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Abstract— In this paper, a new direct model reference adap-
tive control (DMRAC) for nonlinear control affine systems is
proposed to track a contracting nonlinear reference model.
The structure of the uncertainty is assumed, including a mul-
tiplicative unknown parameter on the input. The contracting
reference model enables the use of the certainty equivalence
principle (CEP) for designing the simple controller, a tool which
often cannot be used for nonlinear systems due to its weakness
on these systems. The proposed controller is constructed to
minimize the distance from the estimated plant vector field to
the desired contracting vector field, which leverages the benefits
of the contracting reference model. Even though the proposed
controller does not perfectly match the true contracting vector
field, the combined efforts of the adaptive controller and the
adaptation law make the Riemannian distance asymptotically
approach zero with bounded parameter error. In addition, the
proposed algorithm is extended to the case of using a control
contraction metric (CCM) based controller to construct the con-
tracting reference model. A fully actuated pendulum example
is studied to illustrate the effectiveness of the algorithm.

I. INTRODUCTION

In model reference adaptive control (MRAC) theory, there
are two types of controllers: the direct adaptive controller
and the indirect adaptive control. The direct MRAC does
not necessarily need to learn the unknown parameters, but
rather updates the controller gains directly. On the other
hand, the indirect MRAC estimates the unknown parameters
first, and then uses these estimates to design the controller.
The certainty equivalence principle (CEP) – in which we
first design the nominal controller assuming the parameters
are known, and second, replace the true parameters in the
nominal controller with the estimated parameters – is widely
used for linear systems. However, [1](Chap 5) demonstrates
the weakness of certainty equivalence, showing that if the
system is nonlinear, asymptotic convergence between the
system response and the model response is not guaranteed
and the system can even escape to infinity in finite time.
Therefore, without constructing a Lyapunov function for
the CEP-based controller with some adaptation law, CEP-
based controller designs have been rarely used in nonlinear
adaptive control theory. In this paper, a certain class of
nonlinear MRAC systems, where the reference model is
contracting, are considered. This results in a simple CEP-
based direct MRAC that ensures that the plant response will
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asymptotically converge to the model response with bounded
parameter error. Further historical discussion of linear and
nonlinear adaptive control can be found in [2], [3].

In contrast to Lyapunov-based systems theory, contraction-
based analysis for nonlinear systems, introduced in [4],
focuses on the behavior between the trajectories of the
system rather than the system behavior near the equilibrium.
If the differential dynamics (or the first variational dynamics)
admit a differential coordinate transform that satisfies some
time-varying linear matrix inequality for all time in a so
called contracting region, then every trajectory within the
contracting region converge to each other. The analysis in
[4] lays out the general concept of the contraction metric
in nonlinear systems. More constructive ways to design a
state feedback controller to make the closed-loop system
contracting are considered in [5] by using a control con-
traction metric (CCM), and also in [6] by enforcing a skew-
symmetric structure on the differential dynamics. In addition,
a CCM for controlling mechanical systems was studied in
[7]. In this paper, a direct MRAC problem that exploits the
contracting vector field of the reference model to design the
adaptive controller is considered.

The connection between contraction theory and adaptive
control in general (although not to MRAC for nonlinear sys-
tems to our knowledge) have been made by many researchers
in [6], [8], [9] and related literature. The main focus of [6],
[9] lies in first designing the nominal controller that makes
the system contracting, and proposes an added adaptive
controller to cancel out the matched or extended matching
disturbance. A triangular nonlinear system is assumed in [6]
and the backstepping method is used to generate the nominal
controller. A rather general class of nonlinear systems is
considered in [9] which includes systems that cannot be
feedback linearized. However, none of these works consider
uncertainty in the multiplicative actuation vector gain (also
known as high frequency gain in linear systems), which may
cause the closed-loop system with the nominal controller
to not satisfy the contracting condition. In contrast, the
uncertainty in the multiplicative gain is considered in this
paper, and the proposed adaptive controller is designed by
applying the simple certainty equivalence principle to match
the vector field of the plant to the desired contracting model
(which can be generated using the CCM controller [5]). The
challenge with the uncertainty in the multiplicative gain is
resolved by not forcing the plant dynamics to be exactly
contracting but rather driving the plant dynamics along the
projection onto the desired contracting vector field.

Contents. The basic contraction theory and control con-
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traction metric (CCM) based controller are summarized in
(§II), and a motivating example is introduced in (§III). The
direct adaptive controller for tracking the contracting system
is proposed and analyzed in (§IV), and the application
to CCM-based controllers with unknown actuation gain is
considered in (§V), with a fully actuated toy example to
illustrate the effectiveness of the proposed controller.

II. CONTRACTING NONLINEAR MODEL

Consider the following reference model for an adaptive
control problem,

ẋ(t) = f(x(t)) + g(x(t))r(t) (1)

where f(x), g(x) 2 Rn are smooth vector fields evaluated
at x 2 Rn, and r(t) 2 R is a smooth function. One can
consider (1) a closed-loop system controlled by some state
feedback controller. Let fi(x) and gi(x) denotes the i�th
component of each vector field f, g.

Definition 1 (Lohmiller and Slotine [4]). A region of state
space is called a contracting region with respect to a
uniformly positive definite metric, M(x, t) 2 Rn⇥n, if

A(x, t)TM +MA(x, t) + Ṁ  �2�M (2)

holds in that region for all t > 0 where � > 0 and

A(x, t) :=
@f(x)

@x
+
@g(x)

@x
r(t)

Ṁ :=
@M(x, t)

@t
+

nX

i=1

@M(x, t)

@xi
(fi(x) + gi(x)r(t))

Also, the dynamics (1) is denoted as contracting nonlinear
system with respect to M(x, t).

The fundamental idea of the contraction analysis for
nonlinear systems in [4] (Theorem 2) is that if any two
trajectories stay within the contracting region with respect
to M(x, t) for all time, the two trajectories will converge
exponentially towards each other. Furthermore, if the metric
M(x, t) satisfying (2) is uniformly bounded, there exist
↵u � ↵l > 0 such that ↵lI  M(x, t)  ↵uI , then an
incremental Lyapunov function can be constructed. The fol-
lowing subsections summarize the necessary components of
Riemannian geometry to construct an incremental Lyapunov
function. The preliminary overview follows the descriptions
in [5] and [9].

A. Riemannian distance based contraction analysis

Suppose that the state space X of (1) is in Rn. Then
the tangent space, TxX , is also identified with Rn and
the Riemmanian metric M(x, t) defines an inner product
h⌫1, ⌫2iM(x,t) := ⌫

T
1 M(x, t)⌫2 on the tangent space TxX

where ⌫1, ⌫2 2 TxX . Let c(s, t) : [0, 1] ⇥ R+ ! X
be a smooth curve connecting two points, x, y 2 X at
time t 2 R+, then the Riemannian length and the energy

functional of the curve c are defined as

L(c(s, t), t) :=

Z 1

0
||cs(s, t)||M(x,t)ds (3)

E(c(s, t), t) :=

Z 1

0
||cs(s, t)||2M(x,t)ds (4)

respectively, where cs(s, t) := @c(s, t)/@s and ||⌫||M(x,t) :=q
h⌫, ⌫iM(x,t). Suppose that G(x, y) is a set of regular curves

connecting x and y in X , then, by Hopf-Rinow theorem
with some mild assumptions, there exists a geodesic curve
� : [0, 1] ! X such that �(0) = x and �(1) = y where
L(�(·, t), t)  L(c(·, t), t) for any c(·, t) 2 G(x, y). Also it
follows that E(�(·, t), t) = L(�(·, t), t)2. By considering the
first variation of energy functional with respect to time gives

Ė(�(·, t), t) = 2

✓
@E(�(·, t), t)

@t
+ h�s(s, t), �̇(s, t)iM |s=1

s=0

◆
.

(5)

B. Control Contraction Metric based control
As mentioned in the beginning of this section, the contract-

ing system (1) can be obtained by a state feedback controller.
Particularly, designing a feedback controller that tracks a
desired trajectory is often valuable.

Now consider a general nonlinear control affine system,

ẋ = f(x) + g(x)u, (6)

which is not necessarily contracting. Let (xd(t), ud(t)) be
the desired feasible trajectory with an open loop input. The
control contraction metric (CCM) provides a tractable way
to construct a smooth feedback controller, as shown in [5],
which guarantees that the closed loop system is contracting
towards the desired trajectory, xd(t).

A simple CCM controller, as in [5](Proposition 2), can be
formulated as

uccm := ud(t)�
1

2

Z 1

0
K(�(s, t))�s(s, t)ds (7)

K(�(s, t)) := ⇢(�(s, t), t)g(�(s, t))TM(�(s, t), t),(8)

where �(s, t) is a geodesic curve with respect to the Rie-
mannian metric M(x, t) that connects �(1, t) = x(t) and
�(0, t) = xd(t). The metric satisfies the conditions,

Ṁ +
@f

@x

T

M +M
@f

@x
� ⇢Mgg

T
M < �2�M (9)

nX

i=1

@M

@xi
gi +

@g

@x

T

M +M
@g

@x
= 0n⇥n, (10)

for some function ⇢(x, t) and � > 0 over all x and t where

Ṁ :=
@M(x, t)

@t
+

nX

i=1

@M(x, t)

@xi
fi(x).

Observe that the CCM controller in (7) requires knowledge
of ⇢,M , and the geodesics � for each x and t. In general,
M and ⇢ are obtained offline by converting (9-10) into a
dual convexified problem, and the geodesics are then solved
online as explained in [10].
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Remark 1 As mentioned in [5], if (9) holds for some
M(x, t) and ⇢0(x, t) pair, then any ⇢ � ⇢0(x, t) satisfies (9)
for the same M(x, t). On the other hand, if ⇢ < ⇢0(x, t),
then ⇢ and M(x, t) are not guaranteed to satisfy (9). This
can prevent convergence when there is a multiplicative
uncertainty on the actuation vector, g. This will be revisited
and solved in § V.

III. A MOTIVATING EXAMPLE

Consider a simple model reference adaptive control
(MRAC) problem with scalar linear plant dynamics,

ẋp = apxp + bpu, (11)

where ap and bp are both unknown and only the sign of bp

is known, and the desired reference model to follow is some
scalar nonlinear system given by

ẋm = f(xm) + g(xm)r, (12)

which is contracting (admitting some uniformly bounded
positive definite metric M(x, t) and satisfying (2)). Now,
consider a nominal controller using the certainty equivalence
principle, which indicates that if ap and bp are known,

u := �↵⇤
xp + �

⇤(f(xp) + g(xp)r) (13)

↵
⇤ :=

ap

bp
,�

⇤ :=
1

bp
. (14)

then the nominal closed loop system is given by

ẋp = f(xp) + g(xp)r.

Observe that xm and xp are two particular solutions of
contracting system defined in (12). If the domain of the
contracting region is large enough to contain both xm and xp

for all t (which is the objective of solving (9-10) for all x),
then the Riemannian distance, d(xm, xp), will exponentially
decrease to zero. Therefore, there exist two constant gains,
↵
⇤ and �

⇤, in (13), which guarantee the asymptotic con-
vergence between the plant trajectory to the desired model
trajectory. This gives an opportunity to design a CEP-based
direct adaptive controller which adaptively updates two gains
in (13). A further generalization is considerd in the following
sections.

IV. DIRECT MRAC WITH CONTRACTING NONLINEAR
MODEL

In this section, a direct model reference adaptive controller
for tracking the contracting nonlinear systems is considered
for the n-dimensional nonlinear plant model.

A. Problem statement
Consider the following nonlinear plant dynamics,

ẋp = f(xp) +
NX

i=1

fi(xp)ai + gp(xp)bpu (15)

where f(x), {fi(x)}Ni=1, gp(x) 2 Rn for x 2 Rn are
known smooth vector fields, {ai}Ni=1 and bp are unknown
constant parameters with N � 0, u is the control input, and

||gp(x)||2 > c for all x and some c > 0. The objective
is to design a direct adaptive controller that follows the
contracting nonlinear system given as

ẋm = f(xm) + g(xm)r, (16)

where xm r, and ṙ are assumed to be bounded.
1) Certainty Equivalence Assumptions: The following

condition holds for the uncertainties in (15). Let F (x) :=
[f1(x), · · · , fN (x)] 2 Rn⇥N , and ap = [a1; · · · ; aN ] 2 RN

be the column vector.

Assumption 1 (matched uncertainty with respect to the
contracting model). The vector fields {fi(x)}Ni=1, gp(x) and
the parameter uncertainty {ai}Ni=1 satisfy

g(x)r � F (x)ap 2 Span{gp(x)}. (17)

The above assumption guarantees that if ap and bp were
known, then the following nominal controller

u
⇤ = k

⇤
gp(xp)

†(g(xp)r � F (xp)✓
⇤) (18)

k
⇤ = 1/bp, ✓

⇤ = ap, (19)

where g(xp)† = (gp(xp)T gp(xp))�1
gp(xp)T is the pseudo

inverse of g(xp), makes the closed loop system become

ẋp = f(xp) + g(xp)r,

which fulfills our objective as in the scalar case in § III.
Remark 2 Note that if the actuation vector field of the

model, g(xp), aligns with gp(xp), then F (xp)a is also in
Span{gp(x)}, which is the case in [6], [9]. Therefore, As-
sumption 1 includes not only the simple matched uncertainty
F (xp)a 2 Span{gp(xp)} but allows a mismatch with gp(xp)
as long as (17) holds.

2) Contracting model assumptions: In this paper, the
Riemannian metric is assumed to be state independent for
the simplicity of the analysis. An existence of such state
independent Riemannian metric is shown in [7] that any fully
actuated mechanical system admits a constant Riemannian
metric satisfying the CCM condition (9).

Assumption 2 (State independent Riemannian metric). The
reference model in (16) is contracting with respect to the
state independent metric M(t) which satisfies the contraction
condition in (2).

A further generalization with a state dependent Rieman-
nian metric is left as future work and a possible extension is
discussed in § VI.

B. Proposed controller

Given the nominal controller (18), the proposed adaptive
feedback controller is given as

u(xp, ✓̂, k̂) = k̂gp(xp)
†(g(xp)r � F (xp)✓̂) (20)

˙̂
✓ = ��✓F (xp)

T
Proj(gp(xp),M(t)e)(21)

˙̂
k = ��k̂

2
gp(xp)

T
eu (22)
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where Proj(⌫1, ⌫2) is a projection of ⌫2 on to Span{⌫1}
defined as

Proj(⌫1, ⌫2) =
⌫1⌫

T
1

||⌫1||2
⌫2,

�✓ 2 RN⇥N is a diagonal matrix with all positive constant
adaptive gains for ✓, and �� > 0 represents adaptive gain
for k.

Lemma 1. Suppose that ✓̂(t) and k̂(t) are the current
estimate of ap and 1/bp, and let ˙̂xp(✓̂(t), k̂(t), u(t)) be the
estimate of the vector field of the plant at time t,

˙̂xp(✓̂, k̂, u(t)) = f(xp(t)) + F (xp(t))✓̂ + gp(xp)
1

k̂
u(t),

and ẋd(t) := f(xp(t)) + g(xp(t))r(t) be the vector field
for the desired closed loop system, then the above controller
u(t) in (20) minimizes || (u(t))||2 where  (u(t)) = ẋd(t)�
˙̂xp(✓̂(t), k̂(t), u(t)),

u(t) = arg min
u(t)2R

|| (u(t))||2. (23)

Proof. By direct calculation,  (u) = g(xp)r � F (xp)✓̂ �
gp(xp)u/k̂, where all the t’s are dropped,  (u) has an affine
relation to u(t). Therefore, the minimum of (23) is computed
by the left pseudo inverse of gp(xp)/k̂, which leads to the
same form as in (20).

The result of Lemma 1 implies that the proposed adaptive
controller in (20) makes the vector field of the plant with
the estimated parameters closest to the desired contracting
vector field.

C. Analysis of the proposed controller

As in prior work, let the error be defined as e = xm�xp,
and the parameter error be defined as ✓̃ = ✓̂ � ✓

⇤ and k̃ =
k̂ � k

⇤. The main theorem is stated as follows.

Theorem 1. Suppose that the nonlinear system in (15)
satisfies Assumption 1 and the reference model in (16) is
contracting with respect to the uniformly bounded positive
definite metric M(t) satisfying (2), then by using the pro-
posed controller and the adaptive rule in (20-22) with initial
sign constraint sgn(k̂(0)) = sgn(bp), ||e(t)||2 asymptoti-
cally converges to 0 and ✓̃ and k̃ remain bounded.

Proof. First, let �̂ := k̂
�1 and �⇤ := k

⇤�1. Define the new
parameter error as �̃(t) = �̂ � �

⇤, and now by computing
the error dynamics,

ė = f(xm) + g(xm)r � f(xp)� F (xp)✓
⇤ � gp(xp)�

⇤
u

= f(xm) + g(xm)r � f(xp)� F (xp)✓
⇤ + gp(xp)�̃u

�gp(xp)�̂u

Now substitute u from (20) into the last equation only for
the gp(xp)�̂u term. Then

ė = f(xm) + g(xm)r � f(xp)� F (xp)✓
⇤ + gp(xp)�̃u

�gp(xp)gp(xp)
†(g(xp)r � F (xp)✓̂)

since �̂k̂ = 1. By adding and subtracting g(xp)r as well as
gp(xp)gp(xp)†F (xp)✓⇤,

ė = f(xm)� f(xp) + (g(xm)� g(xp))r + gp(xp)�̃u

+

✓
In⇥n � gp(xp)gp(xp)T

||gp(xp)||2

◆
(g(xp)r � F (xp)✓

⇤)

+
gp(xp)gp(xp)T

||gp(xp)||2
F (xp)(✓̂ � ✓

⇤)

where In⇥n is an identity matrix. Observe that for µ 2 Rn

Op(µ) :=

✓
In⇥n � gp(xp)gp(xp)T

||gp(xp)||2

◆
µ

defines a projection of µ to the orthogonal complement of
gp(xp), namely Span(gp(xp))?. By using Assumption 1,
this term can be removed from the error dynamics yielding

ė = f(xm)� f(xp) + (g(xm)� g(xp))r + gp(xp)�̃u

+
gp(xp)gp(xp)T

||gp(xp)||2
F (xp)✓̃ (24)

Now consider the Lyapunov function candidate

V (xp, t) =
1

2
(E(�(·, t)) + ��1

� �̃
2 + ✓̃

T��1
✓ ✓̃), (25)

where �s(s, t) = xm � xp = e for all s 2 [0, 1] and so
E(�(·, t)) := e

T
M(t)e by computing (4). The derivative of

V with respect to time gives

V̇ =
1

2
e
T
M(t)(f(xm)� f(xp) + (g(xm)� g(xp))r)

+
1

2
(f(xm)� f(xp) + (g(xm)� g(xp))r)

T
M(t)e

+
1

2
e
T
Ṁ(t)e+ (eTM(t)g(xp)u+ ��1

�
˙̃
�)�̃

+(eTM(t)gp(xp)gp(xp)
† + �✓

˙̃
✓)✓̃.

Observe that ˙̂
� = �1/k̂2 ˙̂k. Now by following the adaptation

rule in (21-22), the derivative of V becomes,

V̇ =
1

2
e
T
M(t)(f(xm)� f(xp) + (g(xm)� g(xp))r)

+
1

2
(f(xm)� f(xp) + (g(xm)� g(xp))r)

T
M(t)e

+
1

2
e
T
Ṁ(t)e

By invoking the fundamental theorem of calculus,

f(xm)� f(xp) + (g(xm)� g(xp)r)

=

Z 1

0
A(�(s, t), t)�s(s, t)ds

=

✓Z 1

0
A(�(s, t), t)ds

◆
e.

By substituting it to V̇ where t is dropped to have a compact
form,

V̇ =
1

2
e
T

✓Z 1

0
Ṁ +MA(�(s)) +A(�(s))TMds

◆
e

 ��Me
2  0.
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Since V (xp, t) is lower bounded and V̇  0,
limt!1 V (xp(t), t) exists. This also implies that e is
bounded and parameter estimation errors ✓̃ and �̃ are also
bounded. Now, observe that Ṁ is also bounded by the
assumption that M is uniformly bounded and M and Ṁ are
continuously differentiable. Also, note that xp is bounded as
e is bounded and xm, r, ṙ are bounded by the model assump-
tion. This implies that ė in (24) is bounded as f, g, F and
gp are continuous differentiable. Therefore, |V̈ | is bounded
for all t, and so V̇ is uniformly continuous. By invoking
Barbarlet’s lemma [11] (Lemma 4.3), limt!1 V̇ (t) = 0,
which also implies that e(t) asymptotically converges to 0
as t goes to infinity using the condition that M(t) is lower
bounded and � > 0.

V. APPLICATION TO CCM BASED CONTROLLER WITH
UNCERTAIN HIGH FREQUENCY GAIN

In § IV, a new adaptive controller that projects the plant
vector field to a desired contracting vector field is proposed
with the adaptation rule for structured uncertainty in the
actuation vector field. One way to construct a contracting
reference would be using the CCM controller proposed in
[5] and recapped in § II.

Let the desired contracting nonlinear reference model be
generated by the CCM controller, uccm(xm, t) in (7) with
respect to the uniformly positive definite metric M(t),

ẋm = f(xm) + g(xm)uccm(xm, t). (26)

In particular, consider the model starts from xm(0) = xd(0),
then xm(t) = xd(t) for all time t > 0, as uccm(xd,t) = ud(t).

Now consider the same plant model as in (15) with ap and
bp unknown and assume the certainty equivalence matching
that

g(x)uccm(x, t)� F (x)ap 2 Span{gp(x)}. (27)

holds for all x and t > 0. Once again this assumption, (27),
becomes equivalent to the matched uncertainty in [9]. The
following adaptive controller is proposed,

u = k̂gp(xp)
†(g(xp)uccm(xp, t)� F (xp)✓̂). (28)

Theorem 2. Suppose that there exist uccm of the form (7)
satisfying (9-10) with respect to state independent uniformly
bounded positive definite metric, M(t), and the above as-
sumption in (27) holds. Then by using the adaptive controller
in (28) with the same adaptation rule (21-22) and the
initial sign constraint on sgn(k̂(0)) = sgn(bp), ||e(t)||2
asymptotically converges to 0 and ✓̃ and k̃ remain bounded.

Proof. Let �̂ := k̂
�1 and �

⇤ := k
⇤�1 and define the

parameter error as �̃(t) = �̂ � �
⇤. By computing the error

dynamics,

ė = f(xm) + g(xm)uccm(xm, t)� f(xp)

�F (xp)✓
⇤ + gp(xp)�̃u� gp(xp)�̂u

Now substitute u in (28) into the last equation only for the
gp(xp)�̂u term. Then

ė = f(xm) + g(xm)uccm(xm, t)� f(xp)� F (xp)✓
⇤

�gp(xp)gp(xp)
†(g(xp)uccm(xp, t)� F (xp)✓̂)

+gp(xp)�̃u

since �̂k̂ = 1. By following the same procedure as in
Theorem 1,

V̇ = 1/2(eTM(t)(f(xm) + g(xm)uccm(xm, t)

�(f(xp) + g(xp)uccm(xp, t)))

+ (f(xm) + g(xm)uccm(xm, t)

�(f(xp) + g(xp)uccm(xp, t)))
T
M(t)e) +

1

2
e
T
Ṁe

holds. Now by invoking the fundamental theorem of calculus
along the geodesic, �, as before,

f(xm)� f(xp) =

✓Z 1

0

f(�(s, t))

@x
ds

◆
e

g(xm)uccm(xm)� g(xp)uccm(xp)

=

✓Z 1

0

@g(�)

@x
uccm(�)� 1

2
⇢(�)g(�)g(�)TM(t)ds

◆
e

where the t is all dropped to have a compact form. Now by
using the condtion for the CCM in (9) and the Killing vector
for M condition in (10) gives

V̇ := e
T

 Z 1

0
Ṁ +

@f

@x

T

M +M
@f

@x
� ⇢Mgg

T
Mds

!
e

 ��eTMe  0

Finally, since the uccm is a smooth feedback controller [5],
the same argument as in the proof of Theorem 1 holds.
Hence, ||e(t)||2 asymptotically converges to 0 while the
parameter estimates are bounded.

Remark 3 Similar adaptive controllers using CCM were
previously considered in [9] for the case when the un-
knowns are restricted to the uncertainty in the drift dynamics,
F (xp)ap, meaning bp is known. In this case, the adaptive
controller has a separable form

uadapt = uccm + ureject

where uccm is guaranteed to make the whole system contract-
ing and ureject cancels out the unknown disturbance. Based
on the exact bp, the ⇢ in the CCM controller is computed
by satisfying the contracting condition (9). However, if the
actual bp is enough smaller than the nominal bp, then (9)
would be violated and uccm would no longer guarantee the
contraction property. Suppose that M(t), ⇢(bnomp ) is a pair
satisfying (9),

Ṁ +
@f

@x

T

M +M
@f

@x
+ 2�M < ⇢Mgg

T
M(bnomp )2

for nominal bnomp . If the actual bp 6= b
nominal
p , then

Ṁ +
@f

@x

T

M +M
@f

@x
+ 2�M < ⇢Mgg

T
M(bpb

nom
p )
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holds if bp � b
nom
p , but is not guaranteed otherwise. In con-

trast, the proposed method in this paper solves the problem
of arbitrary bp by using the adaptive gain k̂(t) multiplied
by uccm (based on b

nom
p ) to minimize the distance from the

desired contracting vector field as explained in Lemma 1.

A. Fully Actuated System Example
As shown in [7], for any fully actuated system, there

exist a constant contraction metric M which satisfies (9-10).
Consider the simple reference pendulum model

q̈d + dq̇d + sin(qd) = ud, (29)

where d is a damping coefficient and ud(t) := 4 sin(t)
is sinusoidal input. Then a CCM controller, uccm can be
constructed to follow (qd(t), ud(t)). The following CCM
parameters are chosen

M :=

✓
5 2
2 1

◆
, � = 1.5, ⇢ = 21.24 (30)

to satisfy (9-10) for the reference model (29).
Now suppose that the actual plant has different actuation

strength and gravity which is unknown to the controller
designer, then the uncertain plant is given as

q̈p + dq̇p + g sin(qp) = bu, (31)

where b is an unknown actuation strength and g is an
unknown gravity.

To compare the effectiveness of the adaptive controller
given by (28) to that of the adaptive controller given in [9],
both are used on the pendulum plant given in (31) alongside
the CCM controller, uccm, calculated using the pendulum
model (29).

The performance results are shown in Figure 1. The system
parameters are chosen as b = 0.25, g = 9.81, d = 0.1
for Figure 1. This makes bp = 0.25, strictly smaller than
b
nom
p = 1 in (29). The results of using the CCM adaptive

controller in [9] are shown in Figure 1 (a), which is unable
to properly track the the reference trajectory because the
decreased b has resulted in violation of (9), removing the
guarantee that the system will be contracting. The adaptive
controller proposed in this paper explicitly adapts to changes
in actuator strength, enabling the closed loop system to
track the reference trajectory as shown in Figure 1 (b).
When actuator strength is not different between the plant and
model, both controllers asymptotically converge to the model
system, demonstrating that the CCM adaptive controller is
sensitive to the multiplicative gain bp.

VI. CONCLUSION AND FUTURE WORK

In this paper, a new direct model reference adaptive
controller for a nonlinear system with parameter uncertainties
is proposed and analyzed when the reference model is
contracting with respect to a state independent metric. The
contracting nature of the reference model gives an intuitive
nominal controller design by simply matching the contracting
vector field. The proposed adaptive controller is then de-
signed to minimize the distance of the estimated vector field

Fig. 1. Error between the state of the reference system (29) (dashed) and
the state of the plant system with reduced actuator strength (31). System (a)
utilizes the CCM controller alongside the the adaptive rule from [9] while
system (b) utilizes the CCM controller alongside the adaptive rule given in
(28).

of the plant given current parameter estimates to the desired
contracting vector field. The proposed adaptive controller
asymptotically minimizes the Riemannian energy functional
which leads to the asymptotic convergence between the plant
and model trajectories. In addition, the proposed controller
can be combined with a CCM controller that uses smooth
feedback control to create the contracting reference model.

As the proposed controller uses the Euclidean projection
between two vector fields, the current study works well when
the Riemannian metric remain state independent, making the
geodesic curve a straight line. An extension to the case where
the Riemannian metric is state dependent may be achieved by
considering parallel transportation of two different tangent
vector in Txm(t)X and Txp(t)X along the geodesic curve
and then taking a projection with respect to the Riemannian
metric. In addition, combining Nussbaum functions in [12]
with the contracting reference model will be another possible
extension to this study.
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