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Abstract

Existing methods for directly extracting the spectral phonon properties from molecular dynamics (MD) simulations, like the normal mode analysis
(NMA) and spectral energy density analysis, all require a very long simulation time to produce reliable results with good convergence. So far, these
methods are mainly applied in studies using small systems and with empirical potentials, as the heavy computational load has greatly hindered their
further applications. Here we propose a perturbation-tracking (PT) method for directly probing the mode-wise phonon anharmonic frequencies and
lifetimes. We show that results obtained from our method are in excellent agreement with those from the conventional NMA approach, using Si as the
model material system. Comparing with the NMA approach, the PT method offers a greater accuracy and significant improvement of efficiency. It
takes an average of two orders of magnitude and up to three orders of magnitude less simulation time to obtain the same lifetime result of a phonon
mode with intermediate to high accuracy. Meanwhile, our method preserves all the dynamics of probed phonon mode from a particular state, which
means it is capable of studying the transient thermal transport processes in a non-equilibrium system. Besides the exceptional efficiency, our method
also comes with freedom to choose to probe only those modes of interest. This makes it ideal for use with large systems and in computationally
demanding applications, such as ab initio MD simulations. Moreover, the PT method we propose here is very straightforward and easy to implement.
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I INTRODUCTION

Much attention has been given to the search of novel materials
and structures with desired thermal transport properties [1-3].
The thermal conductivity is closely related to the properties of
phonons, which are the dominant heat carriers in semiconductors
and dielectrics. In order to correctly interpret measured thermal
conductivity results from experiments and to seek a deeper
understanding of the underlying mechanisms, gaining insight into
the spectral transport properties of phonons has become a
necessity [4-7].

Based on the Boltzmann transport equation (BTE) under the
relaxation time approximation (RTA), the lattice thermal
conductivity kK can be written in terms of the spectral phonon
lifetime (which is also called relaxation time or scattering time)
7, the specific heat ¢ and the group velocity v as
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where V' is the system volume and €, is a unit vector along the
transport direction 4 . The summation runs over all available
phonon modes A =(k v) with wave vector k£ and polarization
v . The product of the group velocity and lifetime gives the

phonon mean free path (MFP), which is extensively used to
explain different thermal transport phenomena such as the size
effects. Two of the three key ingredients, the mode specific heat
and the group velocity can be readily calculated once the phonon
dispersion relations are known. To obtain the anharmonic
vibrational frequencies is challenging but necessary for
improving the accuracy when calculating x at a finite
temperature. The remaining difficulty is to accurately and
efficiently determine the spectral phonon lifetimes.
Methodologies for predicting phonon properties and the lattice
thermal conductivity have been under active development in two
main categories: anharmonic lattice dynamics (ALD)
calculations and molecular dynamics (MD) simulations. Since
the third-order ALD method was first proposed to calculate the
intrinsic three-phonon scattering rates via Fermi’s golden rule,
calculations based on ALD have been carried out to predict
phonon lifetimes from density functional theory (DFT) [8, 9] and
combined with BTE to predict the lattice thermal conductivity
[10, 11]. The ALD approach with interatomic force constants
determined from first principles or from an empirical potential is
now widely employed [4, 5, 12]. However, there are certain
limitations associated with ALD calculations. For instance, the
approach is based on perturbation theory, which gives accurate
results at a relatively low temperature. But it may fail at high
temperatures or in strongly anharmonic systems [13, 14], given
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that only 3-phonon or at most 4-phonon processes are considered
[15-17].

Approaches based on molecular dynamics (MD) simulations
on the other hand have advantages over ALD calculations at high
temperatures since full orders of anharmonicity are naturally
incorporated. Other issues related to anharmonic effects, such as
imaginary phonon frequencies solved from lattice dynamics
calculations [14, 18], can also be easily handled through MD
simulations at a finite temperature [19]. Anharmonic phonon
frequencies have been determined either indirectly by solving the
dynamical matrix with force constants obtained from an MD
simulation or directly through Fourier analysis of the statistical
result from a simulation run. For the indirect approach, Kong
proposed a Green’s function method to construct the dynamical
matrix based on the fluctuation-dissipation theorem [20].
Hellman et al. developed a temperature-dependent effective
potential (TDEP) method [19, 21] to subsume anharmonic effects
in the effective force constants. The TDEP method was applied
in ab initio molecular dynamics (AIMD) due to its efficiency. For
the direct approach, the two most commonly adopted methods are
the time domain normal mode analysis (NMA) [22-24] and the
spectral energy density (SED) analysis [25-28]. Both the
anharmonic phonon frequencies and phonon lifetimes can be
extracted using either one of the two methods, which are basically
equivalent [28, 29]. In the time domain NMA, a time history of
the normal mode amplitudes or mode energy is obtained by
projecting the atomic trajectories onto each phonon mode in a
system. The phonon lifetime of each mode is extracted by fitting
the autocorrelation result to an exponential decay curve. If only
the potential energy is used, the autocorrelation function gives a
decay curve with oscillations, from which the anharmonic
phonon frequency can be extracted. In the SED analysis, the
kinetic energy of a single phonon mode or multiple modes with
the same wave vector is calculated in the frequency domain
through Fourier transform. The resulting time average gives a
Lorentzian function for each phonon mode with its peak position
as the frequency and full width at half maximum as inverse of the
phonon lifetime. There are other MD simulation techniques and
schemes for predicting lattice thermal conductivities such as the
approach-to-equilibrium method [30-32], Green-Kubo method
[33-36], and the direct method [37-40], which are more general
and capable of dealing with complex material systems.
Meanwhile, theories were developed for spectral decomposition
of the heat flux for quantifying the contribution from various
vibrational modes towards the total thermal conductivity [41, 42].
In this work, we will limit our scope to the BTE-based phonon
quasi-particle picture and only focus on getting the key phonon
properties from MD simulations.

Most of the MD simulation studies for direct extraction of the
spectral phonon properties especially those involving phonon
lifetimes have been conducted using empirical potentials because
of the high computational cost. Existing methods, whether based
on autocorrelation function or SED, all require a long simulation
time — usually hundreds of picoseconds to several nanoseconds,
to produce reliable results with good convergence. This has
greatly limited their applications in AIMD simulations. As a
trade-off, the system size has to be very small [25, 43, 44], which
often causes strong size effects that result in underestimation of

the thermal conductivity. It is possible to accelerate the
convergence process and improve result fitting from additional
theoretical approaches [45], but it can be quite complicated and
difficult to implement. Meanwhile, the reduction in the required
simulation time is still limited as the auxiliary calculations do not
change the method itself. Moreover, for methods that rely on
averaging to suppress the background noise from thermal
fluctuations, the final result essentially reflects the overall
statistical average and individual phonon processes on small
timescales have all been washed away.

In this work, we propose a perturbation-tracking (PT) method
to directly extract the spectral phonon properties from MD
simulations. Unlike the statistics-based NMA or SED analysis,
our method preserves all the dynamics of a decay process and
offers great flexibility and exceptionally high efficiency for
studying individual phonon modes of interest. The remaining
article is structured as follows: In Sec. II, we introduce the PT
method along with its theoretical background. Results from the
PT method versus those from the time-domain NMA for the
model material system Si are presented in Sec. III. We
demonstrate the validity of the PT method for extracting
anharmonic vibrational frequencies and phonon lifetimes, and
provide detailed comparisons between the two methods on
accuracy and efficiency. In Sec. 1V, we further discuss the
advantages, limitations and application scenarios of the PT
method. Section V ends with a summary and conclusions.

1L THEORETICAL BACKGROUND AND METHOD

Starting from lattice dynamics, the general equation of a
travelling wave in a crystal can be written as

_ jl]: [P
ul([ m L,€,(J))
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where i, ( jl t) is the time-dependent displacement of atom j
in the unit cell / under the influence of a vibrational mode A,
A is the wave amplitude factor, m is the atomic mass, 7 is the
equilibrium position, ¢ is the relative phase, @ is the angular
frequency and & is the displacement vector. The angular
frequency and the displacement vector are obtained by solving
the eigenvalue problem, ®,’¢, =l_)(k)§l , with D being the
dynamical matrix. Within the harmonic approximation, the total
displacement is a linear superposition of all available waves of
different phonon modes as

Doy o

It is convenient to describe a lattice wave in reciprocal space by
using the normal mode coordinate (NMC), which can be
calculated from

. oL . . l
0.0=3 2D exp[ -ik (1) )2, (j)-u[’t], (4)

where N is the number of lattice points and the asterisk
superscript denotes the complex conjugate. For the harmonic
wave of a phonon normal mode, Q oscillates over time as



0,t)= QA(O)eXp[ i, ] (5)
In the presence of lattice anharmonicity, anharmonic interactions
dampen the oscillations, which is seen as spectral line
broadening, and cause frequencies to shift from their harmonic
values. If the frequency shift and linewidth are relatively small,
the time-dependent NMC can be reintroduced as

P()=0,(0exp{-i[a, +A, —iT, ]}, (6)
where A is the frequency shift and I' is the linewidth. The
phonon lifetime and linewidth are related as

z,=(2r,) . @)
The use of P is to distinguish from the measured Q at time t
because Eq. (6) describes the evolution of a phonon state initially
started from time 0 that decays over time. Nevertheless, phonons
in each mode are not only being scattered to but also created from
other modes. The population of a phonon mode, which is
proportional to the mode’s energy, fluctuates about a mean value
due to multiple phonon processes. At thermodynamic
equilibrium, the average mode energy is <E;> =hw, (n/1 +1/ 2) ,
where 7 is reduced Planck’s constant and » is the average
phonon occupation number, which follows Bose-Einstein (B-E)
statistics. In the classical limit or for a classical system, according
to the equipartition theorem, it reduces to
(E.) =T, ®)
where k, is Boltzmann’s constant. The simultaneous creation
and annihilation of phonons at any moment gives a new state
starting from that moment. Because () measures the current,
updated state, the time-dependent energy of a normal mode can
be calculated as
E,()=V,(0)+K, (1)

:%WQX@)Qz(r)%Q';‘(t)Qi(t), ©)

where ¥ is the potential energy, K is the kinetic energy and O
is the time derivative of the NMC, which can be determined from

atomic velocities # similar to Eq. (4):
0,(0= Z exp[ -ik-r(j1) &, (j)- u( ] (10)
And since <Vﬂ>:<Kﬁ.>,we have
(0,00, 1) = :

So the measured NMC sequence does not directly reflect the
decay of a particular normal mode state as described by Eq. (6).
In order to extract the effective decay rate of a normal mode, the
common way has been using a statistical approach, such as the
autocorrelation function (NMA) or SED analysis. The new
method we propose here is on the other hand using a different
strategy.

The two NMCs, one in Eq. (4) that measures the current
phonon state and the other in Eq. (6) that describes a previous
decaying state are related as

Q/l (t) = P/l(t) + Cz (t)
=0, (0)exp(—iw;t)exp(-T,¢)+C, (1), (12)

where @] =, +A, is the anharmonic angular frequency and
C is a time-dependent complex number, introduced here as an

an

accumulated change in the NMC due to newly created phonons
in mode A . In order to reveal the oscillatory and decaying
behavior of a damped mode, the effect from C needs to be
eliminated. We introduce a perturbation y to the initial state of
phonon mode A :

07 (0)=0,(00+x,, (13)

where
—Z exp[ ik-r(j1) & G)-af ), (14)

with
i (i = %A”em)exp{ [krGn+er ]}, as)

in which 47 is the amplitude and ¢; is the relative phase of the
perturbation in real space. The corresponding displacement field
of the perturbed system at ¢ =0 is then

/A N i/ R
u’ =u +u?(j). 16
(oj [0] 2 (D (16)
And the velocity field is
() (T -,
u? =u +u?(jD), 17
(oj [0] 2 (D (17)
where
uf (jl) =—iei] (j). (18)

The perturbed system with Q7 (0) as the initial state of mode A
is let to evolve in a separate simulation run, as a parallel system
to the original one. The initial states of all other phonon modes
together with other initial conditions are exactly the same for the
two parallel systems. For the same well-defined mode, Q7 (0)
also evolves according to Eq. (6) with the same oscillatory and
decay rate as Q,(0). And similar to Eq. (12), for the perturbed
system, we have

0 (t)=07(0) exp(—za); )exp(—F 1)+Cl(r), (19)
where the use of C” with a superscript is to distinguish from C
in the original system. Although both of them are unknown, they

are different, since the evolution of the perturbed system is
different. Subtracting Eq. (12) from Eq. (19) we get

Q;(1)-0,(0
=[07(0)-0,(0) Jexp(imjt)exp(-T ). (20)
+H[crm-c,0]

During a simulation run, atomic trajectories are updated at
discrete time steps and so are the normal mode coordinates
calculated. We also evaluate the term involving C” and C in a
discrete form. The second term on the right-hand side of Eq. (20)

can be expanded as
Cr@,)-C,(,)

=[£7 ()= &) Jexp| (n—1)(=ie; ~T, )t |
+[£1(6,)—&,(t,) Jexp| (n—2)(—iw] ~T ,)dt |

+[ &)~ &,(t,) Jexp| (n—n)(=iw} T )dt ], (21)
where ¢, =ndt means at time step n with dr being the length
of one time step, and &, is the change in the NMC for one time
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step due to newly created phonons in the original system that
satisfies

0,(t,)=0,(t, Dexp| (-iw; ~T )dt |+ &,(t,) . (22)
In the same way in the perturbed system,

7 (t,) = OF (1, )exp| (=i —T,)dt |+ &1 (1,) . (23)

The NMC that describes the normal mode state at the current time
step can be decomposed into two parts. The first one comes from
the mode state measured at the previous time step with preserved
relative phase information but decreased amplitude. This
corresponds to phonons of mode A being scattered into other
modes. The second part, &, (or £7), is from all other phonon
modes in the system. This corresponds to the combined result of
all anharmonic phonon processes that created new phonons into
mode A since last time step (after the previous NMC was
measured). Because we only perturb one phonon mode A and
the states of all other modes are exactly the same right after
perturbation, &, is equal to &£/ at f,. So the first term on the
right-hand side of Eq. (21) is always zero. But starting from the
second time step, the difference, y,, in the perturbed system
begins to propagate towards all other modes. The changes in
others in turn makes &7 deviate from &, . Although the
deviation is expected to increase with further propagation of the
difference, the existence of a large number of different modes
greatly dilutes the effect of y, and its impact on the states of
other modes. It may take many out-scattering and back-scattering
cycles before the difference between ¢ and &, becomes
perceivable. The second part of each term in Eq. (21) with the
exponential decay indicates that the effects from later time steps
are more prominent than those from earlier time steps. The total
effect is that all terms in Eq. (21) except for the first one will be
non-zero and will increase progressively from a tiny initial value.
In order to keep C7(¢,)—C,(t,) small, we shall give a small
perturbation and limit the time steps. For the time period before
EX(t)—¢&,(t,) gets too large and if

CI (1)~ C,(1,) < 01(1,)-0,(1,). (24)
Eq. (20) may be approximated as
07 (-0,
=[02(0)-0,(0) Jexp(~ie]'t)exp(-T ;)

=7, exp(—ia)ft)exp(—l"at) .29
From this result we see that the initial perturbation to the phonon
mode A evolves the same as that described by Eq. (6). Since the
underlying phonon properties are revealed through this
perturbation, we will also think of it and call it a “probe”.

From above, the angular frequency can be straightforwardly
obtained by tracking the relative phase change over time.
According to Eq. (25), the phase angle of Q7 (t)-Q,(¢) is

S| (=0, (-0 () +0, (r)} -

1) (-0, (1)+0!(1)-0,(1)

However, because y; () is wrapped and —z <y} (#) <7x , we

need to further calculate the unwrapped phase angle v, (),
which differs from ;' (¢) by an integer multiple of 27 :

v, () =y} ()£ 27m, 27)

v (6)=tan

where m is an integer. After unwrapping, v,(f) gives a
sequence that changes linearly over time without abrupt
discontinuities. So that
ot =¥ 0=y, (0
4

The above works for all travelling modes with non-zero group
velocities. Nevertheless, for the stationary modes whose phase
angles do not change, we have to directly fit the time sequence of
0’ (t)—Q,(¢) to a sinusoidal function to extract @] .

Next, in order to extract the lifetime 7, , we treat
07 ()-0Q,() in a way similar to that calculating the mode
energy by taking

(@) -0, 0][0/0O-0,0]
=2, 7, exp(—ia)ft)exp(ia)ft)exp(—2rlt)

=x. 7 exp(—ZFAt) .29
Rearranging and using Eq. (7), we have
exp(—t/7,)=exp(-2I,t)
(@)Y 0-0 0] n-0,1]
= : -(30)
X Xa
So far, only the potential part of the probe energy based on atomic
displacements has been utilized. The same 7, is also attainable
by considering the kinetic energy from velocities. But in order to
achieve the best result with minimum unwanted oscillations, we
find it more desirable to track the total probe energy over time. In
this way, we have

(28)

exp(-t/z,)=——fi O gy
0, X, X+ X X
where y, = Qf (0)— Q./1 (0) is the kinetic counterpart of y,, and
2E;Lthe (t)
=ol0] [0 -0, 0]/ 1-0,®]
Oy 0-0' 0] n-0,0] . 62

Now we are able to extract 7, by fitting the right-hand-side
expression of Eq. (30) or Eq. (31) to an exponential decay curve.

So we have given detailed explanation and derivation of the
PT method. Its implementation procedure for MD simulation is
actually quite straightforward and looks much more simplified.
To probe a phonon mode A, we first prepare the system to be in
a desired thermal state as reference. Then we create a parallel
system by adding a small perturbation of that mode to its
reference state according to Egs. (15)-(18). In Eq. (15), the
relative phase ¢ can be arbitrary; for the perturbation amplitude
A?, we recommend it to be at least three orders of magnitude
smaller than the lattice parameter of the material system being
investigated for a minimum impact on the probed mode. And in
practice, the harmonic frequency is used instead of the
anharmonic one in Eq. (18) to generate the perturbation as @] is
not known yet. Next, both the reference and the perturbed system
are let to run for the same simulation length, with both their
atomic displacements and velocities dumped at the same time
steps for NMC calculations. After that, @; can be obtained by
either linear fitting, Eqs. (26)-(28), or sinusoidal fitting of



07 ()—0,(?), and the mode’s lifetime, 7, , readily extracted
according to Egs. (30)-(32).

II1. RESULTS

In this section, we demonstrate the validity and unique
features of our method using silicon (Si), which has been
frequently adopted as a model material for studying the thermal
transport properties with different methods and conditions [38-
40, 46]. The environment-dependent interatomic potential
(EDIP) [47] is chosen for the crystalline Si studied here because
reasonably good thermal conductivity results have been
previously reported with this potential [24, 40].

All our simulations have been performed with the classical
MD code LAMMPS [48]. The velocity-Verlet integration
algorithm is used with a time step of 0.001 ps, which provides
enough resolution to capture the highest-frequency oscillations in
our material system. A typical cubic supercell containing 4096
atoms is employed with periodic boundary conditions applied in
all three directions. The lattice parameter, a, of Si we use is
0.5431 nm. To create the initial perturbation, we choose a
sufficiently small amplitude 47 of 2x10~ for any phonon
mode being probed. And the harmonic frequency and
displacement vectors of each mode are calculated with the
analytical lattice dynamics solver in GULP [49]. Before data
collection from the NVE (constant number of atoms, volume and
energy) ensemble, we have made sure that the material system is
well equilibrated at the target temperature.

A. Validity and efficiency of the PT method for probing
phonon anharmonic frequencies

We first examine the validity of the PT approach starting from
the mode-wise anharmonic frequencies at a finite temperature. In
Fig. 1 we show comparison of the frequency shifts of Si phonons
in the [100] direction at 600 K obtained from two different
methods. The NMA results are extracted from the oscillations of
the autocorrelation function of the potential energy of each
normal mode, and the simulation run length is 40 ps to ensure all
results are fully converged. While with the PT method, the
simulation is run for 0.5 ps for each individual phonon mode. The
anharmonic frequency shifts are plotted as a function of reduced
wave vector, k/k,, , where k,, =27/a , and the resulting
dispersion relation of each phonon branch is also plotted in the
same figure. We see that the results from the two methods agree
very well. The largest difference, which is at zone boundary for
the TA (transverse acoustic) branch and near zone center for the
TO (transverse optical) branch, is only about 3%.
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FIG. 1. Comparison of frequency shifts of Si phonons at 600 K in the
[001] direction from four different polarization branches: (a) TA, (b)
LA, (c) LO and (d) TO. The NMA results are plotted as blue squares
and those from the PT method are plotted as blue crosses (these
correspond to the left axis). The dispersion relations are plotted as red
curves (use the right axis).
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FIG. 2. Convergence of probed anharmonic frequencies with
simulation run length using the PT method. Two phonon modes are
sampled for each different polarization branch: (a) TA, (b) LA, (c) LO
and (d) TO.

Now that the PT method is capable of revealing the delicate
anharmonic frequency shifts with high accuracy, we continue to
check its efficiency. In Fig. 2 we show how accurate results the
PT method provides as a function of simulation run length. From
each different polarization branch, we sample two phonon
modes, one with a relatively low and the other with a relatively
high frequency. The anharmonic frequency result of each mode
at a certain simulation length is obtained by fitting all previous
data points directly probed during the simulation to the linear or
sinusoidal function according to that described in the previous
section. It is then normalized and plotted as % of the final
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converged value. We see that in all cases the largest fluctuation
appears in the first half phonon vibration period. The results then
converge rapidly with more data points becoming available and
are at more than 99% convergence by the end of one vibrational
cycle.

The initial fluctuation and time needed for achieving
convergence are quite mode frequency dependent. Modes with
higher frequencies converge faster because fitting accuracy is
proportional to how many cycles are included. In our Si case, we
find that with the PT method, a simulation length of 0.3 ps is
enough for a fitted frequency result with 99.5% convergence for
the two low-frequency TA and LA (longitudinal acoustic) modes
we sampled. For the high-frequency TA and LA modes and other
modes with higher frequencies, including all LO (longitudinal
optical) and TO modes, an even shorter simulation time of 0.05
to 0.1 ps is enough for very accurate results with less than 0.5%
difference from the final converged value.

So we have demonstrated the validity and efficiency of our PT
method for probing the anharmonic frequencies of individual
phonon modes. Our focus now is on extracting mode-wise
phonon lifetimes.

B. Characteristics and validity of the PT method for
probing phonon lifetimes

Some examples of the decay profiles obtained by the PT
method are presented in Fig. 3, in which we have included results
from three LA phonon modes with different vibrational
frequencies. We see that the PT method can give us very stable
and consistent series of data points in the time period from 0 to
10 ps, which allows us to generate excellent fitting results. This
is obtained right out of a single simulation run without the need
to be averaged like in the statistics-based NMA method. One key
benefit coming from it is that we are able to keep track of all
subtle changes in the probed mode in real time, which is essential
for studying the evolution of a transient process. Nevertheless,
there is error accumulation issue associated with the PT method,
as we mentioned in the previous section. The smooth decay signal
becomes unstable starting from 10 ps, and then abruptly changes
its course. This serves as a clear sign of error eruption, meaning
all data points from that moment on will be badly corrupted and
shall not be included for decay fitting.

The error accumulation behavior in the PT method is more
like system-dependent rather than mode-dependent. Though the
three phonon modes shown in Fig. 3 in our Si model have various
frequencies and wavelengths, they almost experience error
eruption at the same time, all about 14 ps (marked by the vertical
dotted line) after creation of the initial perturbation.

Next, we plot comparison of the lifetimes of Si phonons in the
[100] direction at 600 K from the two different approaches in Fig.
4. The NMA results, which have been averaged over 3
independent simulation runs of 1.2 ns, are plotted as orange
squares. And the PT results, each averaged over 5 independent
short runs, are plotted as blue circles. We only include the error
bars (standard deviation) from the PT method here for clarity.
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FIG. 3. Examples of the decay profiles of three LA phonon modes from
the PT method. The series of discrete symbols in different colors are
the total probe energy of each mode normalized by the respective initial
amplitude at t = 0 and each black line represents the corresponding best
exponential fit.

1600 | 300
Lo [
50 ‘ ‘\} 50 : I\:
45+ | ? 11200 45 | : I 200
11 I I
40 11 } 800 40: 11 I 100
3501, - 3811 o
30! || i 30 || :
825 I |0 825t 1! |-10e
=<2 I el I
20- 1! i | -400—— 20r 11 1-200 0.125
1 | | .
157 11 - woft |
10| o TA 10 1] 0 LA
11 |
51 @ BB g 5011 Bpop
(a) 0L, - (b) 0L,
0 02040608 1 0 02040608 1
k/kmax k/kmax
8| 8 @
6 LO 8l TO
%) %) ®
T sme @ T4 a
2 oo » Pepoe
(C) 00 02 04 06 08 1 (d) 00 0.2 04 06 08 1

k/k k/k

FIG. 4. Comparison of phonon lifetimes of Si in the [100] direction at
600 K obtained from the NMA (orange squares) and the PT method
(blue circles with error bars). Results from four different polarization
branches are presented: (a) TA, (b) LA, (¢) LO and (d) TO.

max max

We see that except for several long-wavelength (small &)
phonon modes with large 7 values, most of the results from the
two methods are in excellent agreement. It’s worth mentioning
that neither the NMA nor the PT method distinguishes between
the types of phonon scattering, such as normal, Umklapp, three-
phonon or higher order processes. The lifetimes extracted here
reflect the net effect from various phonon-phonon interactions
and all anharmonic contributions. For short-wavelength TA
modes and modes from the entire TO branch, differences in the
results from the two methods are all within 15%; for short-
wavelength LA modes and all modes from the LO branch,
differences are only as much as 5%. The most distinguishable
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mismatch comes from a TA mode with a reduced wave vector of
0.125. The result from our PT method is almost twice as large as
that from the NMA method. This is not unexpected given that the
uncertainty extent is much larger than the mismatch itself.
Because of the huge error bar, it has to be plotted separately at a
different scale. Another obvious difference, coming from an LA
mode with a reduced wave vector of 0.25, is about 30%. But still,
it’s within the coverage of the error bar. The large uncertainty
mainly comes from the long lifetime of the first long-wavelength
modes in the TA and LA branch. It is hard for these modes to find
enough partners for anharmonic interactions and the scattering
rate is unstable due to their relatively large phonon occupation
fluctuations. When the wave vector becomes larger, the error bar
decreases to a fairly small range, as a result of smoother and more
stable decay curves. Meanwhile, we find that the entire decay
profile down to near 0 like that of the 12.1 THz LA mode example
plotted in Fig. 3 isn’t necessarily needed for an accurate fitting
result. Fitting with data from a short period of time comparable
to the lifetime of the probed mode is already enough to yield a
reliable result with a minimal level of error. Although error bars
for the NMA results are not shown here, they are actually larger
than those from the PT method, even after running for hundreds
of times longer simulation time. More details are provided in the
following section.

C. Accuracy and efficiency of the PT method comparing
with the NMA approach for extracting mode
dependent phonon lifetimes

We proceed to examine the accuracy of the results from the
two methods in more depth. First, we take an LA phonon mode
of intermediate frequency from Si as an example to show the
convergence of lifetime results with simulation run length, which
are presented in Fig. 5. The NMA result is plotted in the left panel
and that from the PT method is plotted in the right panel for
comparison. The average values (blue curve with symbols) and
the uncertainty band (two black curves) are determined from
multiple runs; we performed 6 independent simulation runs with
the NMA approach and 5 runs with the PT method. It should be
noted that the simulation lengths (x axis) of the two subfigures
are not on the same scale. We see that the averaged NMA result
gradually converges without showing much variation as the
simulation runs longer, and the deviation from converged value
gets below 15% after 200 ps. However, the uncertainty band is
quite large and is still larger than that of using the PT method
even after 1000 ps of simulation time. By contrast, the PT method
produces consistent results with very small uncertainty and
super-short convergence time, which is less than 2 ps.

LA 12.05 THz
6 NMA 6 PT method
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FIG. 5. Comparison of convergence of the lifetime result from the
NMA approach (left) and the PT method (right) with simulation run
length. Example of a Si LA mode of 12.05 THz. The blue curve with
symbols in each plot is the average from multiple runs and the two
black curves form an uncertainty band with its upper and lower bound
being one standard deviation away from the average.

In order to have a clearer view of how accurate the lifetime
results the two methods can provide and how fast they converge,
we calculate the relative error (RE) as a function of simulation
run length ¢ using the following expression

RE(t>=TiC(ﬁZ(a,,-(t)—r;)2] REEE)

i=1
where i indexes over p individual results from multiple runs
and 7 is the final converged lifetime of phonon mode A . The
calculated RE estimates the amount of variation involved in the
result of one simulation run with a confidence level of about 68%,
similar to that of one standard deviation calculation.
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FIG. 6. Variation of the RE versus simulation run length calculated
using Eq. (33) for Si phonon modes. Results from lifetimes obtained by
the NMA approach are plotted in the left panel and those by the PT
method are plotted in the right panel. (a) RE values for sampled TA
and LA modes. (b) RE values for sampled LO and TO modes.



The Si results at 600 K from the two methods are plotted in
Fig. 6 for comparison. From each different dispersion branch, we
choose two phonon modes, one with a relatively low frequency
and one with a relatively high frequency, as representatives. All
of these are listed in Table 1. Results of the representative
acoustic modes are plotted in Fig. 6(a). From the large RE values
in the left panel we see that lifetimes obtained by the NMA
approach can be quite inaccurate if simulation run length and data
sampling isn’t long enough. This is especially severe for low-
frequency modes with long lifetimes. The RE values of TA-1 and
LA-1 mode from 100 ps run time are as high as 120%, which then
slowly drop down with longer simulation length. But still, they
are about 30 to 40% even after 1 ns run time. By comparison, the
RE values of the same modes by the PT approach (right panel)
are much smaller and decrease significantly faster. We find they
are already lower than what by the NMA approach can ever
achieve after only 5 ps of simulation time, and this is 200 times
more efficient. The reason for this huge difference is that the
NMA approach relies on averaging to cancel out the noise
brought by intense thermal fluctuations, while the PT method is
not based on statistics and the system-wide fluctuations are
already dealt with when calculating Q7 (t)—Q, (¢) . It should be
noted that the PT method does not always produce a more
accurate result with longer simulation length. After certain point,
the relative error starts to rebound, as can be clearly seen from
the result of mode LA-1. This behavior is directly related to the
nature of the method and the way post-processing is done. We
will have more detailed discussion in the next section when we
further compare the PT method with the NMA approach.

For the acoustic modes with intermediate frequencies, e.g.,
LA-2 of Si, the errors are about one half smaller due to their
shorter phonon lifetimes. The LO and TO modes with
comparably short lifetimes too have about the same level of RE,
as shown in Fig. 6(b), though their vibrational frequencies are
much higher. Nevertheless, a quite long simulation run is still
needed for these modes to obtain converged lifetime results using
the NMA approach. In the meantime, we find the level of RE and
time for convergence of the results by the PT method also
decrease accordingly and proportionally with the NMA results,
which means the PT method is consistently more accurate and
efficient.

To quantify how much more efficient the PT method is
comparing with the conventional NMA approach for extracting
the lifetime of a single phonon mode, we proceed to calculate the
efficiency factor of using the PT method for each sampled mode.
We first determine how long simulation run time is required to
achieve a RE that is below a certain level for both of the two
methods. Then the efficiency factor is obtained as the ratio of the
time needed by the NMA to that needed by the PT method. Five
RE levels ranging from 120% to 10% are used for performance
benchmarking. Results of all sampled modes from Si are
tabulated in Table 1. We note that because the initial RE values
of mode TA-2 and LO-1 for both two methods are already below
120%, their numbers for this level are unavailable.

TABLE 1. List of sampled modes from different polarization branches
of Si and efficiency factors of using the PT method to probe phonon
lifetimes at various accuracy levels.

Sampled Frequency  For achieving a relative error that is below

mode (THz) 120%  80%  40%  20% 10%
TA-1 24 580 168 128 >190  >190
TA-2 7.0 - 487 1313 704 >470
LA-1 3.8 25 156  >120 -
LA-2 12.1 1238 1649 1860 3851 >7400
LO-1 18.1 - 230 340 548  >2080
LO-2 14.5 1170 1580 2790 5285  >740
TO-1 18.1 1028 1146 620 1193 1289
TO-2 15.7 530 606 6672 595  >280
Average 156 203 185 498 >455

As can be seen in Table 1, the efficiency factors for probing
Si phonons are generally pretty high. The number varies
depending on the accuracy level, polarization and lifetime of a
mode. For instance, the efficiency factor of mode LA-2 for
achieving a RE below 120% is 1238, which means simulation
time needed by the PT method is over a thousand times less than
that needed by the NMA approach. This has been quite a big leap
forward in performance for just a low-accuracy result. The
efficiency factor keeps increasing with the result being more
accurate and almost triples for a RE below 20%. After that, it
becomes difficult to further improve the accuracy with the
conventional NMA approach. The use of “>” sign in the last
column is because the NMA result fails to converge to a RE
below 10% after 1.2 ns of simulation run but the PT result
achieves so in only 0.16 ps; this makes the efficiency factor on
mode LA-2 greater than 7400. Similar numbers are obtained for
mode LO-2, which has the same polarization as mode LA-2 and
a very close frequency and lifetime. When it comes to high-
frequency modes, e.g., LO-1, the NMA shows a much better
performance, resulting in shorter convergence time. Thus the PT
efficiency factor drops to a moderate number of around several
hundred for intermediate result accuracy. We also see from the
relatively low numbers with mode TA-1 and LA-1 that the PT
method is less effective when dealing with low-frequency
acoustic modes because of the very long lifetimes, which we have
previously pointed out. In these two cases, the PT method may
only provide limited reduction in computational cost by factors
of tens to over a hundred for results with low to intermediate
accuracy. The numbers for the remaining modes range from
hundreds to several thousand. We further estimate the average
efficiency factors for each accuracy level. We find an average
number of about 200 is to be expected for results with low
accuracy and about 500 for results with intermediate to high
accuracy.

Iv. DISCUSSION



The average efficiency factors presented in Table 1 are
conservative estimations. Normally only one very long
simulation run is performed for use with the NMA approach since
information regarding all available modes has been included. But
the total simulation time depends on the longest length needed by
the main contributors to achieve good convergence. This total
time is usually significantly longer than that required by short-
lifetime modes, which means the actual efficiency factors of the
PT method will be considerably higher. However, for the same
reason that the NMA takes care of all modes in just one
simulation run while the PT method handles individual modes in
separate short runs, the overall efficiency factor, unlike the
striking numbers for individual modes, is expected to be much
lower. It decreases proportionally with increasing number of
modes that need to be probed. Thus, the efficiency advantage of
the PT method will be offset when dealing with hundreds of or
more modes in a system that has many dispersion branches due
to complex material structure. In such situation, using the all-in-
one NMA or SED analysis will be more appropriate.

The essential difference between the PT method and statistics-
based methods is also seen in how the accuracy of their results
changes over time. The NMA approach offers progressively more
accurate results with increasing simulation length, as more data
sets become available for correlation and averaging. And it’s
worth noting that the optimal fitting length in the NMA approach
is significantly shorter than the whole simulation run length.
Although correlated data series can be very long, only the first
short period comparable to each mode’s lifetime is used to
produce results with best accuracy and convergence. As for the
PT method, the available fitting length is the same as simulation
length. We find that the accuracy of the results using the PT
method only improves in the first period of time, at the end of
which the converged lifetime with lowest level of error is
achieved. After that, the accuracy starts to worsen due to
uncertainty from both extended fitting length and error
accumulation by the method itself. Taking the acoustic mode LA-
1 of Si as an example, the optimal fitting length for the best result
using the PT method is about 7 ps, as is seen in Fig. 6(a) (right
panel). This is far before the occurrence of error eruption, which
is at 14 ps. We also notice that for a mode like LA-1 that decays
slowly, the optimal fitting length of 7 ps is much shorter than its
long lifetime, which is 30 ps. This shows that the PT method is
well capable of handling phonon modes with long lifetimes.
Nevertheless, if the available fitting length from a single
simulation run is too short and barely covers a small segment of
the decay profile, there could be considerable error in the fitted
result. In such a case, an average of multiple results obtained from
different runs can be taken to improve the accuracy. For most of
the modes that have relatively short lifetimes, the optimal fitting
length is slightly longer than the lifetime of each mode.

One major superiority of the PT method is its flexibility for
computationally expensive cases. Being able to efficiently probe
each phonon mode separately means freedom to choose which
ones we want. For a system of very large size that cannot be
handled by the conventional statistical approaches, we can
sparsely probe proportion of the modes and estimate the rest by
extrapolation. In some cases, when only certain modes are of
interest, e.g., zone center optical modes excited by laser pulses,

we can sample only those we are interested in without wasting
resources on others.

There are further potential applications in which the PT
method is particularly useful. For instance, studying the
relaxation of a non-equilibrium system requires that the transient
process is preserved. Approaches based on statistics corrupt such
processes during time-averaging, whereas our PT method
responses to the changes and evolution in real time.

V. CONCLUSIONS

We have presented a PT method for probing spectral phonon
properties from MD simulations. The method first creates a
parallel system from the reference system by introducing a small
perturbation to a normal mode of interest. The perturbation is
then used as a probe to track mode’s evolution from a particular
state, which oscillates and decays over time. The probe signal is
obtained by comparing the normal mode states of the two systems
that are running side by side. In this way, it cancels out the large
noise of thermal fluctuations due to concurrent phonon-phonon
processes.

Results from the PT method are benchmarked against those
from the widely used NMA using EDIP Si as the model material
system. We find excellent agreement on both mode-wise
anharmonic frequencies and phonon lifetimes, demonstrating the
validity of the new method. Results are produced consistently by
our method with small uncertainty and short convergence time.
We find a simulation length of 0.3 ps for low-frequency acoustic
or 0.05 to 0.1 ps for high-frequency acoustic and all optical
modes is enough to yield a 99.5% converged anharmonic
frequency in our Si case. Unlike the existing statistics-based
approaches that require a very long simulation time for averaging
to suppress the large noise, our method is highly efficient. We
find that an average factor of about 200 to 500 reduction in
computational effort is to be expected when using the PT method
to extract the lifetime of a Si phonon mode with various accuracy
levels. For most of the mid- to high-frequency modes (with
relatively short lifetimes) we have studied, the PT method can
reduce the simulation time needed by 3 orders of magnitude,
comparing with the NMA approach. The general trend is that the
efficiency advantage increases with the demand for a higher
accuracy. However, our method is not suitable for handling too
many modes as the efficiency also decreases proportionally with
increasing number of modes.

In the meantime, the flexibility of our method allows one to
choose to probe only certain modes of interest from a large
system or in a particular case. Another important feature of the
new method is its ability to keep track of the changes in a normal
mode state in real time, which makes it ideal for studying the
transient process in a non-equilibrium system. We expect the PT
method to be equally well applicable to AIMD simulations,
where interatomic interactions are determined from first
principles. Our much higher efficiency than that of the
conventional approaches can greatly ease the burden from
expensive DFT-based calculations.
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