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Abstract—A data-driven reduced-order approach is applied to 
develop a thermal simulation model for a quad-core CPU, AMD 
ATHLON II X4 610e. The model is based on proper orthogonal 
decomposition (POD) that projects the physical domain of the 
CPU onto a functional space represented by a small set of basis 
functions (or modes). To generate an optimal set of modes, these 
modes are trained by thermal solution data collected from 
numerical simulation tools, FEniCS and HotSpot Grid. If good-
quality data are used in the training process, the process optimizes 
the POD modes that are then able to offer a very accurate 
simulation model with a very small numerical degree of freedom 
(DoF).  Each of the developed POD models is verified against its 
simulation tool used in its training. A very accurate prediction is 
observed in the POD model derived from FEniCS with a reduction 
in the numerical DoF by nearly 5 orders of magnitude, which 
amounts to more than a 3-order reduction in computing time.  The 
POD model derived from HotSpot Grid is however not able to 
offer accurate simulation due to its inadequate data quality.        

Keywords—Thermal simulation of CPUs, proper orthogonal 
decomposition, data-driven learning, FEniCS, HotSpot 

I. INTRODUCTION

With the miniaturization and multi-functional design for 
CPUs, the numbers of transistor and power dissipation per area 
have been increasing dramatically in the last several decades. 
The continuing advance in CPU technology has generated much 
more joule heat and led to sever temperature escalation and hot-
spot generation in CPUs.  High temperature and hot spots not 
only impair the CPUs performance but also reduce its lifetime 
[1]-[4] because of thermal stress enhanced by the material 
property mismatch and resulting in electromigration in the 
interconnects [5]-[7]. Lower temperature operation not only 
maintains higher performance and longer lifetime, but also 
reduces the cooling costs of CPUs. To decrease the temperature 
and suppress the hot spots in CPUs, thermal-aware task 
scheduling is desired, which however relies on effective thermal 
management [8],[9].  To achieve effective thermal management 
of CPUs, an efficient and accurate thermal simulation is needed. 

There exist several different approaches for thermal 
simulations of  CPUs or semiconductor integrated circuits (ICs) 
with different levels of accuracy and efficiency. For situations 
that require both detailed and accurate thermal profiles, direct 
numerical simulations (DNSs), based on either the finite element 
or finite difference method, are usually needed. These 
approaches however demand extensive computational efforts, 

especially in a large domain structure like a CPU.  It is therefore 
prohibitive to apply DNS to predict the detailed temperature 
distribution and hot spot locations in a CPU, and DNSs are only 
suitable for small structures where more detailed thermal 
profiles may be needed.  There are many commercial or open-
source tools that offer such DNSs.  For example, FEniCS [10] is 
an open-source DNS platform based on the finite element 
method (FEM) that can be applied to predict detailed thermal 
distributions in semiconductor ICs.  

Due to intensive computing time needed in DNSs, the 
lumped RC thermal circuit model has always been used for the 
thermal-profile prediction in large-scale semiconductor chips. 
For example, the Block model of HotSpot [11]-[13] (or 
HotSpot-Block hereafter) is one of the most popular thermal 
simulators at the architecture level for CPUs using the compact 
RC thermal model. The compact RC thermal circuit model is 
used to describe the heat flow as “current” passing through 
“thermal resistance” and “thermal capacitance” based on the 
analogy between the charge and heat flows. In the RC thermal 
circuit model, spatial details are lumped into thermal elements 
(capacitances and resistances), and spatial locations are 
represented by the thermal nodes. Using the efficient thermal 
circuit model, HotSpot Block does not offer fine-enough 
resolution to capture the hot spots in CPUs and cannot 
appropriately account for distributed heat transfer in CPUs, 
particularly for the lumped RC elements with large aspect ratios.  
In spite of the efficiency of HotSpot-Block , the accuracy of the 
HotSpot-Block thermal circuit model has been challenged in 
[14] which claimed that an error exceeding 200% could appear
in HotSpot-Block with some floorplans compared to DNS. To
improve the accuracy of HotSpot, the Block model was
improved and the Grid model was developed [15], in which each
functional unit can be divided into several smaller elements with
each element as a thermal node. Therefore, to predict hot spots
in a semiconductor IC accurately using HotSpot, the Grid model
with fine-enough meshes needs to be used, which basically
performs DNS, and HotSpot becomes time-consuming as well.

As the multi-core architecture becomes standard in modern 
CPU design, the thermal issues in CPUs have been enhanced 
significantly in recent years and the prediction of high 
temperature gradients and hot-spot locations in CPUs has 
become crucial. To be able to predict thermal profiles effectively 
in such complex and large structures, an approach beyond the 
DNSs or the RC thermal model is needed. The desired approach 

978-1-7281-8539-2/$31.00 ©2021 IEEE 1008 20th IEEE ITHERM Conference    



must be as efficient as the RC thermal circuit model and as 
accurate as the DNS.  In addition, it needs to be able to offer 
fine-enough resolution to capture critical hot spots in CPUs.  

In this work, a thermal simulation technique developed 
recently [16]-[19] enabled by the data-driven proper orthogonal 
decomposition (POD) [20],[21] is adopted for CPU thermal 
simulation. This data-driven learning technique is applied to 
develop a POD thermal model for a quad-core CPU, AMD 
ATHLON II X4 610e CPU [22].  The temperature profile in this 
CPU is predicted using this POD approach compared against 
FEniCS and the HotSpot Grid model (hereafter as HotSpot-
Grid). The POD is one of the reduced-order methods and is able 
to effectively reduce the numerical degree of freedom (DoF) by 
projecting the problem of interest from its physical domain onto 
a functional space described by a small number of basis 
functions. Unlike many other projection-based methods where 
the basis functions are usually assumed, the POD method 
extracts its orthogonal basis functions (or called POD modes) 
from processing the solution data of the physical structure 
obtained by DNSs [16]-[19],[23].  

In this study, FEniCS (FEM) and HotSpot-Grid (a thermal 
circuit model with very small elements) are used to perform 
dynamic thermal simulations to collect two separate sets of 
temperature solution data of AMD ATHLON II X4 610e under 
its normal operating condition. By processing these data sets 
separately, two sets of POD modes are extracted from each set 
of the FEniCS and HotSpot-Grid data.  Using this “training” 
process (including the data collection and mode generation), the 
POD modes are tailored to the normal operating condition in the 
AMD ATHLON II X4 610e CPU and are optimal in the least 
squares sense to predict its dynamic temperature distribution.  
This study shows that the developed POD model for this quad-
core CPU could offer an accurate prediction of its dynamic 
thermal distribution with a reduction in the numerical DoF by 
nearly 5 orders of magnitude if good-quality data are used in the 
training. 

II. THERMAL SIMULATION METHOD BASED ON POD 
Temperature in space and time T(r⃗,t) can be represented by 

a linear combination of the selected basis functions 𝜑𝑖 as 

T(r⃑,t) = ∑ ai(t)φi(r⃗),
M

i=1

 (1) 

where 𝜑𝑖  is the POD mode and M is the number of basis 
functions (or modes) selected to represent the temperature, 
which determines the accuracy and efficiency of the POD 
approach. The time-dependent parameter ai(t) is the coefficient 
of its POD mode.  

  The POD process can be applied to optimize the POD modes 
by maximizing the mean square inner product of the thermal 
solution with the modes, which can be expressed as 

〈(∫ T( r⃗,t)Ω φdΩ)
2
〉

∫ φ2
Ω dΩ

 , (2) 

where Ω is the physical domain of the selected structure and 
brackets 〈〉 denote the average over a data ensemble of 
temperature. In this study, the average indicates the temporal 
average over many samples in time, subjected to an operation 
setting specified by the boundary conditions (BCs) and power 
sources.  The Fredholm equation shown below is obtained from 
the maximization problem in (2) for the POD modes, 

∫ R (r⃗,r⃗'
) ∙φ⃗⃗ (r⃗'

) dr⃗'
 = λφ⃗⃗ (r⃗)

r⃗'
 , (3) 

where R (r⃗,r⃗'
) is a two-point correlation tensor expressed as 

R (r⃗,r⃗'
)  = 〈T(r⃗,t)T(r⃗',t)〉 . (4) 

The maximization process in (2) thus leads to an eigenvalue 
problem given in (3) with λ as the eigenvalue and φ⃗⃗ (r⃗) as the 
eigenvector.  In this work, two sets of temperature data T(r⃗,t)  
for the selected structure in (4) are obtained, one from FEniCS 
and the other from HotSpot-Grid. The snapshot method 
[24],[25] is applied to solve (3) for the eigenvalues and POD 
modes.  
 Once the POD modes are determined, the heat conduction 
equation can be projected onto a functional space represented by 
POD modes using the Galerkin projection,  

∫ (φi(r⃗) ∂ρCT
∂t

+∇φi∙k∇T) dΩ = ∫ φi(r⃗)∙Pd(r⃑,t)dΩ -                 ΩΩ

∫ φi(r⃗)(-k∇T∙n⃑⃗)S dS,      (5) 

where k is thermal conductivity, ρ is the density, C is the specific 
heat, Pd(r⃑,t) is the power density, S is the boundary surface of 
the selected domain and n⃑⃗  is the outward normal vector of 
boundary surface.  With given POD modes, (5) can be  reduced 
to an M-dimensional ordinary differential equation (ODE) for 
ai(t),   

∑ ci,j

M

j=1

daj

dt
+ ∑ gi,j

M

j=1

aj = Pi,  i = 1  to M, (6) 

where Pi representing the last 2 terms of (5) is the power density 
dissipated in the POD space and can be pre-evaluated  since the 
shape of power density is predefined. ci,j  and gi,j  are the 
elements of thermal capacitance and thermal conductance 
matrices in the POD space and defined as 

ci,j = ∫ ρCφ⃗⃑iφ⃗⃑j 
Ω

dΩ ,     gi,j = ∫ k∇φ⃗⃑i∇φ⃗⃑j
Ω

dΩ. (7) 

Once aj is determined from (6), the temperature solution can be 
evaluated from (1). 

 The POD has been known for offering an effective approach 
to simulate dynamic and steady-state behaviors of physical 
quantities with high accuracy [16]-[21], [23]-[25].  In this study, 



we demonstrate that the POD concept can also be used to verify 
the quality of the collected DNS data and thus quality of the 
simulation tool used to generate the DNS data. The 
characteristics of the POD modes generated from (3) using the 
data collected from DNSs are fully determined by these data.  To 
derive a POD thermal model given in (6), these modes are also 
applied to project the heat conduction equation (the same 
equation used in the DNS) onto the functional space represented 
by these modes.  To result in an accurate POD model, the 
collected data and the heat conduction equation must be 
consistent.  In cases when numerical settings are not rigorous 
enough (such as coarse meshes) or serious approximations are 
included in the DNSs, the POD model may not provide an 
accurate prediction of the thermal distribution even if a large 
number of POD modes are included.  The demonstrations of the 
POD method illustrate not only the accuracy and efficiency of 
the POD thermal simulation of a CPU but also the quality of data 
generated by FEniCS and HotSpot-Grid. 

III. APPLICATION TO THERMAL SIMULATION OF A CPU 
A quad-core CPU, AMD ATHLON II X4 610e [22], is 

selected in this study to demonstrate the POD thermal simulation 
model. As shown in Fig. 1 for the floorplan, this quad-core 
processor includes the following units: four 512KB L2 caches, 
a northbridge in the center and I/O and DDR3 placed around the 
periphery.  In the DNSs for collecting thermal data from FEniCS 
and HotSpot-Grid, dynamic power density in the device layer of 
each unit is assumed uniform. The simulation domain of this 
processor covers a volume of 14mm  12mm  650m in the x, 
y and z directions, respectively. All the surfaces of the chip, 
except for the bottom surface, are assumed adiabatic. The 
convection BC is implemented on the bottom with a constant 
heat transfer coefficient and an ambient temperature of 45℃, 
similarly to the settings implemented in HotSpot with a further 
assumption that the temperature in each layer of the heat 
spreader, interface material and heat sink is uniform. The 
dynamic power density in each unit applied in the DNS is 
averaged over 48k CPU cycles at 3.5 GHz with the percentage 
of the power consumption in each unit similar to [26]. To be 
more realistic, the power density over each average period in 
each unit is generated randomly.  

 It should be mentioned that, for such a large domain structure 
of the CPU, it is impractical to include detailed variations of 
materials properties even though other materials exist in CPUs. 
The vast majority of the materials in CPUs are however silicon.  
To be able to manage the numerical settings more reasonably, as 
a general practice for thermal simulation at the architecture level 
[11]-[13],[15], silicon with a thermal conductivity of 100 
W/(m∙K), a specific heat of 751.1 J/(kg∙K) and a density 2330 
(kg/m3) is assigned throughout the CPU.   

A. Direct Numerical Simulations of the Selected CPU 
FEniCS and HotSpot-Grid are applied to perform thermal 

simulations of the selected CPU with the identical dynamic 
power density distribution and BCs described above.  Due to the 
higher power density in Core 1, the maximum temperature 
appears in Core 1 at (5.8mm, 9.8mm) indicated by the intersect 
of 2 lines along the A and B plotting paths shown in Fig. 1. 
Dynamic evolution of the maximum temperatures obtained from 
FEniCS and HotSpot-Grid are compared in Fig. 2.  Results show 

that the dynamic temperature difference between HotSpot-Grid 
and FEniCS is very small at low temperature and increases with 
time as temperature becomes higher.  The temperature resulting 
from HotSpot-Grid is always higher than that from FEniCS and 
the deviation reaches 4.3% at t = 2.1ms.  

 
Fig. 1.  Floorplan of the quad-core CPU, AMD ATHLON II X4 610e [26].  The 
lines with arrows indicate the paths of the temperature distributions shown in 
Figs. 3, 6 and 7.  The intersection of these 2 lines is at (5.8mm, 9.8mm).    

In addition, the temperature profiles at t = 2.1ms are given in 
Figs. 3(a) and 3(b) along the lines in the A and B plotting paths, 
respectively, indicated in Fig. 1. As shown in Fig. 3(a), the 
temperature distribution along the A plotting path (see Fig. 1) 
across I/O, Core 1, Northbridge, Core 2 and I/O from left to right 
reveals the highest temperature in Core 1. The temperature 
distribution along the B plotting path passing DDR3, Core 4, 
two L2 Caches, Core 1 and I/O is shown in Fig. 3(b).  There are 
some differences between the temperature profiles predicted by 
FEniCS and HotSpot-Grid, as illustrated in Figs. 3(a) and 3(b). 
The difference is larger in the regions where the temperature is 
high and the maximum difference is as high as 4.3%, as 
observed in Fig. 2.  However, the results from both DNS tools 
agree quite well with each other in the low temperature regions. 

 
Fig. 2.  Comparison of the maximum dynamic temperature in Core 1 obtained 
from HotSpot-Grid and FEniCS simulations  
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Fig. 3.  Temperature distributions at  t = 2.1ms along the paths indidated in Fig. 
1 (a) in the A plotting path and (b) in the B plotting path. 

B. Eigenvalues and POD modes   
Two sets of eigenvalues and POD modes are generated from 

the sampled data of the dynamic temperature distributions in the 
3D CPU domain collected independently from FEniCS and 
HotSpot-Grid simulations. The eigenvalue spectrums of the 
two-set thermal data are shown in Fig. 4, and they appear to be 
very close to each other. The eigenvalues represent the mean 
squared temperature variations captured by each POD mode and 
thus indicate the number of POD modes needed to predict the 
temperature solution with acceptable accuracy. As shown in Fig. 
4, the eigenvalue drops more than three orders of magnitude 
from the first to the third mode, and a decrease by more than 4 
orders of magnitude is observed from the first to the fourth 
mode. It is therefore expected that a POD model for the selected 
quad-core CPU is able to offer a reasonable prediction of the 
dynamic temperature distribution with just 3 modes and a very 
accurate prediction with just 4 or 5 modes. However, the 
expectation can be achieved only if the thermal solution data 
collected from the DNS tools are consistent with the heat 
conduction equation.  Once the POD modes are generated, POD 
model parameters or coefficients given in (6) can then be 
determined. 

 
Fig. 4.  The eigenvalue spectrum derived from the HotSpot-Grid data and 
FEniCS data. 

C. Demonstrations 
To verify the validity of the two developed POD models, 

they are applied to thermal simulations of the selected CPU with 
a dynamic power trace different from that used in the thermal 
data collection. More specifically, the power consumption in 
each unit is generated using a different random sequence from 
that used in the thermal data collection/training. However, the 
power density distribution over all the units remains similar.  
The dynamic temperature solution for the CPU determined by 
each of these 2 approaches with different numbers of modes are 
compared in Figs. 5-7 against the solution resulting from the 
simulation tool used to construct its POD model.  

Fig. 5(a) shows the dynamic temperature at the location of 
(5.8mm, 9.8mm) indicated in Fig. 1 obtained from FEniCS and 
its POD model. As anticipated according to the eigenvalue 
spectrum shown in Fig. 4, the FEniCS-POD model is in good 
agreement with the FEniCS result using just 3 POD modes.  The 
POD results with 5 or 7 modes nearly overlap with that from 
FEniCS.  Only a 0.4% deviation from the FEniCS simulation is 
observed when using the 7-mode FEniCS-POD model. It is 
however interesting to notice a very different outcome from the 
HotSpot-POD model.  It is shown in Fig. 5(b) that, except when 
temperature is low, the HotSpot-POD model with 5 and 7 modes 
approaches an erroneous solution that is approximately 20%-
30% lower than the HotSpot-Grid results.  

The temperature distributions along the paths shown in Fig. 
1 at t = 2.1 ms are displayed in Figs. 6 and 7 for the FEniCS-
POD and HotSpot-POD, respectively, compared to their DNS 
tools. As shown in Figs. 6(a) and 6(b), the FEniCS-POD model 
with 3 modes already offers a good prediction of the dynamic 
temperature distribution in the CPU. When using 5-7 modes for 
the POD model, an improved agreement with the FEniCS DNS 
is observed.  Similarly to Fig. 5(b) for the dynamic temperature 
predicted by HotSpot-POD, the temperature profiles derived 
from the HotSpot-POD model shown in Figs. 7(a) and 7(b) 
approach to a solution 20%-30% lower than the HotSpot-Grid 
results in the higher temperature region.  It is worthwhile to point 
out that the HotSpot-POD model predicts a solution that does 
not converge in the region of 6 mm < x < 8mm when the number 

(a) 

  (b) 



of modes increases from 3 to 7 modes. In the same location, the 
solution provided by FEniCS-POD model with 3 or more modes 
however converges and agrees very well with the DNS solution 
from FEniCS.   

D. Discussions  
 Based on the comparison between the temperature solutions 
predicted by FEniCS-POD and HotSpot-POD with each of their 
DNS tools (FEniCS and HotSpot-Grid, respectively) presented 
in Figs. 5-7, crucial findings are described below.  It has been 
demonstrated that the developed FEniCS-POD model for AMD 
ATHLON II X4 610e, a quad-core CPU, is able to offer a very 
efficient prediction of dynamic thermal distribution with high 
accuracy in the selected CPU, compared to FEniCS DNS. The 
FEniCS-POD model offers a very accurate prediction of the 
thermal profile in a CPU with just 4 to 5 numerical DoF. This 
amounts to a reduction in the numerical DoF by nearly 5 orders 
of magnitude, compared to DNS, and a decrease in computing 
time by more than 1000 times. The results also strongly suggest 
that the thermal solution derived from FEniCS DNS is consistent 
with the heat conduction equation and offers good quality of 
POD modes to construct the FEniCS-POD model. 

 

 
Fig. 5.  Temperature evolution in time. (a) Comparison between the FEniCS-
POD and FEniCS simulations and (b) comparison between the HotSpot-POD 
and HotSpot-Grid simualtions. 

 

 
Fig. 6.  Temperature distributions obtained from FEniCS and FEniCS-POD 
simulations at t = 2.1ms along the (a) A plotting path and (b) B plotting path.  

 On the contrary, the thermal solution generated from DNS 
using HotSpot-Grid is not quite consistent with the heat 
conduction equation, according to the comparisons with its POD 
model presented in Figs. 5(b) and 7, as well as the least square 
errors shown in Table I. This perhaps results from the 
approximation made in the Grid model to evaluate the thermal 
elements. It is interesting that the thermal solution from 
HotSPot-Grid with only approximately 4.3% deviation from the 
FEniCS DNS, as shown in Figs. 2 and 3, actually generates POD 
modes that are not able to represent the heat conduction equation 
transformed to the POD space. This indicates that the accuracy 
of POD modes strongly depends on the quality of the solution 
data used to generate them.   

 It should be mentioned that the maximization process given 
in (2) for the POD methodology optimizes the least square error 
over the complete simulation time and the whole spatial domain 
instead of the local error. As can be seen in Table Ⅰ, the least 
square error for the HotSpot-POD actually increases from 1 to 3 
modes and it fluctuates around 20.8% more than 3 modes. In 
contrast to HotSpot-POD, FEniCS-POD with more modes 
achieves a smaller least square error, and the error decreases to 
1.63% with 7 modes. 

(a)   

(b) 

(a) 

(b) 



 
Fig. 7.  Temperature distributions obtained from HotSpot-Grid and HotSpot-
POD simulations at t = 2.1ms along the (a) A plotting path and (b) B plotting 
path. 

 
TABLE I.    THE LEAST SQUARE ERROR OVER TIME AND ENTIRE DOMAIN 

Type of POD 
Number of POD modes 

1 3 5 7 

HotSpot-POD (%) 17.31 20.80 20.76 20.81 

FEniCS-POD (%) 7.17 1.89 1.73 1.63 

 
 

IV.  CONCLUSION 
Thermal simulations for the AMD ATHLON II X4 610e 

CPU, a quad-core CPU, have been conducted using the DNS 
tools (FEniCS and HotSpot-Grid) and the data-driven POD 
models [16]-[19] developed from these DNS tools.  Although 
simulation results from both DNS tools are consistent at low 
temperature, at higher temperature HotSpot-Grid always 
overestimates the temperature, compared with FEniCS. 

In this study, a data-driven model reduction approach based 
on the POD has been applied to develop an efficient and accurate 

thermal simulation model for CPUs. To develop such a reduce-
order model, the physical domain of the selected CPU is 
projected onto a functional space described by the POD modes 
generated from the thermal solution data that are collected from 
DNS of the CPU.  It has been demonstrated that the model 
described by the POD modes trained by FEniCS DNS is able to 
predict the dynamic thermal distribution of the selected CPU 
with high accuracy and a reduction in the numerical DoF by 
nearly five orders of magnitude can be achieved, compared to 
the DNS.  This reduces the computing time by a factor of several 
thousands.  Contrarily to the accurate FEniCS-POD model, the 
data-driven POD model represented by the modes trained by 
HotSpot-Grid cannot predict the dynamic temperature profile 
accurately due to inadequate quality of the thermal solution data 
used in the training. This is probably caused by approximations 
used for evaluating thermal elements in HotSpot-Grid.  As 
shown in Table I, the least square error of HotSpot-POD with 
respect to HotSpot-Grid simulations is as high as 20% with 3-7 
modes. The large errors for HotSpot-POD in time and space are 
also observed in Figs. 5(b) and 7. The least square error of 
FEniCS-POD with respect to FEniCS simulations on the other 
hand decreases to 1.63% with 7 modes.  

This work presents the first study of the POD learning 
approach for the thermal simulation of a CPU. This approach is 
able to offer a thermal distribution as accurate as the DNS and 
as efficient as the RC thermal circuit model.  In addition, the 
resolution of the POD approach is determined by its modes 
whose resolution is as fine as the DNS used to train them.  
However, to train such a large domain structure with an enough 
resolution, the demand for computational resources may become 
prohibitive, especially when applying the approach to CPUs 
with a large number of cores or GPUs with hundreds or 
thousands of cores.  To make the POD approach more applicable 
for such applications and to maintain enough resolution to 
capture critical hot spots, a multi-block approach is needed [16].  
With the multi-block concept, the training of the POD modes for 
each smaller block by the thermal data collected from DNSs 
becomes more feasible. Application of multi-block POD 
methodology to CPUs and GPUs will be investigated in the near 
future. 
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