Solari (Statist. Sci. 26 (2011) 584–597)
proposed a simultaneous inference framework that allows users such flexibil-
ity while preserving high-probability bounds on the false discovery propor-
tion (FDP) of the chosen set. In this paper, we propose a new class of such
simultaneous FDP bounds, tailored for nested sequences of rejection sets.
While most existing simultaneous FDP bounds are based on closed testing
using global null tests based on sorted p-values, we additionally consider the
setting where side information can be leveraged to boost power, the variable
selection setting where knockoff statistics can be used to order variables, and
the online setting where decisions about rejections must be made as data ar-
rives. Our finite-sample, closed form bounds are based on repurposing the
FDP estimates from false discovery rate (FDR) controlling procedures de-
signed for each of the above settings. These results establish a novel connec-
tion between the parallel literatures of simultaneous FDP bounds and FDR
control methods, and use proof techniques employing martingales and filtra-
tions that are new to both these literatures. We demonstrate the utility of our
results by augmenting a recent knockoffs analysis of the UK Biobank dataset.

1. Introduction.

1.1. Multiple testing and exploration. Consider testing a set of hypotheses H =
{H1, . . . ,Hn}, which we identify with [n] ≡ {1, . . . , n}. The false discovery proportion (FDP)
of a rejection set R ⊆ [n] is defined

FDP(R) ≡ |R ∩ H0|
|R| ≡ V

R
,

where H0 ⊆ H is the set of nulls and FDP(R) ≡ 0 when R = ∅ by convention (we use the
≡ symbol for definitions). Based on the data at hand, a multiple testing procedure returns
a rejection set R∗, and the Type-I error of such a procedure can be evaluated via different
properties of the FDP distribution. For example, the false discovery rate (FDR) is defined as
the mean of the FDP (Benjamini and Hochberg (1995)) and the false discovery exceedance
(FDX) is defined as the probability that FDP exceeds a pre-chosen threshold γ (Lehmann
and Romano (2005)):

FDR ≡ E
[
FDP

(
R∗)]

and FDX ≡ Pr
{
FDP

(
R∗)

> γ
}
.

A multiple testing procedure is said to control an error rate if it falls below a prespecified
level; for example, a procedure controls the FDR at level q if FDR ≤ q .
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This multiple testing paradigm has been very successful as the workhorse of scientific
discovery for the past several decades. However, Goeman and Solari (2011) (GS) argued
that this prevailing paradigm may not be flexible enough to accommodate for the exploratory
nature of modern large-scale data analysis: target levels for the FDP like q or γ are chosen
in advance, and rejection sets obtained from FDR- or FDX-controlling procedures cannot
be grown or shrunk without invalidating their guarantees. Therefore, the paradigm leaves
little room for scientists seeking to use their domain expertise to adaptively select a rejection
set while maintaining valid inferential guarantees. They may attempt to do so by applying
a multiple testing procedure with different nominal levels and choosing one of the resulting
rejection sets post hoc. They may also exclude rejected hypotheses that do not align with their
scientific priors, or include unrejected hypotheses that were close to the rejection threshold.
However, these practices may lead to an excess of false positives.

Motivated by these considerations, GS proposed a complementary simultaneous inference
paradigm. In this paradigm, one constructs FDP upper bounds FDP(R) that hold uniformly
across all sets R with high probability:

(1) Pr
{
FDP(R) ≤ FDP(R) for all R ⊆ H

} ≥ 1 − α.

Such bounds allow the scientist to inspect any pairs (R,FDP(R)) and freely choose the
rejection set R∗ whose content and FDP bound suits them. Given the simultaneous nature of
statement (1), the upper bound on FDP continues to hold on the chosen set despite the user’s
data-dependent decision:

Pr
{
FDP

(
R∗) ≤ FDP

(
R∗)}

≥ Pr
{
FDP(R) ≤ FDP(R) for all R ⊆ H

} ≥ 1 − α.

GS obtain such bounds by building on the closed testing principle, where a local test φR
(i.e., a test of the global null for a restricted set of hypotheses) is performed for each subset
of hypotheses R ⊆ H. The results of all these local tests are aggregated to form a bound FDP
that provably satisfies (1). Since then, there has been much exciting work on new algorithms
and computational shortcuts for simultaneous FDP control, mostly based on closed testing,
but these have been somewhat disconnected from the parallel growth in the FDR literature.

1.2. A new class of simultaneous FDP bounds. In this paper, we show that a variety of
FDR procedures can be repurposed to obtain simultaneous FDP bounds, establishing a novel
connection between FDR control and simultaneous FDP control. In particular, note that many
FDR algorithms implicitly construct a path, or nested sequence of n potential rejection sets

$ ≡ (R0, . . . ,Rn), such that ∅≡ R0 ⊆ R1 ⊆ · · · ⊆ Rn ⊆ [n].
Then an estimate of the FDP

(2) F̂DP(Rk) ≡ a0 + V̂ (Rk)

|Rk|
is constructed for each Rk ∈ $, where V̂ (Rk) is an estimate of V (Rk) ≡ |Rk ∩ H0| and
a0 ≥ 0 is an additive regularization constant. This estimate is then used to obtain a cutoff
point

(3) k∗ ≡ max
{
k : F̂DP(Rk) ≤ q

}
,

based on which the rejection set R∗ ≡ Rk∗ is defined.
Repurposing the path $ and the estimate V̂ , we propose the bound

(4) FDP(Rk) ≡ V (Rk)

|Rk|
; V (Rk) = ⌊

c(α) · (
a + V̂ (Rk)

)⌋
,
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where c(α) are tight, explicit, dimension-independent constants such that

Pr
{
FDP(R) ≤ FDP(R) for all R ∈ $

} ≥ 1 − α,(5)

as long as the p-values satisfy an independence assumption. The constant c(α) depends im-
plicitly on the regularization a > 0, which does not need to be the same as the original regu-
larization a0. Usually, we set a = 1.

If desired, FDP can also be extended to all sets R ⊆ H to obtain a bound of the form
(1) through the process of interpolation (Blanchard, Neuvial and Roquain (2020), Goeman,
Hemerik and Solari (2019)), where logical relationships among hypotheses are leveraged to
combine a set of simultaneous FDP bounds. In fact, interpolation can actually be used to
improve our bounds on the path as well, since some bounds on the path may be tighter than
others. In particular, we may freely replace V with

V
interp

(Rk) ≡ min
j

{|Rk \ Rj | + V (Rj )
}

= min
(
|Rk| − max

j≤k

{|Rj | − V (Rj )
}
,min

j≥k
V (Rj )

)
.

(6)

Blanchard, Neuvial and Roquain (2020) proposed the first expression above to interpolate
FDP bounds for nested rejection sets (see their Proposition 2.5), and the second expression
shows that we may compute these interpolated bounds in linear time by maintaining a cumu-
lative maximum of lower bounds on the number of true positives and a cumulative minimum
of upper bounds on the number of false positives.

Figure 1 summarizes the proposed FDP bounds and how they compare and contrast to
FDR methods and GS’s simultaneous inference paradigm based on closed testing.

We prove our bounds by developing a simple yet versatile proof technique—based on a
martingale argument rather different from those commonly used in the FDR literature—to

FIG. 1. Schematic for proposed FDP bounds (shaded gray nodes), in the context of the usual FDR control
framework (nodes with red borders) and the GS closed testing framework for simultaneous FDP control (nodes
with blue borders). The proposed bounds borrow the path construction from FDR procedures to leverage side
information, while obtaining simultaneous guarantees like the GS approach to permit exploration.
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obtain tight nonasymptotic bounds for the probability that the stochastic process |Rk ∩ H0|
of false discoveries hits certain boundaries. This technique is inspired by the proof of FDR
control for the multilayer knockoff filter (Katsevich and Sabatti (2019)).

Several simultaneous bounds FDP for the sets Rt ≡ {j : pj ≤ t} are already available
(Blanchard, Neuvial and Roquain (2020), Genovese and Wasserman (2006), Meinshausen
(2006), Meinshausen and Rice (2006), Hemerik, Solari and Goeman (2019)), in addition to
bounds valid for all subsets (van der Laan, Dudoit and Pollard (2004), Goeman and Solari
(2011)). However, all of these bounds treat p-values exchangeably, whereas the link we es-
tablish between FDR and simultaneous FDP control allows us to leverage the rich recent lit-
erature (e.g., Lei and Fithian (2018), Li and Barber (2017)) on incorporating side information
into FDR procedures to obtain powerful simultaneous FDP bounds. Importantly, our bounds
apply also to the knockoffs procedure (Barber and Candès (2015), Candès et al. (2018)) for
high-dimensional variable selection, which produces an ordered set of independent “one-bit
p-values” to which we may apply one of our bounds. We note that a line of work has con-
sidered a form of simultaneous inference in the context of post-selection inference for linear
models (Bachoc, Preinerstorfer and Steinberger (2016), Berk et al. (2013), Kuchibhotla et al.
(2020)).

They also apply to the online setting, where p-values come in a stream and decisions to
accept or reject must be made before seeing future data. Our results can also be used as
diagnostic tools for FDR procedures: one can run a FDR procedure at a certain level and then
obtain a valid 1 − α confidence bound on the FDP of the resulting rejection set. Finally, all
of our bounds (4) have an appealingly simple closed form.

Next, we preview our simultaneous FDP bound for the knockoffs procedure and demon-
strate its utility on a large genome-wide association study data set (Section 2). Then we state
our main results and provide a high level proof sketch in Section 3. In Section 4, we com-
pare and contrast our theoretical results with those in the FDR literature. We then compare
the performance of our simultaneous FDP bounds with existing alternatives via numerical
simulations (Section 5) and then conclude the paper in Section 6. The code to reproduce our
numerical simulations and data analysis is available online at https://github.com/ekatsevi/
simultaneous-fdp.

2. An illustration with real data. Before formally stating and proving our bounds, we
first illustrate their utility in the context of an application to genome-wide association studies
(GWAS). The goal of GWAS is to identify the genetic factors behind various human traits.
For this purpose, genotype and trait data are collected from large cohorts of individuals and
then scanned for association. The recently compiled UK Biobank resource (Bycroft et al.
(2018)) has data on a half a million individuals.

GWAS represents a vast variable selection problem, with genotypes viewed as covariates
and the trait as the outcome. Since nearby genotypes are strongly correlated with each other,
the units of inference usually are spatially localized genomic regions instead of individual
genetic variants (i.e., variables are grouped before testing). The knockoffs framework (Barber
and Candès (2015)) for variable selection with FDR control has been proposed to analyze
GWAS data (Sesia, Sabatti and Candès (2019)) and has recently been applied to several phe-
notypes in the UK Biobank (Sesia et al. (2019)).

The knockoffs procedure falls into the class of FDR procedures introduced in the previ-
ous section. A set of knockoff statistics W1, . . . ,Wp are constructed for each group of ge-
netic variants, with the property that the distribution of Wk is symmetric about the origin for
null groups k. On the other hand, knockoff statistics for nonnull groups should be large and
positive. Therefore, an ordering π(1), . . . ,π(p) of the groups is constructed by sorting the
knockoff statistics by decreasing magnitude. The kth rejection set Rk along the path is then

https://github.com/ekatsevi/simultaneous-fdp
https://github.com/ekatsevi/simultaneous-fdp
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defined as the set of groups among the first k in the ordering whose knockoff statistics have
positive signs:

Rk ≡ {
π(j) ≤ k : sign(Wπ(j)) > 0

}
.

FDR control is proved for regularization a0 = 1 and the estimate

(7) V̂ (Rk) ≡ ∣∣{π(j) ≤ k : sign(Wπ(j)) < 0
}∣∣,

which leverages the sign-symmetry of Wk for null k.
Our theoretical result (Corollary 1 in Section 3) shows that the bound

(8) V knockoff(Rk) ≡
⌊ log(α−1)

log(2 − α)
· (

1 + ∣∣{π(j) ≤ k : sign(Wπ(j)) < 0
}∣∣)

⌋
,

that is, expression (4) with a = a0 = 1, c(α) = log(α−1)
log(2−α) , and V̂ as in definition (7), satisfies the

uniform coverage statement (5). For α = 0.05, we have c(α) ≈ 4.5. In other words, inflating
the knockoffs FDP estimate by 4.5 allows us to upgrade from bounding the FDP of one set
on average to confidently bounding the true FDP across the entire path.

To illustrate the utility of this result, we apply it to the analysis of the platelet count trait
in the UK Biobank data, borrowing the knockoff statistics that were made publicly available
by Sesia et al. (2019) at https://msesia.github.io/knockoffzoom/ukbiobank.html. While sev-
eral correlation cutoffs were used to create groups in Sesia et al. (2019), here we consider
the lowest resolution groups (of average width 0.226 megabases), whose size corresponds
roughly to that yielded by current GWAS methodologies. In Figure 2, we plot FDP (obtained
from interpolating the bounds (8) via (6)) and F̂DP as a function of the rejection set size. The
dashed line shows the FDR target level q = 0.1 used by Sesia et al. (2019). The F̂DP curve
crosses this threshold at k∗ with |Rk∗ | = 1460. By comparison, the FDP curve is (necessar-
ily) more conservative, but clearly yields informative FDP bounds for many rejection sets. It
crosses the line q = 0.1 at |Rk∗ | = 814, meaning that we are 95% confident that at least 90%
of the top 814 genomic loci are associated with platelet count.

FIG. 2. Knockoffs FDP estimate (dark blue) and proposed FDP upper bound (magenta) for GWAS analysis of
platelet count, with highlighted points indicating interesting rejection sets. The degree of over-representation of
two relevant Gene Ontology terms (orange and goldenrod) among genes in the neighborhood of genomic regions
defined by each interesting rejection set.

https://msesia.github.io/knockoffzoom/ukbiobank.html
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TABLE 1
Number of knockoffs discoveries for different traits in the UK Biobank, based on original analysis targeting

FDR ≤ 0.1 and proposed bounds with three FDP thresholds

With probability 0.95

Trait FDR < 0.1 FDP < 0.2 FDP < 0.1 FDP < 0.05

height 3284 2178 1672 1097
body mass index 1804 1162 755 498
platelet count 1460 1076 814 540
systolic blood pressure 722 463 327 208
cardiovascular disease 514 296 102 0
hypothyroidism 212 140 83 0
respiratory disease 176 111 83 0
diabetes 50 45 0 0

Importantly, though, we can do much more than this. Instead of committing to q = 0.1
before seeing the data, we can explore several rejection sets along the knockoffs path, exam-
ining their content and FDP bound. One strategy we might take is to choose a set of points
along the knockoffs path that represent different compromises between FDP bound and re-
jection set size; these points are highlighted along the FDP curve in Figure 2. For example,
the leftmost highlighted point represents a rejection set of size 270 with an FDP bound of
0.015 (with 95% confidence).

A domain expert might inspect each of these points and choose one that makes the most
sense. In genetics, a common first step to evaluate a set of discoveries is to see whether they
fit with known associations. The Gene Ontology, or GO (Ashburner et al. (2000)) is a collec-
tion of biological processes, each annotated with a set of genes known to be involved in that
process. Given a set of genomic regions, the GREAT (McLean et al. (2010)) tool computes
the “enrichment” (i.e., overrepresentation) of genes annotated to any given GO term falling
in those genomic regions. For the platelet count trait, we would expect associated regions
to be overrepresented for genes annotated to processes like “blood coagulation” or “platelet
activation.” We computed the fold enrichment (degree of overrepresentation) for these two
terms, shown in Figure 2 as dashed goldenrod and orange lines. The fold enrichment gen-
erally decreases as we increase the size of the rejection set, corresponding to our intuition
that the strongest signals are generally in regions previously known to be associated with
platelet count. By juxtaposing domain-specific annotations with simultaneous FDP bounds,
a plot like Figure 2 would already go a long way towards helping a domain expert decide on
a biologically meaningful rejection set with a statistically sound Type-I error guarantee.

Finally, to quantify the price we pay for this extra flexibility, we consider several traits
analyzed by Sesia et al. (2019) and compare the numbers of rejections we get for the original
analysis (FDR ≤ 0.1) with the numbers we get for controlling FDP at various levels based
on FDPknockoff. The results are shown in Table 1. As we can see, there is certainly a trade-
off between analytical flexibility and statistical power. However, at least in this dataset, we
can still make substantial numbers of discoveries while enjoying the benefit of improved
flexibility.

Having previewed the utility of our theoretical results on a real dataset, in the next section
we formally state these results.

3. Main results. In this section, we present a set of paths $ along with corresponding
bounds FDP of the form (4) and state conditions under which the guarantee (5) holds. In fact,
for brevity we will specify only the numerator V of FDP. As discussed in the Introduction,
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both $ and V̂ will be borrowed directly from existing FDR procedures. We provide bounds
for both the batch and online settings. In the batch setting, there is a finite number of hypothe-
ses H1, . . . ,Hn for which the p-values are available all at once; in the online setting, where
there is an infinite stream of hypotheses, which arrive one at a time and a decision must be
made about each hypothesis as soon as its p-value arrives. The proofs for all our results are
provided in the Supplementary Material (Katsevich and Ramdas (2020)), but a sketch of the
main idea is given in Section 3.3. Finally, recall that all the following bounds can be improved
in linear time via interpolation (equation (6)), albeit losing their interpretable closed form.

3.1. FDP bounds in the batch setting. Here, we have a fixed, finite set of hypotheses
H1, . . . ,Hn and a set of p-values p1, . . . , pn. To construct a path, consider first ordering
the hypotheses in some way π(1),π(2), . . . ,π(n), constructing π to encourage nonnulls to
appear near the beginning of the order. Then, define a p-value cutoff p∗ ∈ (0,1]. We form a
path $ by traversing the ordering and choosing hypotheses whose p-values passed the cutoff:

(9) $ ≡ (R0,R1, . . . ,Rn) such that Rk ≡ {
π(j) : j ≤ k,pπ(j) ≤ p∗

}
.

There are three ways of defining the path $:

1. sort: π is formed by sorting p-values; in this case usually p∗ ≡ 1.
2. preorder: π is fixed ahead of time using prior knowledge.
3. interact: π is built on the fly using prior knowledge and p-values.

Next, we elaborate on these path constructions in the batch setting and present FDP bounds
for each of them.

3.1.1. Sorted path. Ordering hypotheses by p-value, pπ(k) = p(k), and setting p∗ = 1
leads to

(10) Rk = {j : pj ≤ p(k)}.
This is the most common path construction among multiple testing procedures, serving as the
basis for the Benjamini–Hochberg (BH) algorithm and many other step up/down algorithms
(e.g., Benjamini and Liu (1999), Gavrilov, Benjamini and Sarkar (2009)). It is the obvious
choice when no side information is available. Storey, Taylor and Siegmund (2004) formu-
lated the BH algorithm in terms of the FDR control paradigm described in Section 1.2, with
V̂sort(Rk) ≡ n · p(k) and a0 = 0:

(11) F̂DPsort(Rk) ≡ n · p(k)

|Rk|
.

The following theorem presents our FDP bounds (4) for this path, based on the estimate V̂sort.

THEOREM 1. Let Rk be defined via (10), and let

V sort(Rk) ≡
⌊ log( 1

α )

log(1 + log( 1
α ))

· (1 + n · p(k))

⌋
.

If the null p-values are independent and stochastically larger than uniform, that is,
Pr{pj ≤ s} ≤ s for all j ∈ H0 and s ∈ [0,1], then the uniform bound (5) holds for all
α ∈ (0,0.31], that is,

Pr
{
FDP(Rk) ≤ FDPsort(Rk) for all k ∈ [n]} ≥ 1 − α.
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REMARK 1. In Theorem 1, we require that α ≤ 0.31. However, strong numerical evi-
dence shows that the bound is valid for all α. The restriction on α is an artifact of our proof
and does not represent an intrinsic breaking point of the bound. Despite this limitation in
our proof, the range α ≤ 0.31 includes most confidence levels that would be used in practice
(although the case α = 0.5 might be of interest to bound the median of the FDP distribution
and α = 1 of interest to bound the null proportion).

3.1.2. Preordered path. The preordered setting applies when prior information (e.g., data
from a similar experiment) sheds light on which hypotheses are more likely to be nonnull,
so a good ordering π is known in advance. Several FDR methodologies taking advantage of
pre-specified orderings have been developed; G’Sell et al. (2016) and Li and Barber (2017)
build paths using p∗ = 1 while Barber and Candès (2015) and Lei and Fithian (2016) use
p∗ ∈ (0,1).

For the case p∗ = 1, we use a construction from the accumulation test of Li and Barber
(2017): an accumulation function h is a function h : [0,1] → R+ that is nondecreasing and
integrates to 1. Then we define

(12) V̂preorder-acc(Rk) ≡
k∑

j=1

h(pπ(j)).

Alternatively, for p∗ ∈ (0,1), we can follow Selective SeqStep (Barber and Candès (2015))
and Adaptive SeqStep (Lei and Fithian (2016)) to define

(13) V̂preorder-sel(Rk) ≡
k∑

j=1

p∗
1 − λ

I (pπ(j) > λ),

where λ ≥ p∗. The following theorem presents our FDP bounds (4) for the preordered setting
for the cases p∗ = 1 and p∗ ∈ (0,1), which rely on estimates (12) and (13), respectively.

THEOREM 2. Fix a > 0 and assume the null p-values are independent and stochastically
larger than uniform. Given a prior ordering π , let

Rk ≡ {
π(j) : j ≤ k,pπ(j) ≤ p∗

}
.

1. Set p∗ = 1, choose a (possibly unbounded) accumulation function h, and define

V
h
preorder-acc(Rk) ≡

⌊
log( 1

α )

a log((
∫ 1

0 αh(u)/a du)−1)
·
(

a +
k∑

j=1

h(pπ(j))

)⌋

.

Then the uniform bound (5) holds for all α ∈ (0,1):

Pr
{
FDP(Rk) ≤ FDPh

preorder-acc(Rk) for all k ∈ [n]} ≥ 1 − α.

Moreover, if supu∈[0,1] h(u) ≡ B < ∞, then we may instead use

V
B
preorder-acc(Rk) ≡

⌊
log( 1

α )

a log((1 − 1−αB/a

B )−1)
·
(

a +
k∑

j=1

h(pπ(j))

)⌋

.

2. Set p∗ ∈ (0,1) and fix λ ≥ p∗. Define

V
B
preorder-sel ≡

⌊
log( 1

α )

a log(1 + 1−αB/a

B )
·
(

a +
k∑

j=1

p∗
1 − λ

I (pπ(j) > λ)

)⌋

,
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where B ≡ p∗
1−λ . Then uniform bound (5) holds for all α ∈ (0,1):

Pr
{
FDP(Rk) ≤ FDPB

preorder-sel(Rk) for all k ∈ [n]} ≥ 1 − α.

As we previewed in Section 2, we can apply this bound to the knockoff filter (Barber
and Candès (2015)), a variable selection methodology based on the idea of creating a knock-
off variable for each original variable, and then using these knock-offs as controls for the
originals. Instead of p-values, the knock-off filter produces knock-off statistics Wj for each
variable j . These are constructed so that

(14)
{
sign(Wj )

}
j∈H0

⊥⊥ {|Wj |
}
j∈[p],

{
sign(Wj )

}
j /∈H0

; {
sign(Wj )

}
j∈H0

i.i.d.∼ Ber(1/2).

The signs of the knock-off statistics are therefore a set of independent “one-bit p-values,” to
which the above theorem applies.

COROLLARY 1. Let W1, . . . ,Wp be a set of knock-off statistics satisfying property (14).
Let π be the ordering corresponding to sorting Wj by decreasing magnitude, and define
Rk = {π(j) ≤ k : sign(Wπ(j)) > 0}. Then bound (5) holds for

V knockoff(Rk) ≡
⌊ log(α−1)

a log(2 − α1/a)
· (

a + ∣∣{π(j) ≤ k : sign(Wπ(j)) < 0
}∣∣)

⌋
.

PROOF. Define pj = 1/2 for Wj < 0 and pj = 1 for Wj > 0. By property (14), it is easy
to see that these p-values are independent of the ordering π (so the ordering can be treated
as fixed) and satisfy the assumptions of Theorem 2. The rejection sets Rk are defined via
(9) with p∗ = 0.5 and FDP is defined via (13) with p∗ = λ = 0.5. Therefore, we may apply
part 2 of Theorem 2, plugging in B = p∗

1−λ = 1. !

3.1.3. Interactive path. In the interactive setting, p-values are split into “orthogonal”
parts, with one part being used—together with side information—to determine a hypothesis
ordering π and the other part being used for FDR control. AdaPT (Lei and Fithian (2018))
uses the masked p-values g(pj ) = min(pj ,1−pj ) and side information xj to build up the or-
dering, defining a path based on (9) with p∗ = 0.5. It then uses V̂preorder-sel with p∗ = λ = 0.5
to construct a FDP estimate based on which the algorithm chooses a rejection set. This pro-
cedure is like Selective SeqStep, but with the ordering constructed interactively. STAR (Lei,
Ramdas and Fithian (2017)), on the other hand, is the interactive analog of the accumula-
tion test, using p∗ = 1 and V̂preorder-acc. It is shown that any bounded accumulation function
h has a corresponding orthogonal masking function g, based on which the ordering can be
constructed.

For our simultaneous FDP bounds, we use a slightly different path definition than AdaPT
and STAR: we build up the path π from beginning to end, while these two methods proceed
in the opposite direction. However, we do not expect this change to impact the quality of the
constructed path. The path construction we consider is as follows. π(1) is chosen based on
the information σ ({xj , g(pj )}j∈[n]). Once π(1) is chosen, the corresponding p-value pπ(1)

is unmasked, so the information σ ({xj , g(pj )}j∈[n],pπ(1)) can be used to choose π(2). In
general, we can choose π(k + 1) in any way based on the information

(15) Gk ≡ σ
({

xj , g(pj )
}
j∈[n], {pπ(j)}j≤k

)
.

Therefore, as in AdaPT and STAR, the ordering π may be built up interactively, with a human
in the loop deciding the order based on Gk . The following theorem provides FDP bounds for
interactively constructed paths.
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THEOREM 3. Let π be any ordering predictable with respect to the filtration (15), where
g is a masking function as defined below, and let

Rk ≡ {
π(j) : j ≤ k,pπ(j) ≤ p∗

}
.

1. Let h be an accumulation function bounded by B and let g is its corresponding mask-
ing function (see Lei, Ramdas and Fithian (2017)). Set p∗ = 1, and define FDPB

interact-acc ≡
FDPB

preorder-acc. If the null p-values are independent of each other and of the nonnull p-
values, and the null p-values have nondecreasing densities, then uniform bound (5) holds for
all a > 0 and all α ∈ (0,1):

Pr
{
FDP(Rk) ≤ FDPB

interact-acc(Rk) for all k ∈ [n]} ≥ 1 − α.

2. Fix p∗ ∈ (0,1) and λ ≥ p∗. Define g(p) = min(p, p∗
1−p∗ p) and FDPB

interact-sel ≡
FDPB

preorder-sel. If the null p-values are independent of each other and of the nonnulls, and
the null p-values are mirror-conservative (see Lei and Fithian (2018)), then uniform bound
(5) holds for all α ∈ (0,1):

Pr
{
FDP(Rk) ≤ FDPB

interact-sel(Rk) for all k ∈ [n]} ≥ 1 − α.

These results are similar to the previous section’s bounds, but are more subtle due to the
data-dependent ordering π .

3.2. FDP bounds for any online algorithm. Now, we turn to FDP bounds for the online
setting. In this setting, decisions about hypotheses must be made as they arrive one at a time
in a stream. Moreover, the order in which hypotheses arrive might or might not be the in
the experimenter’s control. Therefore, nonnulls might not necessarily occur early, and further
the rejection decision for the Hk must be made without knowing the outcomes of future
experiments. Hence, in general, online multiple testing procedures must proceed differently
from batch ones: online procedures adaptively produce a sequence of levels αj at which to
test hypotheses. Assuming for simplicity that π(j) = j , these levels define the online path:

(16) $online ≡ (R1,R2, . . . ,Rn, . . .) where Rk ≡ {j ≤ k : pj ≤ αj }.
The levels αj are chosen based on the outcomes of past experiments, that is,

(17) αk+1 ∈ Gk ⊇ σ
(
I (pj ≤ αj ); j ≤ k

)
.

The alpha-investing procedure of Foster and Stine (2008) and follow-up works (Aharoni
and Rosset (2014), Javanmard and Montanari (2018), Ramdas et al. (2017)) are built on the
analogy of testing a hypothesis at level αj as spending wealth. One pays a price to test each
hypothesis, and is rewarded for each rejected hypothesis. For each of these methods, the
levels αj are adaptively constructed to ensure that the wealth always remains nonnegative.
In this paper, we consider paths of the form (16) corresponding to arbitrary sequences {αj }
satisfying requirement (17), including those constructed by existing algorithms but any others
as well.

Until recently, online FDR methods were formulated without reference to any F̂DP. How-
ever, Ramdas et al. (2017) noted that LORD (Javanmard and Montanari (2018)) implicitly
bounds F̂DP(Rk) for a0 = 0 and

V̂online-simple(Rk) ≡
k∑

j=1

αj .
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They also used this fact to design a strictly more powerful algorithm called LORD++. Moving
beyond LORD++, Ramdas et al. (2018) proposed an adaptive algorithm called SAFFRON,
which uses a0 = 0 and

V̂online-adaptive(Rk) ≡
k∑

j=1

αj

1 − λj
I (pj > λj ).

SAFFRON improves upon the LORD estimate by correcting for the proportion of nulls,
making it the online analog of the Storey-BH procedure (Storey, Taylor and Siegmund
(2004)). Like the levels αj , the constants λj may also be chosen based on the outcomes
of prior experiments.

The following theorem provides FDP bounds (4) corresponding to the above two choices
for V̂online.

THEOREM 4. Fix a > 0 and let α1,α2, . . . be any sequence of thresholds predictable
with respect to filtration Gk , as in (17). Suppose the null p-values are stochastically larger
than uniform conditional on the past:

(18) Pr{pk ≤ s | Gk−1} ≤ s for each k ∈ H0 and each s ∈ [0,1].

1. Define

V online-simple(Rk) ≡
⌊

log( 1
α )

a log(1 + log( 1
α )

a )

·
(

a +
k∑

j=1

αj

)⌋

.

Then uniform bound (5) holds for all α ∈ (0,1):

Pr
{
FDP(Rk) ≤ FDPonline-simple(Rk) for all k ≥ 0

} ≥ 1 − α.

2. Let λj ≥ αj for all j , {λj } be predictable with respect to Gk , and supj
αj

1−λj
≡ B < ∞.

Define

V
B
online-adaptive(Rk) ≡

⌊
log( 1

α )

a log(1 + 1−αB/a

B )
·
(

a +
k∑

j=1

αj

1 − λj
I (pj > λj )

)⌋

.

Then uniform bound (5) holds for all α ∈ (0,1):

Pr
{
FDP(Rk) ≤ FDPonline-adaptive(Rk) for all k ≥ 0

} ≥ 1 − α.

For example, suppose we set λj = 1/2 and ran an online FDR algorithm at level q =
0.05. Then we would have αj ≤ q for all j , allowing us to set B = 2q = 0.1. Choosing a
confidence level of α = 0.1 and additive regularization a = 1, we obtain V (Rk) ≡ /2.06 ·
(1 + ∑k

j=1 2αj I (pj > 0.5))0.
The closest existing result to Theorem 4 is that of Javanmard and Montanari (2018) (JM).

JM consider a truncated version of generalized alpha-investing rules that satisfy a uniform
FDX bound like Pr{supk FDPk ≥ γ } ≤ α. Their result is similar in spirit to part 1 of Theo-
rem 4, but there are subtle differences. Their results, like most other FDX bounds, are pre
hoc, meaning that given a γ ,α ∈ (0,1), their procedure produces a sequence of rejections
satisfying the FDX guarantee. Our guarantees are post hoc, meaning that they would apply to
any sequence of rejections produced by any online algorithm, that may or may not have been
designed for FDR or FDP control.
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3.3. A glimpse of the proof. In this section, we present a key exponential tail inequality
lemma (Lemma 1) that underlies the proofs of Theorems 2, 3 and 4. The proof of Theorem 1
requires a more involved proof technique, which we defer to the Supplementary Material
(Section A), where we also show how Theorems 2, 3 and 4 follow from Lemma 1 below
(Section B). We use a martingale-based proof technique that is distinct from the technique
used to prove FDR control; see Section 4.2 for a comparison.

LEMMA 1. Consider a (potentially infinite) set of hypotheses H1,H2, . . . , an ordering
π(1),π(2), . . . , and a set of cutoffs α1,α2, . . . . Let

Rk ≡ {j ≤ k : pπ(j) ≤ αj } and F̂DPa(Rk) ≡ a + ∑
j≤k hj (pπ(j))

|Rk|
,

where {hj }j≥1 are functions on [0,1] and the subscript a on F̂DPa makes the dependence on
the regularization a > 0 explicit. Suppose there exists a filtration

(19) Fk ⊇ σ
(
H0,

{
π(j)

}
j≤k,

{
hj (pπ(j)), I (pj ≤ αj )

}
j≤k,π(j)∈H0

)

such that for all π(k) ∈ H0, we have

(20) Pr{pπ(k) ≤ αk | Fk−1} ≤ αk and E
[
hk(pπ(k)) | Fk−1

] ≥ αk,

almost surely. Then, for each x > 1 and a > 0,

(21) Pr
{

sup
k≥0

FDP(Rk)

F̂DPa(Rk)
≥ x

}
≤ exp(−aθxx),

where θx is defined in the following four cases:

1. If hk = h for some accumulation function h, αk = 1, π(k) is pre-specified (i.e., non-
random), and pπ(k) ⊥⊥ Fk−1 for all π(k) ∈ H0, then θx is the unique positive root of the
equation

(22)
∫ 1

0
exp

(−θxh(u)
)
du = exp(−θ).

2. If hk = h for some accumulation function h bounded by B and αk = 1, then θx is the
unique positive root of the equation

(23) exp(−θ) + 1 − exp(−θxB)

B
= 1.

3. If hk(p) = 0 for all p ≤ αk , and hk(p) ≤ B for all k, p, then θx is the unique positive
root of the equation

(24) exp(θ) − 1 − exp(−θxB)

B
= 1.

4. If hk(pk) = αk , then θx is the unique positive root of the equation

(25) eθ = 1 + θx.

Let us outline the proof of the lemma. Fix any arbitrary x > 1 and θ > 0. We first restrict
our attention to only the nulls as follows:

Pr
{

sup
k≥0

FDP(Rk)

F̂DPa(Rk)
≥ x

}

= Pr
{

sup
k≥0

V (Rk)

a + V̂ (Rk)
≥ x

}
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= Pr

{
k∑

j=1

I (pπ(j) ≤ αj )I
(
π(j) ∈ H0

) ≥ ax + x
k∑

j=1

hj (pπ(j)), for some k ≥ 0

}

≤ Pr

{
k∑

j=1

I (pπ(j) ≤ αj )I
(
π(j) ∈ H0

) ≥ ax + x
k∑

j=1

hj (pπ(j))I
(
π(j) ∈ H0

)
,

for some k ≥ 0

}

.

Now, we may rearrange terms and employ the Chernoff exponentiation trick, to conclude that

Pr
{

sup
k≥0

FDP(Rk)

F̂DPa(Rk)
≥ x

}

= Pr

{

sup
k≥0

exp

(

θ

(
k∑

j=1

[
I (pπ(j) ≤ αj ) − xhj (pπ(j))

]
I
(
π(j) ∈ H0

)
))

≥ exp(aθx)

}

≡ Pr
{
sup
k≥0

Zk ≥ exp(aθx)
}
.

We claim that if θ = θx , then Zk is a supermartingale with respect to Fk . If this is the case,
then the conclusion of the lemma would follow from the Ville (1939) maximal inequality for
positive supermartingales:

Pr
{
sup
k≥0

Zk ≥ exp(aθx)
}

≤ exp(−aθx)E[Z0] = exp(−aθx),

as desired. Hence, what remains is to show that in each of the four cases, the choices of θx

make Zk a supermartingale. To derive the FDP bounds in Theorems 2, 3 and 4. we set

(26) FDP(Rk) ≡ x · F̂DPa(Rk),

where x is chosen such that exp(−aθxx) = α. We defer these derivations to Section B in
the Supplementary Material. In fact, our definition (4) has an added floor function in the
numerator, which we may add for free because the true number of false discoveries V (Rk) is
always an integer.

4. Comparisons to work on FDR control. The paths and FDP bounds we construct are
closely tied to existing FDR control algorithms. Table 2 shows each of our bounds as well
as the FDR methods they are related to. In this section, we explore the relationships between
our results and those already existing in the FDR literature.

4.1. Comparing the roles of F̂DP. We start by recalling the definition (2) of F̂DP. Batch
FDR algorithms use this estimate of FDP to automatically choose the rejection set R∗ ∈ $,
which is done via (3). On the other hand, we use a regularized F̂DPa as a building block
for our confidence envelopes FDP (recall definitions (4) and (26)), which the user may then
inspect to choose R∗. It is important to remark here that while our bounds are inspired by
existing FDR algorithms, they are not intrinsically tied to the use of those procedures in any
way. Indeed, we often employ the path $ of known FDR procedures, but not their stopping
criterion or choice of final rejected set.

Each FDR algorithm comes with a “built-in” choice of regularization a0. For example,
the BH algorithm uses no regularization (i.e., a0 = 0), while accumulation tests (Li and Bar-
ber (2017)) use a0 = supu∈[0,1] h(u). The built-in regularizations are chosen to ensure FDR
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TABLE 2
Overview of proposed FDP bounds and FDR procedures inspiring them (h denotes an accumulation function)

Ordering p-val cutoffs V̂ (Rk) FDR method

sort p∗ = 1 n · p(k) BH
preorder p∗ = 1

∑
j≤k h(pj ) Accumulation test

preorder p∗ ∈ (0,1)
∑

j≤k
p∗

1−λ I (pj > λ) Selective and Adaptive SeqStep
interact p∗ = 1

∑
j≤k h(pπ(j)) STAR

interact p∗ ∈ (0,1)
∑

j≤k
p∗

1−λ I (pπ(j) > λ) AdaPT
(online) αj ∈ Gj−1

∑
j≤k αj LORD, LORD++

(online) αj ∈ Gj−1
∑

j≤k
αj

1−λj
I (pj > λj ) SAFFRON, alpha-investing

control (see below). On the other hand, we consider arbitrary regularizations a > 0, with dif-
ferent regularizations leading to different constants c(α) and, therefore, different confidence
envelopes. Different regularization parameters lead to envelopes that are tighter in different
places; we have found a = 1 to be a good choice.

4.2. Comparing proof techniques. For each existing batch FDR algorithm, FDR control
is established using the following martingale argument. First, the ratio FDP(Rk)

F̂DP(Rk)
= V (Rk)

a0+V̂ (Rk)

is upper bounded by a stochastic process Lk , such that Lk is a supermartingale with respect
to a backwards filtration {)k}k=n,...,1. Furthermore, it is shown that E[Ln] ≤ 1. The choice of
regularization a0 is usually made to ensure the existence of such an Lk . Using the fact that k∗

picked using rule (3) is a stopping time with respect to )k , we obtain FDR = E[FDP(Rk∗)] ≤
q in a single line using the optional stopping theorem:

E[FDP(Rk∗)]
q

≤ E
[FDP(Rk∗)

F̂DP(Rk∗)

]
≤ E[Lk∗] ≤ 1.

This technique was first used by Storey, Taylor and Siegmund (2004) for the BH procedure,
but remarkably, the other batch procedures mentioned in this paper like knockoffs, AdaPT,
STAR, ordered tests and others, all implicitly use the same argument (though it was not
expressed as succinctly as above), each with different Lk , )k . While we also rely on a mar-
tingale argument to prove our FDP bounds (recall Section 3.3), the martingales we construct
are fundamentally different: they are exponential and employ forward filtrations instead of
backwards ones.

Note that the original supermartingales (Lk,)k) used to prove FDR control for batch
procedures can also be used to obtain tail bounds like (21), for original regularization a = a0.
Indeed, using Ville’s maximal inequality again, we find

Pr
{

sup
0≤k≤n

FDP(Rk)

F̂DP(Rk)
≥ x

}
≤ Pr

{
sup

0≤k≤n
Lk ≥ x

}
≤ 1

x
E[Ln] ≤ 1

x
.

Therefore, for each batch procedure we consider FDP(Rk) = 1
α F̂DP(Rk) is also a valid upper

confidence band for FDP. Versions of this bound have been considered before in the case of
BH, for example, by Robbins (1954) and Goeman et al. (2019). This implies that for all
considered batch procedures, we have

Median
[

sup
R∈$

FDP(R)

F̂DP(R)

]
≤ 2.

However, note that the constants c(α) = α−1 grow quickly as α decays. On the other hand,
the constants we provide scale logarithmically, rather than linearly, in α−1.
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4.3. Comparing assumptions. This martingale argument for FDR control and the argu-
ment we employ here both require some form of independence among the p-values. Fur-
thermore, our assumptions for each of these theorems are identical to or weaker than the
ones needed to prove FDR control. For Theorem 1, we only need to make assumptions on
the distribution (pj )j∈H0 , so unlike existing proofs of FDR control for BH, we do not make
any assumptions on the dependence of the nulls on the nonnulls (see Dwork, Su and Zhang
(2018) for another example of such a result). In Theorem 2, we assume that the nulls are inde-
pendent and stochastically larger than uniform, whereas for the original FDR control results
(Barber and Candès (2015), Li and Barber (2017)) it was also required that nulls be inde-
pendent of nonnulls. Furthermore, part 1 of Theorem 2 provides a FDP bound for possibly
unbounded accumulation functions, whereas the original work proposing accumulation tests
(Li and Barber (2017)) requires accumulation functions to be bounded. In Theorems 3 and 4,
our assumptions are identical to those in the original works. Finally, we remark that the only
FDR procedure which has a guarantee under dependence is BH, for which a non-martingale
proof was proposed by (Benjamini and Yekutieli (2001)).

Next, we illustrate the performance of some of our bounds in simulations.

5. Numerical simulations. In this section, we compare the proposed FDP bounds to
existing bounds, in the sorted and preordered settings. We also examine the effect of correla-
tion on the proposed bounds. In all cases, we take n = 2500 and α = 0.1. For the proposed
bounds, we take a = 1.

5.1. Sorted setting. As discussed in the Introduction, the setting in which the most prior
work has been done is when hypotheses are ordered based on p-value. In other words, we are
concerned with bounds FDP for the sets Rt ≡ {j : pj ≤ t} such that

(27) Pr
{
FDP(Rt ) ≤ FDP(Rt ) for all t ∈ [0,1]} ≥ 1 − α.

5.1.1. Comparing to other explicit, finite-sample bounds. The bounds most comparable
to ours are explicit, finite-sample bounds. Two such bounds were proposed by Meinshausen
and Rice (2006): FDP(Rt ) ≡ V (t)

|Rt | for

V Robbins(t) ≡ 1
α

nt; V DKW(t) ≡
√

n

2
log

1
α

+ nt.

These bounds derive from inequalities by Robbins (1954) and Dvoretzky, Kiefer and Wol-
fowitz (1956), respectively. Note that inequality (27) for V DKW is based on the one-sided
DKW inequality and is valid for α < 0.5. Compare these to our bound, which is

V sort(t) ≡ log( 1
α )

log(1 + log( 1
α ))

· (1 + nt).

Note that we may add the floor function to all three of these bounds, omitted here for sim-
plicity. By inspecting these three bounds, we see that the DKW bound is the tightest when t
is large, the Robbins bound is the tightest when t is small, and our bound is the tightest in an
intermediate range.

The left panel of Figure 3 compares the three bounds (floor functions included), with
dotted vertical lines indicating the Bonferroni level and the nominal level, respectively. The
interval between these two levels is often the most interesting for multiple testing purposes,
and the proposed bound is the tightest over most of this range (in particular, it is tighter than
the Robbins bound as long as V Robbins(t) ≥ 2.4). In fact, the proposed bound is not too far
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FIG. 3. Comparing proposed bounds to two other explicit finite-sample bounds in the sorted setting. Vertical
dotted lines indicate Bonferroni level α/n and nominal level α. Left panel: The three FDP bounds; the proposed
bound is tighter than the other two across most of the interesting range. Right panel: histograms of t where the
bound (27) is tightest.

from the pointwise 1 − α quantile of V (t), which is plotted for reference in black in the left
panel. The right panel of Figure 3 shows a histogram of the value of t at which the bound
(27) is tightest. We see that the majority of the time (about 87%), our bound is tightest in the
interesting range.

5.1.2. Comparison to GS bound. As discussed in the Introduction, the GS bound is based
on a suite of local tests {φR}R∈2H . Therefore, different bounds can be obtained for different
local tests. Here, we compare the proposed bound to the GS bound based on the Simes and
Fisher local tests. We note that the Simes local test rejects if and only if the Robbins bound
is nontrivial for any t . In fact, the GS-Simes bound is the closure of the Robbins bound and
therefore dominates it (Goeman, Hemerik and Solari (2019)), so we remove the latter from
consideration in this section.

Since the GS bound is not explicit, we must make the comparison by inspecting the aver-
age shape of FDP on simulated data. We simulate independent test statistics Xj ∼ N(µj ,1),
where µj = µI (j ∈ H1) for some signal strength µ > 0 and set of nonnulls H1. We then
compute one-side p-values pj = 1 − *(Xj ). To cover a broad range of data-generating
distributions, we consider the values µ = 2,3,4 (weak, medium and strong signal) and
|H1| = 100,200,300.

Figure 4 shows the average FDP curves (over 100 repetitions) in each of the nine simula-
tion scenarios for the proposed and GS bounds, as well as the DKW bound introduced before.
For reference, the 1 − α quantile of the true FDP is also shown. We see that the GS bounds
inherit the properties of their underlying local tests. The GS-Simes bound behaves like the
Robbins bound: it is tightest for small rejection set sizes, yielding highly nontrivial bounds
near the beginning of the path for most simulation scenarios. The GS-Fisher bound behaves
the opposite way: it is tightest for large rejection set sizes, even more so than the DKW bound.
Neither the GS-Fisher bound nor the DKW bound yield very informative bounds in most of
the simulation settings considered. Finally, the proposed bound is an intermediate between
these two extremes, yielding the tightest estimates for intermediate rejection set sizes. For the
simulation settings considered, the proposed bounds are tightest in interesting regions of the
path: where many rejections are made but the FDP bound is still fairly low (e.g., below 0.2).
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FIG. 4. Comparing the proposed FDP bound with the GS bound (based on Simes or Fisher local tests) and the
DKW bound in the sorted setting. The 1 − α quantile of the true FDP is also shown. The panels correspond to
the three signal strengths and numbers of nonnulls. The proposed bounds are tightest in an intermediate range of
rejection set sizes.

5.1.3. Coverage properties of FDP estimate. The estimate F̂DPsort(t) = m · t/|Rt | from
equation (11) and the related q-value, both proposed by Storey, Taylor and Siegmund (2004),
have been shown to have asymptotic uniform coverage properties. In particular, their Theo-
rem 6 states that for all δ > 0,

(28) lim
n→∞ inf

t≥δ

{
F̂DP(t) − FDP(t)

} ≥ 0 with probability 1.

At first glance, this result might suggest that there is no reason to use conservative bounds for
the FDP, if asymptotically, the much smaller point estimate bounds the FDP across the entire
path. However, such a conclusion is misleading. Note that the infimum in the bound (28) ex-
cludes t ∈ [0, δ), so for the bound to be interesting the value of δ must be small. Furthermore,
the convergence becomes slower as δ → 0, so in finite samples the FDP estimate might un-
dershoot the true FDP at some points along the path. As a counterpoint to (28), consider the
following two results, holding as long as the null p-values are uniform and independent, and
|H0|

n ≥ ε > 0:

E
[

sup
t∈[0,1]

FDP(t)

F̂DP(t)

]
= ∞; lim sup

n→∞
sup

t∈[ c
n ,1]

FDP(t)

F̂DP(t)
= ∞ almost surely.

The first result is due to Robbins (1954) and holds for any finite n, and the second is due
to Wellner (1978) and holds for any fixed c ≥ 0. Therefore, F̂DP can underestimate FDP by
large factors if we remove the restriction on t or lower bound it from below by an O(1/n)
term.
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FIG. 5. The extent to which the true FDP can exceed the nominal FDR level if BH is run for all nominal levels
q ∈ [qmin,1]. Points correspond to running BH for the smaller prechosen set Q0 = {0.01,0.025, . . . ,0.2} of FDR
levels. We observe that some correction for exploration is necessary, whether the mean or the upper quantile of
the FDP is of interest.

We investigate via simulation whether applying BH at various target levels without cor-
rection for exploration has any consequences in finite samples. In the simulation setting from
the previous section with µ = 4 and |H1| = 100, consider applying BH using nominal levels
q ∈ Q for some set Q ⊆ [0,1]. If FDPBH(q) denotes the realized FDP of running BH at level
q , then the quantity

max
q∈Q

FDPBH(q)

q

measures the maximum extent to which the realized FDP exceeds the nominal level. In
Figure 5, we show the mean and upper 90% quantile of the above quantity for Q =
[qmin,1], with qmin taking a range values. The practitioner may be willing to restrict
her attention to a smaller set of nominal levels chosen in advance, for example, Q0 =
{0.01,0.025,0.05,0.075,0.1,0.125,0.15,0.175,0.2}. The individual points in the figure
correspond to this choice.

Figure 5 shows that the true FDP can significantly exceed the nominal level, a less com-
forting result than (28). Note that Theorem 1 covers the case qmin = 0 and gives a bound
on the quantile of the FDP, so the corrections we introduce should be compared to the left-
most point of the red dashed curve in Figure 5. On the other hand, this figure does show
that the less we allow ourselves to explore, the smaller a price needs to be paid. We see this
from the monotonically decreasing trend of the curves as a function of qmin, and from the
fact that the set Q0 ⊆ [0.01,1] results in smaller factors than [0.01,1]. Deriving theoretical
bounds for FDP under these kinds of limitations on exploration is an interesting direction for
future work. Nevertheless, even when we restrict exploration in the above ways, we see it is
dangerous to take the nominal FDR level at face value as suggested by statement (28).

We note in passing that there has also been work on providing confidence envelopes such
that the bound (27) holds asymptotically (for all t) as n → ∞, for example, by Genovese and
Wasserman (2004) and Meinshausen and Rice (2006). However, we do not review these here
for the sake of brevity.

5.2. Preordered setting. Next, we consider the preordered setting (fixing π(j) = j with-
out loss of generality). Here, we fix the number of non-nulls at |H1| = 100 and instead vary
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FIG. 6. Comparing the proposed FDP bound with the GS bound based on Simes or Fisher local tests in the
preordered setting. The 1 − α quantile of the true FDP is also shown. The panels correspond to the three signal
strengths and degrees to which nonnulls occur near the beginning of the ordering. Nonnulls are shown in the rug
plots at the bottom of each panel. The proposed bounds leverage the ordering information to boost power.

the degree to which the nonnulls tend to occur near the beginning of the ordering. We sam-
ple the nonnulls without replacement from [n] according to a distribution with probabil-
ity mass function proportional to the density of an exponential random variable with rate
θ/n. The greater θ is, the more informative the ordering is. We consider θ = 15,35,55
(weak, medium, and strong ordering) and µ = 2,3,4 (weak, medium and strong signal, as
before). Here, the DKW and Robbins bounds are not applicable, so we only compare to GS-
Simes and GS-Fisher. We apply our bound based on V̂preorder-acc, with accumulation function

h(p) = 1
1−λI (p > λ) with λ = 0.1. We use the definition (2.) of FDPB

preorder-acc.
Figure 6 shows the results. We see that the proposed bound effectively leverages the or-

dering information to obtain tighter FDP bounds than the GS-based methods. Predictably, the
stronger the ordering information, the greater the advantage of our bound. Consistent with the
previous simulation, GS-Simes outperforms GS-Fisher; the latter bound is nearly trivial for
all simulation settings. Of course, an interesting direction of future work is to derive tighter
GS-style bounds for settings with prior information.

5.3. The effect of correlation. Finally, note that all our FDP bounds rely on some notion
of independence among the p-values. Many of the FDR procedures considered here also only
have guarantees under independence, though BH is a notable exception. Aside from online
testing applications, independent p-values are hard to come by in practice, so more robust
guarantees are necessary. BH is known to control FDR under the PRDS criterion (Benjamini
and Yekutieli (2001)), a form of positive dependence that contains no information about the
strength of the dependence. However, it is known that while the mean of FDP might not
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FIG. 7. The extent to which FDP can exceed FDP for the proposed bounds under p-value correlation, generated
from an AR(1) model parameterized by ρ. The bounds are more tolerant of negative than positive correlation.

change much as dependence increases, the variance of the FDP will increase (Owen (2005),
Efron (2010)). Hence, high-probability bounds on FDP under dependence are likely to use
criteria other than PRDS to capture this dependence.

In this section, we use simulations to examine the extent to which our bounds continue to
hold in the presence of p-value correlation. To model correlation, we draw the test statistics
Xj from an AR(1) process parameterized by correlation ρ = −0.9,−0.8, . . . ,0.8,0.9. We
consider four representative settings: the sorted setting from Theorem 1 and Section 5.1, the
preordered setting with p∗ = 1 from Theorem 2, part 1 and Section 5.2, the preordered setting
with p∗ = λ = 0.1 from Theorem 2, part 2, and the online setting with αj = 0.05 for all j
from Theorem 4, part 1. For each setting and each value of ρ, we compute the 1 − α quantile
of maxk FDP(Rk)/FDP(Rk), the maximum extent to which FDP can exceed our bound. We
operate under the global null, since this is the worst case scenario.

Figure 7 shows the simulation results. Reassuringly, all curves pass through 1 at ρ = 0,
the independent case covered by our theorems. We see that different bounds have different
tolerances for correlation, but negative correlation is tolerated better than positive correlation.
All bounds continue to hold for ρ ∈ [−0.7,0.1]. The bound in the sorted setting is particularly
robust, continuing to be valid for ρ ∈ [−0.7,0.6]. Nevertheless, it is not surprising that all the
bounds are no longer valid once the correlation becomes strong enough. Indeed, under strong
correlations the variability of the FDP necessitates more conservative bounds. We leave the
extension of our results to the correlated setting for future work.

6. Conclusion. In this paper, we establish a novel bridge between the realms of FDR
control and simultaneous FDP control. While FDR procedures rely on estimates of the FDP
to choose one rejection set from a path, we repurpose these estimates to obtain closed form
simultaneous bounds on the FDP that are valid across the entire path with high probabil-
ity. These novel bounds allow for the kind of simultaneous inference proposed by Goeman
and Solari (2011), where users can obtain FDP bounds on rejection sets they choose after
exploring the data. They offer added versatility, applying in the structured, regression and
online settings; in Section 5, we found that our bounds effectively leverage side information
to boost power.

Like any other simultaneous inference methodology, the bounds we provide must neces-
sarily be conservative at certain points along the path. This reflects the fundamental trade-off
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between exploration and inference: allowing more flexibility to explore necessitates conser-
vative corrections for inference to remain valid. In applications where analytical flexibility
is important, however, this price may be worth paying. By augmenting the recent knockoffs
analysis of the UK Biobank data set (Sesia et al. (2019)) with simultaneous FDP bounds, we
saw in Section 2 how much extra freedom we gained to find a biologically meaningful set
of associations between genomic regions and human traits. While there might be a price in
power as compared to the usual FDR analysis for other datasets, for this real-world dataset
we still obtained meaningful FDP bounds for large rejection sets. Having said that, we do
not necessarily advocate for employing simultaneous inference in all situations; indeed, FDR
or FDX control at prespecified levels may well be the right analysis choice in a variety of
applications.

Figure 5 illustrates the aforementioned trade-off between exploration and inference, and
suggests that restricting the collection of rejection sets allowed to be explored can reduce
the price paid for exploration. Studying this trade-off may lead to interesting future work.
In addition to the fact that scientists may in practice explore fewer rejection sets than the
guarantee covers, the rejection set they ultimately choose is likely not going to be the worst
one in terms of FDP. Therefore, the worst-case bounds considered in this paper have this
inherent degree of looseness. However, this looseness seems difficult or impossible to address
theoretically.

Recently, Goeman, Hemerik and Solari (2019) explored the question of optimality among
simultaneous inference procedures, proposing a natural admissibility criterion. In addition,
these authors proved that only closed testing procedures, that is, those of the kind proposed
by Goeman and Solari (2011), are admissible. Given any simultaneous inference procedure,
like those proposed here, they showed how to improve the procedure by “closing” it. From
this perspective, our results can be viewed as building blocks from which to construct more
sophisticated closed testing based procedures. It is not always the case that a closed testing
procedure can be implemented in polynomial time, however, so it is still not clear which
simultaneous bounds are dominated by other computationally efficient bounds.

Our results may be employed in other contexts as well. When multiple groupings of hy-
potheses are of interest, as considered previously by Barber and Ramdas (2017), Katsevich
and Sabatti (2019), Ramdas et al. (2019), our results can give simultaneous FDP bounds with
respect to each grouping. As pointed out to us by a referee, our bounds may also be used to
construct new tests of the global null. Moreover, following Meinshausen and Rice (2006), our
uniform bounds can also be used to estimate the null proportion among a set of hypotheses.
Exploring these consequences of the proposed bounds is an interesting direction for future
work.

Finally, the proof technique we developed in this paper is versatile enough to cover a large
portion of the currently available FDR procedures. Importantly, this includes the knockoffs
procedure for variable selection in high dimensions. Like Genovese and Wasserman (2004),
we employ a stochastic process approach to analyze the FDP. However, while GW’s bounds
are asymptotic, we have used martingale arguments instead to obtain tight, nonasymptotic
bounds. Perhaps these proof techniques may be extended further to apply to other multiple
testing scenarios as well.
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portion in structured, regression and online settings” (DOI: 10.1214/19-AOS1938SUPP;
.pdf). Proofs of all theorems.
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