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a b s t r a c t

In this paper, a new control framework for an insect-scale flapping-wing vehicle is presented that
exploits passive aerodynamic effects to stabilize the attitude dynamics. Many flapping-wing robotic
flyers and flying insects share a common morphological feature in that the center of mass (CoM)
is below the center of pressure (CoP), which makes the hovering configuration intrinsically unstable
with open-loop control. Motivated by the fact that the CoM should be ahead of the CoP to ensure
the longitudinal stability of the flight dynamics, a new coordinate system is proposed by placing
a virtual control point (VCP) above the CoP. The dynamics in the new coordinates are derived
using a near-identity diffeomorphism which admits a partial feedback linearization with stable zero
dynamics. The behavior of the zero dynamics resembles the dynamics of a 3D pendulum with an
aerodynamic damper. An adaptive controller is proposed to make the upright orientation almost
globally asymptotically stable over a bounded uncertainty of the aerodynamic drag coefficient. The
controller is evaluated in simulation with a Harvard RoboBee following a virtual control point reference
trajectory.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Over recent decades, research in the field of small-scaled
flapping-wing micro aerial vehicles (FWMAV) has rapidly ex-
panded, inspired by the ability of flying insects to perform ag-
gressive maneuvers with seemingly effortless ease. Analysis of
the morphological parameters of various flying insects has shown
that the wing base attached to the body is often higher than
the insect’s center of mass (CoM) (Ellington, 1984). This unique
feature is reflected in many insect-scale FWMAV, including the
Harvard RoboBee (81mg and 170 Hz flapping frequency) (Ma,
Chirarattananon, Fuller, & Wood, 2013), the CMU piezoelectric-
driven FWMAV (160mg and resonance at 35 Hz flapping fre-
quency) (Hines, 2012), and the motor driven robotic Humming-
Bird prototype (12g and 34 Hz flapping frequency) described
in Zhang, Fei, et al. (2017).

Past research suggests that the vertical displacement between
the CoM and the wing base introduces a body pitch oscillation
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which renders hovering intrinsically unstable, resulting from the
aerodynamic drag acting on each wing (Cheng & Deng, 2011;
Ristroph et al., 2013; Teoh et al., 2012). The open-loop instability
of hovering has been extensively studied in model-based sim-
ulations, which have demonstrated this effect using techniques
including the application of differential geometric higher-order
averaging (Taha, Woolsey, & Hajj, 2015), the use of Floquet theory
to analyze hovering stability in periodic orbits (Su & Cesnik,
2011), and simplification via disregarding the wing inertial ef-
fects (Cheng & Deng, 2011; Ristroph et al., 2013; Teoh et al.,
2012). See Taha, Hajj, and Nayfeh (2012) for surveys of control
methods.

Prior work on hovering control for FWMAV has leveraged
generalized averaging theory (Taha et al., 2015) and geometric
methods similar to those used in standard quadrotor control (Ma
et al., 2013; Zhang, Tu, et al., 2017). These controllers operate by
suppressing the unstable part of the dynamics to locally stabilize
while hovering. (An extensive review of the control architectures
of FWMAV can be found in Taha et al., 2012.) In particular,
previous controllers for the Harvard RoboBee have treated the
instability resulting from the separation between the CoM and
the center of pressure (CoP) (on average at the wing base of
the vehicle, as in Fig. 1) as an attitude disturbance, rejecting it
with other force and torque disturbances experienced in flight.
Techniques used to stabilize vehicle pitch in this manner in-
clude the addition of a rotational damper to achieve passive
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Fig. 1. Harvard RoboBee coordinates. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

attitude stability (Teoh et al., 2012), the application of a simple
torque proportional to the angular velocity to stabilize the up-
right orientation (Fuller, Karpelson, Censi, Ma, & Wood, 2014),
and the design of an adaptive sliding mode controller to reject
unmodeled disturbances (including those due to CoM and CoP
separation) (Chirarattananon et al., 2017).

Instead of rejecting the aerodynamic drag effects, we present
a new approach designed to take advantage of the drag in order
to stabilize the upright orientation of FWMAV. This idea is mo-
tivated by the principle that the CoM should lie above the CoP
to obtain static stability in flight (Anderson, 2011). A controller
is designed to stabilize a virtual control point (VCP) along the
body z axis above the vehicle, as shown in Fig. 1. The system
is then analogous to a 3D pendulum, where the VCP serves as
the pivot point, and the stroke-averaged aerodynamic damping
at the CoP dampens attitude oscillations (since the pivot point
lies above the CoP). This is understood by considering the near-
identity diffeomorphism introduced in Olfati-Saber (2002), which
controls nonholonomic SE(2) vehicles. Both the proposed near-
identity diffeomorphism in this paper and that in Olfati-Saber
(2002) allow partial feedback linearization with stable zero dy-
namics. However, the stability proof in Olfati-Saber (2002) cannot
be directly transferred, as its asymptotic stability comes from a
nonholonomic constraint and there are no such nonholonomic
constraints for the dynamics considered herein. The proposed
controller guarantees almost global asymptotic stability (AGAS) to
the desired invariant set (the hovering configuration), similar to
control of a 3D pendulumwith a fixed base pivot (Chaturvedi, Mc-
Clamroch, & Bernstein, 2009). Additionally, the VCP-based con-
troller is advantageous in its reduced requirement for yaw torque
during trajectory tracking, which is commonly a weak controlled
torque for FWMAV (Calderón et al., 2019; Fei, Tu, Zhang, & Deng,
2019; Hines, Arabagi, & Sitti, 2011; Yang, Chen, Chang, Calderón,
& Pérez-Arancibia, 2019) An adaptive controller is also proposed
to show robustness over bounded uncertainty in the aerodynamic
drag coefficient using the projection-based adaptation in Lavret-
sky and Gibson (2011). This proposed adaptive controller also
preserves the AGAS property. Finally, an application is demon-
strated in the design of a tracking controller, following a reference
trajectory with the VCP in simulation.

2. Modeling

We consider a standard rigid body dynamics model (six de-
grees of freedom) with a stroke-averaged aerodynamic force,
controlled via the thrust and torque acting on the rigid body. This
model, and underlying assumptions, are appropriate for insect-
scale FWMAVs due to their relatively small wing mass. We use
the Harvard RoboBee as an example system for this work. The
vehicle flies via amplitude-modulated harmonic voltage signals

which each drive a piezoelectric bimorph actuator with a reso-
nant frequency of approximately 170 Hz, and has a wing mass
less than 1% of its the total body weight (Finio, Pérez-Arancibia,
& Wood, 2011). Previous control approaches for this system (Chi-
rarattananon, Ma, & Wood, 2016; Ma et al., 2013) have found de-
sired thrust and torques, then converted these to voltage signals
using a predefined mapping (Ma et al., 2013).

Let the I-frame and B-frame represent the inertial and body-
fixed frames, respectively, as shown in Fig. 1. The origin of the
B-frame is located at the center of mass (CoM) position and its
orientation aligns with the principal axis of the vehicle, such
that its z-direction coincides with the direction of thrust. The
configurations of a rigid body can be represented by the special
Euclidean group, SE(3), which is a semi-direct product of R3 and
the special orthogonal group SO(3). In this paper, (r, R) denotes a
homogeneous coordinate (Murray, 2017) of SE(3) ⇠= R3 o SO(3),
in which r represents the origin of B-frame in the I-frame, and
R represents the orientation of B-frame relative to the I-frame.

Let v be the velocity of the CoM in the I-frame, ! 2 R3 be the
instantaneous body angular velocity, m be the total mass, g be the
gravity, and I be the moment of inertia. By using the conventional
hat operation,b· : R3 ! so(3), where so(3) ⇢ R3⇥3 is the space of
skew-symmetric matrices, the full rigid body dynamics are

ṙ = v (1)
Ṙ = Rb! (2)
v̇ = �ge3 + TRe3 + Faero/m (3)

I!̇ = �! ⇥ I! + ⌧ + ⌧aero, (4)

where ⇥ is a cross product, e3 = (0, 0, 1)> is an elementary
unit vector in R3, T is a thrust normalized by the mass, and
⌧ = (⌧1, ⌧2, ⌧3) is an external torque. The dynamics in (3)–(4)
contain the aerodynamic drag force, Faero, and the induced torque,
⌧aero. The moment of inertia, I 2 R3⇥3, is a diagonal matrix with
(Ixx, Iyy, Izz) as its diagonal components and a skew symmetric
matrix, b!, is given by a relation, b!y = ! ⇥ y, and 0 2 R3

represents the zero vector.

2.1. Stroke-averaged aerodynamic damping model

Wind tunnel experiments (Teoh et al., 2012) have shown that
the stroke-averaged aerodynamic drag is approximately a linear
function of the velocity of the center of pressure point of the wing.
Let bw > 0 be the stroke-averaged aerodynamic drag coefficient.
By assuming the symmetric configuration of both wings, the
stroke-averaged aerodynamic drag model can be formulated as

Faero = �bw(v + R(! ⇥ rw)) (5)
⌧aero = r! ⇥ R>Faero, (6)

where rw := le3 is the centroid of the two wing CoPs in B-frame,
and l is the distance to the CoM. The centroid of the CoP is shown
as a blue circle in Fig. 1, and the CoM is shown as a red circle in
Fig. 1. The velocity of the CoP, VI

w , and Faero are also shown in the
figure. The exact scale can be found in Fuller et al. (2014).

3. Preliminary notions of set-stability

Let D := TSE(3) be the domain of (1)–(4), with TSE(3) the
tangent bundle of SE(3). Suppose that R1, R2 2 SO(3), then

dR(R1, R2) := kI3⇥3 � R>

1 R2kF , (7)

where k · kF is a Frobenius norm in R3⇥3, is a metric on SO(3).
See Huynh (2009) for the topological equivalence between dif-
ferent metrics of SO(3). Suppose that x = (rx, Rx, vx,!x) 2 D
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and y = (ry, Ry, vy,!y) 2 D. Then, a distance between two
configurations is given by

d(x, y) := [ krx � ryk2
2 + kvx � vyk

2
2 + k!x � !yk

2
2

+ dR(Rx, Ry)2]
1/2

.

A distance to a set using the above metric is defined as

kxkM := infy2Md(x, y). (8)

The following definition of set-stability is used in this paper. A
similar definition can be found using the comparison functions
in Lin, Sontag, and Wang (1996), and the ‘‘almost global’’ property
can be found in Lee (2015).

Definition 1. A set M ⇢ D is

(1) stable with respect to (1)–(4), if for ✏ > 0, there exists
�(✏) > 0 such that if kx(0)kM < �(✏), then kx(t)kM < ✏,

(2) attractive with respect to (1)–(4), if there exists an open
neighborhood U of M such that if x(0) 2 U , then
limt!1 kx(t)kM = 0.

The set is asymptotically stable if the set is both stable and
attractive. In addition, the set is almost globally asymptotically
stable if it is asymptotically stable and the set of initial conditions
such that limt!1 kx(t)kM 6= 0 has a zero Lebesgue measure.

4. A new coordinate system via near-identity diffeomorphism

In this section, a new coordinate for the dynamics in (1)–(4) is
proposed by using a near-identity diffeomorphism. Pick a positive
↵ 2 R+ and consider the following mapping,�↵ : D ! D, defined
everywhere in the domain,

�↵(x) :=

0

B@

⌘1(x)
⌘2(x)
R
!

1

CA =

0

B@

r + � Rrw
v + � R(! ⇥ rw)

R
!

1

CA (9)

where � = 1 + ↵. It is obvious that �↵ is invertible, and the
Jacobian of �↵ has full rank for all x, and so �↵ is a global
diffeomorphism. If ↵ = �1, then �↵ becomes the identity map;
therefore, this is a near-identity diffeomorphism. In this paper,
↵ > 0 is assumed. The intuition of this mapping is such that the
origin of the body frame is shifted up by (1+↵)Rrw , which is the
direction of the body z axis. This new virtual control point (VCP)
refers to the point above the CoP of the vehicle, shown by the
green circle in Fig. 1.

Suppose that the vector field of (1)–(4) is rearranged to a
control affine form with (f (x), g(x)) with drift f (x), actuation g(x),
and control u = (T , ⌧ ). Observe that ⌘̇1(x) = ⌘2(x), and by
defining ⌘1(x) as an output of the system, the dynamics of the
new coordinate in (9) can be transformed to an almost normal
form (the control term appears in the zero dynamics). The Lie
derivatives of ⌘1 along with f and g (see definitions in Khalil,
2002) are

L2f ⌘1(x) = f1(R,!) � bw(C1(R)⌘2(x) + C2(R)!) (10)

LgLf ⌘1(x) =
�
Re3; �� RbrwI�1

�
, (11)

where; indicates a column-wise concatenation, and

f1(R,!) = �ge3 + � Rb!2rw + � RbrwI�1(b!I!)

C1(R) = (
1
m

I3⇥3 � � RbrwI�1brwR>)

C2(R) = ↵Rbrw(
1
m

I3⇥3 � � I�1br2w).

Let I3⇥3 and 03⇥3 be the identity and zero matrices, and

Ac =

✓
03⇥3 I3⇥3
03⇥3 03⇥3

◆
, Bc =

✓
03⇥3
I3⇥3

◆
, E =

�
0, I3⇥3

�
.

The topologically conjugate system to (1)–(4) is derived,

⌘̇ = Ac⌘ + Bc(L2f ⌘1 + A(R)u) (12)

Ṙ = Rb! (13)
I!̇ = �b!I! � bwbrwR>(⌘2 � ↵R(b!rw)) + Eu, (14)

where ⌘ = (⌘1, ⌘2)> and A(R) := LgLf ⌘1(x). Observe that
LgLf ⌘1(x) 2 R3⇥4, while not square, is full row rank, since
rank(be3) = 2, and e>

3be3 = 0. This differs from a typical partial
output feedback linearization since the system is not square;
however, the row space of LgLf ⌘1(x) is orthogonal to e4 :=

(0, 0, 0, 1)>, which indicates that A(R)u in (12) is independent of
the yaw torque ⌧3. Therefore, the output dynamics can be fully
controllable without a yaw torque input and the output dynamics
can be feedback linearizable with three inputs, (T , ⌧1, ⌧2). In
addition, the !3 state in �(x) is fully controllable with ⌧3 and
is independent of the output dynamics.

5. Stability analysis of partial feedback linearization controller

First, a partial feedback linearization controller is designed to
exponentially stabilize the output to become zero, ⌘ = 0. Since
A(R) is full row rank, there exists a pseudo inverse, such that
A†(R) := A(R)>(A(R)A(R)>)�1.

5.1. Partial feedback linearization controller

We choose Qc 2 R6⇥6 and Rc 2 R3⇥3 to be positive definite
matrices and pick kw > 0. Since (Ac, Bc) is controllable, there
exists a unique positive definite P 2 R6⇥6 that solves the
continuous-time algebraic Riccati equation (CARE) using
(Ac, Bc,Qc, Rc). The linear quadratic regulator (LQR) is then used
to stabilize the output dynamics with gain K := R�1

c B>
c P . Then,

the state feedback controller can be defined as

u := A†(R)(�L2f ⌘1(x) � K⌘(x)) � kwe4!3. (15)

Note that a simple yaw control law, ⌧3 = �kw!3, in the last term
is used but does not appear in the output dynamics in (12) since
A(R)e4 = 0 holds. Now, by substituting u in (12)–(14) with the
controller in (15),

⌘̇ = (Ac � BcK )⌘ (16)
Ṙ = Rb! (17)
!̇ = h(R,!) + g1(R)⌘, (18)

where h(R,!) 2 R3⇥1 and g1(R) 2 R3⇥6 are

h(R,!) =

 
!2!3

�!1!3
a1(!1!2) � kw!3

!
+

bw↵

�
(be23!) (19)

+
g
l�

(be3R>e3)

g1(R) =
1
l�

(be3R>(
bw

m
B>

c � K )) (20)

and a1 = (Ixx � Iyy)/Izz . If Ixx = Iyy, then the zero dynamics
(when ⌘1 = ⌘2 = 0) equate to a 3D pendulum in Shen,
Sanyal, Chaturvedi, Bernstein, and McClamroch (2004) with a
rotational damping effect. By using the proposed controller, the
aerodynamic drag acting on the CoP is transformed such that it
behaves as a rotational damper in the new coordinate system, to
eventually help stabilize to the upright orientation.
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5.2. Set of equilibrium points

There exist two disjoint sets of equilibrium points for the
nonlinear system in (16)–(18),

Mf
up := {x 2 D|⌘1 = ⌘2 = ! = 0, e>

3 R
>e3 = 1} (21)

Mf
inv := {x 2 D|⌘1 = ⌘2 = ! = 0, e>

3 R
>e3 = �1}. (22)

Geometrically, the condition for Mf
up represents the upright ori-

entation with a free yaw angle, whereas the condition for Mf
inv

represents the inverted orientation. This is akin to the hanging
equilibrium and the inverted equilibrium for a 3D pendulum
in Shen et al. (2004). The set of the union of two equilibrium sets
is denoted as Mf

eq = Mf
up [ Mf

inv .

5.3. Stability analysis of the full dynamics

In this section, the set-stability of two disjoint equilibrium sets
is considered. Let the following function V : D ! R be defined
as

V (x) := ⌫>Pv⌫ +
g
l�

(1 � e>

3 Re3), (23)

where ⌫ 2 R9 and Pv 2 R9⇥9 are defined as

⌫ =

✓
R(e3 ⇥ !)

⌘

◆
, Pv =

✓
1
2 I3⇥3 03⇥6
06⇥3 kpP

◆
, (24)

where x = (⌘, R,!), kp > 0, and 03⇥6, 06⇥3 are zero matrices.
Observe that V is only positive semi-definite since !3 does not
appear in V . By taking the derivative of V along (16)–(18),

V̇ (x) = �⌫>Pf ⌫, (25)

holds for all ⌫ 2 R9 and Pf 2 R9⇥9 is defined as

Pf =

 
bw↵
m� I3⇥3

1
2l� (

bw
m B>

c � K )
1

2l� (
bw
m B>

c � K )> kpQc

!
. (26)

Observe that Pf is a constant matrix, and it is a function of kp. Let
S 2 R6⇥6 be a positive semi-definite matrix:

S :=
m

4bw l2�↵
(
bw

m
B>

c � K )>(
bw

m
B>

c � K ). (27)

Lemma 2. If kp > �M (S)/�m(Qc), where �M (S) is the maximum
eigenvalue of S and �m(Qc) is the minimum eigenvalue of Qc , then
Pf is positive definite.

Proof. Since diagonal blocks of Pf are invertible, Pf is positive
definite if and only if kpQc � S is positive definite by Theorem
7.76 in Horn and Johnson (1990). The condition for kp suffices to
show that kpQc � S is positive definite. ⇤

5.3.1. Boundedness of the trajectories
Now, pick kp to satisfy Lemma 2, then (25) implies that V̇ (x) 

0 for all x 2 D. However, the sub-level set of V in (23) is un-
bounded as V is independent of !3. Therefore, the boundedness of
the trajectories needs to be first shown before possibly applying
LaSalle’s invariance theorem (or Barbalat’s lemma) for proving the
attractiveness to the desired set. By considering the dynamics of
yaw in (18) separately, the following proposition and corollary
show that the trajectories of (16)–(18) are bounded for each
initial condition.

Proposition 3. There exists a class K function, �1 : [0, 1) !

[0, 1) such that, for any ✏ > 0, if |!3(0)| < ✏, then k!(t)k2 <
�1(✏) for all t � 0.

Proof. Suppose that |w3(0)| < ✏, and pick c1 > 0 such that
V (x(0))  c1✏2, then |!1(t)!2(t)|  1/2(!2

1(t) + !2(t)2)  c1✏2
holds for all t � 0 since V̇ (x(t))  0. By solving for !3(t) in (18),
|!3(t)|  ✏ + a1c1✏2/kw holds. Also, by using the inequality for
the l1 and l2 norms,

k!(t)k2  k!(t)k1  (2
p
2c1 + 1)✏ + a1c1✏2/kw. (28)

This is true for all t > 0. The right hand side of (28) can be shown
to be a class K function over ✏, hence the proposition holds. ⇤

Corollary 4. For any bounded open neighborhood, U, of Mf
eq, there

exists a compact subset ⌦c such that if x(0) 2 U, then x(t) 2 ⌦c for
all t > 0.

Proof. Let ⌦ 2 D be a closure of U . Since V is continuous, ⌦
is compact, and V̇ (x(t))  0, there exists Vmax > 0 such that
V (�(x(t), y))  Vmax for every y 2 ⌦ where �(x(t), y) is a flow
starting from y. Now, pick ✏ > 0 such that all x(0) 2 ⌦ satisfies
|!3(0)| < ✏, then by invoking Proposition 3, k⌘(t)k2

2 + k!(t)k2
2 is

uniformly bounded for all t � 0 over every x(0) 2 U . Hence, there
exists a compact subset ⌦c such that x(t) 2 ⌦c for all t > 0 since
SO(3) is compact.

5.3.2. Almost global asymptotic stability of Mf
up.

Next, the stability of Mf
up is shown as follows:

Theorem 5. Mf
up is a stable set with respect to (16)–(18).

Proof. Let c2 = max(�M (Pv), g/(l� )) and ✏ < min
(1, �m(P)/c2)/

p
10. Pick ✏ > 0 such that ✏ < ✏. Suppose that

the initial condition satisfies kx(0)k2
Mf

up
< ✏, then V (x(0))  c2✏

holds since

1 � e>

3 R
>e3  inf 2[�⇡ ,⇡ ]tr(I3 � R>R )

holds for all R 2 SO(3) and all e>

3 R e3 = ±1. Since V̇ (x)  0 for
all x 2 D, k⌘(t)k2

2 + k!(t)k2
2  c2✏/�m(Pv)+ �1(

p
✏)2 holds for all

t � 0, where �1 is a class K function proposed in Proposition 3.
The last step is to make sure the distance from R(t) to the

orientations of Mf
up (any Re 2 SO(3) satisfying e>

3 R
>
e e3 = 1) is

bounded by some class K function over ✏ for all t � 0. Since
Re is a special orthogonal matrix, Re can be represented by one
parameter set  2 [�⇡ ,⇡], where e>

1 R = [cos , � sin , 0],
e>

2 R = [sin , cos , 0] and e>

3 R = e>

3 . Let (a1, a2, a3) and
(b1, b2, b3) denote the first and second columns of R>, respec-
tively. Observe that the Frobenius norm of the matrix can be
represented by the trace operator, (Huynh, 2009), and that

inf 2[�⇡ ,⇡ ]dR(R, R ) = 3 � r � e>

3 R
>e3

where r =
p
(a1 + b2)2 + (a2 � b1)2. Since R is in special orthog-

onal group, det(R) = 1, and 1 � e>

3 R
>e3 < c2✏/�m(Pv), r is lower

bounded by r >
p
4 � 40(c2✏/�m(Pv))2. The lower-bound is well

defined since ✏ < ✏ by the assumption. By substituting the lower-
bound for r , inf 2[�⇡ ,⇡ ]dR(R, R )  �4(✏) holds where �4(✏) is a
class K function defined as 2�

p
4 � 40(c2✏/�m(Pv))2 + ✏. Hence,

kx(t)k2
Mf

up
 c2�m(Pv)✏+�1(

p
✏)2 +�4(✏) for all t � 0, and so Mf

up

is a stable set. ⇤

Attractiveness to the set of equilibrium, Mf
eq, the union of Mf

up
and Mf

inv , is shown in the following proposition.

Proposition 6. Mf
eq is an attractive set with respect to (16)–(18).

4
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Proof. Let U be a bounded open neighborhood of Mf
eq such that

x(0) 2 U , and g : [0, 1) ! [0, 1) be a twice differentiable func-
tion defined by g(t) := V (x(t)) using V in (23). Since g(t) is lower
bounded and ġ(t)  0 for all t � 0 by (25), limt!1

R t
0 ġ(t)dt

exists and is finite. The second derivative of g , is expressed as
g̈ = �2⌫Pf ⌫̇, where ⌫ := (⌫1, ⌫2) such that ⌫1 := R(e3 ⇥ !) and
⌫2 := ⌘ as given in (24). Observe that ⌫̇1 = R!̂(e3⇥!)+R(e3⇥!̇),
and ⌫̇2 = ⌘̇, where ⌘̇ and !̇ are given in (16)–(18). Since the
trajectory is bounded in some compact set, ⌦c , as shown in
Corollary 4, g̈(t) is also bounded for all t � 0. Therefore, ġ is
uniformly continuous, and by invoking Barbalat’s lemma (Khalil,
2002), limt!1 ġ = 0 holds. Since Pf in (26) is chosen to be
positive definite by satisfying Lemma 2, limt!1 k⌫(t)k = 0 holds,
which infers that limt!1 k⌘(t)k2 = 0 and limt!1(!2

1 +!2
2) = 0.

In addition, limt!1 kvk2 = 0 also holds as v = ⌘2 + l� ⌫1 is
defined in (9). Let gv

i : [0, 1) ! R be defined as gv
i (t) := vi(t)

where vi is i-th component of v, then limt!1

R t
0 ġv

i (t)dt exists and
is finite where ġi = e>

i v̇. Also, g̈i(t) is bounded for all t � 0 since
g̈v
i := e>

i v̈, where v̈(t) = ⌘̇2+l� ⌫̇1, is a function of bounded quan-
tities, according to Corollary 4. By invoking Barbalat’s lemma,
limt!1 ġv

i (t) = 0 holds, and so limt!1 kv̇(t)k2 = 0 holds.
Observe that

lim
t!1

(�� Rê23R
>e3) = lim

t!1
v̇(t) = 0

holds since limt!1 k⌘k2 = 0 and limt!1(!2
1 + !2

2) = 0. There-
fore, limt!1 e3 ⇥ R>e3 = 0 holds, or equivalently, limt!1 e>

3 Re3
= 1 or �1.

Now, pick ✏ < ✏ as in the proof of Theorem 5, then there
exist T1 > 0 such that if t > T1, then |!1(t)!2(t)|  ✏ and
kx(t)k2

Mf
eq

 ✏ +!3(t)2 holds. By invoking the comparison lemma
(Lemma 3.4 in Khalil, 2002) to the dynamics for !3 in (18), there
exist c3 > 0 and T2 > T1 such that if t > T2, then |!3(t)| < c3✏,
and by invoking Proposition 3, kx(t)k2

Mf
eq

< ✏ + c23�1(✏)2 for all

t > T2. Hence, limt!1 kx(t)k2
Mf

eq
= 0 for all x(0) 2 U . ⇤

The first main theorem follows:

Theorem 7. Mf
up is an almost globally asymptotically stable set

with respect to (16)–(18).

Proof. It is shown that Mf
up is locally stable in Theorem 5 and

Mf
eq is globally attractive in Proposition 6. First the linearization

around Mf
inv is considered. Pick (0, 0, Rinv, 0) 2 Mf

inv , and linearize
(16)–(18) around this point. Observe that the linearized model
for (R,!) can be derived into a second order differential equation
(x1, x2, x3) 2 R3,
 ẍ1
ẍ2
ẍ3

!
=

0

B@
�

bw↵
�

ẋ1 +
g
l� x1

�
bw↵
�

ẋ2 +
g
l� x2

0

1

CA . (29)

This is similar to the linearization around an inverted equilibrium
for a 3D pendulum in Chaturvedi, Lee, Leok, and McClamroch
(2011) except that (29) has a damping term. There are two
positive eigenvalues, two negative eigenvalues, and two zero
eigenvalues. Since there are two positive eigenvalues, Mf

inv is
an unstable set. Now, it is enough to show that the region of
attraction for Mf

inv is a set of measure zero. The two zero eigen-
values correspond to the yaw rotation which is invariant in Mf

inv ,
and so the center manifold is contained in Mf

inv . Therefore, all
the trajectories near (0, 0, Rinv, 0) will diverge except the two-
dimensional stable submanifold. This holds for any (0, 0, Re, 0) 2

Mf
inv , so the stable submanifold has Lebesgue measure zero (Krstic

& Deng, 1998). A similar argument can be found for the smooth
control design in Chaturvedi et al. (2009). Hence, Mf

up is an AGAS
set. ⇤

6. Adaptive controller for a bounded uncertain drag coeffi-

cient

The AGAS property of the partial feedback linearizing con-
troller was proven assuming perfect knowledge of the drag co-
efficient, which is not practically desirable. Nevertheless, it is
interesting to observe that for any given bw > 0, there exists
at least one partial feedback linearizing controller to make the
set, Mf

up, AGAS. By exploiting this fact, an adaptive controller is
designed for a bounded uncertain drag coefficient. Assume that
bw 2 Ib, where Ib := [bw, bw], is bounded with bw, bw > 0. Now
consider the following controller

u(x) := A†(R)(�L2f ⌘1(x,bbw) � K⌘(x)) � kwe4!3 (30)

ḃbw :=

8
<

:

0 if f4(x) < 0 andbb = bw

0 if f4(x) > 0 andbb = bw

� f4(x) otherwise
(31)

where � > 0 is the adaptation gain, and L2f ⌘1(x,bbw) is the same
as in (10), withbbw instead of bw ,

f4(x) := �2k⇤

p⌘
>PBc(C1(R)⌘2/m + C2(R)!)

�!>I�1brwR>(⌘2 � ↵R(b!rw)),
and with initial condition,bbw(0) 2 Ib.

Theorem 8. Mf
up is an almost globally asymptotically stable set with

respect to the closed loop dynamics with the adaptive controller in
(30)–(31).

Proof. Since the S matrix in (27) is a smooth function over
bw , there exists �⇤

M (S) := maxbw2Ib�M (S(bw)). Now, pick k⇤
p >

�⇤

M (S)/�m(Q ); then, by Lemma 2, Pf (bbw) from (26) is a positive
definite matrix for anybbw 2 Ib. Now, consider V1 : D ⇥ Ib ! R
defined as V1(x,bbw) := V (x)+� �1eb2w/2 whereebw = bw �bbw and
V (x) is (23). By taking the derivative,

V̇1 = �⌫T Pf (bbw)⌫ + f4(x)ebw + � �1ebw
ėbw (32)

holds, and by substituting the adaptation law in (31), V̇1(x,bbw) 

�⌫T Pf (bbw)⌫ holds for all x 2 D as f4(x)ebw  0 forbbw = b and
bbw = b. Observe that Proposition 3 and Corollary 4 still hold since
V (x)  V1(x,bbw) and V̇ (x(t))  0 for all t > 0. Therefore, Mf

up is
also a stable set, using the same argument as in Theorem 5.

Attractiveness to the equilibrium set, Mf
eq, is proven differ-

ently. Let �⇤
m(Pf ) be defined as minbbw2Ib�m(Pf (bbw)) where �m(P) is

the minimum eigenvalue of P , then k⌫(t)k2
2  �V̇1/�

⇤
m(Pf ) holds

for all t � 0. Therefore, ⌫ is in the L2 space since
Z

1

0
⌫(t)>⌫(t)dt  (V1(0) � V1(1))/�⇤

m(Pf )

where V1(1) := limt!1 V1(x(t),bbw(t)), which is well defined as
V1 is lower bounded. In addition, k⌫(t)k2

2 < V1(x(0),bbw(0))/�⇤
m(Pf )

for all t � 0 indicates that ⌫ is in the L1 space as well. Since
ebw is bounded by the projection-based adaptive rule in (31),
⌫̇(t) can be shown to be a bounded function as well. There-
fore, limt!1 k⌫k2 = 0 by invoking the corollary of Barbalat’s
Lemma (Corollary 2.9 in Narendra & Annaswamy, 2012). Now
the same argument of acquiring limt!1 kv̇(t)k2 = 0 holds as
ebw is bounded, which infers that limt!1 eT3Re3 = 1 or �1.
Finally, considering the ultimate bound for !3(t) as in the proof of
Proposition 6, Mf

eq can be shown to be asymptotically attractive.
Finally, the linearization around Mf

inv on eachbbw 2 Ib exhibits
two negative eigenvalues, indicating instability of Mf

inv with the
Lebesgue measure zero stable sub-manifold, as in Theorem 7.
Hence, Mf

up is an AGAS set. ⇤

5
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7. Application to VCP reference trajectory tracking

In this section, a direct application to the adaptive AGAS con-
troller in (30) is considered to make the VCP follow a reference
trajectory. Suppose that a continuously differentiable trajectory
in the R3 space is given as � 2 C2(R,R3), where C2(R,R3) is
a set of continuously twice differentiable functions. Assume that
the derivatives of the trajectory are bounded by some M > 0,
such that k�̇(t)k2  M and k�̈(t)k2  M .

The objective is to make the VCP of the vehicle follow the
reference trajectory. Defining error dynamics as ⇠1 = ⌘1 � � and
⇠2 = ⌘2��̇, and with ⇠ = (⇠1, ⇠2) 2 R6, then a feedback controller
using ⇠ is proposed:

u := A†(R)(�L2f ⌘1(x,bbw) � K⇠ (x) + �̈) � kwe4!3, (33)

where L2f ⌘1(x,bbw) is defined as in the controller in (30) and the
adaptation rule in (31) is modified such that only ⌘ in f4(x) is
replaced with ⇠ and not ⌘2.

For any given set point, �0 2 R3, by setting �(t) = �0, the error
⇠ (t) almost globally exponentially converges to 0, and !(t) almost
globally asymptotically converges to 0 using the above controller.

7.1. VCP trajectory following

The VCP error dynamics for ⇠ using (33) are

⇠̇ = (Ac � BcK )⇠ �ebwBc✏(⇠ , R,!) (34)
✏(⇠ , R,!) = (C1(R)(⇠2 + �̇) + C2(R)!).

Suppose that the gain K is chosen by solving CARE of (Ac +

kc I6⇥6, Bc,Qc, Rc) for kc > 0, then all the real parts of the
eigenvalues of (Ac � BcK ) are upper bounded by �kc . Let V1 be
defined as in Theorem 8 by replacing ⌘ with ⇠ , then the derivative
is computed as

V̇1(x)  �ck⌫k2
2 � kc�m(P)k⇠k2

2 �
1

ml�
⌦
⌫1,bbw�̇ + m�̈

↵
,

where c = �⇤
m(Pf ), and x 2 (⇠ , R,!), and ⌫ = (⌫1, ⌫2) 2 R9 is

redefined with ⌫1 = R(e3 ⇥!) and ⌫2 = ⇠ . In addition, the upper
bounds for V̇ can be formulated as

V̇1(x)  �(c + kc�m(P))k⇠k2
2 � k⌫1k2(ck⌫1k2 � µ(M))

 �(c + kc�m(P))k⇠k2
2 if k⌫k2

2 �
2µ(M)2

c2
,

where µ(M) = (bw+m)/(ml� )M . Applying the above inequalities,
it can be shown that there exists T > 0 such that if t > T , then
k⌫k2 < 2g/(l� ) + 2�M (Pv)µ(M)2/(c2�m(Pv)). Therefore, k⇠k2 and
k!k2 are ultimately bounded.

The extra control gain, kc , in addition to the LQR parameters,
Rc and Qc , is used to directly lower the real part of the eigenvalue
of (Ac � BcK ) in (34). In the ideal case (when ebw is zero or
equivalently using the partial feedback linearization controller),
the tracking error, k⇠k2, converges exponentially to zero with a
guaranteed decaying rate of �kc . A case study with two different
kc gains shows that the parameter error becomes relatively small
(within 0.02% of its true value, for both cases), and a faster
convergence to the same error bound is achieved by higher kc .
The detailed analysis on the relation between parameter conver-
gence and the tracking performance remains the subject of future
work.

7.2. Simulation results

In this section, a tracking controller is applied to follow a
Lissajous curve. The desired trajectory, �(t) 2 R3, is

Fig. 2. Trajectories using different gains kc = 0, 5. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

�x(t) := rd cos(a!f t + �) (35)
�y(t) := rd cos(b!f t) (36)
�z(t) := 0.3, (37)

where rd = 0.1, a = 2, b = 3, and !f = 2⇡/Tperiod, with
Tperiod = 1 s. The model parameters for the Harvard RoboBee
are given in Fuller et al. (2014), including bw = 2.0 ⇥ 10�4

Ns m�1. The bounds for the drag coefficients are given as Ib =

[0.4bw, 4bw] allowing higher upper bound. The tracking con-
troller in (33) is applied, with the gain K designed using Qc =

diag(100, 100, 100, 10, 10, 10) and Rc = 0.01I3⇥3, with two dif-
ferent gains, kc = 0 and kc = 3. The adaptive gain is chosen with
� = 0.3 for (31). A small feedback gain kw = Izz = 0.45⇥10�9 is
chosen for yaw torque control. In this example, ↵ = 3 is selected
(such that the VCP of the vehicle is four times higher than the
CoP position). The chosen initial states are r = (0, 0, 0.05), v =

! = 0, and R(0) is represented by the axis–angle representation,
with angle ✓0 = ⇡/4 and axis (1, 0, 0).

The simulation results are shown in Fig. 2(a). The trajectory
of the VCP using the gain kc = 3 is shown in blue, with the
reference trajectory (a Lissajous curve at z = 0.3) shown in red.
The CoM of the vehicle during VCP tracking is shown with a
dotted blue line. Fig. 2(a) shows a forward simulation over 10.0 s
(with overlaid orientations for the RoboBee shown over the first
0.5 s), demonstrating attitude changes as the VCP approaches the
reference trajectory. A projection to the (x, y) plane is shown in
Fig. 2(b), where the red curve represents the reference curve, the
green curve corresponds to the VCP trajectory for kc = 0, and the

6
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blue curve corresponds to kc = 3. The estimated drag coefficients
are shown in Fig. 2(c) for both kc gains. The parameter error is
bounded to 0.02% of its true value after 0.5 s

8. Conclusions and discussion

In this paper, a new coordinate system for a flapping-wing
vehicle is proposed, which takes advantage of the averaged aero-
dynamic drag acting on the vehicle. A state feedback controller
is designed to regulate a virtual control point (VCP) using a
near-identity diffeomorphism which permits partial feedback lin-
earization. The stable zero dynamics resembles the 3D pendulum
dynamics where VCP serve as a pivot. The almost global asymp-
totic stability of the upright configurations is shown for the
closed loop system. Next, an adaptive controller is proposed, to
preserve the AGAS property given the bounded uncertainty of the
drag coefficient. Finally, a VCP tracking controller is designed to
achieve ultimate boundedness.

One of the advantages of the VCP based control framework is
that the controller requires relatively small yaw torque as the VCP
output dynamics is independent of the yaw torque control. This is
beneficial to FWMAV control as yaw torque is often a particularly
weak torque axis for Calderón et al. (2019), Fei et al. (2019), Hines
et al. (2011) and Yang et al. (2019). In addition, the proposed
adaptation algorithm in (31) can be naturally combined with a
deadzone method (Narendra & Annaswamy, 2012) to enhance the
robustness to the bounded unmodeled disturbance.
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