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Abstract 

Existing methods for directly extracting the spectral phonon properties from molecular dynamics (MD) simulations, like the normal mode analysis 

(NMA) and spectral energy density analysis, all require a very long simulation time to produce reliable results with good convergence. So far, these 

methods are mainly applied in studies using small systems and with empirical potentials, as the heavy computational load has greatly hindered their 

further applications. Here we propose a perturbation-tracking (PT) method for directly probing the mode-wise phonon anharmonic frequencies and 

lifetimes. We show that results obtained from our method are in excellent agreement with those from the conventional NMA approach, using Si as the 

model material system. Comparing with the NMA approach, the PT method offers a greater accuracy and significant improvement of efficiency. It 

takes an average of two orders of magnitude and up to three orders of magnitude less simulation time to obtain the same lifetime result of a phonon 

mode with intermediate to high accuracy. Meanwhile, our method preserves all the dynamics of probed phonon mode from a particular state, which 

means it is capable of studying the transient thermal transport processes in a non-equilibrium system. Besides the exceptional efficiency, our method 

also comes with freedom to choose to probe only those modes of interest. This makes it ideal for use with large systems and in computationally 

demanding applications, such as ab initio MD simulations. Moreover, the PT method we propose here is very straightforward and easy to implement. 
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I. INTRODUCTION 

Much attention has been given to the search of novel materials 

and structures with desired thermal transport properties [1-3]. 

The thermal conductivity is closely related to the properties of 

phonons, which are the dominant heat carriers in semiconductors 

and dielectrics. In order to correctly interpret measured thermal 

conductivity results from experiments and to seek a deeper 

understanding of the underlying mechanisms, gaining insight into 

the spectral transport properties of phonons has become a 

necessity [4-7]. 

Based on the Boltzmann transport equation (BTE) under the 

relaxation time approximation (RTA), the lattice thermal 

conductivity   can be written in terms of the spectral phonon 

lifetime (which is also called relaxation time or scattering time) 

 , the specific heat c  and the group velocity v  as 

 ( )
21

vc e
V

    


 =  ,  (1) 

where V  is the system volume and e  is a unit vector along the 

transport direction  . The summation runs over all available 

phonon modes ( )k   with wave vector k  and polarization 

 . The product of the group velocity and lifetime gives the 

phonon mean free path (MFP), which is extensively used to 

explain different thermal transport phenomena such as the size 

effects. Two of the three key ingredients, the mode specific heat 

and the group velocity can be readily calculated once the phonon 

dispersion relations are known. To obtain the anharmonic 

vibrational frequencies is challenging but necessary for 

improving the accuracy when calculating   at a finite 

temperature. The remaining difficulty is to accurately and 

efficiently determine the spectral phonon lifetimes. 

Methodologies for predicting phonon properties and the lattice 

thermal conductivity have been under active development in two 

main categories: anharmonic lattice dynamics (ALD) 

calculations and molecular dynamics (MD) simulations. Since 

the third-order ALD method was first proposed to calculate the 

intrinsic three-phonon scattering rates via Fermi’s golden rule, 

calculations based on ALD have been carried out to predict 

phonon lifetimes from density functional theory (DFT) [8, 9] and 

combined with BTE to predict the lattice thermal conductivity 

[10, 11]. The ALD approach with interatomic force constants 

determined from first principles or from an empirical potential is 

now widely employed [4, 5, 12]. However, there are certain 

limitations associated with ALD calculations. For instance, the 

approach is based on perturbation theory, which gives accurate 

results at a relatively low temperature. But it may fail at high 

temperatures or in strongly anharmonic systems [13, 14], given 
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that only 3-phonon or at most 4-phonon processes are considered 

[15-17]. 

Approaches based on molecular dynamics (MD) simulations 

on the other hand have advantages over ALD calculations at high 

temperatures since full orders of anharmonicity are naturally 

incorporated. Other issues related to anharmonic effects, such as 

imaginary phonon frequencies solved from lattice dynamics 

calculations [14, 18], can also be easily handled through MD 

simulations at a finite temperature [19]. Anharmonic phonon 

frequencies have been determined either indirectly by solving the 

dynamical matrix with force constants obtained from an MD 

simulation or directly through Fourier analysis of the statistical 

result from a simulation run. For the indirect approach, Kong 

proposed a Green’s function method to construct the dynamical 

matrix based on the fluctuation-dissipation theorem [20]. 

Hellman et al. developed a temperature-dependent effective 

potential (TDEP) method [19, 21] to subsume anharmonic effects 

in the effective force constants. The TDEP method was applied 

in ab initio molecular dynamics (AIMD) due to its efficiency. For 

the direct approach, the two most commonly adopted methods are 

the time domain normal mode analysis (NMA) [22-24] and the 

spectral energy density (SED) analysis [25-28]. Both the 

anharmonic phonon frequencies and phonon lifetimes can be 

extracted using either one of the two methods, which are basically 

equivalent [28, 29]. In the time domain NMA, a time history of 

the normal mode amplitudes or mode energy is obtained by 

projecting the atomic trajectories onto each phonon mode in a 

system. The phonon lifetime of each mode is extracted by fitting 

the autocorrelation result to an exponential decay curve. If only 

the potential energy is used, the autocorrelation function gives a 

decay curve with oscillations, from which the anharmonic 

phonon frequency can be extracted. In the SED analysis, the 

kinetic energy of a single phonon mode or multiple modes with 

the same wave vector is calculated in the frequency domain 

through Fourier transform. The resulting time average gives a 

Lorentzian function for each phonon mode with its peak position 

as the frequency and full width at half maximum as inverse of the 

phonon lifetime. There are other MD simulation techniques and 

schemes for predicting lattice thermal conductivities such as the 

approach-to-equilibrium method [30-32], Green-Kubo method 

[33-36], and the direct method [37-40], which are more general 

and capable of dealing with complex material systems. 

Meanwhile, theories were developed for spectral decomposition 

of the heat flux for quantifying the contribution from various 

vibrational modes towards the total thermal conductivity [41, 42]. 

In this work, we will limit our scope to the BTE-based phonon 

quasi-particle picture and only focus on getting the key phonon 

properties from MD simulations. 

Most of the MD simulation studies for direct extraction of the 

spectral phonon properties especially those involving phonon 

lifetimes have been conducted using empirical potentials because 

of the high computational cost. Existing methods, whether based 

on autocorrelation function or SED, all require a long simulation 

time – usually hundreds of picoseconds to several nanoseconds, 

to produce reliable results with good convergence. This has 

greatly limited their applications in AIMD simulations. As a 

trade-off, the system size has to be very small [25, 43, 44], which 

often causes strong size effects that result in underestimation of 

the thermal conductivity. It is possible to accelerate the 

convergence process and improve result fitting from additional 

theoretical approaches [45], but it can be quite complicated and 

difficult to implement. Meanwhile, the reduction in the required 

simulation time is still limited as the auxiliary calculations do not 

change the method itself. Moreover, for methods that rely on 

averaging to suppress the background noise from thermal 

fluctuations, the final result essentially reflects the overall 

statistical average and individual phonon processes on small 

timescales have all been washed away. 

In this work, we propose a perturbation-tracking (PT) method 

to directly extract the spectral phonon properties from MD 

simulations. Unlike the statistics-based NMA or SED analysis, 

our method preserves all the dynamics of a decay process and 

offers great flexibility and exceptionally high efficiency for 

studying individual phonon modes of interest. The remaining 

article is structured as follows: In Sec. II, we introduce the PT 

method along with its theoretical background. Results from the 

PT method versus those from the time-domain NMA for the 

model material system Si are presented in Sec. III. We 

demonstrate the validity of the PT method for extracting 

anharmonic vibrational frequencies and phonon lifetimes, and 

provide detailed comparisons between the two methods on 

accuracy and efficiency. In Sec. IV, we further discuss the 

advantages, limitations and application scenarios of the PT 

method. Section V ends with a summary and conclusions. 

II. THEORETICAL BACKGROUND AND METHOD 

Starting from lattice dynamics, the general equation of a 

travelling wave in a crystal can be written as 

  

( )
1

( )

exp ( )

jl
u A

t m j

i r tk

j

jl

  

 



 

 
 
 

 
 

−

=

+ ,  (2) 

where ( )tu jl  is the time-dependent displacement of atom j  

in the unit cell l  under the influence of a vibrational mode  , 

A  is the wave amplitude factor, m  is the atomic mass, r  is the 

equilibrium position,   is the relative phase,   is the angular 

frequency and   is the displacement vector. The angular 

frequency and the displacement vector are obtained by solving 

the eigenvalue problem, 
2 ( )D k    = , with D  being the 

dynamical matrix. Within the harmonic approximation, the total 

displacement is a linear superposition of all available waves of 

different phonon modes as 

 
jl

u
l

t t

j
u 



  
 



= 

  
 .  (3) 

It is convenient to describe a lattice wave in reciprocal space by 

using the normal mode coordinate (NMC), which can be 

calculated from 

 
*( )

e( ) ( )xp ( )
jl

jlm j
ikQ t j ur jl

N t
 

 
 −     


=


 ,  (4) 

where N  is the number of lattice points and the asterisk 

superscript denotes the complex conjugate. For the harmonic 

wave of a phonon normal mode, Q  oscillates over time as 
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  ( ) (0)expQ i tt Q  = − .  (5) 

In the presence of lattice anharmonicity, anharmonic interactions 

dampen the oscillations, which is seen as spectral line 

broadening, and cause frequencies to shift from their harmonic 

values. If the frequency shift and linewidth are relatively small, 

the time-dependent NMC can be reintroduced as 

   ( ) (0)expt Q i tiP     + − = − ,  (6) 

where   is the frequency shift and   is the linewidth. The 

phonon lifetime and linewidth are related as 

 ( )
1

2 
−

=  .  (7) 

The use of P  is to distinguish from the measured Q  at time t 

because Eq. (6) describes the evolution of a phonon state initially 

started from time 0 that decays over time. Nevertheless, phonons 

in each mode are not only being scattered to but also created from 

other modes. The population of a phonon mode, which is 

proportional to the mode’s energy, fluctuates about a mean value 

due to multiple phonon processes. At thermodynamic 

equilibrium, the average mode energy is ( )1/ 2nE   += , 

where  is reduced Planck’s constant and n  is the average 

phonon occupation number, which follows Bose-Einstein (B-E) 

statistics. In the classical limit or for a classical system, according 

to the equipartition theorem, it reduces to 

 BE k T = ,  (8) 

where Bk  is Boltzmann’s constant. The simultaneous creation 

and annihilation of phonons at any moment gives a new state 

starting from that moment. Because Q  measures the current, 

updated state, the time-dependent energy of a normal mode can 

be calculated as 

 2 * *

( ) ( ) ( )

( ) ( ) ( )
1

2
)

1

2
(

E t V t K t

Q t Q t Q t Q t

  

    

= +

+= ,  (9) 

where V  is the potential energy, K  is the kinetic energy and Q  

is the time derivative of the NMC, which can be determined from 

atomic velocities u  similar to Eq. (4): 

 
*( )

exp (( ) ( ))
jl

jlm j
ikQ t r jl u

N t
j 

 
 −     

 
= .  (10) 

And since V K = , we have 

 
*

2
( ) ( ) BT

Q t Q t
k

 


= .  (11) 

So the measured NMC sequence does not directly reflect the 

decay of a particular normal mode state as described by Eq. (6). 

In order to extract the effective decay rate of a normal mode, the 

common way has been using a statistical approach, such as the 

autocorrelation function (NMA) or SED analysis. The new 

method we propose here is on the other hand using a different 

strategy. 

The two NMCs, one in Eq. (4) that measures the current 

phonon state and the other in Eq. (6) that describes a previous 

decaying state are related as 

 ( ) ( )

( ) ( ) ( )

(0)exp exp ( )A

Q t P t C t

Q i t t C t

  

   

= +

= − − + ,  (12) 

where A

   = +   is the anharmonic angular frequency and 

C  is a time-dependent complex number, introduced here as an 

accumulated change in the NMC due to newly created phonons 

in mode  . In order to reveal the oscillatory and decaying 

behavior of a damped mode, the effect from C  needs to be 

eliminated. We introduce a perturbation   to the initial state of 

phonon mode  : 

 (0) (0)pQ Q  = + ,  (13) 

where 

 
*( )

ex ( ( ) )p ) (
j

p

l

m j
ik r j ujl jl

N
    = − 

  ,  (14) 

with 

  ( ) ( )
1

exp ( )
( )

p p pA i k ru jl
m

j jl
j

      +
 

= ,  (15) 

in which pA  is the amplitude and p

  is the relative phase of the 

perturbation in real space. The corresponding displacement field 

of the perturbed system at 0t =  is then 

 
0

)
0

(pp
jl jl

u u jlu

   
= +   
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.  (16) 

And the velocity field is 

 ( )
0 0

p p
jl jl

u u u jl

   
= +   

   
,  (17) 

where 

 ( ) ( )Ap pu jl i u jl  = − .  (18) 

The perturbed system with (0)pQ  as the initial state of mode   

is let to evolve in a separate simulation run, as a parallel system 

to the original one. The initial states of all other phonon modes 

together with other initial conditions are exactly the same for the 

two parallel systems. For the same well-defined mode, (0)pQ  

also evolves according to Eq. (6) with the same oscillatory and 

decay rate as (0)Q . And similar to Eq. (12), for the perturbed 

system, we have 

 ( ) ( )( ) (0)exp exp ( )p p pAQ t Q i t t C t     += − − ,  (19) 

where the use of pC  with a superscript is to distinguish from C  

in the original system. Although both of them are unknown, they 

are different, since the evolution of the perturbed system is 

different. Subtracting Eq. (12) from Eq. (19) we get 

 ( ) ( )

( ) ( )

(0) (0) exp exp

( ) ( )

p

p

p

A

Q t Q t

Q Q i t t

C t C t

 

   

 



−

 = − − −  

 + − 

.  (20) 

During a simulation run, atomic trajectories are updated at 

discrete time steps and so are the normal mode coordinates 

calculated. We also evaluate the term involving 
pC  and C  in a 

discrete form. The second term on the right-hand side of Eq. (20) 

can be expanded as 

 

1 1

2 2

exp ( 1)( )

exp ( 2)( )

( ) ( )

( ) ( )

( ) ( )

( ) ( exp ( )( ))

p

n n

p A
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p A
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C t C t

t t

t t
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n i dt

n i dt

n n i dt

 

   

   

   

  

  

  

=    − − − −   

   + − − − −   

   + − − −

−

−







   ,  (21) 

where nt ndt=  means at time step n  with dt  being the length 

of one time step, and   is the change in the NMC for one time 
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step due to newly created phonons in the original system that 

satisfies 

 
1( ) ( )exp ( ) ( )A

n n nQ t Q t i dt t     −
 = − + − .  (22) 

In the same way in the perturbed system, 

 
1( ) ( )exp ( ) ( )p p A p

n n nt t i dt tQ Q     −=  − − +  .  (23) 

The NMC that describes the normal mode state at the current time 

step can be decomposed into two parts. The first one comes from 

the mode state measured at the previous time step with preserved 

relative phase information but decreased amplitude. This 

corresponds to phonons of mode   being scattered into other 

modes. The second part,   (or p

 ), is from all other phonon 

modes in the system. This corresponds to the combined result of 

all anharmonic phonon processes that created new phonons into 

mode   since last time step (after the previous NMC was 

measured). Because we only perturb one phonon mode   and 

the states of all other modes are exactly the same right after 

perturbation,   is equal to p

  at 1t . So the first term on the 

right-hand side of Eq. (21) is always zero. But starting from the 

second time step, the difference,  , in the perturbed system 

begins to propagate towards all other modes. The changes in 

others in turn makes p

  deviate from  . Although the 

deviation is expected to increase with further propagation of the 

difference, the existence of a large number of different modes 

greatly dilutes the effect of   and its impact on the states of 

other modes. It may take many out-scattering and back-scattering 

cycles before the difference between p

  and   becomes 

perceivable. The second part of each term in Eq. (21) with the 

exponential decay indicates that the effects from later time steps 

are more prominent than those from earlier time steps. The total 

effect is that all terms in Eq. (21) except for the first one will be 

non-zero and will increase progressively from a tiny initial value. 

In order to keep ( ) ( )p

n nC t C t −  small, we shall give a small 

perturbation and limit the time steps. For the time period before 

( ) ( )p

n nt t  −  gets too large and if 

 ( ) ( ) ( ) ( )p p

n n n nC t C Q Qt t t   − − ,  (24) 

Eq. (20) may be approximated as 

 

( ) ( )

( ) ( )

(0) (0) exp exp

exp ex

( ) ( )

p

p

p

A

A

Q t Q

Q Q i t t

i t t

t 

   

  



 

−

 = − −

= −

−

−

 

.  (25) 

From this result we see that the initial perturbation to the phonon 

mode   evolves the same as that described by Eq. (6). Since the 

underlying phonon properties are revealed through this 

perturbation, we will also think of it and call it a “probe”. 

From above, the angular frequency can be straightforwardly 

obtained by tracking the relative phase change over time. 

According to Eq. (25), the phase angle of ( ) ( )pQ t Q t −  is 

 

* *

1

* *

( ) ( ) ( ) ( ) ( )
( ) tan

( ) ( ) ( ) ( ) ( )

w

p p

p p

Q t Q t Q t Q t
t

Q t Q t Q t Q t

   


   

 −
 − − +

=  
− + − 

.  (26) 

However, because ( )w t  is wrapped and ( )w t  −   , we 

need to further calculate the unwrapped phase angle ( )t , 

which differs from ( )w t  by an integer multiple of 2 : 

 ( ) ( ) 2wt mt   =  ,  (27) 

where m  is an integer. After unwrapping, ( )t  gives a 

sequence that changes linearly over time without abrupt 

discontinuities. So that 

 
( ) (0)A t

t

 


 


−
= .  (28) 

The above works for all travelling modes with non-zero group 

velocities. Nevertheless, for the stationary modes whose phase 

angles do not change, we have to directly fit the time sequence of 

( ) ( )pQ t Q t −  to a sinusoidal function to extract A

 . 

Next, in order to extract the lifetime  , we treat 

( ) ( )pQ t Q t −  in a way similar to that calculating the mode 

energy by taking 

 

( ) ( ) ( )

( )

* *

*

*

( ) ( ) ( ) ( ) ( )

exp exp exp 2

exp 2

p

A A

pQ t Q t Q t Q t

i t i t t

t

   

    

  

   

 

   − −   

=

= −





− −

.  (29) 

Rearranging and using Eq. (7), we have 

 

( ) ( )
* *

*

exp exp 2

( ) ( ) ( ) ( ) ( )

/

p p

t

Q t Q Q Q t

t

t t

 

   

 



 

= −

   − 



 
=

−

−
. (30) 

So far, only the potential part of the probe energy based on atomic 

displacements has been utilized. The same   is also attainable 

by considering the kinetic energy from velocities. But in order to 

achieve the best result with minimum unwanted oscillations, we 

find it more desirable to track the total probe energy over time. In 

this way, we have 

 ( )
* *

2 ( )
exp /

Probe

A A

E
t

t


     


     

=
+

− ,  (31) 

where (0) (0)pQ Q   = −  is the kinetic counterpart of  , and 

 

* *

* *

2 ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

p p

p

Probe

A A

p

E t

Q t Q t Q t Q t

Q t Q t Q t Q t



     

   

     = − −   

   + − −    .  (32) 

Now we are able to extract   by fitting the right-hand-side 

expression of Eq. (30) or Eq. (31) to an exponential decay curve. 

So we have given detailed explanation and derivation of the 

PT method. Its implementation procedure for MD simulation is 

actually quite straightforward and looks much more simplified. 

To probe a phonon mode  , we first prepare the system to be in 

a desired thermal state as reference. Then we create a parallel 

system by adding a small perturbation of that mode to its 

reference state according to Eqs. (15)-(18). In Eq. (15), the 

relative phase p

  can be arbitrary; for the perturbation amplitude 
pA , we recommend it to be at least three orders of magnitude 

smaller than the lattice parameter of the material system being 

investigated for a minimum impact on the probed mode. And in 

practice, the harmonic frequency is used instead of the 

anharmonic one in Eq. (18) to generate the perturbation as A

  is 

not known yet. Next, both the reference and the perturbed system 

are let to run for the same simulation length, with both their 

atomic displacements and velocities dumped at the same time 

steps for NMC calculations. After that, A

  can be obtained by 

either linear fitting, Eqs. (26)-(28), or sinusoidal fitting of 
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( ) ( )pQ t Q t − , and the mode’s lifetime,  , readily extracted 

according to Eqs. (30)-(32). 

III. RESULTS 

In this section, we demonstrate the validity and unique 

features of our method using silicon (Si), which has been 

frequently adopted as a model material for studying the thermal 

transport properties with different methods and conditions [38-

40, 46]. The environment-dependent interatomic potential 

(EDIP) [47] is chosen for the crystalline Si studied here because 

reasonably good thermal conductivity results have been 

previously reported with this potential [24, 40]. 

All our simulations have been performed with the classical 

MD code LAMMPS [48]. The velocity-Verlet integration 

algorithm is used with a time step of 0.001 ps, which provides 

enough resolution to capture the highest-frequency oscillations in 

our material system. A typical cubic supercell containing 4096 

atoms is employed with periodic boundary conditions applied in 

all three directions. The lattice parameter, a , of Si we use is 

0.5431 nm. To create the initial perturbation, we choose a 

sufficiently small amplitude pA  of 52 10−  for any phonon 

mode being probed. And the harmonic frequency and 

displacement vectors of each mode are calculated with the 

analytical lattice dynamics solver in GULP [49]. Before data 

collection from the NVE (constant number of atoms, volume and 

energy) ensemble, we have made sure that the material system is 

well equilibrated at the target temperature. 

A. Validity and efficiency of the PT method for probing 

phonon anharmonic frequencies 

We first examine the validity of the PT approach starting from 

the mode-wise anharmonic frequencies at a finite temperature. In 

Fig. 1 we show comparison of the frequency shifts of Si phonons 

in the [100] direction at 600 K obtained from two different 

methods. The NMA results are extracted from the oscillations of 

the autocorrelation function of the potential energy of each 

normal mode, and the simulation run length is 40 ps to ensure all 

results are fully converged. While with the PT method, the 

simulation is run for 0.5 ps for each individual phonon mode. The 

anharmonic frequency shifts are plotted as a function of reduced 

wave vector, / maxk k , where 2 /max ak = , and the resulting 

dispersion relation of each phonon branch is also plotted in the 

same figure. We see that the results from the two methods agree 

very well. The largest difference, which is at zone boundary for 

the TA (transverse acoustic) branch and near zone center for the 

TO (transverse optical) branch, is only about 3%. 

 

 
FIG. 1. Comparison of frequency shifts of Si phonons at 600 K in the 
[001] direction from four different polarization branches: (a) TA, (b) 
LA, (c) LO and (d) TO. The NMA results are plotted as blue squares 
and those from the PT method are plotted as blue crosses (these 
correspond to the left axis). The dispersion relations are plotted as red 
curves (use the right axis). 

 

 
FIG. 2. Convergence of probed anharmonic frequencies with 
simulation run length using the PT method. Two phonon modes are 
sampled for each different polarization branch: (a) TA, (b) LA, (c) LO 
and (d) TO. 

 

Now that the PT method is capable of revealing the delicate 

anharmonic frequency shifts with high accuracy, we continue to 

check its efficiency. In Fig. 2 we show how accurate results the 

PT method provides as a function of simulation run length. From 

each different polarization branch, we sample two phonon 

modes, one with a relatively low and the other with a relatively 

high frequency. The anharmonic frequency result of each mode 

at a certain simulation length is obtained by fitting all previous 

data points directly probed during the simulation to the linear or 

sinusoidal function according to that described in the previous 

section. It is then normalized and plotted as % of the final 
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converged value. We see that in all cases the largest fluctuation 

appears in the first half phonon vibration period. The results then 

converge rapidly with more data points becoming available and 

are at more than 99% convergence by the end of one vibrational 

cycle. 

The initial fluctuation and time needed for achieving 

convergence are quite mode frequency dependent. Modes with 

higher frequencies converge faster because fitting accuracy is 

proportional to how many cycles are included. In our Si case, we 

find that with the PT method, a simulation length of 0.3 ps is 

enough for a fitted frequency result with 99.5% convergence for 

the two low-frequency TA and LA (longitudinal acoustic) modes 

we sampled. For the high-frequency TA and LA modes and other 

modes with higher frequencies, including all LO (longitudinal 

optical) and TO modes, an even shorter simulation time of 0.05 

to 0.1 ps is enough for very accurate results with less than 0.5% 

difference from the final converged value. 

So we have demonstrated the validity and efficiency of our PT 

method for probing the anharmonic frequencies of individual 

phonon modes. Our focus now is on extracting mode-wise 

phonon lifetimes. 

B. Characteristics and validity of the PT method for 

probing phonon lifetimes 

Some examples of the decay profiles obtained by the PT 

method are presented in Fig. 3, in which we have included results 

from three LA phonon modes with different vibrational 

frequencies. We see that the PT method can give us very stable 

and consistent series of data points in the time period from 0 to 

10 ps, which allows us to generate excellent fitting results. This 

is obtained right out of a single simulation run without the need 

to be averaged like in the statistics-based NMA method. One key 

benefit coming from it is that we are able to keep track of all 

subtle changes in the probed mode in real time, which is essential 

for studying the evolution of a transient process. Nevertheless, 

there is error accumulation issue associated with the PT method, 

as we mentioned in the previous section. The smooth decay signal 

becomes unstable starting from 10 ps, and then abruptly changes 

its course. This serves as a clear sign of error eruption, meaning 

all data points from that moment on will be badly corrupted and 

shall not be included for decay fitting. 

The error accumulation behavior in the PT method is more 

like system-dependent rather than mode-dependent. Though the 

three phonon modes shown in Fig. 3 in our Si model have various 

frequencies and wavelengths, they almost experience error 

eruption at the same time, all about 14 ps (marked by the vertical 

dotted line) after creation of the initial perturbation. 

Next, we plot comparison of the lifetimes of Si phonons in the 

[100] direction at 600 K from the two different approaches in Fig. 

4. The NMA results, which have been averaged over 3 

independent simulation runs of 1.2 ns, are plotted as orange 

squares. And the PT results, each averaged over 5 independent 

short runs, are plotted as blue circles. We only include the error 

bars (standard deviation) from the PT method here for clarity. 

 

 
FIG. 3. Examples of the decay profiles of three LA phonon modes from 
the PT method. The series of discrete symbols in different colors are 
the total probe energy of each mode normalized by the respective initial 
amplitude at t = 0 and each black line represents the corresponding best 
exponential fit. 

 

 
FIG. 4. Comparison of phonon lifetimes of Si in the [100] direction at 
600 K obtained from the NMA (orange squares) and the PT method 
(blue circles with error bars). Results from four different polarization 
branches are presented: (a) TA, (b) LA, (c) LO and (d) TO. 

 

We see that except for several long-wavelength (small k ) 

phonon modes with large   values, most of the results from the 

two methods are in excellent agreement. It’s worth mentioning 

that neither the NMA nor the PT method distinguishes between 

the types of phonon scattering, such as normal, Umklapp, three-

phonon or higher order processes. The lifetimes extracted here 

reflect the net effect from various phonon-phonon interactions 

and all anharmonic contributions. For short-wavelength TA 

modes and modes from the entire TO branch, differences in the 

results from the two methods are all within 15%; for short-

wavelength LA modes and all modes from the LO branch, 

differences are only as much as 5%. The most distinguishable 
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mismatch comes from a TA mode with a reduced wave vector of 

0.125. The result from our PT method is almost twice as large as 

that from the NMA method. This is not unexpected given that the 

uncertainty extent is much larger than the mismatch itself. 

Because of the huge error bar, it has to be plotted separately at a 

different scale. Another obvious difference, coming from an LA 

mode with a reduced wave vector of 0.25, is about 30%. But still, 

it’s within the coverage of the error bar. The large uncertainty 

mainly comes from the long lifetime of the first long-wavelength 

modes in the TA and LA branch. It is hard for these modes to find 

enough partners for anharmonic interactions and the scattering 

rate is unstable due to their relatively large phonon occupation 

fluctuations. When the wave vector becomes larger, the error bar 

decreases to a fairly small range, as a result of smoother and more 

stable decay curves. Meanwhile, we find that the entire decay 

profile down to near 0 like that of the 12.1 THz LA mode example 

plotted in Fig. 3 isn’t necessarily needed for an accurate fitting 

result. Fitting with data from a short period of time comparable 

to the lifetime of the probed mode is already enough to yield a 

reliable result with a minimal level of error. Although error bars 

for the NMA results are not shown here, they are actually larger 

than those from the PT method, even after running for hundreds 

of times longer simulation time. More details are provided in the 

following section. 

C. Accuracy and efficiency of the PT method comparing 

with the NMA approach for extracting mode 

dependent phonon lifetimes 

We proceed to examine the accuracy of the results from the 

two methods in more depth. First, we take an LA phonon mode 

of intermediate frequency from Si as an example to show the 

convergence of lifetime results with simulation run length, which 

are presented in Fig. 5. The NMA result is plotted in the left panel 

and that from the PT method is plotted in the right panel for 

comparison. The average values (blue curve with symbols) and 

the uncertainty band (two black curves) are determined from 

multiple runs; we performed 6 independent simulation runs with 

the NMA approach and 5 runs with the PT method. It should be 

noted that the simulation lengths (x axis) of the two subfigures 

are not on the same scale. We see that the averaged NMA result 

gradually converges without showing much variation as the 

simulation runs longer, and the deviation from converged value 

gets below 15% after 200 ps. However, the uncertainty band is 

quite large and is still larger than that of using the PT method 

even after 1000 ps of simulation time. By contrast, the PT method 

produces consistent results with very small uncertainty and 

super-short convergence time, which is less than 2 ps. 

 

 
FIG. 5. Comparison of convergence of the lifetime result from the 
NMA approach (left) and the PT method (right) with simulation run 
length. Example of a Si LA mode of 12.05 THz. The blue curve with 
symbols in each plot is the average from multiple runs and the two 
black curves form an uncertainty band with its upper and lower bound 
being one standard deviation away from the average. 

 

In order to have a clearer view of how accurate the lifetime 

results the two methods can provide and how fast they converge, 

we calculate the relative error (RE) as a function of simulation 

run length t  using the following expression 

 ( )
2

2

,

1

1/

1 1
RE ( ) ( )

1

p

i

c

ic
t t

p
 



 
 =

 
= − 

− 
 ,  (33) 

where i  indexes over p  individual results from multiple runs 

and c

  is the final converged lifetime of phonon mode  . The 

calculated RE estimates the amount of variation involved in the 

result of one simulation run with a confidence level of about 68%, 

similar to that of one standard deviation calculation. 

 

 
FIG. 6. Variation of the RE versus simulation run length calculated 
using Eq. (33) for Si phonon modes. Results from lifetimes obtained by 
the NMA approach are plotted in the left panel and those by the PT 
method are plotted in the right panel. (a) RE values for sampled TA 
and LA modes. (b) RE values for sampled LO and TO modes. 
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The Si results at 600 K from the two methods are plotted in 

Fig. 6 for comparison. From each different dispersion branch, we 

choose two phonon modes, one with a relatively low frequency 

and one with a relatively high frequency, as representatives. All 

of these are listed in Table 1. Results of the representative 

acoustic modes are plotted in Fig. 6(a). From the large RE values 

in the left panel we see that lifetimes obtained by the NMA 

approach can be quite inaccurate if simulation run length and data 

sampling isn’t long enough. This is especially severe for low-

frequency modes with long lifetimes. The RE values of TA-1 and 

LA-1 mode from 100 ps run time are as high as 120%, which then 

slowly drop down with longer simulation length. But still, they 

are about 30 to 40% even after 1 ns run time. By comparison, the 

RE values of the same modes by the PT approach (right panel) 

are much smaller and decrease significantly faster. We find they 

are already lower than what by the NMA approach can ever 

achieve after only 5 ps of simulation time, and this is 200 times 

more efficient. The reason for this huge difference is that the 

NMA approach relies on averaging to cancel out the noise 

brought by intense thermal fluctuations, while the PT method is 

not based on statistics and the system-wide fluctuations are 

already dealt with when calculating ( ) ( )pQ t Q t − . It should be 

noted that the PT method does not always produce a more 

accurate result with longer simulation length. After certain point, 

the relative error starts to rebound, as can be clearly seen from 

the result of mode LA-1. This behavior is directly related to the 

nature of the method and the way post-processing is done. We 

will have more detailed discussion in the next section when we 

further compare the PT method with the NMA approach. 

For the acoustic modes with intermediate frequencies, e.g., 

LA-2 of Si, the errors are about one half smaller due to their 

shorter phonon lifetimes. The LO and TO modes with 

comparably short lifetimes too have about the same level of RE, 

as shown in Fig. 6(b), though their vibrational frequencies are 

much higher. Nevertheless, a quite long simulation run is still 

needed for these modes to obtain converged lifetime results using 

the NMA approach. In the meantime, we find the level of RE and 

time for convergence of the results by the PT method also 

decrease accordingly and proportionally with the NMA results, 

which means the PT method is consistently more accurate and 

efficient. 

To quantify how much more efficient the PT method is 

comparing with the conventional NMA approach for extracting 

the lifetime of a single phonon mode, we proceed to calculate the 

efficiency factor of using the PT method for each sampled mode. 

We first determine how long simulation run time is required to 

achieve a RE that is below a certain level for both of the two 

methods. Then the efficiency factor is obtained as the ratio of the 

time needed by the NMA to that needed by the PT method. Five 

RE levels ranging from 120% to 10% are used for performance 

benchmarking. Results of all sampled modes from Si are 

tabulated in Table 1. We note that because the initial RE values 

of mode TA-2 and LO-1 for both two methods are already below 

120%, their numbers for this level are unavailable. 

 

 

 

TABLE 1. List of sampled modes from different polarization branches 
of Si and efficiency factors of using the PT method to probe phonon 
lifetimes at various accuracy levels. 

Sampled 

mode 

Frequency 

(THz) 

For achieving a relative error that is below 

120% 80% 40% 20% 10% 

TA-1  2.4 580 168 128 >190 >190 

TA-2  7.0 - 487 1313 704 >470 

LA-1  3.8 25 156 >120 - - 

LA-2 12.1 1238 1649 1860 3851 >7400 

LO-1 18.1 - 230 340 548 >2080 

LO-2 14.5 1170 1580 2790 5285 >740 

TO-1 18.1 1028 1146 620 1193 1289 

TO-2 15.7 530 606 6672 595 >280 

Average 156 203 185 498 >455 

 

 

As can be seen in Table 1, the efficiency factors for probing 

Si phonons are generally pretty high. The number varies 

depending on the accuracy level, polarization and lifetime of a 

mode. For instance, the efficiency factor of mode LA-2 for 

achieving a RE below 120% is 1238, which means simulation 

time needed by the PT method is over a thousand times less than 

that needed by the NMA approach. This has been quite a big leap 

forward in performance for just a low-accuracy result. The 

efficiency factor keeps increasing with the result being more 

accurate and almost triples for a RE below 20%. After that, it 

becomes difficult to further improve the accuracy with the 

conventional NMA approach. The use of “>” sign in the last 

column is because the NMA result fails to converge to a RE 

below 10% after 1.2 ns of simulation run but the PT result 

achieves so in only 0.16 ps; this makes the efficiency factor on 

mode LA-2 greater than 7400. Similar numbers are obtained for 

mode LO-2, which has the same polarization as mode LA-2 and 

a very close frequency and lifetime. When it comes to high-

frequency modes, e.g., LO-1, the NMA shows a much better 

performance, resulting in shorter convergence time. Thus the PT 

efficiency factor drops to a moderate number of around several 

hundred for intermediate result accuracy. We also see from the 

relatively low numbers with mode TA-1 and LA-1 that the PT 

method is less effective when dealing with low-frequency 

acoustic modes because of the very long lifetimes, which we have 

previously pointed out. In these two cases, the PT method may 

only provide limited reduction in computational cost by factors 

of tens to over a hundred for results with low to intermediate 

accuracy. The numbers for the remaining modes range from 

hundreds to several thousand. We further estimate the average 

efficiency factors for each accuracy level. We find an average 

number of about 200 is to be expected for results with low 

accuracy and about 500 for results with intermediate to high 

accuracy. 

 

 

 

IV. DISCUSSION 
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The average efficiency factors presented in Table 1 are 

conservative estimations. Normally only one very long 

simulation run is performed for use with the NMA approach since 

information regarding all available modes has been included. But 

the total simulation time depends on the longest length needed by 

the main contributors to achieve good convergence. This total 

time is usually significantly longer than that required by short-

lifetime modes, which means the actual efficiency factors of the 

PT method will be considerably higher. However, for the same 

reason that the NMA takes care of all modes in just one 

simulation run while the PT method handles individual modes in 

separate short runs, the overall efficiency factor, unlike the 

striking numbers for individual modes, is expected to be much 

lower. It decreases proportionally with increasing number of 

modes that need to be probed. Thus, the efficiency advantage of 

the PT method will be offset when dealing with hundreds of or 

more modes in a system that has many dispersion branches due 

to complex material structure. In such situation, using the all-in-

one NMA or SED analysis will be more appropriate. 

The essential difference between the PT method and statistics-

based methods is also seen in how the accuracy of their results 

changes over time. The NMA approach offers progressively more 

accurate results with increasing simulation length, as more data 

sets become available for correlation and averaging. And it’s 

worth noting that the optimal fitting length in the NMA approach 

is significantly shorter than the whole simulation run length. 

Although correlated data series can be very long, only the first 

short period comparable to each mode’s lifetime is used to 

produce results with best accuracy and convergence. As for the 

PT method, the available fitting length is the same as simulation 

length. We find that the accuracy of the results using the PT 

method only improves in the first period of time, at the end of 

which the converged lifetime with lowest level of error is 

achieved. After that, the accuracy starts to worsen due to 

uncertainty from both extended fitting length and error 

accumulation by the method itself. Taking the acoustic mode LA-

1 of Si as an example, the optimal fitting length for the best result 

using the PT method is about 7 ps, as is seen in Fig. 6(a) (right 

panel). This is far before the occurrence of error eruption, which 

is at 14 ps. We also notice that for a mode like LA-1 that decays 

slowly, the optimal fitting length of 7 ps is much shorter than its 

long lifetime, which is 30 ps. This shows that the PT method is 

well capable of handling phonon modes with long lifetimes. 

Nevertheless, if the available fitting length from a single 

simulation run is too short and barely covers a small segment of 

the decay profile, there could be considerable error in the fitted 

result. In such a case, an average of multiple results obtained from 

different runs can be taken to improve the accuracy. For most of 

the modes that have relatively short lifetimes, the optimal fitting 

length is slightly longer than the lifetime of each mode. 

One major superiority of the PT method is its flexibility for 

computationally expensive cases. Being able to efficiently probe 

each phonon mode separately means freedom to choose which 

ones we want. For a system of very large size that cannot be 

handled by the conventional statistical approaches, we can 

sparsely probe proportion of the modes and estimate the rest by 

extrapolation. In some cases, when only certain modes are of 

interest, e.g., zone center optical modes excited by laser pulses, 

we can sample only those we are interested in without wasting 

resources on others. 

There are further potential applications in which the PT 

method is particularly useful. For instance, studying the 

relaxation of a non-equilibrium system requires that the transient 

process is preserved. Approaches based on statistics corrupt such 

processes during time-averaging, whereas our PT method 

responses to the changes and evolution in real time. 

V. CONCLUSIONS 

We have presented a PT method for probing spectral phonon 

properties from MD simulations. The method first creates a 

parallel system from the reference system by introducing a small 

perturbation to a normal mode of interest. The perturbation is 

then used as a probe to track mode’s evolution from a particular 

state, which oscillates and decays over time. The probe signal is 

obtained by comparing the normal mode states of the two systems 

that are running side by side. In this way, it cancels out the large 

noise of thermal fluctuations due to concurrent phonon-phonon 

processes. 

Results from the PT method are benchmarked against those 

from the widely used NMA using EDIP Si as the model material 

system. We find excellent agreement on both mode-wise 

anharmonic frequencies and phonon lifetimes, demonstrating the 

validity of the new method. Results are produced consistently by 

our method with small uncertainty and short convergence time. 

We find a simulation length of 0.3 ps for low-frequency acoustic 

or 0.05 to 0.1 ps for high-frequency acoustic and all optical 

modes is enough to yield a 99.5% converged anharmonic 

frequency in our Si case. Unlike the existing statistics-based 

approaches that require a very long simulation time for averaging 

to suppress the large noise, our method is highly efficient. We 

find that an average factor of about 200 to 500 reduction in 

computational effort is to be expected when using the PT method 

to extract the lifetime of a Si phonon mode with various accuracy 

levels. For most of the mid- to high-frequency modes (with 

relatively short lifetimes) we have studied, the PT method can 

reduce the simulation time needed by 3 orders of magnitude, 

comparing with the NMA approach. The general trend is that the 

efficiency advantage increases with the demand for a higher 

accuracy. However, our method is not suitable for handling too 

many modes as the efficiency also decreases proportionally with 

increasing number of modes. 

In the meantime, the flexibility of our method allows one to 

choose to probe only certain modes of interest from a large 

system or in a particular case. Another important feature of the 

new method is its ability to keep track of the changes in a normal 

mode state in real time, which makes it ideal for studying the 

transient process in a non-equilibrium system. We expect the PT 

method to be equally well applicable to AIMD simulations, 

where interatomic interactions are determined from first 

principles. Our much higher efficiency than that of the 

conventional approaches can greatly ease the burden from 

expensive DFT-based calculations. 
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