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We consider how to best schedule reparative downtime for a customer-facing online service that is vul-
nerable to cyber attacks such as malware infections. These infections can cause performance degradation
(i.e., a slower service rate) and facilitate data theft, both of which have monetary repercussions. Infections
may go undetected and can only be removed by time-consuming cleanup procedures, which require tem-

Keywords: porarily taking the service offline. From a security-oriented perspective, cleanups should be undertaken as
Markov processes frequently as possible. From a performance-oriented perspective, frequent cleanups are desirable because
Queueing they maintain faster service, but they are simultaneously undesirable because they lead to more frequent
Corlnputer security downtimes and subsequent loss of revenue. We ask when and how often cleanups should happen.
Malware

In order to analyze various downtime scheduling policies, we combine queueing-theoretic techniques
with a revenue model to capture the problem’s tradeoffs. Unlike classical repair problems, this problem
necessitates the analysis of a quasi-birth-death Markov chain, tracking the number of customer requests
in the system and the (possibly unknown) infection state. We adapt a recent analytic technique, Clear-
ing Analysis on Phases (CAP), to determine the exact steady-state distribution of the underlying Markov
chain, which we then use to compute revenue rates and make recommendations. Prior work on down-
time scheduling under cyber attacks relies on heuristic approaches, with our work being the first to

Maintenance

address this problem analytically.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Cybercrime is an increasingly costly problem for individuals,
corporations, and governments alike. The total cost of cybercrime
in 2018 is estimated at nearly $600 billion worldwide, amount-
ing to about to 0.8% of the global GDP (see Center for Strategic
& International Studies, 2018). In this paper, we focus in particular
on cyber attacks with persistent effects that target an online ser-
vice provider. The effects of such attacks remain until the service
provider undertakes a cleanup action. These attacks often take the
form of malware (malicious software), including viruses, code in-
jections, Trojan horses, etc. For simplicity, throughout we will refer
to these persistent attacks as malware.

Malware attacks are concerning primarily for two reasons: at-
tacks pose a security threat, while also potentially compromising
system performance; both are costly. For an online service provider,
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security threats include the direct theft of money as well as data
breaches, which expose customers to fraud. These breaches lead
to substantial legal expenses, tarnish the service provider’s reputa-
tion, and where applicable, negatively affect the parent company’s
stock price (see Gatzlaff & McCullough, 2010). We refer to these
combined monetary losses as security losses. Meanwhile, malware
also often leads to performance degradation (see Hughes & De-
Lone, 2007), which effectively reduces the rate at which a service
provider can serve its customers’ requests (hereafter, jobs). Service
rate reductions lead to lengthier response times, create an inferior
service experience for the customers, and reduce their willingness
to pay for the service. The removal of malware, although neces-
sary, leads to additional performance costs: reboots and lengthier
cleanup procedures require temporarily taking the system offline,
causing discarded jobs and downtimes (see Bridwell, 2004; Dia-
mant, Hsu, Lin, & Scoredos, 2014; Logan & Logan, 2003). Malware
infections also often act as a scaffolding for even more serious mal-
ware attacks. Malware infections often develop in stages that grow
worse over time, and hence security and performance costs can in-
crease sharply if infections are left unaddressed (see Caceres, 2002;


https://doi.org/10.1016/j.ejor.2020.10.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2020.10.036&domain=pdf
mailto:sdoroudi@umn.edu
mailto:thanassis@forallsecure.com
mailto:harchol@cs.cmu.edu
https://doi.org/10.1016/j.ejor.2020.10.036

S. Doroudi, T. Avgerinos and M. Harchol-Balter

Huang, Arsenault, & Sood, 2006; Poolsappasit, Dewri, & Ray, 2012).
More severe malware can also take longer to remove, leading to
longer downtimes.

Consider a system administrator that is providing an online ser-
vice. At a certain point in time, she receives an automated warning
that her server is currently overloaded. This could, among other
things, be a consequence of (i) a resource leak, (ii) a software bug,
or (iii) a security breach that consumes system resources. The sys-
tem administrator can take several actions: she could do nothing,
which could have negative effects on user experience, user pri-
vacy, and ultimately revenues. Alternatively, she could reboot the
system, at the cost of existing clients, with some chance of re-
solving the issue. Or she could take the system down, investigate
what went wrong, and take time-consuming steps to maximize
the likelihood that the issue is resolved. These dilemmas are faced
by system administrators on a regular basis. System administrators
are not the only ones that face such security-availability tradeoffs;
similar dilemmas exist in every deployed system where resources
are limited (see Bishop, 2012) and figuring the right balance is
currently an open research question (see Darpa Cyber Grand Chal-
lenge, 2016).

In this paper we investigate how an online service provider
should respond to observable changes in the system—whether
direct evidence of an infection or performance degradation that
merely suggests the possibility of an infection—in order to maximize
revenue after accounting for security losses. In essence, we develop
a mathematical model that addresses the question of “what level
of threat necessitates a response?” At a first glance, it may ap-
pear that removing malware as early as possible is always revenue-
optimal: early cleanups reduce average security costs, minimize
performance degradation, and lead to less time-consuming cleanup
times. However, frequent cleanup procedures can be detrimental,
as they can increase the frequency at which jobs are discarded and
lead to more downtime (even if individual downtimes are shorter).

We quantify this tradeoff by presenting a stylized but detailed
Markovian stochastic model of the service provider’s operations
and vulnerability to malware. Customers wait in a queue for ser-
vice and pay a price that depends on the system’s historic average
response time. Over time, the system becomes infected by mal-
ware in stages. Each successive malware state causes greater secu-
rity losses, further slows down service, and takes longer to clean.
Undertaking a cleanup action requires discarding all jobs currently
in the system (the customers are compensated), and taking the
system offline for a prolonged (random) period of time, before re-
suming service. Using exact stochastic analysis, we quantify the
revenue rate associated with cleaning up the system at each stage
and assess the performance of various cleanup policies.

In reality, malware is often difficult to detect, so we also con-
sider the case where performance degradation can occur due to
reasons other than malware, and only the service rate is visible to
the service provider; the malware state is hidden. By observing the
service rate, the service provider can infer probabilistic beliefs re-
garding malware infection and take cleanup actions based on the
duration of time spent in the current performance degradation state.

Both the visible and hidden malware models provide an ana-
lytic challenge. In order to quantify the revenue rate under each
potential policy, we must understand not only the relative pro-
portion of time spent in each malware state, but also the mean
number of jobs in the system. We determine this quantity by
finding the exact limiting probability distribution of a continuous
time Markov chain that simultaneously tracks the number of jobs
in the system (an unbounded quantity) and the system’s current
malware state. This is a quasi-birth-death process Markov chain
with a two-dimensional state space that is infinite in one dimen-
sion. While chains of this form are notoriously difficult to analyze,
we employ a novel adaptation of the Clearing Analysis on Phases
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(CAP) technique—developed in Doroudi, Fralix, and Harchol-Balter
(2016)—to obtain the chain’s exact limiting distribution, by which
we obtain exact revenues under various cleanup policies.

While problems closely related to malware cleanup have been
addressed in the literature (see, e.g., Huang et al.,, 2006), to date
work in this area has focused on heuristic solutions. We are the
first to introduce and solve a mathematical model for the malware
cleanup problem. Aspects of our model resemble models studied in
the literature on the machine interference problem and condition-
based maintenance, but with several distinguishing features (see
Section 2 for details).

Our primary contributions are four-fold: (i) on the modeling
front, we provide the first stochastic model for determining when
an online service provider facing performance-degrading malware
should perform cleanups; (ii) on the theoretical front, we derive
the revenue rate for various cleanup policies in closed form—this
requires solving a complex quasi-birth-death process, which re-
quires first developing an adaptation of the CAP method; (iii) on
the practical front, we provide a decision tool that allows practi-
tioners to evaluate cleanup policies for their systems; (iv) on the
case study front, we use our decision tool to highlight some inter-
esting cases and insights by studying parameter sets provided by
the security company ForAllSecure, Inc.

2. Literature review

To date, problems very closely related to the malware cleanup
problem have been addressed in the computer security literature
only in terms of heuristic approaches. A notable example is in the
work of Huang et al. (2006), which proposes a policy where a sub-
set of the servers being used by service provider are rotated out
for cleaning, while ensuring that enough servers are running at
any given time. This policy is not a result of stochastic analysis. By
contrast, our model assumes a single server system, or a system
where the servers work together and are prone to becoming si-
multaneously compromised (e.g., due to unknown exploitable bugs
that are common to all servers).

The bulk of the literature on the stochastic analysis of malware
and intrusions focuses on either malware propagation (see e.g.,
Garetto, Gong, & Towsley, 2003) or intrusion detection (see e.g.,
Yue & Cakanyildirim, 2010). There is also a gradually growing body
of work—including Cavusoglu, Cavusoglu, and Zhang (2008) and
more recently, Bao et al. (2017)—studying security patch update
management in a game-theoretic framework. These streams are
not directly applicable to our problem, as our focus is on main-
taining and removing potential infections from a single vulner-
able system. More closely related to our work, is an emerging
area of research—first explored in detail in Miehling, Rasouli, and
Teneketzis (2015) and expanded upon by Backman and Ramstrom
(2018)—employing partially observable Markov decision processes
to take defense actions in the presence of potentially hidden at-
tacks that probabilistically grow worse over time. Nonetheless our
work differs markedly from this stream in that, we explicitly ex-
amine performance degradation (queueing) effects and therefore
our underlying Markovian model has an infinite state space. Hence,
our work necessitates different analytic machinery. Analytically,
our work most closely resembles the work on machine repair (see
Sections 2.1 and 2.2), along with the literature on solving quasi-
birth-death process Markov chains (see Section 2.3).

2.1. Machine interference problems

The classical machine interference (or repairman) problem—
surveyed in Haque and Armstrong (2007)—features n machines and
r workers. Machines occasionally break down, and a worker can
spend some time with a machine to restore it. If the number of



S. Doroudi, T. Avgerinos and M. Harchol-Balter

machines that have broken down at any point exceeds the number
of workers, r, then some machines will have to wait until they go
into repair (i.e., the machines “interfere” with one another). When
machines exhibit heterogeneity, the problem is to identify which
machines should be repaired at any given time.

In contrast, our problem involves only a single server (ma-
chine), or equivalently a set of servers that work—and become
compromised—together. Many successful cyber attacks involve ex-
ploiting a fundamental software-level problem, and therefore an
entire system might become infected at the same time. Therefore,
the malware cleanup problem asks the question of when to repair
a system, rather than which subsystem to repair. Nonetheless, there
is a small body of work within this stream of literature which, like
our work, features potentially unbounded queues. These problems
often require analyzing a quasi-birth-death process Markov chain.

Chakka and Mitrani (1994) seek to maximize the total ser-
vice rate in a multi-server heterogenous queueing system. The
problem’s underlying Markov chain is solved numerically via the
spectral expansion method. A similar model is considered in
Wartenhorst (1995), with each server serving its own parallel
queue. In Drekic and Grassmann (2002), the machines play the
role of jobs in a single server queueing system, coming from two
classes: low- and high-priority classes form a closed and open sys-
tem, respectively. The underlying Markov chain is solved explicitly
using eigenvalues.

Our Markov chain, however, has features that make it distinct
from those in the works cited above. For example, our chain fea-
tures infinite collections of states which transition directly to one
of few states, corresponding to the fact that all customer requests
(jobs) must be discarded when initiating a cleanup.

2.2. Condition-based maintenance

Condition-based maintenance problems ask when (i.e., at what
condition level) failure-prone components of a system should be re-
paired when such components degrade in performance over time.
There is a natural tradeoff between repairing components early
and often (preventative maintenance) and repairing components
only when necessary (corrective maintenance). The former can
yield more frequent downtimes, while the latter leads to more
severely degraded components and “unplanned downtime.” For an
overview of work in this area, see Alaswad and Xiang (2017).

The malware cleanup problem proposed in this paper can be
thought of as a type of condition-based maintenance problem.
The fundamental difference between our problem and the litera-
ture in this domain is that we consider a single component sys-
tem, where the component serves jobs in a potentially unbounded
queue. Therefore, our problem has an infinite state space, whereas
the work in this area primarily focuses on finite state spaces. Main-
tenance actions (cleanup procedures) require the removal of all
jobs in the queue, triggering an additional loss of revenue, which
highlights the necessity of tracking the job count in the system.
Approximations that forego tracking the job count are inadequate
(see Doroudi, 2016). A maintenance model that—like our work—
considers an infinite-state queueing system appears in a recent pa-
per by Ejaz, Alvarado, Gautam, Gebraeel, and Lawley (2019); they
study an M/G/1 system with multiple performance degradation
states that can be remedied through corrective actions. As in our
work, they seek to understand at what degradation level these cor-
rective actions should be undertaken. However, all of their perfor-
mance degradation states, except for the terminal state! allow the
server to continue operating at full speed, and moreover, in their

1 They call this state “catastrophic failure” and it is roughly analogous to our dead
state.
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model corrective actions only cause a halt in service, whereas in
our model cleanups also require discard existing jobs and barring
further arrivals until cleanup completion. Furthermore, their paper
does not consider hidden states.

Prior work has considered condition-based maintenance in
the presence of hidden variables. For example, in Bunks, Mc-
Carthy, and Al-Ani (2000) decisions and inferences are made in
a condition-based maintenance setting using a Hidden Markov
Model (HMM), while Lin and Makis (2003) use a modified HMM
with a completely observable failure state. In Makis and Jiang
(2003), an optimal stopping time framework is used to approach
a similar problem. Problems in this area are often modeled as par-
tially observable Markov decision processes (POMDPs): examples
include the work of Byon and Ding (2010), where the problem
is solved using a backward dynamic programming method, and
that of Naderkhani and Makis (2015), which addresses a problem
where there is a cost to sampling the system state. While our
model can be formulated as a POMDP (see our concluding remarks
in Section 5), complexities that arise in our revenue rate function—
due to dealing with an infinite state space problem—make the
methods used in these papers unsuitable for our setting.

2.3. Methods for solving quasi-birth-death process Markov chains

Quasi-birth-death (QBD) processes are used to model a vari-
ety of phenomena. Despite the difficulties associated with finding
limiting distributions for such chains, several techniques are avail-
able for analyzing specific subclasses of QBDs, the most common
being matrix-geometric methods (see Neuts, 1981 and Latouche &
Ramaswami, 1999). These methods are typically implemented nu-
merically and do not generally allow for closed-form solutions.

Within the matrix-geometric literature, there are methods
which can find closed-form solutions for special classes of QBDs.
The method given in Van Houdt and van Leeuwaarden (2011) can
find the limiting distribution of the chain describing our visible
malware model, but is not directly applicable to our hidden model.
The hidden model’s QBD has a directed acyclic graph (DAG) phase
transition structure, whereas the method in question is presented
in the context of tree-like transitions. Outside the matrix-geometric
literature, the Recursive Renewal Reward method (see Gandhi,
Doroudi, Harchol-Balter, & Scheller-Wolf, 2013; Gandhi, Doroudi,
Harchol-Balter, & Scheller-Wolf, 2014), can find closed-form solu-
tions for chains with a DAG-like transitions in terms of means and
transforms, but not complete distributions.

In this paper we employ the Clearing Analysis on Phases (CAP)
method, first introduced in Doroudi et al. (2016). The CAP method
yields exact closed-form solutions for the chain’s entire limiting
probability distribution by viewing each phase of a QBD as act-
ing like an M/M/1 model with clearing events. This makes the CAP
method a natural fit for our model, as it features clearing events
(correspond to the start of a cleanup procedure, which requires
discarding all jobs).

3. The case of visible malware

When a host becomes infected by malware, there are two pos-
sibilities: (i) the system administrator knows of the infection and
needs to make a decision regarding whether a cleanup process
should be initiated and (ii) the system administrator does not
know that the host has been infected. In this section, we deal with
the first case, where malware infections are always visible. While
this case is certainly simpler, it is of interest for two reasons: (i) it
provides a stylized simplification of the malware problem, which
will lend itself to easier analysis and interpretation and (ii) it is an
appropriate model for “unsophisticated malware,” which serves as
more of a nuisance, than a real threat.
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3.1. Visible malware model

In the visible malware model, the system can be in one of
four states (s) depending on the severity of malware present, if
any: normal (uninfected), bad, worse, and dead. In each succes-
sive state, (i) security losses rise, (ii) performance (the service rate)
drops, and (iii) the time required to remove malware increases. For
tractability, all transition rates are Markovian (i.e., memoryless).

3.1.1. Queueing model

We consider a revenue-maximizing online service provider, fac-
ing a stream of incoming customers. Customer requests (hereafter,
jobs) arrive to a first-come-first-serve queue according to a Poisson
process with rate A and are served by a single server? at some ser-
vice rate u, which can drop due to malware; service times are ex-
ponentially distributed. We let T be a job’s response time (i.e., T is
the duration from a job’s arrival until it is served or discarded). We
assume that the steady-state average response time E[T]—which
will be based on the service provider’s decisions—is known to both
the service provider and the customers (e.g., via historically avail-
able data).

3.1.2. Visible malware evolution

The server can become infected by malware in stages. Initially,
the system is in the normal state, but will become infected by bad
malware after an amount of time that is exponentially distributed
with rate oy,,q. Similarly, there are transitions from bad to worse
(resp. worse to dead) with rate oworse (resp. @geaq). We restrict
attention to the case where malware infections occur in sequen-
tial stages; no stage can be skipped.? The model’s accuracy can be
increased by considering states beyond these four, but we main-
tain that using four states allows for an appropriate level of detail,
given our aim of providing a stylized model.

Malware causes the service provider to incur security losses
(e.g., monetary theft, data theft, loss of good will, etc.) and also
causes the service rate to drop. The average rate of loss (in dollars
per second) and service rate in state s are given by ¢ and us, re-
spectively (e.g., £paq and [gow in bad). Moreover, £4eaq > worse >
€had = Lnormal = 0, while Mfast = Mslow = Mslower > Mdead = 0.4

The Markovian transition structures allow us to model the sys-
tem as a continuous time Markov chain (CTMC) tracking the sys-
tem’s malware state and number of jobs in the system (job count)
N. Fig. 1 shows our model’s CTMC assuming no cleanup events.
Note that without cleanups, the chain is non-ergodic, as the job
count grows without bound once we reach the dead state. We next
introduce the available cleanup policies, which will lead to modifi-
cations of this chain that will make it ergodic.

3.1.3. Visible malware cleanup

A system infected by malware can be restored to full speed by a
cleanup procedure during which all existing jobs are discarded (re-
fused service and refunded, see Section 3.1.4), and the system stops
admitting jobs for a random duration of time. When the cleanup
is complete, the system is restored to the normal state and re-
sumes accepting jobs. The length of time devoted to the cleanup
procedure depends on the current malware state, as more severe

2 The single-server assumption is for simplicity; our methodology can accommo-
date multiple servers.

3 This is for expository simplicity; our methodology can accommodate skipping
malware states.

4 We assume that the system is unusable in the dead state, but we make no
assumptions regarding the relationship between A and the other us; even if the
system is “overloaded” in state s because A > us, the system will still be ergodic as
it will eventually be cleaned (and therefore, emptied) upon reaching the dead state,
if not earlier. That said, in any real-world application, we would at least expect
A < Hast-
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number of jobs in the system (i.e., job count) N

I
A A A A
normal 0 1 2 3
A
MHfast Hfast Hfast Hfast
Qbad Qpad pad Apad
A A A A
bad 0 1 2 3
~~
Hslow Hslow Hslow Hslow
Oyorse Oyorse Oworse Olworse
A A A A
worse 0 1 2 3
~
Hslower Hslower Mslower Hslower
Qdead Qdead Qdead Adead
A A A A

Fig. 1. The continuous time Markov chain (CTMC) tracking the malware state and
the number of jobs in the system, assuming no system administration. Transitions
across malware states preserve the number of jobs. The service rate drops with
each successive malware state. As there are no cleanups, this chain is not ergodic.

malware takes longer to remove. The cleanup procedure lasts an
amount of time that is exponentially distributed with rate s when
initiated in state s.° For simplicity, we assume that there are no se-
curity losses during cleanups.

In the visible malware setting, we have the following cleanup
policies: c@bad (“clean at bad”), c@worse (“clean at worse”), and
c@dead (“clean at dead”), which immediately clean the system
when (and only when) the system transitions to the correspond-
ing malware state.

3.1.4. Pricing and revenue model

We assume that customers are risk neutral and rational, opting
to use the service if their service valuation equals or exceeds their
total expected costs. Moreover, we assume that they are homoge-
neous in their service valuation q and cost of delay (in dollars per
second), c. Hence, the expected cost experienced by each customer
is p+c-E[T], where p is the price (in dollars) of the service and
E[T] is the expected response time (in seconds). Consequently, as
long as the service provider charges no more than q — c- E[T], cus-
tomers will pay for the service, and since the service provider will
opt to maximize its profits, they will charge precisely the maxi-
mum price that would still elicit customers to use the service, i.e.,
p=q—c-E[T]. Should a job be discarded (either while queued or
in service), the customer is refunded q (i.e., she pays nothing and
keeps q — p = c-E[T] as compensation for waiting some time be-
fore being informed that her job will not be served) and the firm
incurs a revenue loss of ¢ - E[T] for that customer.

The service provider’s objective is to implement a malware
cleanup policy that maximizes the rate at which it earns rev-
enue (less refund and security losses); we can express the ser-
vice provider’s revenue rate by observing that the service provider
earns g for each customer that completes service, while incurring a
loss of ¢ per second for each job in the system (whether or not that
customer is ultimately served; recall that customers whose jobs
are not served are still compensated c-E[T]), and potentially in-
curring additional security losses each second. Hence, the server’s
revenue rate is R = qx —c-E[N] — £, where q and c are as previ-
ously defined, x is the system’s throughput (i.e., the average rate

5 Cleanup durations can actually take on any other distribution. The analysis and
results will remain unchanged, as long as the mean cleanup duration is still given
by 1/8s when initiated in state s.
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number of jobs in the system (i.e., job count) N

A
Phase 0: normal —{ 0
Mtast
Obpad Olbpad
A
Phase 1: bad 0
Hslow
Ohworse Olworse
A
Phase 2: worse
Hslower
Qdead Qdead

dead

A A A
2 3
~
Heast Hfast Heast
bad Obad
A A A
2 3>/\
>~
Hslow Hslow Hslow
Cworse Oworse
A A A

Hslower Hslower

Qdead

Fig. 2. The continuous time Markov chain (CTMC) tracking both the malware state and the number of jobs under the c@dead policy. Each phase (pictured as a “row” of
states) is an infinite collection of states (tracking the number of jobs N) associated with one of the malware states. Transitions from one phase to another preserve the
number of jobs and always move to a higher-numbered phase (pictured as “downward”). Rather than transitioning to another phase, the states in Phase 2 transition to the

clean state, where all jobs are discarded.

at which jobs are served), E[N] is the steady-state time average
job count, and £ is the average rate at which security losses are
incurred.

3.2. Visible malware analysis

Before analyzing R, we define some additional notation.
Let Thormal, Thads Tworse, and Tge,q be the long-run steady-
state proportion of time spent in the normal, bad, worse, and
dead states, respectively, under a given policy. We can im-
mediately observe that mp,q =0 under c@bad, 7worse =0 un-
der both c@bad and c@worse, while 4., =0 under all poli-
cies. We can now write £ = {,,q7paq + CworseTworse + {deadTdead =
LpadThad + LworseTworse and consequently, R =qx —c-E[N] - L =
qx — € -E[N] — €haq7had — LworseTworse. Finding R under each policy
requires finding x, E[N], 7,4, and Tworse under that policy. While
Tpad and 7Tgesq can be found by analyzing a finite-state Markov
chain tracking only the malware state, determining x and E[N] ex-
actly requires analyzing a two-dimensional infinite state Markov
chain, which we accomplish using the Clearing Analysis on Phases
(CAP) method. In the interest of brevity, we present the detailed
analysis of only the most complicated policy, c@dead. For each
policy we view our model as a CTMC capturing the malware state
and the job count. Fig. 2 shows the c@dead CTMC.

Each malware state corresponds to a phase of the CTMC, an in-
finite collection of states that comprise a birth-death process, but
with additional transition rates to other phases. In the c@dead
CTMC, Phases 0, 1, and 2 correspond to the normal, bad, and
worse malware states, respectively. We also introduce the clean
malware state: the system is in this state when it is undergoing a
cleanup procedure. The clean state is a single state, not a phase, as
we always have N = 0 when cleaning.

We call attention to the fact that transitions only exist from
lower-numbered phases to higher-numbered phases, which is es-
sential for allowing the CAP method to obtain exact solutions. The
CAP method treats each phase as an M/M/1 clearing model—an
M/M/1 chain with identical rates from each state leading to a clear-
ing event—where clearing events either lead to a higher-numbered
phase or directly to the clean state.

In order to apply the CAP method, we introduce some notation.
Let 7, j) be the limiting probability of being in Phase m with N =
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j >0 jobs in the system and let m.,, be the limiting probability
of being in the clean state. Let i, be the Phase m service rate

(ie. Mo = Hast: U1 = Mslows M2 = Hslower) and let o be the rate
at which the system leaves Phase m (i.e., &g = Opaq, ®1 = Qworse,

0y = Udead)- )
We find limiting probabilities in the form 7, j = Y11, am_krllc,
where 1 is the base term® for Phase k,

_ A et o — O+ g+ 00)2 — A
B 214 '

Tk

and the coefficients ap, ; (0 <k <m < 2) are values associated with
the relationship between Phases m and k. This form is convenient
for computing E[N] and x via geometric series.

Determining the limiting distribution of the c@dead CTMC re-
quires only determining the a,, , coefficients, together with 7 eap.
These variables, together with the redundant 7, o, variables, are
the solutions to a system of linear equations, VS, which are a com-
bination of balance equations and relationships which are derived
via the CAP method. In Doroudi et al. (2016), the CTMCs of in-
terest do not feature clearing events which return directly to the
non-repeating portion (in the case of the c@dead policy, these are
the transitions with rate oy.,q from Phase 2 to the clean state),
although it is mentioned that the CAP method can be extended
to cover such transitions. We adapt the CAP method to allow it
to apply to such CTMCs by modifying the balance equation asso-
ciated with mye,, to take into account the additional transitions
into 7 ean and by considering o ge,q as @ component of a5, the to-
tal outgoing transition rate leaving Phase 2 (in this case, we have
0y = O geaq)- Closed-form solutions for the limiting probability dis-
tribution of the CTMC can be obtained by symbolically solving VS
for the ay, 1, Telean, and 7T(p gy Variables, although the resulting ex-
pressions will not be concise. Most importantly, the solutions will
be exact, rather than approximations. Applying our adaptation of
the CAP method (see Appendix A in the online supplement for de-

6 Our method requires that all r, be distinct, which is the case for all but a zero
measure set of parameter settings.
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tails), the system, VS, is as follows:

_ _ BudeadTtean+MoTodo.0
o0 = 7(0,0) 7(0,0) = Mt
o= Tor1odo.o o) = M (roa1,0+1101,1)+00 7 (0.0)

0T (A—parory) (ro—r1) V)= Aoy

_ _ M2(rolg 041102 147202 2)+01 7T (1 0)

11 =T 1,00 — 1,0 (2.0 = pr
Tol2101.0 _ az.0 a1 a2

020 = Goigryo Telean = Fomy (125 + 17 + 1)

_ rrao1dy _ Qo,0+01,01+02,0 ay1+0y 1 az2
21 = (A=pariry)(r1=r2) 1= Tetean+ 1-1o + 1-n + 1-1,
A2 =T 0 — 020 —0A21-

With the limiting probabilities determined in a convenient (if
not concise) form, we can compute E[N] and x in terms of 7 gean
and the a,,  coefficients. Straightforward sum identities yield

(ag,0 + ai,0 + a2.0)1o

E[N]=) j-P(N=j)=

pars (1—rp)?
(a11 +a1)n az 212
(1-r)2 (1-rp)?

Next, we compute yx, the rate at which jobs are served, excluding
jobs that are discarded due to being in the system at the start of a
cleanup. Since jobs only arrive when the system is in a non-clean
state, the average arrival rate is A (1 — meay). Moreover, every job
arriving to the system is eventually either served or discarded, so
X = A(1 — Tgean) — n where n is the discard rate. To compute 7,
we observe that since jobs are only discarded upon transitions to
clean, n is the rate of such transitions clean (i.e., ®geaq - Tworse)
multiplied by the time average of the number of jobs at such times
(i.e., E[N|worse]). Hence, we have

X = )‘(1 - nclean) —n= )”(1 - T[clean) — Qdead Tworse IE[N|W0[‘SE]

oo
= )\(1 - ﬂclean) — Qdead Zj”(z.j)
j=0

2,070 az1m [W1p)
=21(1 _ﬂclean)_adead((l ;TO)Z a ?T1)2 a _r2)2>~
Finding R also requires finding the likelihood of being in
each malware state: my,q = Y7207 (1 j) = 011036?.1 and TTworse =

Yo = W Finally, we have
R =qx —C-E[N] — €pad7Tbad — Lworse Tworse
azolo az1n a2
:)\Q(l _nclean) _qadead<(l _TO)Z (1 —T1)2 (1 _TZ)Z)
_ C( (g0 + 10+ a2 0)r0 | (A1 +az1)r az 21 )
(1 —rp)? (1-rp)? (1-rp)?
B ebad<a1,o + 011 > _ ZWorse(az.o + a1+ az,2>’
1- 51 1- )

an exact determination of R under the c@dead policy, again in
terms of 7e,, and the ap, , coefficients.

This exact expression for the revenue rate R allows us to in-
vestigate the effect of various parameters on both revenue and
on the optimal choice of cleanup policy. It turns out that for
nearly all “realistic” parameter sets examined, c@bad outperforms
c@worse, which outperforms c@dead. We have only found these
trends to be reversed under artificial and unrealistic parameter
configurations. Essentially, if you know you have been infected, you
should clean the system as soon as possible. This observation vali-
dates common practices among practitioners when responding to a
known infection. The best courses of action under hidden malware,
however, will be much more subtle and complex.

4. The case of hidden malware

In this section we consider hidden malware, which is detectable
only in the dead state. This case is of interest because it more ac-
curately models the types of malware that pose serious threats to
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a system'’s security. Attackers often want their attacks to go unde-
tected, but even stealthy malware attacks can have observable ef-
fects on the system, including performance degradation. While the
service provider cannot know whether they have been infected by
malware or not, they can still monitor their system and observe
performance degradation. However, malware is not the only reason
that a system may be suffering from performance degradation; the
degradation may be due to memory (or other resource) leaks, lock-
ing bugs, outdated software, or other external factors. For this rea-
son, we model performance degradation and malware separately (for
a discussion of performance anomalies and some ways they can
be mitigated, see Tan et al., 2012). At any given time, the system’s
performance state is observable but its malware state is unobservable.

The remainder of this section is organized as follows: we first
cover the Hidden Malware Model—including some basic cleanup
policies—in Section 4.1. Next, we temporarily defer the presenta-
tion of our analysis, and instead in Section 4.2, we consider a case
study where we evaluate the performance of these basic policies.
Guided by the insights we discover, we also propose and explore
the performance of several additional policies throughout the sub-
section. Finally, in Section 4.3 we present the analysis of cleanup
policies in the case of hidden malware that enabled our findings
in our case study.

4.1. Hidden malware model

In the hidden malware model, as in the visible malware model,
the system can be in one of four malware states: normal (unin-
fected), bad, worse, and dead, with each successive malware state
leading to higher security costs and slower performance. Addi-
tionally, a non-dead system can be in one of three performance
states: fast, slow, and slower, serving jobs at rates fif, Usiow,
and [gowers Tespectively. While the performance state can be ob-
served, the malware state is unobservable unless the system is
dead. However, there is a correlation structure between the per-
formance and malware states.” In particular, we assume that due
to the resource-hungry nature of malware,® a fast system is nec-
essarily normal, but a slow system can be either in the normal
or bad state, and a slower system can be in any of the non-dead
states.

The queueing, pricing, and revenue models are identical
to those in the visible malware case; the objective remains
to maximize R=qy —c-E[N]-L=qx —c-E[N]—€2q7Tpaq —
LworseTworse. While the service rate of the system depends on
the system’s performance state, only actual malware (and not
performance) contributes to security loss (i.e., £ depends directly
0N TTgeaq and 7p,q rather than on 7y, and mgower)-

4.1.1. Hidden malware evolution

The server can become infected by malware and/or degrade in
performance in stages, as shown in Fig. 3 (note that the chains of
interest must still track the number of jobs), but only the perfor-
mance state is observable. Initially, the system is normal and fast.
A system in the fast state experiences non-malware performance
degradation that causes it to become slow (after an exponentially
distributed duration of time) with rate y;,,, and a slow system
becomes slower with rate Y oer in the same way. A system also
evolves form normal to bad to worse to dead due to malware (af-
ter an exponentially distributed duration of time) with rates oy,g,
Oworse, and ogeaq, Tespectively. If a fast system just became bad,

7 By contrast, in the visible malware model a fast, slow, or slower system is al-
ways normal, bad, or worse, respectively.

8 Note that our framework can also model fully stealthy malware with no per-
formance degradation. In this paper, we specifically investigate malware that has a
performance degradation effect.
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Fig. 3. The CTMC for the evolution of performance degradation and malware infection on a system under the hidden malware model without system administration. The
number of jobs has been omitted, but can be viewed as being tracked by states coming “out of the page” in the third-dimension.

the resource-hungry nature of the malware will cause it to imme-
diately become slow (a slow or slower system does not change
speed when it becomes bad).® Similarly, if a slow system just
became worse, it immediately becomes slower. Unlike the other
malware states, the dead state is not hidden.

4.1.2. Hidden malware cleanup

A system potentially infected by hidden malware can be purged
of malware (if any) and restored to full speed by a cleanup proce-
dure. As before, such a cleanup procedure requires that all existing
jobs are discarded from the system (customers are refused service
and refunded q), and the system stops admitting customers for a
duration of time until the system is restored to the normal and
fast state. The length of time devoted to the cleanup procedure de-
pends on the worst possible malware that could have infected the
system—based on our model—and hence, this duration actually de-
pends on the performance state. We call this the pessimistic cleanup
assumption (e.g., a normal slower system takes the same amount
of time to clean as a worse slower system). The cleanup procedure
lasts an amount of time that is exponentially distributed with rate
Bpads Bworse» OF Bgeaq When initiating the procedure in the slow,
slower, or dead state, respectively;!? that is, due to the pessimistic
cleanup assumption, we clean a slow system as if it was bad and a
slower system as if it was worse. We again assume that there are
no security losses during cleanup.

In the setting with hidden malware, we can again consider the
cleanup policies that we examined in the case of visible malware,
but modifying them to respond to a change in the performance
state, rather than the now unobservable malware state. This results
in the c@slow, c@slower, and c@dead policies, which clean the
system immediately upon a transitioning to the slow, slower, or
dead state, respectively.

4.2. Hidden malware case study

In this section, we use our ability to compute exact revenue
rates under the hidden malware model in order to evaluate and

9 If a system is already slow when it becomes bad, we assume that the system is
slow enough to obfuscate the impact of malware on performance, and hence does
not cause a drop in performance. Alternatively, we could model this complexity
with additional states if desired.

10 As in the case of visible malware, the analysis and results remain unchanged if
the cleanup durations are drawn from non-exponential distributions with the same
means.
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compare various cleanup policies. Due to our large parameter
space (14 dimensions after normalizing time and money), we can-
not exhaustively study the impact of all parameters on R. While no
single parameter set is representative of all systems, after consult-
ing with the security company ForAllSecure, Inc., we chose a “de-
fault” parameter set that would be realistic in actual deployments
with relatively frequent degradation and infection events. The de-
fault parameter set—denoted by P and presented in Table 1—allows
us to keep most parameters fixed while varying one or two pa-
rameter at a time in order to observe the impact of various real-
world phenomena on our system. Due to substantial security costs,
c@dead performs poorly on all realistic cases, so for simplicity, we
omit this policy from our results figures.

Our case study will focus on answering the following questions:

. Can we gain more by improving cleanup speeds or improving
intrusion detection?

. Should we act immediately upon a performance degradation
event or delay our cleanup actions?

. What do we gain from incorporating queue length (job count)
information into cleanup decisions?

In answering these questions in this case, we draw several in-
sights regarding the malware cleanup problem.

4.2.1. Improving cleanup speeds vs. improving intrusion detection

There are several ways in which a service provider can invest
resources into delivering a more robust service with the hopes of
generating greater revenue. In the setting of hidden malware, two
such avenues of improvement are (i) improving cleanup speeds (e.g.,
by hiring additional staff when a potential problem is identified, or
by automating more steps associated with the cleanup procedure)
and improving intrusion detection (e.g., by developing or purchasing
an intrusion detection software which can reliably inform the sys-
tem administrator of an attack). We explore the benefits that arise
from both of these approaches.!!

In order to quantify the benefits of improving cleanup speeds
under the P parameter set, we leave Bp.q fixed at 10~2 per sec-
ond, and let Bworse = Bpad/Z and Bgead = Bworse/Z = Bpaa/z%. and
subsequently evaluate R (under both the c@slow and c@slower
policies) as the free parameter z varies from 1 to 21. The lower z

1 For simplicity, we do not make claims about how much such improvements
cost and to what extent they are feasible.
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The default parameter set P used throughout our case study. Recall the various families of parameters: A (arrival rate), u (service rates), o (malware infection rates), y
(non-malware degradation rates), 8 (cleanup rates), q (price of hypothetical delay-free service), ¢ (waiting cost rate), and ¢ (security loss rates).

Default parameter set

1 per second

$ $ per second

A
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Mfast
30

A dead
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CQworse
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Apad
10-3

Mslower

10.1

Mslow
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Vslow
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ﬁbad
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Lhad Lworse
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Fig. 4. Revenue rate R under default parameter set P, as a function of z, where
Z = Brad/Bworse = Pworse/Bdead» With Bp.q kept fixed at its default value of 10-2.
The c@slow policy exhibits constant performance (as it only depends on the
fixed cleanup rate B,q), while c@slower exhibits a convex decline, outperform-
ing c@slow for low z. The hypothetical omni policy outperforms all other policies.
The unlabeled curve is a hypothetical policy that attempts to mimic omni by using
sequential cleanups.

is, the faster a slower (or dead) system can be cleaned. In particu-
lar, z = 10 corresponds to the default cleanup rates under P with-
out modifications. Therefore, z « 10 corresponds to a significant
investment in improving cleanup speeds. Meanwhile, we quantify
the maximum possible benefits from improving intrusion detection
by also evaluating R under a hypothetical policy, which we call
omni (the “omniscient” policy) across the same range of values for
z. This is a policy that can (i) actually observe the malware state
of the system, (ii) ignore the pessimistic cleaning assumption, and
(iii) choose an optimal subset of joint malware-performance states
on which to initiate cleanups; a detailed description of this hypo-
thetical policy is provided in Appendix B in the online supplement.
The revenue rates are plotted in Fig. 4.

We first observe that under c@slow, R is constant in z. This
is because under c@slow, one never reaches (let alone initiates
a cleanup in) the slower or dead state; hence, R depends only
on Bpaq and not on Pworse OF Bgead- Meanwhile, c@slower outper-
forms c@slow for low values of z, exhibiting a convex decline. This
shape is apparent across a wide range of realistic system param-
eters (and it can be proven to be a hyperbola). We also observe
that at z =1, R under c@slower matches that under omni. To un-
derstand why, we note that omni behaves like c@slower for low
values of z, except that omni circumvents the pessimistic clean-
ing assumption (it cleans based on the actual malware state rather
than on performance state). At z= 1, however, omni and c@slower
achieve the same revenue rate, because cleaning a slower system
does not take less time if one is aware of the kind of malware
present (if any) when By.4 = Bworse (i.., when z = 1). Eventually
(visible in the figure at z~ 13.2), the omni policy will clean a sys-
tem as soon as it is slower or bad. We can conclude that intru-
sion detection can significantly improve the profitability of a sys-
tem, but so can reducing the time required to cleanup more seri-
ous problems on a system. In this case, the benefits from perfect
intrusion detection outweigh those from all but the most extreme
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improvements in cleanup speeds, suggesting that improving intru-
sion detection should be a higher priority.

In fact, it turns out that much of the benefit in the hypothet-
ical omni policy is due to the fact that it is not bound by the
pessimistic cleaning assumption (i.e., it does not need to imple-
ment a lengthy cleanup procedure if a slower system is not in the
worse malware state). It can be tempting to mimic this advan-
tage even when malware is not observable by cleaning a slower
system by using a shorter cleanup (i.e., with cleaning rate By,4).
Then, if at the conclusion of that cleanup the system is still slug-
gish (observed to be in the slower state due to lingering malware
that was not removed by the quick cleanup), one can implement a
lengthier cleanup (i.e., with cleaning rate Bworse) that is guaranteed
to remove the malware. The impressive performance of this “se-
quential” cleanup policy is shown by the unlabeled curve in Fig. 4.
Unfortunately, such a policy may not always be implementable in
practice, as it might be a poor security practice to perform an
insufficient cleanup procedure when there is reason to suspect a
serious infection. However, whenever such a policy is considered
“safe enough,” it is a strong alternative to improving intrusion de-
tection. For example, before formatting a system that appears to
be potentially infected, it may pay off to perform a quick reboot to
see if the problem persists. In practitioners’ terms, this is “trying
the easy solution first.”

We conclude that for our case study, intrusion detection is
preferable to improving cleanup speeds (if one must choose only
one and the two improvement costs are comparable) whenever
near-perfect intrusion is possible, unless it is safe to use a se-
quence of progressively lengthier cleanups when dealing with a
system in the slower state. However, we must acknowledge that
the omni policy is a hypothetical policy, and that perfect intrusion
detection cannot exist in practice. Nevertheless, while we cannot
actually detect malware perfectly, the fact that—in many typical
parameter sets such as P—hidden malware infection occurs at a
considerably lower frequency than natural performance degrada-
tion should not be overlooked. We proceed to develop a family of
policies that can leverage this fact.

4.2.2. Delaying cleanups

It is natural to ask whether a system should be cleaned as soon
as one reaches a “target” performance degradation state, or if the
cleanup procedure should be delayed once such a “target” state
has been reached. The rationale for such a delay is that the ser-
vice provider may be content with slower performance, but not
with malware infections. In particular, since o,,q = 10y, under
P, a transition to the slow state is unlikely to suggest that the sys-
tem has been infected by bad malware, and one can persist in a
slow system for a considerable period of time with little risk of
being unknowingly infected. But how much of an improvement in
R can we expect if we introduce such delays? In order to explore
such delays, we formally introduce the following two parameter-
ized families of policies:

o dc@slow(£¢) (“delayed clean at slow” with rate &£): After the
system transitions to the slow state, wait an amount of time
that is exponentially distributed with rate &, then clean; clean
immediately upon transitioning to slower.
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Fig. 5. Revenue rate R under the default parameter set P, as a function of the mean
delay before initiating cleanup actions 1/&. The revenue rate R appears to be con-
cave in 1/&, with both policy families benefiting from the introduction of a modest
delay. However, under both policy families, R eventually attains a local maximum
in 1/&, and there is a subsequent decrease in profitability as 1/& increases further.
At their respective optimal & values, dc@slower(¢) outperforms dc@slow(§).

o dc@slower (&) (“delayed clean at slower” with rate £): After
the system transitions to the slower state, wait an amount of
time that is exponentially distributed with rate &, then clean;
clean immediately upon transitioning to dead.

If the delays were deterministic rather than random, one could
potentially obtain even greater revenue rates: a random delay is a
lottery over a continuum of deterministic delays (with a potentially
new outcome after every cleanup event), and so the best policy
among the support of this lottery will do no worse than the lot-
tery itself. We restrict attention to exponentially distributed delays
for the purpose of tractability, in order to maintain a Markovian
structure.'?

We proceed to explore the benefits of implementing such de-
lays by evaluating R under the dc@slow(£) and dc@slower(§)
policies for the parameter set P. Fig. 5 shows a comparison of
the revenue rates under these cleanup policies as a function of
the mean cleanup delay 1/£. We observe that for this parame-
ter set, there is a significant benefit to implementing a delay un-
der both policies. In fact, introducing such delays is beneficial in
nearly all systems, except those where performance degradation
and/or malware is so costly that these costs dwarf the detrimental
impact of frequent cleanups. Here, the best performing policy is
dc@slower(1/696), attaining a revenue rate of R ~ 166.74 (mea-
sured in millions of dollars per year). The sensitivity of these re-
sults is explored in Appendix C in the online supplement. While
we anticipate robustness to small measurement or estimation er-
rors in a single parameter (except possibly A and [tgower as they
are very close to one another in the default parameter set P), mod-
est to large errors in measuring Ygowers Bbad> Pworse, G, OF € can be
costly in the sense that they can lead to the implementation of a
considerably suboptimal cleanup policy.

The revenue obtained by the dc@slower(1/696) policy can be
improved further by using a delayed cleanup policy that allows
cleaning in both the slow and slower states, implementing a sep-
arate delay rate at each. In more precise terms, we consider the
following family of policies:

e hdc(&;, &) (“hybrid delayed clean” with rates & and &,): Af-
ter the system transitions to the slow state, wait an amount of
time that is exponentially distributed with rate &;, then clean,

12 One could more closely approximate deterministic delays by implementing
them as multi-phase Erlang distributions, which approach deterministic distribu-
tions as the number of (identical) phases tends to infinity, while keeping the mean
fixed.
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unless a transition to slower occurs, in which case, disregard
the wait so far and instead wait an amount of time that is in-
dependently exponentially distributed with rate &, then clean
the system; clean immediately upon transitioning to dead.

Exploring many &; and &, values, the best performance we ob-
serve under this hybrid-policy, is at & =1/680 and &5 =1/749
(we will refer to these “optimal delay rates” repeatedly in what
follows). The hdc(1/680, 1/749) policy yields R ~ 167.96. By us-
ing delays in both the slow and slower states, we have a mod-
est improvement of less than 1% (as compared to the simpler
dc@slower(1/696) policy), although such improvements can be
more pronounced across a variety of parameter settings.

Naturally, one benefit of delaying cleanups is decreasing the fre-
quency of cleanup actions, while adding little additional risk of re-
siding in or entering a malware state. For example, if one has al-
ready transitioned to the slower state, one has already effectively
“paid the sunk cost” of a lengthier cleanup duration (which is un-
likely to grow any longer if one imposes a reasonable delay, as
transition rates to the dead state are typically very low). In this
case, one may as well decrease the frequency of cleanup proce-
dures by spending additional time in the slower state. However,
this is not the only benefit to implementing cleanup delays. When
a change in performance level occurs, waiting times gradually in-
crease over time, rather than increasing immediately. Therefore, if
an average response time of less than t* is “acceptable,” (i.e., it is
profitable to operate under such average response times, in the in-
terest of engaging in less frequent cleanups) and one is transition-
ing from a performance state with a steady-state response time of
t; < t* to one with t, > t*, one can delay a cleanup event and still
enjoy “acceptable” response times for some additional time while
“spacing out” cleanups. Hence, delaying cleanups can even be ben-
eficial in the case of visible malware. The takeaway is that we
should consider not acting immediately upon a performance degra-
dation event. Waiting for an appropriate amount of time can lead
to significant gains in revenue.

4.2.3. Cleaning up based on queue length

In the preceding discussion, the gradual transition from one
steady-state response time to a higher steady-state response time
is due to the gradual buildup of the queue. Hence, motivated by
the benefits that come with delaying cleanups, we consider dy-
namic cleanup policies that can base cleanup decisions on the cur-
rent job count. But how much can the service provider benefit
from taking queue lengths into account?

We shed light on the potential benefits of dynamic policies by
evaluating R for the special cases of dynamic policies that we
call threshold policies. Like the policies we have examined thus
far, threshold policies also incorporate delays, but they initiate
cleanups in the slower state only if the queue length satisfies a
given condition based on a threshold, ®. More precisely, we con-
sider these two policy families:

e hdc.g(§;1.&,): After the system transitions to the slow state,
wait an amount of time that is exponentially distributed with
rate &1, then clean, unless a transition to slower occurs. Once
the total amount of time in the slower state with N> ©®
jobs exceeds an (independent) exponentially distributed ran-
dom variable with rate &, clean the system; if a transition to
dead occurs, clean immediately.

hdc_g (&1, &,): This is the same as the preceding policy, except
when in the slower state, we clean based on having spent suf-
ficient time with N < ® jobs (rather than N > ® jobs).

We note that the hdc.g(§1,&;) (resp. hdc_g(&;.42)) policy
is like the hdc(&;, &) policy, except that the transition from the
slower state to the corresponding cleanup state occurs with rate



S. Doroudi, T. Avgerinos and M. Harchol-Balter

& hdc ¥ Ex

Z sol(&&)

) é '....0" "-»....

E .'.... ...Oo

8 170 .,.°' ’-..

S .'.. ..

> ° °

8 .... ..
E 168 |*

0 20 40 60 80

Cleaning threshold, ®

Fig. 6. Revenue rate R under the default parameter set P, as a function of the
threshold ©®, for the hdc.¢ (§;. ;) family of policies, where cleanups in the slower
state are only permitted if the number of jobs N exceeds the threshold ®. R is
highest at ® = 47.

&, only when the number of jobs in the system is at least (resp. at
most) ©.

We begin by studying the hdc.g(&;.&5) family of policies
across a range of © values, where we fix & =1/680 and &; =
1/749, which were the best rates (with respect to R) for the non-
threshold hdc(&q, &) family of policies that we studied in the pre-
vious subsection. We note that we can view hdc.q(§;.&5) as a
benchmark that is identical to hdc(&},£;), the best performing
policy from the previous subsection. Fig. 6 depicts the revenue
rates under the hdc. (&5, &) policies. We observe that among
the plotted policies, an optimal’® revenue rate of R ~ 171.75 is
achieved at the threshold ® = 47, representing an improvement of
more than 2% over the ® = 0 benchmark. This modest yet non-
negligible improvement highlights the power of dynamic policies
and suggests that cleanup delays alone are insufficient in captur-
ing nearly all available revenue. This realization also underscores
the advantage of tracking the number of jobs in the system as op-
posed to treating malware cleanup as a standard condition-based
maintenance problem.

Let us now turn our attention to the other family of threshold
policies, hdc_g (&1, §>); the policies in this family initiate cleanup
procedures in the slower state only when the number of jobs N
falls at or below the threshold ®. We would expect such policies
(for small values of ®) to perform poorly for the same reasons
the preceding policies performed well."* These alternative thresh-
old policies allow the system to persist in the slower state for far
too long, as the system is rarely occupied by only a few jobs in the
slower state.

Naturally, we ask if there exist scenarios where the
hdc_g(§1,§,) policies outperform their hdc.g(§1,4,) coun-
terparts. As one can imagine, the hdc_g(&;,;) policies excel
at minimizing the number of discarded jobs when a cleaning
procedure is initiated. In fact, they limit this number to ® per
cleanup event triggered in the slower state. It turns out that the
cost associated with discarding a job under P is often relatively
insignificant. Even if hundreds of jobs are discarded at once,
the number of jobs served between cleaning procedures may be
orders of magnitude higher than this figure. However, one can

13 Naturally, we can expect to do better if we jointly optimize the delays &, and &,
together with the threshold ®, or consider dynamic policies beyond simple thresh-
old policies. We note that allowing for two separate thresholds (below which we
cannot clean), one for the system in the slow state and the other for the slower
state did not appear to yield any benefits in this case.

4 We have verified that this is the case under P for the hdc.g (&;.&3) family of
policies.
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Fig. 7. Revenue rate R under the default parameter set P with a job discarding
penalty of y =$100, as a function of the the threshold ®, for the hdc.e (&7.&5)
and hdc_e (£}, ;) families of policies. R is highest at ® € {43, 44} under the latter
family.

imagine a modified setting where there is a much stronger desire
to minimize discarded jobs.

Consider a variation of the model explored in this paper where
each discarded job represents more than just a missed opportu-
nity for the service provider to collect g for serving an additional
customer request. For each discarded job, the service provider
incurs a goodwill penalty y (measured in dollars). That is, we
could take qx — c-E[N] — £p2q7pad — Cworse Tworse — Y1), aS OUr rev-
enue rate (recall that » is discard rate).

Now let us consider the default parameter setting P, except that
we will let y =$100, rather than y =$0 (which is the case ev-
erywhere else in this paper). Note that this is an extreme value
chosen for illustrative purposes. Evaluating revenues for both the
hdc. o (§7.§5) and hdc_g (&, §5) policy families, we observe in
Fig. 7 that R is decreasing in ® for hdc,g(&f,&5), rendering
the ® =0 benchmark optimal among the policies in this fam-
ily; this result is driven by the extreme value of y. Meanwhile,
R is initially increasing (and subsequently decreasing) in ® for
hdc_g (&7, §5). The strongest among these policies overall (among
those being considered in this setting) is either hdc_43(§;.&3) or
hdc_44(&;. &), which allows for cleanups in the slower state only
when there are at most 43 or 44 jobs present in the system. These
two policies exhibit virtually indistinguishable performance: based
on our numerical calculations, they obtain R values that are within
0.00002% of one another. Meanwhile, both policies outperform the
best performing policy from the other family, hdc.o(§5.&5). (ie.,
the ® = 0 benchmark) by over 14%. This significant improvement
suggests that in this particular setting, cleanup procedures should
only be undertaken when the queue length is relatively short. In
this setting, it turns out that the common intuition that “the more
highly utilized a system is, the more costly it is to take it offline”
is justified.

At this point, however, we should be wary of tunnel vision:
with a sizable discarding penalty of y = 100, 1/&; and 1/&; may no
longer be ideal mean delay candidates to build our threshold poli-
cies upon. In fact, dispensing with cleanup delays altogether we
can improve upon hdc_44(§;, ;) substantially in this setting: em-
ploying a policy that cleans immediately whenever the job count
is 0 or 1 in either the slow or slower states yields an improvement
of over 23%. An even larger improvement (over 27%) is possible if
we only clean a slow system when it is empty, but still clean a
slower system at either job count 0 or 1.

The observation that both families of threshold policies can out-
perform the other depending on the setting suggests that even fur-
ther gains are possible by considering more sophisticated dynamic
policies. However, as previously stated, determining the optimal
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Fig. 8. The CTMC governing the system under the hdc(&;, &;) cleanup policy. States and phases are labeled by the numbers 0-8, for notational convenience, with Phases 0-5
denoting the six joint malware-performance states, and states 6-8 denoting the three possible clean states (clean-short, clean-med, and clean-long). The transitions due to
intentional delays imposed by the cleanup policy are shown in color for clarity. Note that each phase (denoted by a thicker border) is actually an infinite collection of states

that evolves according to a birth-death process.

dynamic policy requires solving an intractable dynamic program.
We are able to obtain results for these threshold policies by ex-
tending the non-repeating portion of the Markov chain when ap-
plying our adaptation of the CAP method.

4.3. Hidden malware analysis

We now turn our attention to deriving R in the case of hid-
den malware under all of the policies presented throughout this
section. As it turns out, we can actually restrict attention to the
analysis of R under the hdc(&;, &) class of policies. With the ex-
ception of the threshold policies, revenues under the other policies
can be computed by taking the appropriate limits (and in the case
of omni, by choosing the best among several candidate policies)."
As for the threshold policies, hdc.g(§1.&,) and hdc.g(&1.6). a
modification of the procedure described in this section allows us to
determine R under these policies in essentially the same way. This
modification involves expanding the non-repeating portion of the
Markov chain of interest to encompass all states where the number
of jobs in the system is less than ©.

We again need to calculate R =qx —c-E[N]— lpqThad —
LworseTTworse, X, and E[N], which require the analysis of a two-
dimensional infinite state Markov chain, this time with six, rather
than three, phases.

The first step in our approximation relies on determining
the limiting probability associated with the six joint malware-
performance states (see Fig. 3) and each of three separate clean
states: clean-short, clean-med, and clean-long, which return to
the normal fast state with rates By.4. Bworse, and Byead, respec-
tively. For notational convenience we label the phases and states
of interest with the numbers 0-8, as follows: Phase O corresponds
to the normal state of a fast system, Phases 1 and 2 correspond to
the normal and bad states of a slow system, respectively, while
Phases 3, 4, and 5 corresponds to the normal, bad, and worse
states of a slower system, respectively. Moreover, states 6, 7, and 8

15 There can be computational advantages to determining R under the other poli-
cies directly (rather than taking limits of R under the hdc(&;, ;) policies). Such
direct calculations follow from simple modifications to the analyses presented in
this section.
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correspond to clean-short, clean-med, and clean-long states, re-
spectively.

With this notation, we proceed to apply our adaptation of the
Clearing Analysis on Phases (CAP) method to the hidden mal-
ware model under the hdc(&q,&,) policy. The CTMC we study
looks like a more complicated version of the chain depicted in
Fig. 2 (from the analysis of the c@dead policy for the visible
malware model), except that it consist of six phases, and three
cleanup states, with some transitions across phases “skipping over”
intermediate phases, and multiple phases transitioning directly to
cleanup states. Our CTMC consists of an infinite repeating portion
and a finite non-repeating portion.

The repeating portion of our CTMC is made up of the
six phases, one corresponding to each of the joint malware-
performance states, 0-5. Each phase is an infinite collection of
states making up a birth-death process tracking the number of
jobs in the system. Each birth-death process has an arrival rate of
X, and departure rate of pp, (in Phase 0), g0 (in Phases 1 and
2), or Ugower (in Phases 3-5). Each state in the repeating portion
of the Markov chain is denoted by (m, j), where m is the phase
and N = j denotes the job count. We observe that the transitions
across these phases are unidirectional in nature (i.e., when moving
from one phase in {0, ...,5} to another, the phase number always
increases), which makes the CTMC amenable to the CAP method.
Moreover, transitions across these phases are independent of the
job count, with associated transition rates depicted in Fig. 8 (e.g.,
a transition from Phase 2 to Phase 5 occurs with rate cworse, re-
gardless of the job count). When any such transition occurs the
job count remains unchanged.

The non-repeating portion of our CTMC is made up of the three
cleanup states: clean-short (6), clean-med (7), and clean-long (8).
Unlike phases, these are single states. As these states represent the
system undergoing a cleanup, they always transition directly to
state (0,0) (i.e., Phase 0 with an empty queue). Transitions to one
of cleanup states from one of the phases are independent of the
job count, and occur with the rates given in Fig. 8. Such a transi-
tion resets the job count to zero (as the jobs are discarded).

We introduce some notation. Let 7y, j, be the limiting prob-
ability of being in Phase me{0,...,5} with j>0 jobs. Let
g, 7, g be the limiting probabilities of being in cleanup states
6, 7, and 8, respectively. Let um be the service rate in Phase m
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(Mo = Mfast: M1 = U2 = Mslow: U3 = g = [b5 = Hslower) aNd let o
be the rate at which the system leaves Phase m.!6

We again find limiting probabilities in the form 7y, ;) =
o amvkr,’(, with base terms (which we again assume are all dis-
tinct) given by

VO g+ )2 — A
214 '

We must determine the ap, coefficients (for 0 <k <m <5), to-
gether with 7g, 77, mg. These variables, together with the redun-
dant 7y, o variables, are the solutions to a system of linear equa-
tions, HS, which are a combination of balance equations, the nor-
malization equation, and relationships derived via our adaptation
of the CAP method (see Appendix A in the online supplement for
details). The system HS is as follows:

Te= A+ pi + 0 —

This system is more complicated than the corresponding sys-
tem for the case of visible malware (VS), as in the present model
one visits phases (and cleanup states) in a non-deterministic or-
der. While, the system HS can be solve symbolically, yielding ex-
act closed form solutions, it may be more practical to obtain exact
numeric solutions; various techniques can be used to circumvent
badly conditioned matrices.

With the limiting probabilities determined in a convenient
form, we compute the values of interest—E[N] = Z?ioj -P(N = j),
X =A(1 = Tgean) — N, Tpad> aNd Tworse—in terms of mg, w7, 73,
Ty, and ap . Recalling that 7 is the rate at which jobs are dis-
carded, letting X(m) be the rate of initiating a cleanup event in
Phase m, (ie, X(0) =0, X(1) =X(2) =&, X(3) =X(4) =&,, and
X(5) = & + 0geaq), and observing that Phases 2 and 4 make up the
bad malware state, while Phase 5 makes up the worse state, we
have

Am kTk
N = Y3
m=0 k=0
X(m)a T
X=)\,(177T577T7*7r8) Z ;n)kzk
m=0 k=0 k
> 2. ay -
ﬂbad=2{”(2,j)+7f(4,j)}:z ' +Z ’ and
j=0 pardl ikl er k"

16
00 = Opad + Vslows &1 = Opad + Vstower + &1, &2 = Qworse + Velower + &1, 03 =

Qpag + &2, 04 = Aworse + &2, U5 = Qgeaq + &2-
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s k
1- Tk '

o0 5
Tlworse = ZN(S,j) = Z
j=0 k=0

Finally, we express R = qx — - E[N] — €53d7pad — CworseTTworse €X-
actly under the hdc(&4, &) policy:

5 m

m=0 k=0
5
as k
— Lworse -
g 1- Tk

4

b3

k=0

2
a2k

— lhaa| D -1,

k=0 ¢

With this expression, we can evaluate the hdc(&;, &) family of
cleanup policies, including many simple policies such as c@slow,
c@slower, and c@dead.

o0 = T(0,0) Unm = Tmoy — Yopo Gmk (1 <m <5)
ToT1 Yslowdo,0
G10= O — erosr:;v(ro —1) 0,0 = m(ﬁbadr% + BworseTT7 + Bead s + MoTodo,0)
Tor20lyad (A0 + a1,0
Bo= 5 M;’orz)(ro ) 10 = g w (11 Yk (110) + YsiowT(0.0))
T1720pad 01,1 2
©1 =G rza)(ri ) 0 = (Mz Yieco (Mkla.1) + Xbaa (T(0,0) + 7 (1.0)))
T3 Vslower a1,k 3
Az = = (/Lgr;;;/v)ezr, ) O0<k=<1) 3.0 = (M3 Y ko Tz ) + Vslower”u,o))
K
4
a3, =0 (4,0 = (M4 > k=0 (Tka k) + VslowerT(2,0) + Olbad7T<3,0))
rkr4(yslowera2 K+ abada3.lc) 5
Ay = : : 0<k<?2 T r.a o T T
4k (A — uaryrg) (1, —14) (0=<k<2) (5.0) = g )\ Tas (/’LS Zk:o( k S,k) + Qworse ( (2,00 T (41))))
37405403 3 m am k
Q43 = : 7Te=7z=2= .
(A — p,4r3(r4)(r3 - r4g Braa —"= 0 1
T '5Qworse (A2 | + Qg
A5y = 0<k<2) 7
ST (= psryrs) (g — 15) ,3worse Zm 3 Lico 1
as3 = I315Qworse 4,3 U dead a5 k
T (A —usr3rs)(r3— 15 01-m
s 4 = r4Mr5aworseG4,4 ) _ <§:dead Zm am,kk> D
T (A= pustars) (g —15) m=0 ~k=01 _

5. Conclusion and directions for future work

The primary contributions of this paper are the presentation of
a Markovian model for the evolution of malware on a customer-
facing system and the evaluation of revenue rates under various
cleanup policies. Our model moves beyond the techniques avail-
able from the literature on condition-based maintenance by incor-
porating queueing dynamics (for a discussion on how overlooking
queueing dynamics can lead to suboptimal revenues, see Doroudi,
2016, Section 3.5). We find that in many cases, one should not
clean a system at the first indication of a problem. In such cases,
one should either wait for things to get worse, delay cleanup ac-
tions for some time, or wait until the queue lengths exceeds (or
falls below) some threshold.

One of our key discoveries is that the best policies are not nec-
essarily those that act only when a new phenomenon is observed,
and rather, there are significant benefits to delaying a response
for some time after witnessing a performance degradation event.
One reason that these delays are beneficial is that by delaying a
cleanup, one reduces downtime, while enjoying acceptable wait-
ing times before convergence to a new steady-state with unaccept-
able waiting times. Another way that one can harness the benefits
of persisting in a system before reaching unacceptably high wait-
ing times is to make cleanup decisions dynamically by making use
of queue length information. We find that even the simple thresh-
old dynamic policies provide a substantial improvement over their
static (non-dynamic) counterparts. Therefore, we believe that fur-
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ther analytic investigation of such dynamic policies is a natural di-
rection for future work in this area.

Another possible direction for future work in this area is the
consideration of arbitrary Markovian correlation structures be-
tween the visible performance state and the hidden malware state.
One could also study an enriched model where the arrival rate is
endogenously determined based on the prices set by the service
provider, the resulting mean response time, and the resulting frac-
tion of time spent in malware states; both the customers and the
service provider would be making decisions based on their own
best interest.

We conclude with a discussion of a potential alternative ap-
proach that could be taken in future work toward developing
strong cleanup policies in the case of hidden malware. While this
paper uses Markovian performance analysis to evaluate a vari-
ety of policies, one could alternatively structure the same under-
lying problem as a partially observable Markov decision process
(POMDP), which in this case can also be expressed as an opti-
mal stopping time problem. Recall that at any given time, we are
either in some state (m, j) or in one of the cleaning states. But
while the number of jobs in the system N = j is visible, the current
joint malware-performance state is not. Instead, only the perfor-
mance state is observable, hence, depending on the performance
state, the malware state m can take on a number of (i.e., two or
three) different values. We should be able to determine the prob-
ability distribution over the values taken on by m as a function of
the duration of time (if any) spent in the slow and slower states
since the last cleaning. Call such durations &g, and tgoyer and see
that the state of the system can be expressed as (tgows tsiowers J)-
Note that this state is always changing continuously throughout
time, and hence we have formulated a non-Markovian problem.
In this setting, a policy (or stopping condition) can be defined by
a well-behaved set A< R? x {0,1,2,...} such that we initiate a
cleanup at the first instance of time (since the previous cleanup)
that (tsow, Esiower> J) € A. Hence, the objective is to find a policy
(i.e., a “cleanup region” A) that maximizes the revenue rate. Given
the non-Markovian nature of the state space, together with the dif-
ficulty of evaluating performance under A—which may require both
the techniques presented in this paper and methods for determin-
ing the distribution of the joint malware-performance state as a
function of (ty g, tslower)—We anticipate that finding an exact op-
timal solution to this problem will be prohibitively difficult. That
said, future work may yield fruitful heuristics or approximations
by combining the state of the art in POMDP and optimal stop-
ping time analysis with state space truncation. We hope that the
analysis presented in this paper will prove helpful in the devel-
opment of further heuristics for addressing the malware cleanup
problem.
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