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The First-Come First-Served (FCFS) scheduling policy is the most popular scheduling algorithm used in
practice. Furthermore, its usage is theoretically validated: for light-tailed job size distributions, FCFS has
weakly optimal asymptotic tail of response time. But what if we don’t just care about the asymptotic tail?
What if we also care about the 99th percentile of response time, or the fraction of jobs that complete in under
one second? Is FCFS still best? Outside of the asymptotic regime, only loose bounds on the tail of FCFS are
known, and optimality is completely open.

In this paper, we introduce a new policy, Nudge, which is the first policy to provably stochastically improve
upon FCFS. We prove that Nudge simultaneously improves upon FCFS at every point along the tail, for
light-tailed job size distributions. As a result, Nudge outperforms FCFS for every moment and every percentile
of response time. Moreover, Nudge provides a multiplicative improvement over FCFS in the asymptotic tail.
This resolves a long-standing open problem by showing that, counter to previous conjecture, FCFS is not
strongly asymptotically optimal.
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1 INTRODUCTION
1.1 The Case for FCFS

While advanced scheduling algorithms are a popular topic in theory papers, it is unequivocal
that the most popular scheduling policy used in practice is still First-Come First-Served (FCFES).
There are many reasons for the popularity of FCFS. From a practical perspective, FCFS is easy to
implement. Additionally, FCFS has a feeling of being fair.
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However, there are also theoretical arguments for why one should use FCFS. For one thing,
FCFS minimizes the maximum response time across jobs for any finite arrival sequence of jobs. By
response time we mean the time from when a job arrives until it completes service.

For another thing, in an M/G/1 with a light-tailed job size distribution, FCFS is known to have a
weakly optimal asymptotic tail of response time [5, 36]. Specifically, using T to denote response
time, the asymptotic tail under FCFS is of the form:

P{TFCFS > t} ~ CFCFseie*t, (1)

where “~” indicates that the ratio of the two quantities converges to 1 in the t — oo limit.

The exponent 6% in (1) is known to be optimal, while the optimality of Cgcrs is an open problem
[5]. The asymptotic tail growth under FCFS has been compared with more sophisticated policies
[5]. It has been shown that, for light-tailed job size distributions, the tail of response time under
Processor-Sharing (PS), Preemptive Last-Come-First-Served (PLCFS), and Shortest-Remaining-
Processing-Time (SRPT) each take the asymptotic form of

P{T >t} ~C'e %,

where 0 is the worst possible exponential decay rate [25] over all work-conserving scheduling
policies. Roughly, FCFS’s tail exponent 6" arises from the tail of the workload distribution, while
the other policies’ tail exponent 8" arises from the tail of the busy period distribution, which is
much larger under light-tailed job size distributions.

1.2 The Case For Light-Tailed Job Size Distributions

In this paper, we choose to focus on the case of light-tailed job size distributions. Light-tailed
job size distributions show up naturally in workloads where all the transactions are of the same
type (say shopping); while there is some variability in the time it takes to purchase an item, even
high-variability distributions that arise in such settings are often light-tailed. Also, many natural
distributions, like the Normal distribution, Exponential distribution, and all Phase-type distributions,
are light-tailed. Finally, while heavy-tailed job size distributions are certainly prevalent in empirical
workloads (see for example [9, 14, 37]), in practice, these heavy-tailed workloads are often truncated,
which immediately makes them light-tailed. Such truncation can happen because there is a limit
imposed on how long jobs are allowed to run. Alternatively, truncation can occur when a heavy-
tailed job size distribution is divided into a few size classes as in [15, 18] where the smaller size
classes end up being truncated distributions.

1.3 The Case for Non-Asymptotic Tails

Within the world of light-tailed job size distributions, FCFS is viewed as the best policy. However,
while FCFS has a weakly optimal asymptotic tail, it is not best at minimizing P{T > ¢} for all t. In
practice, one cares less about the asymptotic case than about particular ¢ [17]. For example, one
might want to minimize the fraction of response times that exceed t = 0.5 seconds, because such
response times are noticeable by users. One might also want to meet several additional Service
Level Objectives (SLOs) where one is charged for exceeding particular response time values, such
as t = 1 minute, or t = 1 hour. SLOs are very common in the computing literature [8, 17, 24], in
service industries [10, 34, 38], and in healthcare [4, 19]. Unfortunately, different applications have
different SLOs. This leads us to ask:

When considering P{T > t}, is it possible to strictly improve upon FCFS for all values of t ?

We are motivated by the fact that, for lower values of ¢, Shortest-Remaining-Processing-Time
(SRPT) is better than FCFS, although FCFS clearly beats SRPT for higher values of ¢, as FCFS is
weakly asymptotically optimal while SRPT is asymptotically pessimal [25, 26]. SRPT also minimizes
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Fig. 1. The Nudge algorithm.
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Fig. 2. Empirical tail improvement of Nudge over FCFS in an M/G/1. The tail improvement ratio (TIR) is
defined as 1 — P{TNlege > t} /P{TFCIES > t}. Specific job size distributions, each with mean 1: Uniform(0,2);
Exponential with mean 1; Hyperexponential with branches drawn from Exp(2) and Exp(1/3), where the first
branch has probability 0.8 and where C? = 3; BoundedLomax(A = 2, max= 4, a = 2). Distributions in legend
ordered by asymptotic improvement. Simulations run with 10 billion arrivals. Load p = 0.8. Nudge parameters:
x1 = Lxp = 1,x3 = oo. Note that x; = x3, so there are no medium-sized jobs. Empirically, Nudge often
achieves its best performance with x; = x3, though our proofs involve setting x1 < x3. See Section 9.

mean response time [29], which is closely related to lower values of t. This motivates us to consider
whether prioritizing small jobs might have some benefit, even in the world of light-tailed job size
distributions.
We ask more specifically:
Can partial prioritization of small jobs lead to a strict improvement over FCFS? Specifically,
is there a scheduling policy which strictly improves upon FCFS with respect to P{T > t},
for every possible t including large t?

1.4 Our Answer: Nudge

This paper answers the above question in the affirmative. We will define a policy, which we call
Nudge, whose response time tail is provably better than that of FCFS for every value of t, assuming a
light-tailed job size distribution' (see Theorem 4.2). We say that Nudge’s response time stochastically
improves upon that of FCFS, in the sense of stochastic dominance. Moreover, we prove that the
asymptotic tail of response time of Nudge is of the form

P{TNudge > t} ~ CNudgee_g*t’

with optimal decay rate 0* and a superior leading constant Cnudge < Crcrs (see Corollary 4.4).
Thus, we demonstrate that FCFS is not strongly optimal, answering an open problem posed by

ITechnically, a Class I job size distribution. See Definition 3.3.
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Boxma and Zwart [5]. In particular, this is contrary to a conjecture of Wierman and Zwart [40]
(see Section 2.1).

The intuition behind the Nudge algorithm is that we’d like to basically stick to FCFS, which we
know is great for handling the extreme tail (high t), while at the same time incorporating a little bit
of prioritization of small jobs, which we know can be helpful for the mean and lower ¢. We need to
be careful, however, not to make too much use of size, because Nudge still needs to beat FCFS for
high t; hence we want just a little “nudge” towards prioritizing small jobs.

We now describe the Nudge algorithm. Imagine that the job size distribution is divided into
size regions, as shown in Fig. 1, consisting of small, medium, large, and extra large jobs. Most
of the time, Nudge defaults to FCFS. However, when a “small” job arrives and finds a “large” job
immediately ahead of it in the queue, we swap the positions of the small and large job in the queue.
The one caveat is that a job which has already swapped is ineligible for further swaps. The size
cutoffs defining small and large jobs will be defined later in the paper.

The degree of the tail improvement of Nudge over FCFS is non-trivial. In Fig. 2, we see that for
many common light-tailed job size distributions, Nudge results in a multiplicative improvement of
4-7% throughout the tail. In Section 9.2, we show that with low load and a high-variability job size
distribution, Nudge’s improvement can be as much as 10-15% throughout the tail. The magnitude
of these improvements highlights the importance of scheduling, even in the light-tailed setting.

We additionally present an exact analysis of the performance of Nudge. Nudge does not fit
into any existing framework for M/G/1 transform analysis, including the recently developed
SOAP framework [32] (see Section 2.3). Nonetheless, we derive a tagged-job analysis of Nudge in
Theorem 4.5, deriving the Laplace-Stieltjes transform of response time of Nudge.

1.5 Contributions and Roadmap
This paper makes the following contributions.

e In Section 3.5, we introduce the Nudge policy.

e In Sections 4 to 6 we prove that with appropriately chosen parameters, Nudge stochastically
improves upon FCFS for light-tailed? job size distributions; we also give a simple expression
for such parameters. Moreover, in Section 8, we prove that Nudge achieves a multiplicative
asymptotic improvement over FCFS.

e In Section 7, we derive the Laplace-Stieltjes transform of response time under Nudge.

e In Section 9, we empirically demonstrate the magnitude of Nudge’s stochastic improvement
over FCFS. We also discuss how to tune Nudge’s parameters for best performance.

e In Section 10, we discuss practical considerations for using Nudge.

e In Section 11, we discuss several notable variants of Nudge.

2 PRIOR WORK

Most prior work on scheduling to optimize the tail of response time focuses on the asymptotic case,
characterizing P{T > t} in the t — oo limit. We review these results in Section 2.1.

Our main result, Theorem 4.2, is a non-asymptotic statement, characterizing the behavior of
P{T > t} for all t, not just the t — oo limit. There is much less prior work on the tail of response
time outside of the asymptotic regime. We review the few results in this area in Section 2.2.

In addition to characterizing Nudge’s tail of response time, we also give an exact transform
analysis of Nudge’s response time. Our analysis requires a novel approach that significantly differs
from traditional analyses, as we discuss in Section 2.3.

Technically, any Class I job size distribution. See Definition 3.3.
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Our paper’s focus is the M/G/1 queue. All of the results cited in this section apply to the M/G/1,
with some also applying to more general models, such as the GI/GI/1.

2.1 Asymptotic Tails: Extensive Theory, but Open Problems Remain

When optimizing the asymptotic tail, the goal is to find a policy 7* such that for all scheduling
policies r,
. P{T™ >t}
limsup —— <¢
too P{T7 >t}
for some constant ¢ € [1, o). Such a policy 7* is called weakly optimal; if ¢ = 1, then 7™ is called
strongly optimal [5]. While weak optimality has been well studied, proving or disproving strong
optimality is much harder.
One major theme of the prior work is that optimizing the asymptotic tail looks very different
depending on the job size distribution.

o For light-tailed job sizes, FCFS is weakly optimal [5]. Specifically, the tail of response time
has a form given in (1). Moreover, many popular preemptive policies such as PS, SRPT,
and Foreground-Background (FB)® are “weakly pessimal”: they have the maximum possible
asymptotic tail, up to a constant factor, of any work-conserving scheduling policy [25, 26].

e For heavy-tailed job sizes, the reverse is true: PS, SRPT, FB, and similar policies are all weakly
optimal [5, 26, 33], while FCFS is weakly pessimal.

This state of affairs prompts a question: is any policy weakly optimal in both the light-tailed and
heavy-tailed cases? Nair et al. [25] show that a variant of PS achieves this, but their variant requires
knowledge of the system’s load. Wierman and Zwart [40] show that any policy that is weakly
optimal in both the light- and heavy-tailed cases requires knowing some information about the
system parameters, such as the load.

The above results mostly characterize weakly optimal scheduling policies, but the problem of
strongly optimizing the tail remains open. Boxma and Zwart [5] pose the strong optimality of
FCFS as an open problem. Wierman and Zwart [40] go further and conjecture that FCFS is in fact
strongly optimal for light-tailed job size distributions. Despite a large of body of work analyzing
the tail asymptotics of FCFS [1-3, 28], the problem has remained open. We solve the problem by
showing that FCFS is not strongly optimal. Specifically, our Corollary 4.4 implies

o P{TNwEe > th COnudge
lim =
t—e P{TFCFS >t} Crcrs

2.2 Non-asymptotic Tails: Few Optimality Results

Characterizing P{T > t} outside the asymptotic regime is a much harder problem than characteriz-
ing the asymptotic tail. As such, the strongest results in this area are for relatively simple scheduling
policies. For FCFS under light-tailed job size distributions, it is known that P{T > t} < e~?" for the
same constant 0" as appears in FCFS’s asymptotic tail formula [21, 22]. As a result, this bound is tight
up to a constant factor [22], subject to subtleties discussed in Section 3.3. Beyond FCFS, one of the
few known results gives an improved characterization of response time under preemptive-priority
scheduling policies [3, Section 2].

Very little is known about more complicated scheduling policies. While the Laplace-Steiltjes
transform of T is known for a wide variety of scheduling policies [32, 35], these transforms do not
readily yield useful bounds on P{T > t} for general job size distributions.

SFB at all times serves the jobs that have received the least service so far.
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Given that characterizing P{T > t} is difficult, it comes as no surprise that optimizing P{T > ¢}
is harder still. As such, rather than trying to crown a single optimal policy, we focus on a relative
measure. Specifically, as we define in Definition 3.1, we say that policy m; stochastically improves
upon another policy mp if P{T™ > t} < P{T™ > t} for all t.

There are two stochastic improvement results in the literature, but both are much simpler than
our Nudge result. Both results start with a well-known policy that does not use job sizes and show
that a variation that does use job sizes stochastically improves response time.

o Nuyens et al. [26] show that SRPT and similar policies stochastically improve upon FB.

e Friedman and Henderson [11] and Friedman and Hurley [12] show that one can stochastically
improve upon PS by using job sizes. Their policy, Fair Sojourn Protocol (FSP), guarantees in
a sample-path sense that no job departs later than it would if the server were using PS.

The results above fit a common theme. Both FB and PS often share the server between multiple
jobs. Sharing the server is fundamentally suboptimal. For example, when sharing the server between
jobs 1 and 2, if we knew that we would finish job 1 first, then it would be better to devote the entire
server to job 1 at first. Doing so improves the response time of job 1 without harming the response
time of job 2. Roughly speaking, when FB and PS would share the server between jobs, SRPT and
FSP serve the jobs one at a time, using job size information to choose the ordering.

FCFS is more difficult to stochastically improve upon than FB and PS. For one thing, FCFS never
shares the server, removing this easy opportunity for stochastic improvement. Moreover, there is
a sense in which FCFS is unimprovable: on any specific finite arrival sequence, FCFS minimizes
the sorted vector of response times, where we order vectors lexicographically. For example, FCFS
minimizes the maximum response time. As a result, the sample path arguments that work for
improving FB and PS do not apply to improving FCFS.

In spite of these obstacles, we show in Theorem 4.2 that Nudge stochastically improves upon
FCFS. Rather than reasoning in terms of sample paths, we take a fundamentally stochastic approach
from the beginning. See our proofs in Section 5.

2.3 Transform of Response Time: Nudge Needs a Novel Approach

In Theorem 4.5, we give a closed-form expression for the Laplace-Stieltjes transform of Nudge’s
response time. There has been much prior work on analyzing the transform of response time of
the M/G/1 under various scheduling policies. Some analysis techniques cover a wide variety of
scenarios [13, 32]. However, as we explain below, none of these prior techniques can analyze Nudge.

SOAP Policies. Policies in the SOAP class, introduced by Scully et al. [32], schedule jobs based
on an index calculated from each job’s size and attained service?, and their response time can
be analyzed via the SOAP framework [32]. These include SRPT [31], FB [30], some multi-level
processor sharing policies [23], and certain cases of the Gittins policy [27]. Unfortunately, Nudge is
not a SOAP policy, so we cannot leverage this analysis method. This is because whether Nudge will
swap a small job s with a large job ¢ depends in part on whether any other jobs arrive between ¢
and s. In contrast, a SOAP policy would make such a decision based on properties of £ and s alone.

Variations on FCFS. Nudge serves jobs in FCFS order by default and only ever swaps adjacent
arrivals. One might therefore hope that Nudge could be analyzed as a variation on FCFS. There are
many papers analyzing a variety of M/G/1 variants under FCFS scheduling. These include systems
with generalized vacations [13] and exceptional first service [39]. Unfortunately, to the best of our
knowledge, no prior analysis of a variation of FCFS applies to Nudge.

4The index can also depend on certain other characteristics of the job, e.g. its class if there are multiple classes of jobs.
Size and attained service are the attributes relevant to Nudge.
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Other Analysis Techniques. There are a number of scheduling policies whose transform analyses
do not fit into either of the previous categories, such as random order of service [20] and systems
with accumulating priority [35]. However, these policies do not resemble Nudge, and the techniques
used in their analyses do not readily apply to Nudge.

3 MODEL
3.1 Notation

We consider the M/G/1 queue in which job sizes are known. Let A be the arrival rate, S be the job
size distribution, and spmin be the minimum possible job size. Specifically, let smin be the infimum of
the support of S. We denote the load by p = AE[S] and assume 0 < p < 1.

The queueing time, Tp, is the time from when a job arrives until it first receives service. The
response time, T, is the time from when a job arrives until it completes. We write TSlg and T for
the queueing time and response time under scheduling algorithm Alg, respectively.

For any continuous random variable V, we will use fi/(-) to denote the probability density
function (p.d.f.) of V. We write the ‘7(3) for the Laplace-Stieltjes transform of V.

3.2 Stochastic Improvement

In this paper, our goal is to prove that the Nudge policy stochastically improves upon the FCFS
policy. We now define stochastic improvement, along with the related notion of tail improvement
ratio.

Definition 3.1 (Stochastic Improvement). For two scheduling algorithms Alg, and Alg,, we say
that Alg, (strictly) stochastically improves upon Alg, if, for any response time cutoff ¢ > sy, the
probability that response time of Alg, exceeds t is smaller than the probability that Alg,’s response
time exceeds t, i.e.,

Vt > spin,  P{TA® >t} < P{TA& > ¢},

Definition 3.2 (Tail improvement ratio). For any response time cutoff t, the tail improvement ratio
of Alg, versus Alg, at t, denoted TIR(?), is defined as

. P{TMNei >y}
TIR(t) =1 - m.
The asymptotic tail improvement ratio, denoted AsymTIR, is defined as
P{TA& > t}

AsymTIR £ liminf TIR(¢) = 1 — limsup ———.
Y R TIRO) Fmpppwa>t}

3.3 Class | “Light-Tailed” Distributions

In this paper, we focus on job size distributions for which the FCFS policy has an asymptotically
exponential waiting time distribution. This property of FCFS will be crucial for our analysis. Prior
work has exactly characterized the job size distributions for which FCFS has this property. These
distributions are known as “class I” distributions [1, 3, 28].

Definition 3.3 (Class I Distribution). For a distribution S, let —s* be the rightmost singularity of
S(s), with —s* = —oc0 if S(s) is analytic everywhere. S is a class I distribution if and only if s* > 0
and S(—s*) = oo.

Class I distributions can roughly be thought of as “well-behaved” light-tailed distributions. In

contrast, class II distributions, the other class of light-tailed distributions, are very unusual and
“paradoxical”, and rarely occur as job size distributions.
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For our paper, the key property of class I job size distributions is that they cause FCFS to have
an asymptotically exponential waiting time distribution for all loads [1, 2]. However, as shown by
[1, 2], the waiting time also exhibits an exponential tail for light load if the job size is class II. For
this reason, while we focus only on class I distributions, we believe that our results also hold for
class II under light load. In Section 3.4, we characterize the exponential waiting time in more detail.

3.4 Characterizing the FCFS Waiting Time Distribution

In this paper, we care about the exponential tail of the FCFS response time distribution. It turns out
to be simpler to focus on the FCFS waiting time distribution, which is closely related. We will make
use of two key concepts regarding the waiting time distribution. The first concept is the asymptotic
exponential decay rate, as investigated in [2, 5]. We refer to this quantity as * and formally define
it to be the negative of the rightmost singularity of TQECFS. Based on the Cramer-Lundberg theory,

the waiting time distribution TQFC’ES takes an asymptotic exponential tail:
P{T(SCFS > t} ~Ce 't @)

The quantity 8” is the least positive real solution to the equation
A+0*

S(-0%) = -

We also define the normalized p.d.f. to be
g() 2 freers () - €. 3)

Note that (2) relates to the c.d.f. of waiting time, while (3) relates to the p.d.f. of waiting time.

We characterize three important properties of the normalized p.d.f., namely its maximum, mini-
mum, and asymptotic limit. Let gmax, gmin, g~ denote respectively the maximum, minimum and
asymptotically limiting values of g(-) over [0, c0):

gmax = sup g(t);  gmn = inf g(t);  g" = lim g(2).
te[0,00) t€[0,00) oo

The following lemma, proven in Appendix A, implies these quantities are well defined.

LEMMA 3.1. Suppose S is a continuous class I job size distribution. For any load p, the normalized
p.d.f- g(t) is bounded above and below by positive constants, and lim,_,, g(t) exists.

The ratio gmax/gmin Will be particularly important in our analysis. Intuitively, we can think of the
ratio as measuring the deviation of the queueing time TQFCFS from a perfect exponential distribution.
The queueing time distribution is exactly an exponential distribution in an M/M/1, and diverges
from an exponential to greater or lesser degree under any class I job size distribution. The degree
of divergence will show up in our later results.

3.5 Scheduling Algorithm: Nudge

We now formally define the Nudge algorithm. Nudge(x;, x3, x3) first divides jobs into four regions
based on their sizes:

“small”: 0 =xy < S < x3.

“medium”: x; £ S < x3.

“large”: x; < S < x3.

e “very large”: x3 < S < x4 = 0.

Throughout the paper, we concentrate mostly on the “small” and the “large” jobs. For conciseness,
we define Ssmall’ Slarge: Psmalls p[arge as follows.
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Definition 3.4. We define S,y and S to be the distribution of small and large jobs, respectively.
We also define pyyan and pia.e to be the fraction of small and large jobs, respectively.

Ssmall ~ [SlS < xl]’ Slarge ~ [Sle <S§S< x3]
psmal[ = P{S < X1}, plarge e P{x2 < S < x3} .

To determine which job to serve, Nudge maintains an ordering over jobs which have not yet
entered service. We call this ordering the “queue”. For each job, we also track whether or not it
each has already been “swapped”.

Whenever a job completes, Nudge serves the job at the front of the queue (if any), and serves
it to completion. By default, newly arriving jobs are placed at the back of the queue, resulting in
FCFS scheduling by default. However, if three conditions are satisfied, then a “swap” is performed. If

(1) the arriving job is a small job, js,
(2) the job at the back of queue is a large job, j,, and
(3) the job j, at the back of queue has never been swapped,

then Nudge places the small job js just ahead of j,, in the second-to-last position in the queue. This
is called a swap, and both j, and j; are now marked as having been “swapped.”

Because Nudge never swaps the same job twice, a job is only in the last position in the queue
and eligible to be swapped immediately after it arrives. As a result, Nudge only ever swaps a job
with the job that arrives immediately before or after it.

4 MAIN RESULTS
4.1 Nudge Improves upon FCFS Non-Asymptotically

Our main goal is to show that Nudge stochastically improves upon FCFS. Nudge’s performance
crucially depends on the choice of parameters x;, x;, and x3, i.e. which jobs are small and which
jobs are large. We begin by asking: given job size distribution S and load p, for what choices
of parameters x;, x;, and x; does Nudge stochastically improve upon FCFS? We answer this in
Theorem 4.1, which gives sufficient conditions on the parameters for Nudge to stochastically
improve upon FCFS. We prove Theorem 4.1 in Section 5.

THEOREM 4.1 (STOCHASTIC IMPROVEMENT REGIME). Suppose S is a continuous class I job size
distribution. Then Nudge(x1, x2, x3) stochastically improves upon FCFS for any smin < x1 < x5 < x3

satisfying®
* 1- §:e _9* -1
o I AH 0T 17 S (ZO07 @)
gmin A 1- Ssmal[(_g*)_1
® x1+x3 < 2x5. 5

With Theorem 4.1 in hand, our goal reduces to the following question: given S and p, do there exist
parameters satisfying the sufficient condition from Theorem 4.1? We answer this in Theorem 4.2,
showing that as long as the minimum job size spi, = 0, such parameters always exist. Our proof of
Theorem 4.2 in Section 6 gives a simple construction of those parameters.

THEOREM 4.2 (EXISTENCE OF STOCHASTIC IMPROVEMENT). For any continuous class I job size
distribution S with syin = 0 and any load 0 < p < 1, there exist x1, X2, x3 satisfying (4) and (5),
implying that Nudge(x1, x2, x3) stochastically improves upon FCFS.

5Recall from Definition 3.4 that Sgma and Siarge depend on x1, x2, and x3. This applies throughout the paper.
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4.2 Nudge Improves upon FCFS Asymptotically

Having shown that Nudge stochastically improves upon FCES, we ask: is Nudge’s improvement
non-negligible in the asymptotic limit? We answer this in Theorem 4.3. Specifically, recall that in
the t — oo limit, P{TFCFS > t} ~ Crcrse 9. We show that P{TN“dge > t} ~ CNudgee_e*t and that,
with appropriately set parameters, CNudge < Crcrs. This implies that FCFS is not strongly optimal
for asymptotic tail behavior (see Section 2.1), resolving a long-standing open problem [5, 40]. We
also exactly derive the difference Crcrs — CNudge- We prove Theorem 4.3 in Section 8, making use
of Theorem 4.5.

THEOREM 4.3 (AsYMPTOTIC IMPROVEMENT REGIME). Suppose S is a continuous class I job size
distribution. For any smin < x1 < x2 < X3, the asymptotic tail improvement ratio of Nudge(x1, x2, x3)
compared to FCFS is

*

A o * A & * o N %
ASymT|R = psma[]p[argem Slarge(_e ) - mssmall(_e ) - mslarge(_e )Ssmall(_e ) .
Furthermore, AsymTIR is positive, meaning Cnudge < CrcFs, if
A+ 1- Starge (—07) 7!
A= S0

Note that the asymptotic improvement regime in Theorem 4.3 is a superset of the non-asymptotic
improvement regime in Theorem 4.1, because gmax/gmin = 1. Thus, whenever Theorem 4.1 guaran-
tees a stochastic improvement, we also have Crcrs > CNudge. Thus, by Theorem 4.2, there exists an
asymptotic improvement whenever sp;, = 0.

COROLLARY 4.4 (EXISTENCE OF ASYMPTOTIC IMPROVEMENT). For any continuous class I job size
distribution S with smin, = 0 and any load 0 < p < 1, there exist x1, x3, x3 such that Cnudge < CrcFs.

While Theorem 4.3 shows that there is a multiplicative improvement in the asymptotic tail, we
find empirically that the same multiplicative improvement exists throughout nearly the entire tail.
See Fig. 2 and Section 9.

4.3 Exact Analysis of Nudge

All of the above results compare Nudge’s performance to that of FCFS. In particular, none of these
results give an exact analysis of Nudge’s response time. We give such an analysis in Theorem 4.5,

in which we exactly derive TNudge(s). This result is nontrivial, because Nudge does not fall into
any class of policies with known analyses (see Section 2.3). We prove Theorem 4.5 in Section 7.

THEOREM 4.5 (TRANSFORM OF RESPONSE TIME). The response time of Nudge has Laplace-Stieltjes
transform

TNGEE (5) = TFOS(5) o+ PPl | Serge (5) (1 = Somn(5)) (TS (A4 5) = THE(5))

TFCFS s 2 g Ty
— e Q /S(A) = s/S(s)
+ Ssmall(s)(l - Slarge (S)) §(s) - (1 - P) 1—s

5 PROOF OF THEOREM 4.1: STOCHASTIC IMPROVEMENT REGIME

Our goal in this section is to prove Theorem 4.1, which gives sufficient conditions on the parameters
X1, X2, and x3 for Nudge to stochastically improve upon FCFS. To do so, we employ a tagged job

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 21. Publication date: June 2021.



Nudge: Stochastically Improving upon FCFS 21:11

approach. In particular, we follow an arbitrary tagged job i making its way through a pair of coupled
systems, one employing the FCFS policy and one employing the Nudge policy, both with the same
arrival process and job sizes.

We focus on one particular response time threshold ¢, and in particular on the events D;; and
I+, where the tagged job i has response time greater than ¢ in one system and below in the other
system. In (6), we write the difference in the response time tails of Nudge and FCFS in terms of the
events D;; and I; ;. In Lemma 5.1, we derive formulas for the probabilities of these events.

Using these formulas, in Lemma 5.2, we derive a sufficient condition for Nudge to improve upon
FCFS relative to a specific threshold t. This sufficient condition is dependent on the threshold ¢.
In order to remove this dependence, we prove Lemma 5.3, a technical lemma regarding arbitrary
random variables.

Finally, in Section 5.2, we prove Theorem 4.1, by demonstrating that the conditions given in
Theorem 4.1 ensure that the sufficient condition in Lemma 5.2 holds relative to every response time
threshold ¢, making use of Lemma 5.3 to do so.

5.1 Intermediate Lemmas

Consider a tagged job i that arrives into the steady state of the pair of coupled systems. We write
TiNUdge and TS for job i’s response time in the Nudge and FCFS systems, respectively. For any
t > 0, define the events

Nud Nud
Lo {17 <o)y, 2 (T < <O

Intuitively, D;; is the event in which Nudge decreases job i’s response time relative to FCES,
specifically from above t to below t. Similarly, I;; is the event in which Nudge increases job i’s
response time relative to FCFS. We can write

P{T.Nudge

1

>t} = P{TFS > 1} + {1} - P{Dy}. ©)

The events D;; and I; ; are defined using the Nudge and FCFS systems. Our next step is to express
them in terms of only the FCFS system, which we understand well.

We begin by defining the relevant quantities in the FCFS system. Let i~ be the arrival immediately
before job i, and let i* be the arrival immediately after, and let

=
[

£ amount of work in the system (either Nudge or FCFS) when job i arrives,

s
|

£ interarrival time between jobs i and i*,

S; £ size of job i.

We define analogous quantities for i~ and i*. The work is the same in both systems because both
Nudge and FCFS are work-conserving.

Note that Nudge will only ever swap job i with one of the adjacent arrivals, i~ or i* (see Section 3.5).
Under what condition do we swap job i with job i*? This happens if and only if the following
events occur:

(a) Job i is large, which is when x; < S§; < x3.

(b) Job i* is small, which is when S;+ < x;.

(c) Job i* arrives before job i enters service in the Nudge system.

(d) Job i has not swapped with any other job, namely job i~.

Because job i cannot be both large and small, (a) implies (d). But (d) implies that (c) happens when
A; < W;. This is because in the absence of swaps, job i would enter service after W; time. Therefore,
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the event that job i swaps with job i* is
swap; .+ = {(x2 < S;j <x3) A (S <x1) A (A < W)} (7)

Crucially, this definition of swap, ;. depends only on quantities in the FCFS system. We define
swap;- ; analogously.

LeEMMA 5.1 (EvaLuaTING P{[;;} AND P{D;,}). We have

P{L;;} =P{swap,;. A (W;+S; <t <W;+5+5+)}, (8)
P{Di’t} = P{swapf’i A (VV} —Ai-+Si <t <W-—-A-+S; +Si,)} . (9)

Proor. We begin by computing P{Ii,t}. The event I;; occurs only if Tl.NUdge > TZ.FCFS, which
in turn occurs only if job i swaps with the next arrival, namely job i*. If this swap occurs, then
Nudge _ TiFCFS + S;+. We know that TiFCFS =W; +S;, so (8) follows from

1

FCFS Nud
(T; )

IA

Iiy =swap;;+ A t<T,
=swap; + A (TFPS <t < TP 4+ 5,4)

=swap;;+ A (Wi +S; <t <W;+S;+Si+).

A

We now compute P{Di,t}. By similar reasoning to the above, the event D;; occurs only if job i
swaps with job i~. If this swap occurs, then TiNUdge = TFCFS - 5;-. We again have T[°F> = W; +§;, so

N
Dy =swap;-; A (T <t < TFCS)
=swap, ; A (TFSFS = ;- <t < TCFS)

=swap;; A (Wi +S5;=Si- <t <W;+S5)).

To obtain (9), observe that conditioned on swap;- ;, we have W; = W,_ + S;- — A;-. ]

Now, we give sufficient conditions for Nudge to improve upon FCFS relative to a particular
threshold ¢.

LEMMA 5.2 (STRICT IMPROVEMENT AT A GIVEN THRESHOLD). Given anyt > Syin, wWhere Spmiy is the
smallest value of S,

P{TN"Ee > ¢} < P{TTFS > ¢}
if the following inequality in terms of t holds:

Jmax A+ 6* E[eg* min([’ssmall"'slarge) _ 60* min(t’ssmall)]

< - - .
Gmin A E I:ee* mln(t’ssma[]"'slarge) — eg* mln(t,slarge)]

(10)

Proor. Because the tagged job i is a random sample arriving to the steady state of the system,
by (6), we have P{TN“dge > t} < P{TFCFS > t} if and only if P{Ii,,} < P{Di,t}. Our approach is to
use Lemma 5.1 to bound each of P{I,-,t} and P{Di,t}, from which the desired sufficient condition
follows.
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We begin by computing P{I;, }:

P{Ii,t} = P{swapiﬁ AN(W+S <t<W+S; +5i+)} [by Lemma 5.1]
=P{(Ai W) AWi+S; <t <Wi+Si+S8) Axz <8 <x3) A(Si+ < x1)} [by (7)]
< P{(VV, +Si <t< W+ Si +Sl‘+) A (XZ < Si < X3) A (Sﬁ- < xl)} [discarding A; < ‘/Vl]

=P{((t=Si=Si)" <W; < (t=5)") A (x2 < S < x3) A (S < x1)}

(t=S)* +
change of measure for S; and S,
= cEc N g !
PlargePsmall Si~SlargesSi+ ~Ssmall |:-/1:v=(t—5i—5i+)+ fVV, (W) dw [independence of S;, Sit, and W;
< E (=) 0w g by Lemma 3.1 and the
< PlargePsmall * EiS;~Siarge,Sit ~Semall S5 Gmax€ w fact that W; ~ T5CF5
et 0" min(£,Sqmali+Siarge) _ 0" Min(Z,Sjarge)
= PlargePsmall * _9* 'gmaxE[e min(4,5small+Slarge) _ o0 MIN(Llarge ] . (11)

Similarly, we compute P{Di,,}:
P{D;;} =P{swap, ; A (Wi- —Ai- +S; <t < Wi — A +S; +S;-)}
= P{(Al* < M/r) A (M/f _Ai, +Si <t< VVr _Al., +Si +Si,) AN (Sl < xl) A (Xz < Si- < X3)}
= P{(Ar +(t—S; - Si*)+ < Wi- <A+ (t- Si)+) A (S, <x1) A (XZ <S- < X3)}
Ai-+(=Si)*

/ fir-(w) dwl

=Ai=+(t-5i=8;i-)*

mutual independence

= PsmaliPlarge * E5i~55ma”,5i— ~Slarge>Ai~ ~Exp(1) of S;, Si+, Ai-, and W;

Ai-+(t=S)*

by Lemma 3.1 and the
= PsmaliPlarge * ES[~Ssma||,Si— ~Slarge,Ai~ ~Exp (1)
W:

—-0*w
Jmine dwl [fact that W ~ T5CF5

=Ai=+(t=S;=Si-)*

e a+(t—5,-)+
= psmallplarge . ESi~Ssma||,Sr Nslarge |:/ / gmin679 e Aeila dW dal [Af ~ EXP(/I)]
a=0 =a+(t—S;—-Si-)*

-0t
e A - -
= PsmallPlarge * o Ymin mE[eG min (£ Somall+Starge) _ o0 mm(t’SSma”)] . (12)

Combining the bounds (11) and (12), we find that P{Ii,t} < P{Di,t} holds if

E[ee mln(t,ssmall+slarge) —39 mln(t’slarge):l < gminmE[ee mln(t,ssmall"'slarge) _ee mln(t’ssmall):l . (13)

YJmax
O

Having proven Lemma 5.2, we have a sufficient condition, namely (10), for Nudge to improve
upon FCFS at a specific value of t. But our goal is to improve upon FCFS for all values of t. We
therefore seek a condition which implies that (10) holds for all z.

We start by simplifying (10). Let A = ¢? Ssmal, B = ¢9"Sarge and ¢ = ¢?"*. Then (10) becomes

Jmax A + 0° < E[min(AB,c) — min(A,c)]
Jmin A E[min(AB, c) — min(B,c)]’
Here the only appearance of the specific value of t is via c¢. Our strategy is to lower-bound the

right-hand side of (14) by a quantity that does not include c. The following lemma, which we prove
in Appendix A, helps accomplish this under an additional assumption.

(14)

LEMMA 5.3. Let A, B be two independent real-valued random variables and ¢ be a fixed constant. Sup-
posel < A < ¢ and A < B. Under these assumptions, if P{B > c} > 0 and cE[B] > E[A] E[B|B > c],
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then

E[min(AB,c) — min(B,¢)] ~ E[min(AB, ¢) - min(B,c)] = E[AB-B]’

E[min(AB, ¢) — min(A,¢)] E[min(AB, ¢) — A] S E[AB - A]

5.2 Main Proof
THEOREM 4.1. Suppose S is a continuous class I job size distribution. Then Nudge(xy, x3, X3) stochas-
tically improves upon FCFS for any syin < x1 < x3 < x3 satisfying
¥ 1- SFaT/e 0" -
° gmaxA+9 < Al;g/( ) ) (15)
gmin A 1- Ssma\l[(_9*)7l
e x1 +x3 < 2x9. (16)

Proor. We prove Theorem 4.1 by verifying the condition in Lemma 5.2. For every t > spmin, we
will show that Inequalities (15) and (16) together imply (10).

(i) When sy, <t < x3, the denominator of the right hand side of (10) becomes

E[ee* min(tassmall+5[arge) — 69* min(taslarge):l = E[et — et] =0.

Thus (10) is not well defined, but (13) holds trivially, which is sufficient.
(ii) When x, < t < x3, we let A = ¢/ Ssmal | B = ¥ Siarge and ¢ = 9!, Then clearly 1 < A < cand
A < B. By (16), we know that

CE[B] = ea*tEI:ee*Slarge:I > 89*(2xz) > 69*(x1+x3)
> E[ee* (Ssma]|+5|arge)] > E[ee* min(Ssma”+S|arge,;)] > E[A] E[BlB S c] .

We can therefore apply Lemma 5.3 to obtain

E [ee* min(ssma[]"'slarge’t) — ee*ssmall ] E [(30* (ssma|[+slarge) - egissma[l]
> . 17
E [6‘9* min(ssmall"'slargEst) — 60* min(slarge’t)] - E [6‘9* (Ssma||+slarge) - ee*slarge] ( )
Moreover, condition (15) implies that
o - 0" (S 11+Slar, e) 0*S
A + 9* 1— Sar . _9* 1 Ele smal ge) — ¢ small
Ymax < larg, ( ) _ [ ] (18)

YJmin /‘l 1-— S:;;I(_Q*)—l - E[ee*(ssmall"'slarge) — ee*slarge]
Combining (17) with (18) establishes (10).
(iii) When ¢ > x3, we have min(¢, Sgnan) = Soman and min(#, Siarge) = Sarge. Therefore, condition (15)
is equivalent to (10).
Therefore, for every ¢ > sy, we have proven that P{T'\’”O‘ge > t} < P{TFCFS > t}. ]

6 PROOF OF THEOREM 4.2: EXISTENCE OF STOCHASTIC IMPROVEMENT

THEOREM 4.2. For any continuous class I job size distribution S with syin = 0 and anyload0 < p < 1,
there exist x1, X3, X3 satisfying (15) and (16), implying that Nudge (x1, x2, x3) stochastically improves
upon FCFS.

Proor. We start by constructing x1, x, x3 that satisfy both Inequality (15) and (16). For notational
convenience, let M = Z:‘ﬁ %. First fix an arbitrary x3 > 0 and let x; = %X3, then compute S, (—67)
and choose a small enough x; such that

| 1= Surge (=07} 1
x1 < min {—ﬁln(l - lgT L5 Xs (- (19)
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Clearly, such x; > spmin = 0 in (19) exists because M > 1, so we have

3
e x;+x3 < 5x3 = 23, (20)
1= Sirge(<0)71 1= Srge (=071 1= Sie(=6")7" max A+ 0°
o ,LE( ) _ | g( )_1 > I 3(9* ) >M:g_a_. (21)
1- Ssma”(—e*)_l 1-— E[eg*ssmall] 1—e 5 Ymin A

By Theorem 4.1, (20) and (21) together imply that P{TN¢ > t} < P{TFCFS > ¢} for every t >
Smin = 0. Therefore,
vt >0, P{TN%® > ¢} < P{TFFS > ¢} o

7 PROOF OF THEOREM 4.5: TRANSFORM OF RESPONSE TIME

In this section we compute an exact formula for TNudge(s). The formula holds for arbitrary job size
distributions, not just those of class L

At a high level, our analysis works by considering two systems experiencing identical arrivals:
one using Nudge, and one using FCFS. We consider a tagged job arriving to this pair of systems in
equilibrium and determine how its Nudge queueing time relates to its FCFS queueing time.

e Small jobs: Nudge queueing time is FCFS queueing time, possibly minus a large job’s size.
e Large jobs: Nudge queueing time is FCFS queueing time, possibly plus a small job’s size.
e Other jobs: Nudge queueing time is identical to FCFS queueing time.

We will determine Tg l;:qgjl (s) and Tg T';ii(s), from which TNudge(s) easily follows.

7.1 Probabilistic Interpretation of the Laplace-Stieltjes Transform

Before jumping into the Nudge queueing time analysis, we recall a probabilistic interpretation of
the Laplace-Stieltjes transform.

Let V be a nonnegative random variable. Consider a time interval of length V and a Poisson
process of rate s that is independent of V. We call the increments of the Poisson process “interrup-
tions”. Let NoPoisson(V, s) be the event that there are no interruptions during the time interval.
Then [16, Exercise 25.7]

V(s) = P{NoPoisson(V,s)} . (22)
The interpretation in (22) necessarily requires s > 0. Fortunately, formulas we derive using (22)

are still valid for s < 0 because Laplace transforms are uniquely defined by their value on any
bounded interval on the real line [7].

7.2 Transform for Large Jobs
LEMMA 7.1. The queueing time of large jobs under Nudge has Laplace-Stieltjes transform

T (5) = (1= Pt (1= St (D) T (5) + (1 = Sy (SN TEFS (A4 5).

Proor. Consider a large tagged job arriving to the pair of systems, one using Nudge and the
other using FCFS, in equilibrium. We can think of the job’s Nudge queueing time as the time it
takes to do the following two steps:

(a) We first wait for its FCFS queueing time, namely TgCFS.

(b) If during that TQFCIES time there has been at least one arrival, and if the first such arrival is

a small job, we then wait for that small job’s service, which takes S, time. Note that the
small job’s size is independent of the FCFS queueing time.
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We will use (22) to compute Tg Tdie (s). To that end, we associate each of the Nudge and FCFS
systems with a Poisson “interruption” process of rate s. The interruption processes are independent
of the arrival times and job sizes of each system, but they are coupled to each other in the following
way. At any moment in time when the systems are busy, some job j has been in service for some
amount of time ¢. We couple the interruption processes such that interruptions occur at the same

(j, t) pairs in both systems.
Nu ge

By (22) Q,large
compute this probability by conditioning on the following event:

(s) is the probability that no interruptions occur during steps (a) and (b). Wi

_ |the next arrival after the tagged job is small,
"~ |and an interruption occurs during its service

Note that E does not consider whether the next arrival occurs before the tagged job exits the queue.
Therefore, it is independent of the length TQFCFS of step (a).

If E does not occur, then there are no interruptions during step (b). Therefore, there are no
interruptions if and only if there are no interruptions during step (a). By (22), this happens with
probability TQFC FS(s).

If E does occur, then an interruption will occur during step (b) if and only if a new job arrives
during step (a). That is, by conditioning on E, we have predetermined that the next arrival will
be small and, if it swaps with the tagged job, will cause an interruption. Therefore, to avoid
interruptions, we need to avoid interruptions and arrivals during step (a). Merging the arrival and
interruption processes yields a Poisson process of rate A + s, so avoiding interruptions corresponds

to the event NoPoisson(TQFCFS, A+ s). By (22), this happens with probability T(SCFS (A+s).

Conditioning on whether E occurs and using (22) to compute P{E} = p (1 — Somant()), We
obtain the desired expression. O

7.3 Transform for Small Jobs
LEMMA 7.2. The queueing time of small jobs under Nudge has Laplace-Stieltjes transform

A/S(A) = s/5(s)
A-s '

arge (1 = Starge ( —
TS (5) = TECPS (5) ( u) P = S (1= p)
5(s)

The analysis of small jobs is more involved than the analysis of large jobs. We therefore state
and prove several more intermediate results before proving Lemma 7.2.

Consider a small tagged job arriving to the pair of systems, one using Nudge and the other
using FCFS, in equilibrium. The main question we need to answer is whether the tagged job will
swap with a large job in the Nudge system. Our main insight is that we can tell whether the swap
will occur by examining just the FCFS system. Because we understand FCFS well, this makes it
relatively simple to tell whether a swap will occur.

LEMMA 7.3. The small tagged job swaps with a large job in the Nudge system if and only if, when it
arrives, the FCFS system has a nonempty queue whose last job is large.

The proof of Lemma 7.3 follows very similar reasoning to our analysis at the start of Section 5.1.
For completeness, we provide a proof in Appendix B.

Thanks to Lemma 7.3, we can determine the queueing time of the small tagged job by looking at
the state of the FCFS system when it arrives. We describe the equilibrium state of the FCFS system
with the following quantities:

e W: the amount of work in the system.
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e Np: the number of jobs in the queue.
® Whost: the amount of work in the system, excluding the last job in the queue if Np > 1.
® Sjast: the size of the last job in the queue, or 0 if Np = 0.

Note that these quantities are not independent. In particular, W = Wy,os¢ + Siast. However, Wiost
and Sj,s¢ are conditionally independent given Np > 1.
Armed with Lemma 7.3 and the system state notation, we are ready to compute TNUdge (s), thus

proving Lemma 7.2. Our computation will make use of an additional lemma whlch we state after
the proof and prove in Appendix B.

Proor oF LEMMA 7.2. Consider the small tagged job arriving to the pair of systems in equilibrium.
By Lemma 7.3, its Nudge queueing time is

Nudge _ Wonost if No=0
Q.small Winost + Stast1(—(xz2 < Spast < x3)) ifNQ 2 1.

Applying (22) and the conditional independence of Winost and Siast yields

Nudge

Qsma]l( s) = P{NoPmsson(Wmost, s) A Ng = 0}

+P{NOP01550n(Wmost, s) A Ng 21 A (NoPoisson(Sjast,s) V X2 < Spast < X3)}
= P{NoPoisson(Wmost, s) A Np = 0}
+P{NoPoisson(Wmost, s) A Ng > 1} . (g(s) + Plarge (1 = g;ge(s))). (23)

It remains only to compute the two probabilities in (23). Let
q= P{NoPoisson(W, s) A Np = 0} = P{NoPoisson(Wmost, s) A No = 0} , (24)

making g the first probability in (23). We now compute the second probability in (23) in terms of g.
First, note that TQFCFS and W are identically distributed. Recalling the conditional independence of
Whost and Spast, we have, using (22) throughout,

TQFCFS(S) -q= W(s) - q= P{NoPoisson(W, s) A Np > 1}
:P{NoPoisson(WmOSt, s) A Npo 21 A NoPoisson(Sjast, s)}
= P{NoPoisson(Wmost,s) A Np 2 1} ~§(s). (25)

Plugging (24) and (25) into (23) yields

udge ~FCFS plarge(l Slarge(s))
T =0+ (70 - 1 L5

Lemma 7.4 below, proven in Appendix B, computes the value of ¢, yielding the desired result. O
LEMMA 7.4. Letq = P{NoPoisson(W, s) A Np = 0}. We have

A§(s)—s§(ﬂ) 1-p AS(s)—sS(A)
A—s 5(,1) A—s

g =T
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7.4 Overall Response Time Transform

THEOREM 4.5. The response time of Nudge has Laplace-Stieltjes transform

TNGEE (5) = TFOPS(5) o+ PPl | Serge(5) (1 = S (5)) (TETFS (A4 5) = THE(5))

~ _ TIPS (s A/S(A) = s/S¢
_ Q W M5 =s/S(s)
+ Ssmall(s)(l Slarge (S)) §(s) (1 p) A—s

Proor. The expression follows by plugging the results of Lemmas 7.1 and 7.2 into

ud a ud o
TNUdge(S) = psmall : Tg,smg:[](s) : Ssmall(s) +plarge : Tg’]ariz (S) : S[arge(s)

§(S) - psmalIS’;:[I (S) - p]arge‘é_la‘r;e(s)
1- psmall - plarge

+ (1 - psmal] - plarge) : TQFCFS (S) .

and simplifying the resulting expression. One key step is recognizing TFCFS(s) = T(SCFS (s)-S(s). O

8 PROOF OF THEOREM 4.3: ASYMPTOTIC IMPROVEMENT

THEOREM 4.3. Suppose S is a continuous class I job size distribution. For any smin < x1 < x3 < X3,
the asymptotic tail improvement ratio of Nudge(x;, x2, x3) compared to FCFS is

*

— « 0 S - *
Ssmall(_e )_ —S]arge(_e )Ssmall(_g ) .

— . A
Slarge(_e ) - m A+ 0%

A
AsymTIR = psma[]p[argem

Furthermore, AsymTIR is positive, meaning CNudge < CrcFs, if
A+ 1- Serge (=07) !
A 1= Saa(-607

Below we give a high-level overview of the proof. We provide full computations in Appendix B.
Proor skeTcH. Using the Final Value Theorem, one can show that for Alg € {Nudge, FCFS},
1 —_—
=—1 Alg(s — 9*
Calg o ll_I)l’(l) sTA8(s — 07).

Combining this with Theorem 4.5, which relates TNUdge(s) to TFCFS(s), will relate Cnudge to Crcrs.

To obtain AsymTIR = 1 — Cnudge/Crcrs, we compute lim_,o (sTFEFS (s — 0%) — sTNudze (s — 6*))

via Theorem 4.5. Each non-vanishing term has an sTQFCFS (s — 6%) factor. Because T(S_CFS (s) =

TFCFS(5)/S(s), we can express Crcrs—Chudge as a constant times Crcrs; this constant is AsymTIR. O

9 EMPIRICAL LESSONS

This paper proves that Nudge stochastically improves upon FCFS under the correct choice of
parameters, and achieves multiplicative improvement in the asymptotic tail. However, there are a
few practical questions remaining. These questions center around finding Nudge parameters in
practice. In this section, we demonstrate several practical lessons on choosing Nudge parameters.

(1) (Section 9.1) We find that Nudge typically achieves its greatest improvement over FCFS when
the Nudge parameters specify that all jobs are either large or small (i.e. x; = x3, x3 = 00).
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Fig. 3. Empirical tail improvement of Nudge over FCFS under a variety of Nudge parameter choices. Highest
improvement occurs when x1 = x2, X3 = c0. Job size distribution is hyperexponential with branches drawn
from Exp(2) and Exp(1/3), where the first branch has probability 0.8. E[S] = 1, C? = 3. Simulations run with
10 billion arrivals. Load p = 0.8. Parameter choices are listed in order of asymptotic improvement.

(2) (Section 9.2) We find that when load is low, Nudge can dramatically improve upon FCFS
(10-20%) in the common case where job size variability is relatively high (i.e. C? > 1). When
job size variability is lower and load is low, improvement is smaller.

(3) (Section 9.3) We find that the space of parameters that lead Nudge to asymptotically improve
upon FCEFS typically also cause Nudge to stochastically improve upon FCFS. This is serendipi-
tous, because Theorem 4.3 provides a simple, exact method to check whether given Nudge
parameters will achieve asymptotic improvement over FCFS.

9.1 All Jobs Should Be Either Large or Small

When evaluating Nudge on common job size distributions, we have found that the greatest im-
provement over FCEFS is achieved by setting the Nudge parameters such that all jobs are either
large or small (i.e. x; = x», x3 = o), with no medium or very large jobs. This is a pattern we have
seen with great consistency across a variety of job size distributions.

In Fig. 3, we show one instance of this pattern, for the case of a particular hyperexponential
distribution. We see that the two choices of Nudge parameters that display the least improvement
over FCFS are those where both medium and very large jobs exist, i.e. x; # x2 and x3 # oco.

To explain this phenomenon, note that when we remove medium and very large jobs, we end
up with more swaps. Empirically, we have found that the quantity of swaps is more important
than the quality of those swaps, and thus maximizing the number of swaps leads to the largest
improvement. While empirically removing medium and very large jobs improves performance, our
analytical result in Theorem 4.2 requires medium and very large jobs.

Setting the Nudge parameters so that all jobs are either large or small dramatically simplifies the
problem of choosing Nudge parameters, in addition to achieving consistently strong performance.
Now, only one free parameter remains: the cutoff between small and large jobs.

9.2 Low Load: Dramatic Improvement when Variability is High

At low load, Nudge has the potential for dramatic improvement over FCFS (>10% throughout the
tail), in the common case where the job size distribution is more variable than an exponential
distribution, i.e. C2 > 1. On the other hand, under low-variability job size distributions (C? < 1), we
find that Nudge’s improvement shrinks at lower loads; here it helps to set the x; cutoff close to 0.
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Fig. 4. Empirical tail improvement of Nudge over FCFS at low load (p = 0.4) under a variety of job size
distributions with E[S] = 1. (a) Higher variance distributions show dramatic improvement. (b) Lower variance
distributions show modest improvement. Specific distributions: In (a), Mixed Uniform: Uniform(0, 1) w/prob.
0.9, else Uniform(0, 11), C? = 3.33; Hyperexponential: Exp(2) w/ prob. 0.8, else Exp(1/3), C? = 3; ChiSquared(1),
Cc?=2 InverseGaussian(u = 1,1 = 1/2), C% =2.In (b), Triangle w/ min = 0, mode = 0, max = 3, c?=1/2
Uniform(0, 2), Cc? = 1/3; Erlang(k = 3,1 =1/3, C? = 1/3; Beta(a = 2, f = 2) scaled by a factor of 2, C? = 1/5.
Distributions listed in order of asymptotic improvement. Simulations run with 10 billion arrivals.

In Fig. 4 we show these patterns for a wide variety of distributions at relatively low load p = 0.4.
In Fig. 4(a), we have four high-variance job size distributions, each with C? € [2,3.33]. In every
case, Nudge dramatically improves upon FCFS, with TIR in the range of 10-15%. In Fig. 4(b), we
have four low-variance job size distributions, each with C? € [1/5,1/2]. In these cases, we reduce
the cutoff x; to 0.2 for best performance, and Nudge’s improvement over FCES is under 3%.

Intuitively, when load is low, each job waits behind fewer other jobs on average, so Nudge’s one
swap per job has a greater relative impact. When those swaps are broadly beneficial for the tail, as
occurs when job size variance is high, Nudge achieves the most dramatic improvement over FCFS.
When job size variance is low, swaps involving small jobs that are near the mean job size cause the
response time of the large jobs to suffer too much. To alleviate this, we reduce the small job cutoff
x1 to maintain stochastic improvement over FCFS.

9.3 Asymptotic Improvement Means Stochastic Improvement

After extensively simulating Nudge under different loads and job size distributions, we have found
that the space of parameters under which Nudge asymptotically improves upon FCFS typically
matches the space under which Nudge stochastically improves upon FCFS.

In Table 1, we show the consistency of this relationship across a wide variety of job size dis-
tributions and choices of Nudge parameters. The distributions range from a low-variance Beta
distribution with C? = 1/5 to a hyperexponential distribution with C? = 3. Across the spectrum,
Nudge stochastically improves over FCFS whenever it asymptotically improves over FCFS.

This connection between asymptotic and stochastic improvement is surprising given that the
conditions that we need to prove stochastic improvement (Theorem 4.1) are much more stringent
than what we need to prove asymptotic improvement (Theorem 4.3). Nonetheless, the connection
is highly useful because we have provided a simple analytical formula for determining when Nudge
asymptotically improves upon FCFS (Theorem 4.3).
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Job size dist. | x; Asym. Stoc.|x; Asym. Stoc.|x; Asym. Stoc.| x; Asym. Stoc.|x; Asym. Stoc.
Exponential (05 v Vv |1 V V|2 X X |4 X X |8 X X
Hyperexponential0.5 v v |1 Vv Vv |2 Vv V|4 Vv V|8 v V
Bounded Lomax 0.5 v Vv |1 V VvV [15 X X | 2 X X |3 X X
Uniform 01 v vz v V|05 X X 10.75 X X |1 X X
Beta 01 v V02 v V|03 X x |04 X x 0.5 X X
Table 1. Presence or absence of asymptotic and stochastic improvement of Nudge over FCFS under a variety
of job size distributions and Nudge parameter choices. Stochastic improvement occurs whenever asymptotic
improvement occurs. Each row gives a distinct job size distribution, and each cell gives a distinct Nudge
parameter setting. In every case, x2 = x1 and x3 = o0, so only xj is specified. Load p = 0.4. Specific job size
distributions, each with mean 1: Exponential with mean 1, Uniform(0, 2), Hyperexponential drawn from
Exp(2) w/ prob. 0.8 and Exp(1/3) with prob. 0.2, BoundedLomax(A = 2, max = 4, & = 2), Beta(a = 2, = 2)
scaled by a factor of 2.

10 NUDGE IN PRACTICE

Nudge can be used in practice even if some of the assumptions made in this paper are not perfectly
satisfied.

In this paper, we assume that exact job size information is known to the scheduler. However,
such information is only used to determine which size class (small, large, etc.) a job should be
placed in. In practice, only estimates of job size may be known. In such a setting, the scheduler
could assign jobs that are clearly above or below a size threshold to the large and small classes,
while placing ambiguous jobs in the medium class. If the estimates are reasonably accurate, we
would expect such a Nudge policy to stochastically improve upon FCEFS.

We also assume that the exact job size distribution is known to the scheduler. This assumption
is needed to choose the Nudge parameters for our proofs in Section 4. However, our empirical
results in Section 9 show that much less information is needed in practice to choose good Nudge
parameters. For instance, as we saw in Section 9.2, the following choice of parameters works well
empirically: By default, set x; = x, = E[S], x3 = c0. However, if load is low and job size variability
(C?) is low, set x1 = x5 = E[S]/5, x3 = 0.

11  VARIANTS ON NUDGE

As Nudge is such a simple policy, there are many interesting variants of Nudge that one could
investigate. We now discuss the advisability of several such variants.

Recall that Nudge only ever swaps a job at most once. One might consider allowing a job to swap
a second or third time with new arrivals, or even an unlimited number of times. Unfortunately,
this change could ruin Nudge’s stochastic improvement over FCFS, if implemented poorly. In
particular, under a Nudge variant where large jobs can be swapped with an unlimited number
of small arrivals, such highly-swapped large jobs will typically dominate the response time tail,
dramatically worsening the variant’s tail performance. A wiser variant might be to allow large jobs
to be swapped with a bounded number of small jobs, or to allow only the small jobs to be swapped
an unlimited number of times.

Another interesting variant of Nudge would only swap in a probabilistic fashion, such as with an
i.i.d. coin flip. We believe such a policy could achieve stochastic improvement over FCFS. However,
proving such a result would be no simpler than for Nudge, because probabilistic swapping does
not change the shape of the distribution of swaps. Moreover, the variant’s tail improvement ratios
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would likely be smaller than those of Nudge, because a smaller fraction of jobs are involved in
swaps.

Finally, one could design a more complicated variant of Nudge which would consider a job’s exact
size when deciding whether to swap, rather than simply comparing the job’s size to a threshold.
For instance, one might decide to swap all pairs of jobs whose sizes differ by a factor of 2, as long
as neither job has yet been swapped. These more complicated Nudge variants might achieve even
larger stochastic improvements over FCFS than Nudge. Beyond FCFS, such Nudge variants might
be able to stochastically improve upon some or even all Nudge policies. We leave this possibility as
an open question.

12 CONCLUSION

We introduce Nudge, the first scheduling policy whose response time distribution stochastically
improves upon that of FCFS. Specifically, we prove that with appropriately chosen parameters,
Nudge stochastically improves upon FCFS for light-tailed job size distributions®. From an asymptotic
viewpoint, we prove that Nudge achieves a multiplicative improvement over FCES, disproving the
strong asymptotic optimality conjecture for FCFS. Finally, we derive the Laplace-Stieltjes transform
of response time under Nudge, using a novel technique. Nudge is simple to implement and is a
practical drop-in replacement for FCFS when job sizes are known.

One of the major insights of this paper is that improving the tail does not follow the same
intuitions that we use in improving the mean. While improving mean response time is often a
matter of helping small jobs jump ahead of large ones, when it comes to the tail, this has to be done
in a very measured way. Too much help to the small jobs causes the tail to get a lot worse. Nudge
finds the exactly appropriate way to do this.

One direction for future work is further exploring the stochastic improvement frontier. Can we
stochastically improve upon other commonly used scheduling policies? Can we improve upon
Nudge itself, such as with a more complicated variant of Nudge (see Section 11)? One policy which
cannot be stochastically improved upon is SRPT, due to its optimal mean response time. Can we
prove that other policies are unimprovable?

Another direction is simplifying the definition of Nudge. Our empirical results in Section 9
indicate that in practice, Nudge can always stochastically improve upon FCFS with only two classes
of jobs: small and large. It would be of practical importance to figure out how to extend the theorems
in this paper to hold for this simplified definition of Nudge.
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A PROOFS FOR STOCHASTIC IMPROVEMENT

LEMMA 3.1. Suppose S is a continuous class I job size distribution. For any load p, the normalized
p.d.f. g(t) is bounded above and below by positive constants, and lim,_,«, g(t) exists.

Proor. First we show (following prior work [1, 3, 28]) that TgSCFS has a simple pole —0* as its
rightmost singularity.

We let —6* be the root of the denominator of TQFCFS (s), which is

—-s
A

Since the left hand S| (s) is convex in 57, and the right hand % is only linear in s, their intersection
s = —0" must be a simple root. Moreover, such an intersection exists for s < 0 because
- N
[ :SL(O) = TO = ];
2 _ 1 1.
'i(o)—_;>—;, N
e S(s) — oo when s approaches the rightmost singularity of S (since S is a class I distribution).

AS(s)—=A+s=0 & S(s) = A

Now we use final value theorem to establish the limit of the ratio between the p.d.f. fT5CFs and
the exponential function e~?"!. Recall the function ¢(t) = fTécrs(e)ee*’ and consider its Laplace

transform G(s) = TQ'ECFS (s—0"). Since the poles of G(s) map one-to-one to the poles of TQFCFS(S -0%),

the above arguments show that every pole of G(s) is either in the open left half plane or at the
origin, and the origin is a simple pole. Therefore, the Final Value Theorem for g(¢) tells us

) . ) o~ 1-p)0*
lim £ (1)e?t = lim g(¢) = lim sG(s) = (~— £45°>0. (26)
t—)oofTQ t—)oog s—0 _AS/(_G*) -1 9
Since the limit g* exists, for € = 97*, there exists N, < oo such that Vt > N,
9 9 o _ gECES 39" o
9 -g'l <= = Tt < frm () < S-e
Next, we want to show that
min ¢(¢) >0 and max ¢g(t) < oo. (27)

0<t<N. 0<t<N.

"We have §”(s) = [~ t2e~st s (t) dt > 0 for every s in the convergence region ofg(-).
=0 y g g
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First, note that fTFQCFS satisfies the following level-crossing differential equations [6] (we abbreviate
fFCFS to f):
f(0)=(01-p)i
f (@) =Af() - (1 - p)Afs(t) - A/ o St =D fs(j)dj.
To begin with, f(t) is continuous because fs(¢) is continuous. If f(¢) = 0 for some t < N,
we let tp = inf {t < N, : f(t) = 0}. Clearly t, > 0 because f(0) = (1 — p)A > 0. Note also that

f(to) = 0, because f is continuous. Since f(ty) < f(0), 30 < sp < ty s.t. fs(sp) > 0. Then Ja, b
where 0 < a < sy < b < ty,s.t. f(t) > 0forallt € [a b]. Now we have

ty
1) = ~(1 = p)Afis(ty) — A / o= D) dj <0
J:

because the first term —(1 — p)Afs(#) < 0 and the second term

t b
-2 /J IRCRIOETERY / flto = ) fsi)dj <o.

j=a
But f'(#y) < 0 is impossible, because we assumed that f(#,) = 0. The implication that f’(¢;) < 0
contradicts the fact that f is a non-negative probability density function. Therefore,

t) > t 0.
Oglg}veg() min, g()>

On the other hand, since f”(t) < Af(t) everywhere, we have f(t) < (1 - p)Ae*. Note that this
bound holds even if S has infinite density at one or more points. As a result,

< FCFS 9*N€]< B AN, 6°N.
max g(1) < max [FEES(0e7N] < (1 p)ae N < o
Finally, note that

inf g(t) = gmin > mm{ 1nf [fFCFS(t) 9’] %} >0

te[0,00)

3 Sk
sup g(t) £ gmax < max{ sup [fTFCFS(t)ee t] %} < o0

te[0,00) 0<t<N,

which indicates both gmin and gmax are well-defined and nonzero. This completes the proof. ]

LEMMA 5.3. Let A, B be two independent real-valued random variables and c be a fixed constant.
Suppose 1 < A < ¢ and A < B. Under these assumptions, if P{B > ¢} > 0 and
cE[B] = E[A] E[B|B > c], (28)
then
E[min(AB,c¢) —min(A,c)] E[min(AB,c) — A] S E[AB - A]
E[min(AB,c) —min(B,c¢)] E[min(AB,c) — min(B,c)] ~ E[AB - B]’
Proor. First we observe E[min(AB, ¢) — A] > E[min(AB, ¢) — min(B, c¢)] because A < min(B, c).
Based on this, we can shrink the left hand side of inequality (29) by adding the same positive term
to both the denominator and numerator. We compute

E[min(AB,c) - A] E[AB — A] — E[(AB — ¢)14psc]
E[min(AB,c) — min(B,c¢)] E[AB — B] —E[(AB — ¢)1ap>¢] + E[(B —¢)15s¢]
Since A > 1 and B > 0, we have AB > B. Therefore,

(29)

(30)

0 <1aB>c — 1B>¢ < 1aB>c = 14B-c>0-
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We proceed by adding a positive term, E[(AB — ¢) (148> — 1B>¢)], to both the denominator and
numerator of the right hand side of (30) and obtain

E[min(AB,c) ~A]  _ E[AB- Al -E[(AB-)1p.c]
E[min(AB,c) — min(B,c)] ~ E[AB - B] — E[(AB - B)1p>¢]
Hence, to establish inequality (29), it suffices to show

E[(AB-)1p.c] _ E[AB - A]

E[(AB-B)1p>c] = E[AB-B]
<= E[(AB —¢)15>¢] E[AB - B] > E[(AB — B)1g-.| E[AB — A]
< (E[A]E[B|B>c] —c)P{B > c}E[AB—-B] > (E[A] —1)E[B|B > c]P{B > c} E[AB — A]
< cE[B] (E[A] — 1) > E[A] E[B|B > c] (E[A] - 1)
<= cE[B] > E[A] E[B|B > ¢],

which is precisely the condition provided in (28). O

B PROOFS FOR TRANSFORM ANALYSIS

LEmMA 7.3. The small tagged job swaps with a large job in the Nudge system if and only if, when it
arrives, the FCFS system has a nonempty queue whose last job is large.

Proor. By definition of Nudge, the tagged job swaps if and only if, when it arrives, the Nudge
system has a nonempty queue whose last job is a large job that has not been swapped. It therefore
suffices to show that at any moment in time, the FCFS system has a nonempty queue whose last
job is large if and only if the Nudge system has a nonempty queue whose last job is a large job that
has not been swapped.

We first note that the total amount of work in both systems is the same at every moment in time,
because both FCFS and Nudge are work conserving.

Suppose the FCFS system has a nonempty queue whose last job j is large. Because it is the last
job in the FCFS queue, there have been no new arrivals after j. In the Nudge system, this means
J has not been swapped, so either j is the last job in the Nudge queue or has entered service. By
work conservation, both systems had the same amount of work when j arrived, so j must still be
in the Nudge queue, as desired.

Suppose the Nudge system has a nonempty queue whose last job j is a large job that has not
been swapped. We argue similarly to the previous direction: there have been no arrivals since j
because it is at the end of the Nudge queue without being swapped, and j cannot have entered
service in the FCFS system by work conservation, so j must be the last job in the FCFS queue, as
desired. O

LEMMA 7.4. Letq = P{NoPoisson(W, s) A Np = O}. We have

AS(s) =sS(1) _1—p AS(s) —sS(A)

— TFCFS (). _ L
9=To ") A—s S(d) A—s

To prove Lemma 7.4, we require an additional lemma.

LeEmMA B.1. Let V be a nonnegative random variable, and let Exp(r) and Exp(s) be exponentially
distributed random variables of rates r and s, respectively. Suppose V, Exp(r), and Exp(s) are mutually
independent. Then
rV(s) —sV(r)

P{V < Exp(r) + Exp(s)} =
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Proor. We compute

P{V < Exp(r) + Exp(s)} = / P{v < Exp(r) + Exp(s)} fy(v) do

/ (/ / 100 <t+u)-re’ - se”*dt du| fy(v) do
v=0 \Ju=0 J =0

/ ;sesva(v) do
0=0 r—

3 r‘7(s) - sV(r) q
= T

Proor oF LEMMA 7.4. Consider a FCFS system in equilibrium along with an independent Poisson
“interruption” process of rate s. Call a job lucky if it enters the system while Np = 0 and experiences
no interruptions during its queueing time. Because Poisson arrivals see time averages [41], q is
probability an arriving job is lucky.

We compute ¢ in an unusual way. Let a job’s departure period be the time interval starting when
the job enters service and ending when the next job enters service. Jobs enter service at average
rate A, so q is the average number of lucky jobs that arrive a departure period. More formally, by
renewal-reward theorem,

q = P{arrival is lucky}

average rate of lucky arrivals

A
average rate of lucky arrivals

average rate of departure periods
= E[number of lucky arrivals during a departure period] .

Moreover, because a job is lucky only if Np = 0, only the first arrival in a departure period can
possibly be lucky, so

q = P{first arrival in a departure period is lucky} .

Consider a job j. The first arrival in j’s departure period is lucky if both of the following events
occur:

E; = there are no arrivals during j’s queueing time

E; = j completes before the first interruption after the first arrival of j’s departure period.

By (22), P{E;} = TQFCFS(/I). We compute P{E; | E;} below.

Conditioned on Ej, the queue is empty when j enters service, so the first arrival during j’s
departure period is simply the first arrival after j enters service. Let Exp(A) be the amount of time
between when j enters service and the next arrival, and let Exp(s) be the amount of time between
that next arrival and the first interruption after it. Both Exp(4) and Exp(s) are exponentially
distributed with rates A and s, respectively, and they and j’s size are mutually independent. Because
Jj’s size is distributed as S, we have

AS(s) = sS(A)

P{E; | E1} = P{S < Exp(2) +Exp(s)} = ——5———

where the latter equality follows from Lemma B.1 below.
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It remains only to show T /°FS(1) = (1 - S(A). Because response time TTCFS is a sum of
Yy 0 P P
independent random variables with distributions TQFCFS and S, we have TgCFS (1) = TFCFS(1)/S(A).

By (22), TFCFS(1) is the probability that no arrivals occur during a job’s response time. But this is
simply the probability that a job leaves an empty system when it departs, which is 1 — p. O

THEOREM 4.3. Suppose S is a continuous class I job size distribution. For any smin < x1 < x3 < X3,
the asymptotic tail improvement ratio of Nudge(x;, x3, x3) compared to FCFS is

*

AsymTIR = poraiiPlarge A+ 0F

o * A 5 * *
Slarge(_e )_ mssmall(_e ) Slarge( -0 )Ssmall( A )

A
A+ 0*
Furthermore, AsymTIR is positive, meaning Cnudge < CrcFs, if
Ao _1- Siarge (—07) !

A 1= Sea(=69)7"

Proor. We prove this theorem using the Laplace-Stieltjes transform derived in Theorem 4.5.
The transform of the tail of TNU%¢ can be calculated as

00 ) —st
/ e*StP{TNudge > t} dt = _/ P{TNudge > t} d (e S )
t S

=0 t=0
o 0 e—st
+/ — dp{TNvEe > ¢}
0 t=0 S

e—st
= — p{Tudee > ¢} ( - )

1 (o)
- (1 - / e_SthNudge (t) dt)
S =0

J 1T TN:dge(s). (31)

Then the transform of ¥ * P{TNUdge > t} is obtained by translating (31) horizontally through 6*
units:

00 _ TNud — H*
/ oSt (ee*tP{TNudge S t}) dr = 1 — TNudge(s — 9 )
=0 s—0*

Now, we are ready to calculate Cudge using this transform. From Final Value Theorem,

CNudge = lim eQ*tP{TNudge > t}
t—o0

1 — TNudge (s — 6%)

=li
sli%s s—6*
1 —

- __ 1i Nudge (¢ — f*
o lgrg)sT (s—6%

Now, we substitute the expression from Theorem 4.5, and drop terms that are negligible in s — 0
limit.

1 .. N N

§ !1_1’)1(1) STNudge(s -0 )
Co,rcrs

S(-60 )
(32)

- CFCFS + _psmallplarge Slarge( 0*)(Ssmall( 6 ) - l)CQ FCFs + Ssmall( 9*)(1 Slarge( 9 ))
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where

S TFCFS(s — 0*)  §*C
Coycrs = lim sTIFS (s — 6%) = lim s— (=69 _ SRSl (33)
’ s—0 @ s—0 S(S — 0*) S(—Q*)

We recall that —6" is the rightmost singularity of TéCFS(s) = /é(ls_)’j );H, which indicates that 0" is

the smallest positive value that satisfies
A+ 07
P

AS(=0")=1-0"=0 and S(-6%)= (34)
Using (33) and (34) to simplify (32), we obtain

CNudge

*

A — * /1 *
= CFCFS 1 _psma[]p[argem (Slarge(_e ) - m small( 0 ) - /1 9*

Slarge( 9 )Ssmall( 9 )))

This gives us

AsymTIR =1 - M
Crcrs
A= A — i .
= PamatPraree 30w (Slarge(_e ) - mssmall(_e ) - 110 Slarge( ~0")Sqrant (0" ))
By assumption,
A+0" 1= Sue(=07)"
A =S a(=0)
so we have
ASYMTIR = Pyt Prge S (—0°)S ..(9)( (07 = s (o - )
smallPlarge 37 Slaree sma small T3 g e o

/1 * _— N\ —
:psmallplargeA 0% Slang( Q*)Ssmal]( 6*) (/1 o+ (1 Slarge( -0 ) ) (l_ssmall(_e ) I)) > 0.

Hence CNudge < Ckcrs- O
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