An Effective and Accurate Data-Driven Approach for
Thermal Simulation of CPUs

Lin Jiang Yu Liu Ming-C. Cheng
Department of Electrical & Computer Department of Electrical & Computer Department of Electrical & Computer
Engineering Engineering Engineering

Clarkson University
Potsdam, NY, USA
jiangl2@clarkson.edu

Abstract—A data-driven reduced-order approach is applied to
develop a thermal simulation model for a quad-core CPU, AMD
ATHLON II X4 610e. The model is based on proper orthogonal
decomposition (POD) that projects the physical domain of the
CPU onto a functional space represented by a small set of basis
functions (or modes). To generate an optimal set of modes, these
modes are trained by thermal solution data collected from
numerical simulation tools, FEniCS and HotSpot Grid. If good-
quality data are used in the training process, the process optimizes
the POD modes that are then able to offer a very accurate
simulation model with a very small numerical degree of freedom
(DoF). Each of the developed POD models is verified against its
simulation tool used in its training. A very accurate prediction is
observed in the POD model derived from FEniCS with a reduction
in the numerical DoF by nearly 5 orders of magnitude, which
amounts to more than a 3-order reduction in computing time. The
POD model derived from HotSpot Grid is however not able to
offer accurate simulation due to its inadequate data quality.

Keywords—Thermal simulation of CPUs, proper orthogonal
decomposition, data-driven learning, FEniCS, HotSpot

L INTRODUCTION

With the miniaturization and multi-functional design for
CPUs, the numbers of transistor and power dissipation per area
have been increasing dramatically in the last several decades.
The continuing advance in CPU technology has generated much
more joule heat and led to sever temperature escalation and hot-
spot generation in CPUs. High temperature and hot spots not
only impair the CPUs performance but also reduce its lifetime
[1]-[4] because of thermal stress enhanced by the material
property mismatch and resulting in electromigration in the
interconnects [5]-[7]. Lower temperature operation not only
maintains higher performance and longer lifetime, but also
reduces the cooling costs of CPUs. To decrease the temperature
and suppress the hot spots in CPUs, thermal-aware task
scheduling is desired, which however relies on effective thermal
management [8],[9]. To achieve effective thermal management
of CPUs, an efficient and accurate thermal simulation is needed.

There exist several different approaches for thermal
simulations of CPUs or semiconductor integrated circuits (ICs)
with different levels of accuracy and efficiency. For situations
that require both detailed and accurate thermal profiles, direct
numerical simulations (DNSs), based on either the finite element
or finite difference method, are usually needed. These
approaches however demand extensive computational efforts,
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especially in a large domain structure like a CPU. It is therefore
prohibitive to apply DNS to predict the detailed temperature
distribution and hot spot locations in a CPU, and DNSs are only
suitable for small structures where more detailed thermal
profiles may be needed. There are many commercial or open-
source tools that offer such DNSs. For example, FEniCS [10] is
an open-source DNS platform based on the finite element
method (FEM) that can be applied to predict detailed thermal
distributions in semiconductor ICs.

Due to intensive computing time needed in DNSs, the
lumped RC thermal circuit model has always been used for the
thermal-profile prediction in large-scale semiconductor chips.
For example, the Block model of HotSpot [11]-[13] (or
HotSpot-Block hereafter) is one of the most popular thermal
simulators at the architecture level for CPUs using the compact
RC thermal model. The compact RC thermal circuit model is
used to describe the heat flow as “current” passing through
“thermal resistance” and “thermal capacitance” based on the
analogy between the charge and heat flows. In the RC thermal
circuit model, spatial details are lumped into thermal elements
(capacitances and resistances), and spatial locations are
represented by the thermal nodes. Using the efficient thermal
circuit model, HotSpot Block does not offer fine-enough
resolution to capture the hot spots in CPUs and cannot
appropriately account for distributed heat transfer in CPUs,
particularly for the lumped RC elements with large aspect ratios.
In spite of the efficiency of HotSpot-Block , the accuracy of the
HotSpot-Block thermal circuit model has been challenged in
[14] which claimed that an error exceeding 200% could appear
in HotSpot-Block with some floorplans compared to DNS. To
improve the accuracy of HotSpot, the Block model was
improved and the Grid model was developed [15], in which each
functional unit can be divided into several smaller elements with
each element as a thermal node. Therefore, to predict hot spots
in a semiconductor IC accurately using HotSpot, the Grid model
with fine-enough meshes needs to be used, which basically
performs DNS, and HotSpot becomes time-consuming as well.

As the multi-core architecture becomes standard in modern
CPU design, the thermal issues in CPUs have been enhanced
significantly in recent years and the prediction of high
temperature gradients and hot-spot locations in CPUs has
become crucial. To be able to predict thermal profiles effectively
in such complex and large structures, an approach beyond the
DNSs or the RC thermal model is needed. The desired approach
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must be as efficient as the RC thermal circuit model and as
accurate as the DNS. In addition, it needs to be able to offer
fine-enough resolution to capture critical hot spots in CPUs.

In this work, a thermal simulation technique developed
recently [16]-[19] enabled by the data-driven proper orthogonal
decomposition (POD) [20],[21] is adopted for CPU thermal
simulation. This data-driven learning technique is applied to
develop a POD thermal model for a quad-core CPU, AMD
ATHLON II X4 610e CPU [22]. The temperature profile in this
CPU is predicted using this POD approach compared against
FEniCS and the HotSpot Grid model (hereafter as HotSpot-
Grid). The POD is one of the reduced-order methods and is able
to effectively reduce the numerical degree of freedom (DoF) by
projecting the problem of interest from its physical domain onto
a functional space described by a small number of basis
functions. Unlike many other projection-based methods where
the basis functions are usually assumed, the POD method
extracts its orthogonal basis functions (or called POD modes)
from processing the solution data of the physical structure
obtained by DNSs [16]-[19],[23].

In this study, FEniCS (FEM) and HotSpot-Grid (a thermal
circuit model with very small elements) are used to perform
dynamic thermal simulations to collect two separate sets of
temperature solution data of AMD ATHLON II X4 610e under
its normal operating condition. By processing these data sets
separately, two sets of POD modes are extracted from each set
of the FEniCS and HotSpot-Grid data. Using this “training”
process (including the data collection and mode generation), the
POD modes are tailored to the normal operating condition in the
AMD ATHLON II X4 610e¢ CPU and are optimal in the least
squares sense to predict its dynamic temperature distribution.
This study shows that the developed POD model for this quad-
core CPU could offer an accurate prediction of its dynamic
thermal distribution with a reduction in the numerical DoF by
nearly 5 orders of magnitude if good-quality data are used in the
training.

II.  THERMAL SIMULATION METHOD BASED ON POD

Temperature in space and time 7(#,f) can be represented by
a linear combination of the selected basis functions ¢; as

M
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where ¢; is the POD mode and M is the number of basis
functions (or modes) selected to represent the temperature,
which determines the accuracy and efficiency of the POD
approach. The time-dependent parameter a;,() is the coefficient
of its POD mode.

The POD process can be applied to optimize the POD modes
by maximizing the mean square inner product of the thermal
solution with the modes, which can be expressed as
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where Q is the physical domain of the selected structure and
brackets () denote the average over a data ensemble of
temperature. In this study, the average indicates the temporal
average over many samples in time, subjected to an operation
setting specified by the boundary conditions (BCs) and power
sources. The Fredholm equation shown below is obtained from
the maximization problem in (2) for the POD modes,
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where R (?,7") is a two-point correlation tensor expressed as
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The maximization process in (2) thus leads to an eigenvalue
problem given in (3) with 4 as the eigenvalue and ¢ (7) as the
eigenvector. In this work, two sets of temperature data 7(7,7)
for the selected structure in (4) are obtained, one from FEniCS
and the other from HotSpot-Grid. The snapshot method
[24],[25] is applied to solve (3) for the eigenvalues and POD
modes.

Once the POD modes are determined, the heat conduction
equation can be projected onto a functional space represented by
POD modes using the Galerkin projection,
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where £ is thermal conductivity, p is the density, C is the specific
heat, P,(7,t) is the power density, S is the boundary surface of
the selected domain and 7 is the outward normal vector of
boundary surface. With given POD modes, (5) can be reduced
to an M-dimensional ordinary differential equation (ODE) for
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where P; representing the last 2 terms of (5) is the power density
dissipated in the POD space and can be pre-evaluated since the

shape of power density is predefined. c;; and g are the

elements of thermal capacitance and thermal conductance
matrices in the POD space and defined as
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Once g; is determined from (6), the temperature solution can be

evaluated from (1).

The POD has been known for offering an effective approach
to simulate dynamic and steady-state behaviors of physical
quantities with high accuracy [16]-[21], [23]-[25]. In this study,



we demonstrate that the POD concept can also be used to verify
the quality of the collected DNS data and thus quality of the
simulation tool used to generate the DNS data. The
characteristics of the POD modes generated from (3) using the
data collected from DNSs are fully determined by these data. To
derive a POD thermal model given in (6), these modes are also
applied to project the heat conduction equation (the same
equation used in the DNS) onto the functional space represented
by these modes. To result in an accurate POD model, the
collected data and the heat conduction equation must be
consistent. In cases when numerical settings are not rigorous
enough (such as coarse meshes) or serious approximations are
included in the DNSs, the POD model may not provide an
accurate prediction of the thermal distribution even if a large
number of POD modes are included. The demonstrations of the
POD method illustrate not only the accuracy and efficiency of
the POD thermal simulation of a CPU but also the quality of data
generated by FEniCS and HotSpot-Grid.

III.  APPLICATION TO THERMAL SIMULATION OF A CPU

A quad-core CPU, AMD ATHLON II X4 610e [22], is
selected in this study to demonstrate the POD thermal simulation
model. As shown in Fig. 1 for the floorplan, this quad-core
processor includes the following units: four 512KB L2 caches,
a northbridge in the center and I/O and DDR3 placed around the
periphery. In the DNSs for collecting thermal data from FEniCS
and HotSpot-Grid, dynamic power density in the device layer of
each unit is assumed uniform. The simulation domain of this
processor covers a volume of 14mm x 12mm x 650um in the x,
vy and z directions, respectively. All the surfaces of the chip,
except for the bottom surface, are assumed adiabatic. The
convection BC is implemented on the bottom with a constant
heat transfer coefficient and an ambient temperature of 45°C,
similarly to the settings implemented in HotSpot with a further
assumption that the temperature in each layer of the heat
spreader, interface material and heat sink is uniform. The
dynamic power density in each unit applied in the DNS is
averaged over 48k CPU cycles at 3.5 GHz with the percentage
of the power consumption in each unit similar to [26]. To be
more realistic, the power density over each average period in
each unit is generated randomly.

It should be mentioned that, for such a large domain structure
of the CPU, it is impractical to include detailed variations of
materials properties even though other materials exist in CPUs.
The vast majority of the materials in CPUs are however silicon.
To be able to manage the numerical settings more reasonably, as
a general practice for thermal simulation at the architecture level
[11]-[13],[15], silicon with a thermal conductivity of 100
W/(m-K), a specific heat of 751.1 J/(kg'K) and a density 2330
(kg/m?) is assigned throughout the CPU.

A. Direct Numerical Simulations of the Selected CPU

FEniCS and HotSpot-Grid are applied to perform thermal
simulations of the selected CPU with the identical dynamic
power density distribution and BCs described above. Due to the
higher power density in Core 1, the maximum temperature
appears in Core 1 at (5.8mm, 9.8mm) indicated by the intersect
of 2 lines along the A and B plotting paths shown in Fig. 1.
Dynamic evolution of the maximum temperatures obtained from
FEniCS and HotSpot-Grid are compared in Fig. 2. Results show

that the dynamic temperature difference between HotSpot-Grid
and FEniCS is very small at low temperature and increases with
time as temperature becomes higher. The temperature resulting
from HotSpot-Grid is always higher than that from FEniCS and
the deviation reaches 4.3% at t = 2.1ms.

Fig. 1. Floorplan of the quad-core CPU, AMD ATHLON II X4 610e [26]. The
lines with arrows indicate the paths of the temperature distributions shown in
Figs. 3, 6 and 7. The intersection of these 2 lines is at (5.8mm, 9.8mm).

In addition, the temperature profiles at =2.1ms are given in
Figs. 3(a) and 3(b) along the lines in the A and B plotting paths,
respectively, indicated in Fig. 1. As shown in Fig. 3(a), the
temperature distribution along the A plotting path (see Fig. 1)
across 1/O, Core 1, Northbridge, Core 2 and I/O from left to right
reveals the highest temperature in Core 1. The temperature
distribution along the B plotting path passing DDR3, Core 4,
two L2 Caches, Core 1 and I/O is shown in Fig. 3(b). There are
some differences between the temperature profiles predicted by
FEniCS and HotSpot-Grid, as illustrated in Figs. 3(a) and 3(b).
The difference is larger in the regions where the temperature is
high and the maximum difference is as high as 4.3%, as
observed in Fig. 2. However, the results from both DNS tools
agree quite well with each other in the low temperature regions.
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Fig. 3. Temperature distributions at 7= 2.1ms along the paths indidated in Fig.
1 (a) in the A plotting path and (b) in the B plotting path.

B. Eigenvalues and POD modes

Two sets of eigenvalues and POD modes are generated from
the sampled data of the dynamic temperature distributions in the
3D CPU domain collected independently from FEniCS and
HotSpot-Grid simulations. The eigenvalue spectrums of the
two-set thermal data are shown in Fig. 4, and they appear to be
very close to each other. The eigenvalues represent the mean
squared temperature variations captured by each POD mode and
thus indicate the number of POD modes needed to predict the
temperature solution with acceptable accuracy. As shown in Fig.
4, the eigenvalue drops more than three orders of magnitude
from the first to the third mode, and a decrease by more than 4
orders of magnitude is observed from the first to the fourth
mode. It is therefore expected that a POD model for the selected
quad-core CPU is able to offer a reasonable prediction of the
dynamic temperature distribution with just 3 modes and a very
accurate prediction with just 4 or 5 modes. However, the
expectation can be achieved only if the thermal solution data
collected from the DNS tools are consistent with the heat
conduction equation. Once the POD modes are generated, POD
model parameters or coefficients given in (6) can then be
determined.
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Fig. 4. The eigenvalue spectrum derived from the HotSpot-Grid data and
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C. Demonstrations

To verify the validity of the two developed POD models,
they are applied to thermal simulations of the selected CPU with
a dynamic power trace different from that used in the thermal
data collection. More specifically, the power consumption in
each unit is generated using a different random sequence from
that used in the thermal data collection/training. However, the
power density distribution over all the units remains similar.
The dynamic temperature solution for the CPU determined by
each of these 2 approaches with different numbers of modes are
compared in Figs. 5-7 against the solution resulting from the
simulation tool used to construct its POD model.

Fig. 5(a) shows the dynamic temperature at the location of
(5.8mm, 9.8mm) indicated in Fig. 1 obtained from FEniCS and
its POD model. As anticipated according to the eigenvalue
spectrum shown in Fig. 4, the FEniCS-POD model is in good
agreement with the FEniCS result using just 3 POD modes. The
POD results with 5 or 7 modes nearly overlap with that from
FEniCS. Only a 0.4% deviation from the FEniCS simulation is
observed when using the 7-mode FEniCS-POD model. It is
however interesting to notice a very different outcome from the
HotSpot-POD model. It is shown in Fig. 5(b) that, except when
temperature is low, the HotSpot-POD model with 5 and 7 modes
approaches an erroncous solution that is approximately 20%-
30% lower than the HotSpot-Grid results.

The temperature distributions along the paths shown in Fig.
1 at = 2.1 ms are displayed in Figs. 6 and 7 for the FEniCS-
POD and HotSpot-POD, respectively, compared to their DNS
tools. As shown in Figs. 6(a) and 6(b), the FEniCS-POD model
with 3 modes already offers a good prediction of the dynamic
temperature distribution in the CPU. When using 5-7 modes for
the POD model, an improved agreement with the FEniCS DNS
is observed. Similarly to Fig. 5(b) for the dynamic temperature
predicted by HotSpot-POD, the temperature profiles derived
from the HotSpot-POD model shown in Figs. 7(a) and 7(b)
approach to a solution 20%-30% lower than the HotSpot-Grid
results in the higher temperature region. It is worthwhile to point
out that the HotSpot-POD model predicts a solution that does
not converge in the region of 6 mm <x < 8mm when the number



of modes increases from 3 to 7 modes. In the same location, the
solution provided by FEniCS-POD model with 3 or more modes
however converges and agrees very well with the DNS solution
from FEniCS.

D. Discussions

Based on the comparison between the temperature solutions
predicted by FEniCS-POD and HotSpot-POD with each of their
DNS tools (FEniCS and HotSpot-Grid, respectively) presented
in Figs. 5-7, crucial findings are described below. It has been
demonstrated that the developed FEniCS-POD model for AMD
ATHLON II X4 610e, a quad-core CPU, is able to offer a very
efficient prediction of dynamic thermal distribution with high
accuracy in the selected CPU, compared to FEniCS DNS. The
FEniCS-POD model offers a very accurate prediction of the
thermal profile in a CPU with just 4 to 5 numerical DoF. This
amounts to a reduction in the numerical DoF by nearly 5 orders
of magnitude, compared to DNS, and a decrease in computing
time by more than 1000 times. The results also strongly suggest
that the thermal solution derived from FEniCS DNS is consistent
with the heat conduction equation and offers good quality of
POD modes to construct the FEniCS-POD model.
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simulations at # = 2.1ms along the (a) A plotting path and (b) B plotting path.

On the contrary, the thermal solution generated from DNS
using HotSpot-Grid is not quite consistent with the heat
conduction equation, according to the comparisons with its POD
model presented in Figs. 5(b) and 7, as well as the least square
errors shown in Table 1. This perhaps results from the
approximation made in the Grid model to evaluate the thermal
elements. It is interesting that the thermal solution from
HotSPot-Grid with only approximately 4.3% deviation from the
FEniCS DNS, as shown in Figs. 2 and 3, actually generates POD
modes that are not able to represent the heat conduction equation
transformed to the POD space. This indicates that the accuracy
of POD modes strongly depends on the quality of the solution
data used to generate them.

It should be mentioned that the maximization process given
in (2) for the POD methodology optimizes the least square error
over the complete simulation time and the whole spatial domain
instead of the local error. As can be seen in Table I, the least
square error for the HotSpot-POD actually increases from 1 to 3
modes and it fluctuates around 20.8% more than 3 modes. In
contrast to HotSpot-POD, FEniCS-POD with more modes
achieves a smaller least square error, and the error decreases to
1.63% with 7 modes.
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thermal simulation model for CPUs. To develop such a reduce-
order model, the physical domain of the selected CPU is
projected onto a functional space described by the POD modes
generated from the thermal solution data that are collected from
DNS of the CPU. It has been demonstrated that the model
described by the POD modes trained by FEniCS DNS is able to
predict the dynamic thermal distribution of the selected CPU
with high accuracy and a reduction in the numerical DoF by
nearly five orders of magnitude can be achieved, compared to
the DNS. This reduces the computing time by a factor of several
thousands. Contrarily to the accurate FEniCS-POD model, the
data-driven POD model represented by the modes trained by
HotSpot-Grid cannot predict the dynamic temperature profile
accurately due to inadequate quality of the thermal solution data
used in the training. This is probably caused by approximations
used for evaluating thermal elements in HotSpot-Grid. As
shown in Table I, the least square error of HotSpot-POD with
respect to HotSpot-Grid simulations is as high as 20% with 3-7
modes. The large errors for HotSpot-POD in time and space are
also observed in Figs. 5(b) and 7. The least square error of
FEniCS-POD with respect to FEniCS simulations on the other
hand decreases to 1.63% with 7 modes.

This work presents the first study of the POD learning
approach for the thermal simulation of a CPU. This approach is
able to offer a thermal distribution as accurate as the DNS and
as efficient as the RC thermal circuit model. In addition, the
resolution of the POD approach is determined by its modes
whose resolution is as fine as the DNS used to train them.
However, to train such a large domain structure with an enough
resolution, the demand for computational resources may become
prohibitive, especially when applying the approach to CPUs
with a large number of cores or GPUs with hundreds or
thousands of cores. To make the POD approach more applicable
for such applications and to maintain enough resolution to
capture critical hot spots, a multi-block approach is needed [16].
With the multi-block concept, the training of the POD modes for
each smaller block by the thermal data collected from DNSs
becomes more feasible. Application of multi-block POD
methodology to CPUs and GPUs will be investigated in the near
future.
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