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Abstract

One important partition of algorithms for
controlling the false discovery rate (FDR)
in multiple testing is into o✏ine and on-
line algorithms. The first generally achieve
significantly higher power of discovery, while
the latter allow making decisions sequentially
as well as adaptively formulating hypothe-
ses based on past observations. Using exist-
ing methodology, it is unclear how one could
trade o↵ the benefits of these two broad fam-
ilies of algorithms, all the while preserving
their formal FDR guarantees. To this end,
we introduce BatchBH and BatchSt-BH, algo-
rithms for controlling the FDR when a pos-
sibly infinite sequence of batches of hypothe-
ses is tested by repeated application of one
of the most widely used o✏ine algorithms,
the Benjamini-Hochberg (BH) method or
Storey’s improvement of the BH method. We
show that our algorithms interpolate between
existing online and o✏ine methodology, thus
trading o↵ the best of both worlds.

1 INTRODUCTION

Consider the setting in which a large number of deci-
sions need to be made (e.g., hypotheses to be tested),
and one wishes to achieve some form of aggregate con-
trol over the quality of these decisions. For binary de-
cisions, a seminal line of research has cast this problem
in terms of an error metric known as the false discov-
ery rate (FDR) (Benjamini and Hochberg, 1995). The
FDR has a Bayesian flavor, conditioning on the deci-
sion to reject (i.e., conditioning on a “discovery”) and
computing the fraction of discoveries that are false.
This should be contrasted with traditional metrics—
such as sensitivity, specificity, Type I and Type II
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errors—where one conditions not on the decision but
rather on the hypothesis—whether the null or the al-
ternative is true. The scope of research on FDR con-
trol has exploded in recent years, with progress on
problems such as dependencies, domain-specific con-
straints, and contextual information.

Classical methods for FDR control are “o✏ine” or
“batch” methods, taking in a single batch of data and
outputting a set of decisions for all hypotheses at once.
This is a serious limitation in the setting of emerging
applications at planetary scale, such as A/B testing in
the IT industry (Kohavi and Longbotham, 2017), and
researchers have responded by developing a range of
online FDR control methods (Foster and Stine, 2008;
Aharoni and Rosset, 2014; Javanmard and Montanari,
2018; Ramdas et al., 2018; Tian and Ramdas, 2019).
In the online setting, a decision is made at every time
step with no knowledge of future tests, and with pos-
sibly infinitely many tests to be conducted overall. By
construction, online FDR algorithms guarantee that
the FDR is controlled during the whole sequence of
tests, and not merely at the end.

Online and o✏ine FDR methods both have their pros
and cons. Online methods allow the testing of in-
finitely many hypotheses, and require less coordina-
tion in the setting of multiple decision-makers. Also,
perhaps most importantly, they allow the scientist to
choose new hypotheses adaptively, depending on the
results of previous tests. On the other hand, o✏ine
FDR methods tend to make significantly more discov-
eries due to the fact that they have access to all test
statistics before making decisions, and not just to the
ones from past tests. That is, online methods are my-
opic, and this can lead to a loss of statistical power.
Moreover, the decisions of o✏ine algorithms are sta-
ble, in the sense that they are invariant to any im-
plicit ordering of hypotheses; this is not true of online
algorithms, whose discovery set can vary drastically
depending on the ordering of hypotheses (Foster and
Stine, 2008).

By analogy with batch and online methods in gradient-
based optimization, these considerations suggest inves-
tigating an intermediate notion of “mini-batch,” hop-
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Figure 1: Statistical power and FDR versus probabil-
ity of non-null hypotheses, ⇡1, for naively composed
BH, at batch sizes 10, 100, and 1000. The total num-
ber of hypotheses is 3000, and the target FDR is 0.05.

ing to exploit and manage some form of tradeo↵ be-
tween methods that are purely batch or purely online.

Managing such a tradeo↵ is, however, more challeng-
ing in the setting of false-discovery-rate control than
in the optimization setting. Indeed, consider a naive
approach that would run o✏ine algorithms on di↵erent
batches of hypotheses in an online fashion. Unfortu-
nately, such a method violates the assumptions behind
FDR control, yielding uncontrolled, possibly meaning-
less FDR guarantees. To illustrate this point, Fig-
ure 1 plots the performance of the Benjamini-Hochberg
(BH) algorithm (Benjamini and Hochberg, 1995), run
repeatedly under the same FDR level 0.05 on di↵erent
batches of hypotheses. We observe that the FDR can
be much higher than the nominal value.

In this paper, we develop FDR procedures which are
appropriate for multiple batches of tests. We allow
testing of possibly infinitely many batches in an on-
line fashion. We refer to this setting as online batch
testing. More precisely, we improve the widely-used
BH algorithm (Benjamini and Hochberg, 1995) and
a variant that we refer to Storey-BH (Storey, 2002;
Storey et al., 2004), such that their repeated compo-
sition does not violate the desired FDR guarantees.
We refer to these sequential, FDR-preserving versions
of BH and Storey-BH as BatchBH and BatchSt-BH, re-
spectively. As is the case for state-of-the-art online
algorithms, our procedures allow testing an infinite se-
quence of batches of adaptively chosen hypotheses, but
they also enjoy a higher power of discovery than those
algorithms. Finally, since they consist of compositions
of o✏ine FDR algorithms with provable guarantees,
they immediately imply FDR control over each con-
stituent batch, and not just over the whole sequence
of tests. This property has value in settings with natu-
ral groupings of hypotheses, where the scientist might
be interested in the overall FDR, but also the FDR

over certain subgroups of hypotheses.

1.1 Outline

In Section 2, we present preliminaries and sketch the
main ideas behind our proofs. In Section 3, we de-
fine the BatchBH family of algorithms and state its
FDR guarantees. In Section 4, we do the same for
BatchSt-BH algorithms. In Section 5, we demonstrate
the performance of our methods on synthetic data. In
the Appendix, we consider online batch FDR control
under positive dependence. The Appendix also con-
tains a short overview of some related work, all proofs,
as well as additional experimental results.

2 PRELIMINARIES

We introduce a formal description of the testing pro-
cess, together with some preliminaries.

At every time t 2 N, a batch of nt hypotheses is
tested using a pre-specified o✏ine FDR procedure. We
consider two such procedures, the BH and Storey-BH
procedures, which we review in the Appendix for the
reader’s convenience. The batches arrive sequentially,
in a stream; at the time of testing the t-th batch, no in-
formation about future batches needs to be available,
such as their size or their number. For each hypothesis,
there is unknown ground truth that says whether the
hypothesis is null or non-null. Denote the set of hy-
potheses in the t-th batch by Ht : = {Ht,1, . . . , Ht,nt}.
Each hypothesis has a p-value associated with it. Let
Pt denote the p-values corresponding to the t-th batch
of hypotheses, given by Pt : = {Pt,1, . . . , Pt,nt}, where
Pt,j is the j-th p-value in batch t. Denote byH

0
t the in-

dices corresponding to null hypotheses in batch t, and
let Rt denote the indices of rejections, or discoveries,
in batch t:

H
0
t : = {i : Ht,i is null}, Rt : = {i : Ht,i is rejected}.

We will also informally say that a p-value is rejected,
if its corresponding hypothesis is rejected.

We now define the false discovery rate (FDR) up to
time t:

FDR(t) : = E [FDP(t)] : = E
"Pt

s=1 |H
0
s \Rs|

(
Pt

s=1 |Rs|) _ 1

#
,

where FDP(t) denotes a random quantity called the
false discovery proportion up to time t. To simplify
notation, we also define Rt : = |Rt|. In real applica-
tions, it does not su�ce to merely control the FDR
(which we can do by making no discoveries, which re-
sults in FDR = 0); rather, we also need to achieve high
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statistical power :

Power(t) : = E
"Pt

s=1 |([ns] \ H0
s) \Rs|Pt

s=1 |([ns] \ H0
s)|

#
,

where [ns] \ H
0
s are the non-null hypotheses in batch

s.

The goal of the BatchBH procedure is to achieve high
power, while guaranteeing FDR(t)  ↵ for a pre-
specified level ↵ 2 (0, 1) and for all t 2 N. To do
so, the algorithm adaptively determines a test level ↵t

based on information about past batches of tests, and
tests Pt under FDR level ↵t using the standard BH
method. The BatchSt-BH method operates in a similar
way, the di↵erence being that it uses the Storey-BH
method for every batch, as opposed to BH.

Define R
+
t to be the maximum “augmented” number

of rejections in batch t, if one p-value in Pt is “hal-
lucinated” to be equal to zero, and all other p-values
and level ↵t are held fixed; the maximum is taken over
the choice of the p-value which is set to zero. More
formally, let At denote a map from a set of p-values
Pt (and implicitly, a level ↵t) to a set of rejections
Rt. Hence, Rt = |At(Pt)|. In our setting, At will be
the BH algorithm in the case of BatchBH and Storey-
BH algorithm in the case of BatchSt-BH. Then, R+

t is
defined as

R
+
t : = max

i2[nt]
|At(Pt \ Pt,i [ 0)|. (1)

Note that R+
t could be as large as nt in general. For an

extreme example, let nt = 3, Pt := {2↵/3,↵, 4↵/3},
and consider At being the BH procedure. Then Rt =
0, while R+

t = 3. However, such “adversarial” p-values
are unlikely to be encountered in practice and we typi-
cally expect R+

t to be roughly equal to Rt+1. In other
words, we expect that when an unrejected p-value is
set to 0, it will be a new rejection, but typically will
not result in other rejections as well. This intuition is
confirmed by our experiments, where we plot R+

t �Rt

for BatchBH with di↵erent batch sizes and observe that
this quantity concentrates around 1. These plots are
available in Figure 14 in the Appendix.

Let the natural filtration induced by the testing pro-
cess be denoted

F
t : = �(P1, . . . ,Pt),

which is the �-field of all previously observed p-values.
Naturally, we require ↵t to be F

t�1-measurable; the
test level at time t is only allowed to depend on infor-
mation seen before t. It is worth pointing out that this
filtration is di↵erent from the corresponding filtration
in prior online FDR work, which was typically of the

form �(R1, . . . , Rt). The benefits of this latter, smaller
filtration arise when proving modified FDR (mFDR)
guarantees, which we do not consider in this paper.
Moreover, a richer filtration allows more freedom in
choosing ↵t, making our choice of F t a natural one.

For the formal guarantees of BatchBH and BatchSt-BH,
we will require the procedures to be mono-
tone. Let ({P1,1, . . . , P1,n1

}, . . . , {Pt,1, . . . , Pt,nt})
and ({P̃1,1, . . . , P̃1,n1

}, . . . , {P̃t,1, . . . , P̃t,nt}) be two se-
quences of p-value batches, which are identical in all
entries but (s, i), for some s  t: P̃s,i < Ps,i. Then,

a procedure is monotone if
tX

r=s+1

Rr 

tX

r=s+1

R̃r.

Intuitively, this condition says that making any of the
tested p-values smaller can only make the overall num-
ber of rejections larger. A similar assumption appears
in online FDR literature (Javanmard and Montanari,
2018; Ramdas et al., 2018; Zrnic et al., 2018; Tian and
Ramdas, 2019). In general, whether or not a proce-
dure is monotone is a property of the p-value distri-
bution; notice, however, that monotonicity can be as-
sessed empirically (it does not depend on the unknown
ground truth). One way to ensure monotonicity is to
make ↵t a coordinate-wise non-increasing function of
(P1,1, . . . , P1,n1

, P2,1, . . . , Pt�1,nt�1
). In the Appendix,

we give examples of monotone strategies.

Finally, we review a basic property of null p-values. If
a hypothesis Ht,i is truly null, then the corresponding
p-value Pt,i stochastically dominates the uniform dis-
tribution, or is super-uniformly distributed, meaning:

If Ht,i is null, then P{Pt,i  u}  u for all u 2 [0, 1].

2.1 Algorithms via Empirical FDP Estimates

We build on Storey’s interpretation of the BH proce-
dure (Storey, 2002) as an empirical Bayesian proce-
dure, based on empirical estimates of the false discov-
ery proportion. In this section, we give a sketch of
this idea, as it is at the core of our algorithmic con-
structions. The steps presented below are not fully
rigorous, but are simply meant to develop intuition.

When an algorithm decides to reject a hypothesis,
there is generally no way of knowing if the rejected
hypothesis is null or non-null. Consequently, it is im-
possible for the scientist to know the achieved FDP.
However, by exploiting the super-uniformity of null p-
values, it is possible to estimate the behavior of the
FDP on average. More explicitly, there are tools that
utilize only the information available to the scientist
to upper bound the average FDP, that is the FDR.

We sketch this argument for the BatchBH procedure
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here, formalizing the argument in Theorem 1. The-
orem 2 gives an analogous proof for the BatchSt-BH

procedure.

By definition, the FDR is equal to

E
"Pt

s=1 |H
0
s \Rs|

(
Pt

r=1 |Rr|) _ 1

#
=

tX

s=1

E

2

4
P

i2H0
s
1

n
Ps,i 

↵s
ns

Rs

o

(
Pt

r=1 |Rr|) _ 1

3

5 ,

where we use the definition of the BH procedure. If
the p-values are independent, we will show that it is
valid to upper bound this expression by inserting an
expectation in the numerator, approximately as

tX

s=1

E

2

4
P

i2H0
s
P
n
Ps,i 

↵s
ns

Rs

��� ↵s, Rs

o

(
Pt

r=1 |Rr|) _ 1

3

5 .

Invoking the super-uniformity of null p-values (and
temporarily ignoring dependence between Ps,i and
Rs), we get

tX

s=1

E
"

|H
0
s|

↵s
ns

Rs

(
Pt

r=1 |Rr|) _ 1

#
 E

" Pt
s=1 ↵sRs

(
Pt

r=1 |Rr|) _ 1

#
.

Suppose we define [FDPBatchBH
(t) ⇡

Pt
s=1

↵sRs

(
Pt

r=1
|Rr|)_1

.

This quantity is purely empirical ; each term is known
to the scientist. Hence, by an appropriate choice of ↵s

at each step, one can ensure that [FDPBatchBH
(t)  ↵

for all t. But by the sketch given above, this would
immediately imply FDR  ↵, as desired. This proof
sketch is the core idea behind our algorithms.

It is important to point out that there is not a single

way of ensuring [FDPBatchBH
(t)  ↵; this approach

gives rise to a whole family of algorithms. Naturally,
the choice of ↵s can be guided by prior knowledge or
importance of a given batch, as long as the empirical
estimate is controlled under ↵.

3 ONLINE BATCH FDR CONTROL
VIA BatchBH

In this section, we define the BatchBH class of algo-
rithms and state our main technical result regarding
its FDR guarantees.

Definition 1 (BatchBH). The BatchBH procedure is
any rule for assigning test levels ↵s such that

[FDPBatchBH
(t) : =

X

st

↵s
R

+
s

R
+
s +

P
rt,r 6=s Rr

is always controlled under a pre-determined level ↵.

Note that if we were to approximate R
+
s by Rs, we

would arrive exactly at the estimate derived in the
proof sketch of the previous section.

This way of controlling [FDPBatchBH
(t) interpolates be-

tween prior o✏ine and online FDR approaches. First,
suppose that there is only one batch. Then, the user
is free to pick ↵1 to be any level less than or equal to
↵, in which case it makes sense to simply pick ↵. On
the other hand, if every batch is of size one we have
R

+
s = 1, hence the FDP estimate reduces to

[FDPBatchBH
(t) =

X

st

↵s

1 +
P

rt,r 6=s Rr



P
st ↵sP
rt Rr

: = [FDPLORD(t),

where the intermediate inequality is almost an equal-
ity whenever the total number of rejections is non-

negligible. The quantity [FDPLORD(t) is an estimate
of FDP that is implicitly used in an existing online al-
gorithm known as LORD (Javanmard and Montanari,
2018), as detailed by Ramdas et al. (2017). Thus,
BatchBH can be seen as a generalization of both BH
and LORD, simultaneously allowing arbitrary batch
sizes (like BH) and an arbitrary number of batches
(like LORD).

We now state our main formal result regarding FDR
control of BatchBH. As suggested in Section 2, to-

gether with the requirement that [FDPBatchBH
(t)  ↵

for all t 2 N we also need to guarantee that the pro-
cedure is monotone. Recall that monotonicity roughly
means that making any of the tested p-values smaller
can only result in more rejections. In general, any
reasonable update for ↵t satisfying Definition 1 is ex-
pected to be monotone for non-adversarially chosen
p-values. We analyze one such natural update in Sec-
tion 5. However, one can also construct more conserva-
tive algorithms which are guaranteed to be monotone
uniformly across all p-value sequences. We present
multiple such procedures in the Appendix.

Theorem 1. If all null p-values in the sequence are
independent of each other and the non-nulls, and the
BatchBH procedure is monotone, then it provides any-
time FDR control: for every t 2 N, FDR(t)  ↵.

We defer the proof of Theorem 1 to the Appendix.

4 ONLINE BATCH FDR CONTROL
VIA BatchSt-BH

In addition to the FDR level ↵, the Storey-BH algo-
rithm also requires a user-chosen constant � 2 (0, 1)
as a parameter. This extra parameter allows the algo-
rithm to be more adaptive to the data at hand, con-
structing a better FDP estimate (Storey, 2002). We
revisit this estimate in the Appendix.
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Thus, our extension of Storey-BH, BatchSt-BH, re-
quires a user-chosen constant �t 2 (0, 1) as an input
to the algorithm at time t 2 N. Unless there is prior
knowledge of the p-value distribution, it is a reason-
able heuristic to simply set �t = 0.5 for all t (Storey,
2002; Storey et al., 2004).

Denote by maxt : = argmaxi{Pt,i : i 2 [nt]} the in-
dex corresponding to the maximum p-value in batch
t. With this, define the null proportion sensitivity for
batch t as:

kt : =

P
int

1 {Pt,i > �t}

1 +
P

jnt,j 6=maxt
1 {Pt,j > �t}

.

Now we can define the BatchSt-BH family of methods.

Definition 2. The BatchSt-BH procedure is any rule
for assigning test levels ↵s, such that

[FDPBatchSt-BH
(t) : =

X

st

↵sksR
+
s

R
+
s +

P
rt,r 6=s Rr

is controlled under a pre-determined level ↵.

Just like BatchBH, BatchSt-BH likewise interpolates be-
tween existing o✏ine and online FDR procedures. If
there is a single batch of tests, the user can pick the
test level ↵1 to be at most ↵, in which case it makes
sense to simply pick ↵. This follows due to ki  1 by
definition. On the other end of the spectrum, in the
fully online setting, BatchSt-BH reduces to the SAF-
FRON procedure (Ramdas et al., 2018). Indeed, since
kt = 1 {Pt,1 > �t}, the FDP estimate reduces to:

[FDPBatchSt-BH
(t) =

X

st

↵s1 {Ps,1 > �s}

1 +
P

rt,r 6=s Rr



P
st ↵s1 {Ps,1 > �s}P

rt Rr

: = [FDPSAFFRON(t),

which is equivalent to the FDP estimate defined by
Ramdas et al. (2018). We discuss the connections be-
tween the two FDP estimates in more detail in the
Appendix.

We are now ready to state our main result for
BatchSt-BH. Just like BatchBH, the BatchSt-BH pro-
cedure requires monotonicity to control the FDR (as
per the argument outlined in Section 2). We describe
multiple monotone versions of BatchSt-BH in the Ap-
pendix, and discuss some useful heuristics in Section 5.

Theorem 2. If the null p-values in the sequence are
independent of each other and the non-nulls, and the
BatchSt-BH procedure is monotone, then it provides
anytime FDR control: for every t 2 N, FDR(t)  ↵.

The proof of Theorem 2 is presented in the Appendix.

5 NUMERICAL EXPERIMENTS

We compare the performance of BatchBH and
BatchSt-BH with two state-of-the-art online FDR al-
gorithms: LORD (Javanmard and Montanari, 2018;
Ramdas et al., 2017) and SAFFRON (Ramdas et al.,
2018). Specifically, we compare the achieved power
and FDR of these methods on synthetic data, while in
the Appendix we study a real fraud detection data set.

As explained in prior literature (Ramdas et al., 2018),
LORD and BH are non-adaptive methods, while SAF-
FRON and Storey-BH adapt to the tested p-values
through the parameter �t. We keep comparisons fair
by comparing BatchBH with LORD, and BatchSt-BH

with SAFFRON.

As discussed in Section 2, there are various ways to
assign ↵i such that the appropriate FDP estimate is
controlled under ↵. Moreover, as we argued in Sec-
tion 3 and Section 4, this needs to be done in a mono-
tone way to guarantee FDR control for an arbitrary
p-value distribution. In the experimental sections of
this paper, however, we resort to a heuristic. Enforc-
ing monotonicity uniformly across all distributions di-
minishes the power of FDR methods. Hence, we apply
algorithms which control the corresponding FDP esti-
mates and are expected to be monotone under natural
p-value distributions, but possibly not for adversarially
chosen ones. In the Appendix we test the monotonic-
ity of these procedures empirically, and demonstrate
that it is satisfied with overwhelming probability. We
now present the specific algorithms that we studied.

Algorithm 1 The BatchBH algorithm

Input: FDR level ↵, non-negative sequence {�s}
1

s=1

such that
P

1

s=1 �s = 1.
Set ↵1 = �1↵;
for t = 1, 2, . . . do

Run the BH method at level ↵t on batch Pt;

Set �t+1 =
P

st ↵s
R+

s

R+

s +
P

r 6=s,rt Rr
;

Set ↵t+1 =
⇣P

st+1 �s↵� �t+1

⌘
nt+1+

P
st Rs

nt+1

;

end

Algorithm 2 The BatchSt-BH algorithm

Input: FDR level ↵, non-negative sequence {�s}
1

s=1

such that
P

1

s=1 �s = 1
Set ↵1 = �1↵;
for t = 1, 2, . . . do

Run the Storey-BH method at level ↵t with pa-
rameter �t on batch Pt;

Set �t+1 =
P

st ks↵s
R+

s

R+

s +
P

r 6=s,rt Rr
;

Set ↵t+1 =
⇣P

st+1 �s↵� �t+1

⌘
nt+1+

P
st Rs

nt+1

;

end
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The choice of �t should generally depend on the num-
ber and strength of non-null p-values the analyst ex-
pects to see in the sequence. As suggested in previ-
ous works on similar adaptive methods (Storey, 2002;
Storey et al., 2004; Ramdas et al., 2018), it is reason-
able to set �t ⌘ 0.5 if no prior knowledge is assumed.

The reason why we add a sequence {�s}
1

s=1 as a hy-
perparameter is to prevent ↵t from vanishing. If we
immediately invest the whole error budget ↵, i.e. we
set �1 = 1 and �s = 0, s 6= 1, then ↵t might be close
to 0 for small batches, given that R

+
t could be close

to nt. For this reason, for the smallest batch size we
consider (which is 10), we pick �s / s

�2. Similar error
budget investment strategies have been considered in
prior work (Ramdas et al., 2018; Tian and Ramdas,
2019). For larger batch sizes, R+

t is generally much
smaller than nt, so for all other batch sizes we invest
more aggressively by picking �1 = �2 = 1

2 , �s = 0,
s 62 {1, 2}. This is analogous to the default choice
of “initial wealth” for LORD and SAFFRON of ↵

2 ,
which we also use in our experiments. We only adapt
our choice of {�s}1s=1 to the batch size, as that is in-
formation available to the scientist. In general, one
can achieve better power if {�s}1s=1 is tailored to pa-
rameters such as the number of non-nulls and their
strength, but given that such information is typically
unknown, we keep our hyperparameters agnostic to
such specifics.

In the Appendix we prove Fact 1, which states the
Algorithm 1 controls the appropriate FDP estimate.
We omit the analogous proof for Algorithm 2 due to
the similarity of the two proofs.

Fact 1. Algorithm 1 maintains [FDPBatchBH
(t)  ↵.

We test for the means of a sequence of T = 3000 in-
dependent Gaussian observations. Under the null, the
mean is µ0 = 0. Under the alternative, the mean is µ1,
whose distribution di↵ers in two settings that we stud-
ied. For each index i 2 {1, . . . , T}, the observation Zi

is distributed according to

Zi ⇠

(
N(µ0, 1),with probability 1� ⇡1,

N(µ1, 1),with probability ⇡1.

In all experiments we set ↵ = 0.05. All plots
display the average and one standard deviation
around the average of power or FDR, against ⇡1 2

{0.01, 0.02, . . . , 0.09} [ {0.1, 0.2, 0.3, 0.4, 0.5} (interpo-
lated for in-between values). All quantities are aver-
aged over 500 independent trials.

5.1 Constant Gaussian Means

In this setting, we choose the mean under the alterna-
tive to be constant, µ1 = 3. Each observation is con-

Figure 2: Statistical power and FDR versus probabil-
ity of non-null hypotheses ⇡1 for BatchBH (at batch
sizes 10, 100, and 1000) and LORD. The observations
under the null are N(0, 1), and the observations under
the alternative are N(3, 1).

Figure 3: Statistical power and FDR versus probabil-
ity of non-null hypotheses ⇡1 for BatchSt-BH (at batch
sizes 10, 100, and 1000) and SAFFRON. The observa-
tions under the null are N(0, 1), and the observations
under the alternative are N(3, 1).

verted to a one-sided p-value as Pi = �(�Zi), where
� is the standard Gaussian CDF.

Non-adaptive procedures. Figure 2 compares the
statistical power and FDR of BatchBH and LORD as
functions of ⇡1. Across almost all values of ⇡1, the on-
line batch procedures outperform LORD, with the ex-
ception of BatchBH with the smallest considered batch
size, for small values of ⇡1.

Adaptive procedures. Figure 3 compares the sta-
tistical power and FDR of BatchSt-BH and SAFFRON
as functions of ⇡1. The online batch procedures domi-
nate SAFFRON for all values of ⇡1. The di↵erence in
power is especially significant for ⇡1  0.1, which is a
reasonable range for the non-null proportion in most
real-world applications.
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Figure 4: Statistical power and FDR versus probabil-
ity of non-null hypotheses ⇡1 for naively composed BH
(at batch sizes 10, 100, and 1000). The observations
under the null are N(0, 1), and the observations under
the alternative are N(3, 1).

Figure 5: Statistical power and FDR versus proba-
bility of non-null hypotheses ⇡1 for naively composed
Storey-BH (at batch sizes 10, 100, and 1000). The
observations under the null are N(0, 1), and the ob-
servations under the alternative are N(3, 1).

Naively composed procedures. Figure 4 and Fig-
ure 5 show the statistical power and FDR versus ⇡1

for BH and Storey-BH naively run in a batch setting
where each individual batch is run using test level
↵ = 0.05. Although there is a significant boost in
power, the FDR is generally much higher than the de-
sired value for reasonably small ⇡1; this is not true of
batch size 1000 because only 3 batches are composed,
where we know that in the worst case FDR  3↵.

5.2 Random Gaussian Alternative Means

Now we consider random alternative means; we let
µ1 ⇠ N(0, 2 log T ). Unlike the previous setting, this is
a hard testing problem in which non-nulls are barely
detectable (Javanmard and Montanari, 2018). Each
observation is converted to a two-sided p-value as Pi =
2�(�|Zi|), where � is the standard Gaussian CDF.

Figure 6: Statistical power and FDR versus probabil-
ity of non-null hypotheses ⇡1 for BatchBH (at batch
sizes 10, 100, and 1000) and LORD. The observations
under the null are N(0, 1), and the observations under
the alternative are N(µ1, 1) where µ1 ⇠ N(0, 2 log T ).

Figure 7: Statistical power and FDR versus proba-
bility of non-null hypotheses ⇡1 for BatchSt-BH (at
batch sizes 10, 100, and 1000) and SAFFRON. The
observations under the null are N(0, 1), and the ob-
servations under the alternative are N(µ1, 1) where
µ1 ⇠ N(0, 2 log T ).

Non-adaptive procedures. Figure 6 compares the
statistical power and FDR of BatchBH and LORD as
functions of ⇡1. Again, for most values of ⇡1 all batch
procedures outperform LORD.

Adaptive procedures. Figure 7 compares the sta-
tistical power and FDR of BatchSt-BH and SAFFRON
as functions of ⇡1. For high values of ⇡1, all procedures
behave similarly, while for small values of ⇡1 the batch
procedures dominate.

Naively composed procedures. Figure 8 and Fig-
ure 9 show the statistical power and FDR versus ⇡1

for BH and Storey-BH naively run in a batch set-
ting where each individual batch is run using test level
↵ = 0.05. In this hard testing problem, there is not as
much gain in power, and the FDR is extremely high,
as expected.
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Figure 8: Statistical power and FDR versus probabil-
ity of non-null hypotheses ⇡1 for naively composed BH
(at batch sizes 10, 100, and 1000). The observations
under the null are N(0, 1), and the observations under
the alternative are N(µ1, 1) where µ1 ⇠ N(0, 2 log T ).

Figure 9: Statistical power and FDR versus proba-
bility of non-null hypotheses ⇡1 for naively composed
Storey-BH (at batch sizes 10, 100, and 1000). The
observations under the null are N(0, 1), and the ob-
servations under the alternative are N(µ1, 1) where
µ1 ⇠ N(0, 2 log T ).

6 DISCUSSION

In this paper, we have presented algorithms for FDR
control in online batch settings; at every time step,
a batch of decisions is made via the BH or Storey-
BH algorithm, and batches arrive sequentially, in a
stream. We discuss several possible extensions of this
framework.

Alpha-investing version of BatchSt-BH. In the
definition of BatchSt-BH, we considered deterministic
values of �t for simplicity. By imposing a monotonic-
ity constraint on �t (Ramdas et al., 2018), one could
generalize BatchSt-BH to handle random �t as well. In
particular, this would lead to a batch generalization
of alpha-investing (Foster and Stine, 2008), in which
�t = ↵t.

Asynchronous online batch testing. Zrnic et al.
(2018) consider the setting of asynchronous online test-
ing, in which one conducts a possibly infinite number
of sequential experiments which could, importantly, be
running in parallel. They generalize multiple online
FDR algorithms to handle this so-called asynchronous
testing problem. Using their technical tools, namely
the idea of conflict sets, one can adjust BatchBH and
BatchSt-BH to operate in an asynchronous manner.

ADDIS algorithm. Tian and Ramdas (2019) have
presented an adaptive online FDR algorithm called
ADDIS that was designed with the goal of improving
the power of online FDR methods when the null p-
values are conservative. The same paper also gives the
o✏ine analog of ADDIS. Using our proof technique,
one can design online batch corrections for the o✏ine
counterpart of ADDIS, thus interpolating between the
two algorithms of Tian and Ramdas.

Batch size versus power. As our experiments in-
dicate, it is not clear that bigger batch sizes give better
power. Intuitively, if a batch is very large, say of size
n, the slope ↵/n of the BH procedure is very conser-
vative, and it might be better to split up the tests into
multiple batches. It would be of great importance for
the practitioner to conduct a rigorous analysis of the
relationship between batch size and power.

mFDR control. Many treatments of online FDR
have focused on mFDR guarantees (together with
FDR guarantees), mostly due to simplicity of the
proofs, but also because mFDR can be a reasonable er-
ror metric in some settings. Indeed, in the online batch
setting, mFDR is potentially a reasonable target mea-
sure, because mFDR, unlike FDR, is preserved under
composition; if two disjoint batches of tests are guar-
anteed to achieve mFDR  ↵, pooling their results
also ensures mFDR  ↵. This favorable property has
been recognized in prior work (van den Oord, 2008).
Unfortunately, the BH algorithm controls mFDR only
asymptotically (Genovese and Wasserman, 2002; Sun
and Cai, 2007). Moreover, how closely it controls
mFDR depends on its “stability,” as we show in the
Appendix. In fact it has been noted that BH is not sta-
ble (Gordon et al., 2007), making FDR our preferred
choice of metric.
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