
Systems & Control Letters 153 (2021) 104948

a
J
a

b

R
R
A
A

s
h

X

w

J

H
t

(

a

S

S

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Non-equivalence of stochastic optimal control problemswith open
nd closed loop controls
iongmin Yong a,1,2, Jianfeng Zhang b,∗,1,3

Department of Mathematics, University of Central Florida, Orlando, FL 32816, United States of America
Department of Mathematics, University of Southern California, Los Angeles, CA 90089, United States of America

a r t i c l e i n f o

Article history:
eceived 26 December 2020
eceived in revised form 7 March 2021
ccepted 16 April 2021
vailable online xxxx

Keywords:
Stochastic optimal control
Open-loop controls
Closed-loop controls

a b s t r a c t

For an optimal control problem of an Itô’s type stochastic differential equation, the control process
could be taken in open-loop or closed-loop forms. In the standard literature, provided appropriate
regularity, the value functions under these two types of controls are equal and are the unique
(viscosity) solution to the corresponding (path-dependent) HJB equation. In this short note, we provide
a counterexample in the path dependent setting showing that these value functions can be different
in general.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Consider the following controlled Itô’s type path dependent
tochastic differential equation (SDE, for short) over a finite time
orizon [0, T ]:

t = x0 +

∫ t

0
b(s, X[0,s], αs)ds +

∫ t

0
σ (s, X[0,s], αs)dBs, t ∈ [0, T ];

(1.1)

ith utility functional

(α) := E
[
g(X[0,T ])

]
. (1.2)

ere B is a d-dimensional standard Brownian motion; the con-
rolled state process Xt takes values in Rn; X[0,s] refers to the
path of X on [0, s]; the coefficients b, σ , g are deterministic
measurable functions with appropriate dimensions, in particular
g is scalar valued; the admissible control α ∈ A takes values
in a subset A of some Euclidean space; and we shall leave the
issue of existence and/or uniqueness of the state for (1.1) to later
discussions. The optimal value, or simply the value, of the control
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problem is defined as:

V0 := sup
α∈A

J(α), (1.3)

and we call α∗
∈ A an optimal control if J(α∗) = V0.

The value V0 obviously relies on the choice of the admissible
control set A. Depending on the observed information in appli-
cations, among others, the control process αt could be taken as
the so-called open-loop or closed-loop form. An open-loop control,
denoted as α ∈ Ao, is such that α is FB-progressively measurable,
while a closed-loop control, denoted as α ∈ Ac , is required
to be FX -progressively measurable. Here FB,FX are the natural
filtration generated by B and X , respectively. We may define the
values of the control problem accordingly:

V0
◦

:= sup
α∈Ao

J(α), V c
0 := sup

α∈Ac
J(α). (1.4)

A natural question is: do we have

V o
0 = V c

0 ? (1.5)

We remark that, typically it is more convenient to use strong for-
mulation for open-loop controls and weak formulation for closed-
loop controls, see Remark 2.2.

In the state dependent setting: for x ∈ C([0, T ];Rn),

b(t, x, a) = b(t, xt , a), σ (t, x, a) = σ (t, xt , a), g(x) = g(xT ),
(1.6)

the standard literature provides a positive answer to (1.5) by us-

ing the PDE approach, see e.g. Fleming–Soner [1] and Yong–Zhou
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2]. Consider the following HJB equation:

∂tv(t, x) + H(t, x, ∂xv(t, x), ∂2
xxv(t, x)) = 0, v(T , x) = g(x),

where H(t, x, z, γ ) := sup
a∈A

[1
2
tr

[
γ σσ⊤(t, x, a)

]
+ zb(t, x, a)

]
.

(1.7)

ere (t, x, z, γ ) ∈ [0, T ]×Rn
×R1×n

×Sn, with Sn being the set of
all n×n symmetric matrices. Then, provided that the coefficients
b, σ , g have appropriate regularity and the HJB equation has a
unique continuous viscosity solution v, we have,

V o
0 = V c

0 = v(0, x0). (1.8)

oreover, v(t, x) is the optimal value of the control problem over
t, T ] with initial value Xt = x. The main tool for this result is
he dynamic programming principle (DPP for short), from which
e see that the dynamic value function v(t, x) (more precisely
e should introduce vo(t, x) and vc(t, x)) of the control problem
nder each type of controls is a viscosity solution of the HJB
quation and hence (1.8) follows from the uniqueness of the

viscosity solution.
The above result remains true in the general path dependent

setting (1.1)–(1.2). In this case, (1.7) becomes a path dependent
HJB equation, or more generally a path dependent PDE, with the
same Hamiltonian H:

∂tv(t, x)+H(t, x, ∂xv(t, x), ∂2
xxv(t, x)) = 0; v(T , x) = g(x). (1.9)

Here ∂tv, ∂xv, ∂2
xxv are the path derivatives of Dupire [3]. When

Eq. (1.9) has a unique continuous viscosity solution, then (1.8)
still holds true. We refer to Zhang [4, Part III] for more details of
the pathwise stochastic analysis and viscosity solutions of path
dependent PDEs.

We emphasize that the above arguments require the dynam-
ic value function v(t, x) or v(t, x) to be continuous. When v(t, x)
is discontinuous, although there are some nice works on discon-
tinuous viscosity solutions, see e.g. Barles–Perthame [5], Barron–
Jensen [6], Bertsch–Dal Passo–Ughi [7], Bardi–Capuzzo–Dolcetta
[8], Chen–Su [9], and Bertsch–Smarrazzo–Terracina–Tesei [10],
the theory is far from complete; especially the general uniqueness
issue for the discontinuous viscosity solutions to the second order
equations is still open. Consequently, we are not able to conclude
(1.8) or (1.5) from the viscosity solution approach if the value
function is discontinuous.

Our main purpose of this short note is to construct a coun-
terexample which shows that (1.5) can indeed fail. This implies
that, besides the practical consideration in terms of the available
information, mathematically it is also crucial to choose the right
type of controls, especially when the value function is discontin-
uous. For applications of discontinuous value functions, we refer
to [8] and references cited therein. We shall remark that, for
stochastic differential games, even with the desired regularity, the
game values can still be very sensitive to the choice of admissible
controls, see e.g. Feinstein–Rudloff–Zhang [11], Possamai–Touzi–
Zhang [12], and Sun–Yong [13]. We also remark that, our analysis
of the values does not depend on the existence of optimal con-
trols. Another important consequence of the failure of (1.5) is that
an (approximately) optimal control among one type of admissi-
ble controls is not necessarily (approximately) optimal anymore
among the other type of admissible controls.

Our counterexample is constructed based on the well-known
example of Tsirelson [14], which is path dependent. Note that
for the state dependent case, if a second order HJB equation
is uniformly non-degenerate with continuous Hamiltonian, then,
even if the terminal condition is discontinuous, the value function
will become continuous for t < T because the diffusion term has
some effect of regularization. This is not true anymore in the path
2

dependent case, because the regularization requires some time
to take effect while the discontinuity from the terminal payoff
function could be present at any time in this case.

Our counterexample is constructed in Section 3. In Section 2
we formulate the problems rigorously, and in Section 4 we provi-
de some brief discussions on the relationship between V o

0 and V c
0 .

2. The problem formulations

We first formulate the problems rigorously in the path depen-
dent setting. While the counterexample will be in a simpler set-
ting, the general formulation may clarify the concepts for non-
experts and will also put the counterexample in the right per-
spective. Denote Xn := C([0, T ];Rn), equipped with the uniform
norm: ∥x∥ := sup0⩽t⩽T |xt | for all x ∈ Xn. Let A ⊆ Rm be a proper
set for the possible values of admissible controls. Consider the
path dependent SDE (1.1) with coefficients (b, σ ) : [0, T ] × Xn ×

A → (Rn,Rn×d) and g : Xn → R. Throughout the paper, the
following assumptions will always be in force:

•b, σ , g are bounded (for simplicity) and progressively mea-
surable in all variables;

•b, σ are adapted in x in the sense that, for ϕ = b, σ , ϕ(t, x,
a) = ϕ(t, x[0,t], a).

We say the system is state dependent if (1.6) holds.
For a filtered probability space (Ω,F,F,P) and a generic

measurable space E, let L0(F,P; E) denote the set of E-valued pro-
cesses progressively measurable with respect to the P-augmented
filtration of F. When P and/or E are clear, we may omit them and
simply denote the set as L0(F). Moreover, let FB,FX denote the
natural filtration generated by the Brownian motion B and the
state process X , respectively.

Definition 2.1. (i) A weak solution of the path dependent SDE (1.1)
consists of a filtered probability space (Ω,F,F,P) and a triplet
of processes (B, X, α) ∈ L0(F,P;Rd

× Rn
× A) such that B is a

Brownian motion under P and (1.1) holds true P-a.s.
(ii) A weak solution is called a strong solution if X and α are

FB-progressively measurable. ■

In this paper we do not discuss the existence and uniquene-
ss of weak solutions, which requires further conditions on b, σ .
Instead, we shall always assume the following very mild assump-
tion:

• for any piecewise constant control αt valued in A, SDE (1.1)
admits a weak solution.

We now introduce the optimal values under open-loop and
closed-loop controls, respectively:

V o
0 := sup

{
EP

[g(X·)] : all weak solutions of (1.1) such that α ∈ L0(FB)
}
;

V c
0 := sup

{
EP

[g(X·)] : all weak solutions of (1.1) such that α ∈ L0(FX )
}
.

(2.1)

Remark 2.2. (i) For open-loop controls, under the stronger con-
ditions that b and σ are uniformly Lipschitz continuous in x ∈

Xn, one typically uses the strong formulation. That is, we fix a
probability space (Ω,F,P) and a Brownian motion B on it. Then
for any open-loop control α ∈ L0(FB), the SDE (1.1) admits a
unique strong solution X ∈ L0(FB).

(ii) For closed-loop controls, it is more convenient to use weak
formulation. That is, we fix the canonical space Ω := Xd+n, the
canonical processes (B, X), and set F := {Ft}0⩽t⩽T := FB,X , F :=

FT . Then for any closed-loop control α ∈ L0(FX ), a weak solution
is mainly a probability P on the canonical space Xd+n. We remark
that, for given α, there might be multiple (or no) P corresponding
to α.
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(iii) For closed-loop controls, since the utility EP
[g(X·)] in-

volves only the P-distribution of X , it is quite often that we
consider instead the canonical space Ω := Xn with canonical
process X , especially when σ is non-degenerate and hence B is
FX -progressively measurable under P. ■

Remark 2.3. The closed-loop control case actually includes more
general situations, by increasing the dimension of the state pro-
cess X when needed.

(i) For the case b = b(t, B, X, a), σ = σ (t, B, X, a), g = g(B, X)
and/or αt = αt (B, X) depend on both B and X , we can set X̃ :=

(B, X) and consider the SDE in the form of (1.1):

dX̃t =

[
0

b(t, X̃, αt )

]
dt +

[
Id

σ (t, X̃, αt )

]
dBt . (2.2)

We shall remark though, in this case the coefficients b, σ , g are
typically discontinuous in the B-component of X̃ , and the PDE
(1.7) or PPDE (1.9) is always degenerate. Both features could
contribute to the possible discontinuity of the value function.

(ii) If we allow α to be in L0(F) for the general F in
Definition 2.1, we may still view α as a closed-loop control by
considering a further enlarged state process X̂ := (X̃, Γ ) :=

(B, X, Γ ):

dX̂t =

⎡⎣ 0
b(t, X̃, αt )

αt

⎤⎦ dt +

⎡⎣ Id
σ (t, X̃, αt )

0

⎤⎦ dBt , (2.3)

where Γt =
∫ t
0 αrdr . Note that in this case α is always in L0(FΓ ),

and hence in L0(FX̂ ). ■

Remark 2.4. In this remark we discuss some standard appro-
aches in the literature. These approaches require appropriate
regularity conditions, which we want to avoid in this paper.

(i) For both open-loop and closed-loop controls, under appro-
priate regularity conditions, the dynamic value functions vo(t, x)
and vc(t, x) would satisfy the dynamic programming principle,
which leads to the PPDE (1.9). When (1.9) has a unique con-
tinuous viscosity solution, we have vo(t, x) = vc(t, x) and in
particular V o

0 = V c
0 . Moreover, from the Hamiltonian, one can

construct naturally an (approximate) optimal control which is
closed-loop. In particular, even for the open-loop control problem
in (2.1), we have closed-loop (approximate) optimal controls.

(ii) Under sufficient regularity of the coefficients, any opti-
mal open-loop control (if it exists) would satisfy the stochastic
maximum principle, a Pontryagin type maximum principle, see
Peng [15] or Yong–Zhou [2]. This method is not convenient
for closed-loop control though, because it involves differentia-
tion of the closed-loop controls α(t, x) with respect to x. Nev-
ertheless, the optimal open-loop control α∗(t, B[0,t]) obtained
from the stochastic maximum principle may turn out to be FX -
progressively measurable, and in this case we also obtain the
optimal closed-loop control α̃∗(t, x) determined by: α̃∗(t, X[0,t]) =

α∗(t, B[0,t]), P-a.s. ■

3. A counterexample

In this section we construct a counterexample that V o
0 and V c

0
are indeed not equal. We first recall the following well-known
result of Tsirelson [14].

Lemma 3.1. Let t0 := T and, for k = −1, −2, · · ·, tk ↓ 0 as k
→ −∞. Define

θ (x) := x − [x] ∀x ∈ R; [x] is the greatest integer no more than x,

µ(t, x) := θ

( xtk − xtk−1
)
, x ∈ X1, t ∈ [tk, tk+1), k ⩽ −1.
tk − tk−1

3

(3.1)

Then the following SDE has no strong solution:

Xt =

∫ t

0
µ(s, X·)ds + Bt . (3.2)

We note that there is a typo in the statement of [14, Theorem].
In the definition of the coefficient A there (our µ here), the
domain t ∈ [tk, tk−1) should be t ∈ [tk, tk+1) as in (3.1).

We shall construct the counterexample in the setting of
Remark 2.3(i). Set n = d = 1, so the X̃ in (2.2) is two dimensional.
We will use the notation x̃ = (ω, x) ∈ X2, where ω and x refer to
the paths of B and X , respectively.

Example 3.2. Let A := [0, 1], x0 = 0, b(t, x̃, a) := a, σ (t, x̃, a) :=

1, for (t, x̃, a) ∈ [0, T ] × X2 × A, namely SDE (1.1) (or say, the
second equation of (2.2)) becomes:

Xt =

∫ t

0
αsds + Bt . (3.3)

Moreover, g(x̃) := 1D(x̃), where, for x̃ = (ω, x) ∈ X2,

α∗(t, x̃) := 0 ∨

[
lim sup

h→0

(x − ω)t − (x − ω)(t−h)+

h

]
∧ 1,

D :=

{
x̃ ∈ X2 :

∫ T

0
|α∗(t, x̃) − µ(t, x)|dt = 0

}
.

(3.4)

Then V o
0 = 0 < 1 = V c

0 .

Proof. We first prove V c
0 = 1. Since g ⩽ 1, it is clear that V c

0 ⩽ 1.
Next, by Girsanov theorem, SDE (3.2) has a unique (in law) weak
solution (Ω,F,P, B, X). Denote X̃ := (B, X) as usual and consider
the closed-loop control αt := µ(t, X), which is obviously FX -
progressively measurable. Note that µ takes values in [0, 1]. Then
(Ω,F,FX̃ ,P, B, X, α) is a weak solution to SDE (3.3) in the sense
of Definition 2.1 and α ∈ L0(FX̃ ). Therefore, V c

0 ⩾ EP
[g(X̃)] =

P(X̃ ∈ D). By (3.2), it is clear that

lim sup
h→0

(X − B)t − (X − B)(t−h)+

h

= lim sup
h→0

1
h

∫ t

(t−h)+
µ(s, X·)ds = µ(t, X·), dt × dP-a.s.

Then

α∗(t, X̃t ) = µ(t, Xt ), dt × dP-a.s., and thus X̃ ∈ D, P-a.s.

This implies V c
0 ⩾ P(X̃ ∈ D) = 1, and therefore, V c

0 = 1.
It remains to show that V o

0 = 0. Let (Ω,F,F,P, B, X, α) be
an arbitrary weak solution to SDE (3.3) with open-loop control
α ∈ L0(FB). Note that in this case X ∈ L0(FB) is a strong solution,
then X̃ ∈ L0(FB

;R2). For the tk in Lemma 3.1, introduce:

Ek :=

{∫ tk

0
|αt − µ(t, X)|dt = 0

}
, k ⩽ −1, E∞ := lim

k→−∞

Ek.

(3.5)

Note that Ek ↑ E∞ as k → −∞. Clearly Ek ∈ FB
tk , then by the

Blumenthal 0-1 law we have P(E∞) = 0 or 1. If P(E∞) = 0, since
{X̃ ∈ D} = E0 ⊂ E∞, then EP

[g(X̃)] = P(X̃ ∈ D) = 0, which
is the desired equality we want. So from now on we assume by
contradiction that P(E∞) = 1.

For each k ⩽ −1, introduce αk, Xk
∈ L0(FB) as follows:

αk
t := αt , t ∈ [0, tk); αk

t := θ

(Bti − Bti−1 +
∫ ti
ti−1

αk
s ds

ti − ti−1

)
, t ∈ [ti, ti+1),

i = k, · · · , −1;

Xk
:=

∫ t

αk
s ds + Bs.
0



J. Yong and J. Zhang Systems & Control Letters 153 (2021) 104948

N

α

N
X
a

(

T
t
(
t

α

α

d
[

h
s
0
V

R
q

p
t
t
t

n
o
t
s

4

r
v
s
m
t
m
w

P
t
V

P
(
p
t

T
E

w

P
(
R

(

S
e

b

M
t
Q
m

X

T
t
b

a
d
a

P
⩽

c

b

P
(
F

B

(3.6)

ote that, for i < k,

t = µ(t, X) = θ

(Bti − Bti−1 +
∫ ti
ti−1

αsds

ti − ti−1

)
, dt×dP-a.s. on [ti, ti+1)×Ek.

(3.7)

ow for n < k, since Ek is increasing as k → −∞, clearly (αn
t ,

n
t ) = (αk

t , X
k
t ) = (αt , Xt ) for t ⩽ tn, and for i = n, · · · , k − 1, by

pplying (3.6) for n and (3.7) for k we see that

αn
t , X

n
t ) = (αk

t , X
k
t ), αk

t = µ(t, Xk), on [ti, ti+1) × Ek. (3.8)

hen by applying (3.6) for both n and k and recalling (3.1) we see
hat (3.8) holds on [ti, ti+1)×Ek for i = k, · · · , −1 as well. That is,
3.8) holds dt × dP-a.s. on [0, T ] × Ek for all n ⩽ k. In particular,
his implies the following limits exist:

ˆ := lim
k→−∞

αk
∈ L0(FB), X̂ := lim

k→−∞

Xk
∈ L0(FB), dt × dP-a.s.

(3.9)

Then, by (3.6) we have

ˆ t = µ(t, X̂), X̂t =

∫ t

0
α̂sds + Bt , (3.10)

t × dP-a.s. on [0, T ] × Ek for each k, and thus dt × dP-a.s. on
0, T ] × E∞. By the assumption P(E∞) = 1, we see that (3.10)
olds dt × dP-a.s. on [0, T ] × Ω . This implies that X̂ is a strong
olution of SDE (3.2), which is a desired contradiction. So P(E∞) =

for all weak solutions with open-loop controls, and therefore
o
0 = 0. ■

emark 3.3. In this remark we present some related interesting
uestions we would like to explore in the future research.
(i) The above counterexample relies heavily on the path de-

endence of the terminal condition g , and control only enters in
he drift. Is it possible to construct a counterexample such that all
he coefficients are state dependent, and/or the control appears in
he diffusion as well?

(ii) Regardless of whether the open-loop and closed-loop dy-
amic value functions are equal or not, they might be discontinu-
us in general. Is it possible to establish the connection between
hese value functions and the so-called discontinuous viscosity
olutions of the HJB equations? ■

. Some further discussions

In this section we provide some further discussions on the
elationship between V o

0 and V c
0 in general setting, without in-

oking the viscosity solution approach. The arguments are rather
tandard and the conditions are restrictive in some aspects. Our
ain point is that these results do not require the continuity of

he coefficients, especially g . It will be very interesting to explore
ore general results when we lose the desired regularity, which
e leave to future research.

roposition 4.1. Assume n = d, σ takes values in Sn and is posi-
ive definite, and b = b(t, x) does not depend on α. Then we have
o
0 ⩽ V c

0 .

roof. Let (Ω,F,F,P, B, X, α) be an arbitrary weak solution of
1.1) such that α ∈ L0(FB). Note that the quadratic variation
rocess ⟨X⟩ is in L0(FX

; Sn), then so is σ (t, X, αt ) =
( d
dt ⟨X⟩t

) 1
2 ,

hanks to the assumption that σ is positive definite. Note that

dBt = σ−1(t, X, αt )[dXt − b(t, X)dt] =

( d
⟨X⟩t

)−
1
2
[dXt − b(t, X)dt].
dt
4

hen B ∈ L0(FX ) and thus α ∈ L0(FB) ⊆ L0(FX ). This implies
P
[g(X)] ⩽ V c

0 , hence V o
0 ⩽ V c

0 . ■

Following Krylov [16], Gyongy [17], and Brunick–Shreve [18],
e have the following result in the state dependent case.

roposition 4.2. Assume b, σ , g are state dependent, and for any
t, x) ∈ [0, T ] × Rn, the set

{(
b(t, x, a), σσ⊤(t, x, a)

)
: a ∈ A

}
⊂

n
× Rn×d is convex. Then V o

0 ⩽ V c
0 .

Proof. Note that we allow σ to be degenerate. By increasing the
dimension of either B or X to n∨ d, if necessary, we may assume
without loss of generality that n = d.

Let (Ω,F,F,P, B, X, α) be an arbitrary weak solution of SDE
1.1) in the state dependent setting such that α ∈ L0(FB). By
setting Y := X − x0 and Z := X in [18, Theorem 3.6], we have

(i) there exists a measurable function (b̂, σ̂ ) : [0, T ] × Rn
→

Rn
× Sn such that

b̂(t, Xt ) = EP[b(t, Xt , αt )|Xt
]
, σ̂ 2(t, Xt ) = EP[σσ⊤(t, Xt , αt )|Xt

]
;

(4.1)

(ii) there exist a probability space (Ω̂, F̂, P̂), a Brownian mo-
tion B̂, and a process X̂ such that

X̂t = x0 +

∫ t

0
b̂(s, X̂s)ds +

∫ t

0
σ̂ (s, X̂s)dB̂s, P̂-a.s. (4.2)

(iii) for any t , the P̂-distribution of X̂t is equal to the P-distri-
bution of Xt .

ince {(b(t, x, a), σσ⊤(t, x, a)) : a ∈ A} is convex, by (4.1) there
xists a measurable mapping α̂ : [0, T ] × Rn

→ A such that

ˆ(t, Xt ) = b(t, Xt , α̂(t, Xt )), σ̂ 2(t, Xt ) = σσ⊤(t, Xt , α̂(t, Xt )).
(4.3)

oreover, there exists a mapping Q : [0, T ] × Rn
→ Rn×n such

hat Q (t, x) is an orthogonal matrix and σ̂ (t, x) = σ (t, x, α̂(t, x))
(t, x). Denote B̃t :=

∫ t
0 Q (s, X̂s)dB̂s, which is still a P̂-Brownian

otion. Then (4.2) and (4.3) imply

ˆt = x0 +

∫ t

0
b(s, X̂s, α̂(s, X̂s))ds+

∫ t

0
σ (s, X̂s, α̂(s, X̂s))dB̃s, P̂-a.s.

his means that (Ω̂, F̂,FB̂,X̂ , P̂) and (B̃, X̂, α̂(X̂)) is a weak solution
o (1.1) and α̂(X̂) ∈ L0(FX̂ , P̂), and thus EP̂

[g(X̂T )] ⩽ V c
0 . Finally,

y (iii) we have EP
[g(XT )] = EP̂

[g(X̂T )] ⩽ V c
0 . ■

We remark that, in (iii) above, only the marginal distributions
re equal. In general the P̂ (joint) distribution of the process X̂[0,T ]

oes not coincide with the P distribution of X[0,T ], so we are not
ble to extend these arguments to the path dependent case.

roposition 4.3. Under the following two conditions we have V c
0

V o
0 :
(i) σ = σ (t, x) does not depend on α and is uniformly Lipschitz

ontinuous in x;
(ii) b = σλ where the function λ : [0, T ] × Xn × A → Rd is

ounded, continuous in a, and uniformly Lipschitz continuous in x.

roof. Let (Ω,F,F,P, B, X, α) be an arbitrary weak solution of
1.1) such that α ∈ L0(FX ). It suffices to show that EP

[g(X·)] ⩽ V o
0 .

or this purpose, we denote

α
t := Bt +

∫ t

λ(s, X·, αs)ds,
dPα

:= Mα
T := e−

∫ T
0 λ(s,X·,αs)dBs− 1

2
∫ T
0 |λ(s,X·,αs)|2ds.
0 dP
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y Girsanov Theorem, we know that Pα
∼ P (meaning that they

re equivalent) and Bα is a Pα-Brownian motion. Note that

t = x0 +

∫ t

0
σ (s, X)dBα

s . (4.4)

ix a probability space (Ω0,F0,P0) and a Brownian motion B0 on
t. Under (i) the SDE

0
t = x0 +

∫ t

0
σ (s, X0

·
)dB0

s , P0-a.s. (4.5)

as a unique strong solution X0. Now compare (4.4) and (4.5)
we see that the Pα-distribution of (Bα, X) is equal to the P0-
distribution of (B0, X0). Since α ∈ L0(FX ,P), we may write it as
α(t, X·). Then

EP
[g(X·)] = EPα [

(Mα
T )

−1g(X·)
]

= EP0 [Nα
T g(X

0
·
)
]
,

where Nα
T := exp

(∫ T

0
λ(s, X0

·
, α(s, X0))dB0

s −
1
2

∫ T

0
|λ(s, X0

·
, α(s, X0))|

2
ds

)
.

(4.6)

For fixed P0, there exist piecewise constant processes αn(t, X0)
=

∑n−1
i=0 αn(ti, X0)1[ti,ti+1)(t) such that limn→∞ EP0

[∫ T
0 |αn(t, X0)−

α(t, X0)|2dt
]

= 0. Then by (ii) one can easily show that

lim
n→∞

EP0[
|Nαn

T − Nα
T |

2]
= 0, and hence lim

n→∞
EP0[Nαn

T g(X0
·
)
]

= EP0[Nα
T g(X

0
·
)
]
. (4.7)

For each n, by the Girsanov theorem we have EP0
[
Nαn

T g(X0
·
)
]

=

EPn
[
g(X0)

]
, where Pn

∼ P0 is a probability measure, Bn
t := B0

t −
t
0 λ(s, X0, αn(s, X0))ds is an Pn-Brownian motion, and

X0
t = x0 +

∫ t

0
b(s, X0, αn(s, X0))ds +

∫ t

0
σ (s, X0)dBn

s .

ince αn is piecewise constant, and b, σ are uniformly Lipschitz
ontinuous in x, by induction on i one can easily show that FX0

⊂
Bn , where the augmentation is under P0 and equivalently under
n. Then αn(t, X0) ∈ L0(FBn ,P0), namely is an open-loop control.
his implies that EP0

[
Nαn

T g(X0
·
)
]

= EPn
[
g(X0)

]
⩽ V o

0 . Then by (4.6)
nd (4.7) we have EP

[g(X·)] = EP0
[
Nα
T g(X

0
·
)
]
⩽ V o

0 , and therefore
c
0 ⩽ V o

0 . ■

Note again that in the above proof, we may allow g to be
iscontinuous. Combine Propositions 4.2 and 4.3, we immediately
ave the following.

orollary 4.4. Assume b, σ , g are state dependent, and
(i) σ = σ (t, x) does not depend on α and is uniformly Lipschitz

ontinuous in x;
(ii) b = σλ where the function λ : [0, T ] × Rn

× A → Rd is
ounded, continuous in a, uniformly Lipschitz continuous in x, and
he set {λ(t, x, a) : a ∈ A} ⊂ Rd is convex.

Then V o
0 = V c

0 .
5

emark 4.5. Under the conditions in Corollary 4.4, obviously
he dynamic value functions for the control problem on [t, T ]

ith initial value x are also equal: vo(t, x) = vc(t, x) =: v(t, x).
owever, we emphasize here that g can be discontinuous and
can be degenerate, then v might be discontinuous. One trivial

xample is: b = 0, σ = 0, then v(t, x) = g(x) for all t , which will
e discontinuous if g is so. ■

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

[1] W.H. Fleming, H.M. Soner, Controlled Markov Processes and Viscosity
Solutions, Springer-Verlag, New York, 1992.

[2] J. Yong, X.Y. Zhou, Stochastic Control: Hamiltonian Systems and HJB
Equations, Springer-Verlag, New York, 1999.

[3] B. Dupire, Functional Itô calculus, Quant. Finance 19 (2019) 721–729.
[4] J. Zhang, Backward Stochastic Differential Equations: From Linear to Fully

Nonlinear Theory, Springer, 2017.
[5] G. Barles, B. Perthame, Discontinuous solutions of deterministic optimal

stopping time problems, Math. Modelling Numer. Anal. 21 (1987) 557–579.
[6] E.N. Barron, R. Jensen, Semicontinuous viscosity solutions for Hamilton–

Jacobi equations with convex hamiltonian, Comm. Partial Differential
Equations 15 (1990) 1713–1742.

[7] M. Bertsch, R. Dal Passo, M. Ughi, Discontinuous viscosity solutions of a
degenerate parabolic equation, Trans. AMS 320 (1990) 779–798.

[8] M. Bardi, I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of
Hamilton–Jacobi-Bellman Equations, Springer, 1997.

[9] G.-Q. Chen, B. Su, Discontinuous solutions for Hamiltonian–Jacobi equa-
tions: uniqueness and regularity, Discrete Contin. Dyn. Syst. 9 (2003)
167–192.

[10] M. Bertsch, F. Smarrazzo, A. Terracina, A. Tesei, Discontinuous viscosity
solutions of first order Hamilton–Jacobi equations, preprint, arXiv:1906.
05625.

[11] Z. Feinstein, B. Rudloff, J. Zhang, Dynamic set values for nonzero sum
games with multiple equilibriums, Math. Oper. Res. (2021) in press, arXiv:
2002.00449.

[12] D. Possamai, N. Touzi, J. Zhang, Zero-sum path-dependent stochastic
differential games in weak formulation, Ann. Appl. Probab. 30 (2020)
1415–1457.

[13] J. Sun, J. Yong, Linear quadratic stochastic differential games: open-
loop and closed-loop saddle points, SIAM J. Control Optim. 52 (2014)
4082–4121.

[14] B. Tsirelson, An example of a stochastic differential equation having no
strong solution, Theory Probab. Appl. 20 (1975) 416–418.

[15] S. Peng, A general stochastic maximum principle for optimal control
problems, SIAM J. Control Optim. 28 (1990) 966–979.

[16] N.V. Krylov, Once more about the connection between elliptic operators
and Itô’s stochastic equations, in: Statistics and Control of Stochastic
Processes (Moscow, 1984), Optimization Software, New York, 1985, pp.
214–229.

[17] I. Gyongy, Mimicking the one-dimensional marginal distributions of pro-
cesses having an Itô differential, Probab. Theory Relat. Fields 71 (1986)
501–516.

[18] G. Brunick, S. Shreve, Mimicking an Itô process by a solution of a stochastic
differential equations, Ann. Appl. Probab. 23 (2013) 1584–1628.

http://refhub.elsevier.com/S0167-6911(21)00078-5/sb1
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb1
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb1
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb2
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb2
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb2
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb3
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb4
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb4
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb4
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb5
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb5
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb5
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb6
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb6
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb6
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb6
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb6
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb7
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb7
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb7
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb8
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb8
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb8
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb9
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb9
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb9
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb9
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb9
http://arxiv.org/abs/1906.05625
http://arxiv.org/abs/1906.05625
http://arxiv.org/abs/1906.05625
http://arxiv.org/abs/2002.00449
http://arxiv.org/abs/2002.00449
http://arxiv.org/abs/2002.00449
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb12
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb12
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb12
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb12
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb12
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb13
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb13
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb13
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb13
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb13
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb14
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb14
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb14
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb15
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb15
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb15
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb16
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb16
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb16
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb16
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb16
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb16
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb16
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb17
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb17
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb17
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb17
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb17
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb18
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb18
http://refhub.elsevier.com/S0167-6911(21)00078-5/sb18

	Non-equivalence of stochastic optimal control problems with open and closed loop controls
	Introduction
	The problem formulations
	A counterexample
	Some further discussions
	Declaration of competing interest
	References


