arXiv:1910.06755v4 [math.CO] 24 Nov 2020

NON-RIDGE-CHORDAL COMPLEXES WHOSE CLIQUE COMPLEX HAS
SHELLABLE ALEXANDER DUAL

BRUNO BENEDETTI AND DAVIDE BOLOGNINI

ABSTRACT. A recent conjecture that appeared in three papers by Bigdeli-Faridi, Dochtermann, and
Nikseresht, is that every simplicial complex whose clique complex has shellable Alexander dual, is ridge-
chordal. This strengthens the long-standing Simon’s conjecture that the k-skeleton of the simplex is
extendably shellable, for any k. We show that the stronger conjecture has a negative answer, by exhibiting
an infinite family of counterexamples.

1. INTRODUCTION

Shellability is a property satisfied by three important families of objects in combinatorics, namely,
polytope boundaries [28] (see also [2]) and order complexes of geometric lattices [10]. Moreover, skeleta of
shellable complexes are themselves shellable [13]. Extendable shellability is the stronger demand that any
shelling of any full-dimensional subcomplex may be continued into a shelling of the whole complex. This
property is less understood than shellability, and much less common. It is easy to construct polytopes
that are not extendably shellable [28]. In 1994 Simon conjectured that, for any integer 0 < d < n, the
d-skeleton of the n-simplex is extendably shellable [24, Conjecture 4.2.1]. For d < 2 this was soon proven
by Bjorner and Eriksson [12], but for 3 < d < n — 3 the conjecture remains open.

Recently Bigdeli et al. [9] and Dochtermann et al. [16] established Simon’s conjecture for d > n — 2,
showing also that shellability is equivalent to extendable shellability for d-complexes with up to d + 3
vertices [16]. Their approach is based on a higher-dimensional extension of the graph-theoretic notion of
chordality, called ridge—chordality, which we recall below. Given a d-dimensional pure simplicial complex
A, any (d — 1)-dimensional face of it is called a ridge. “Deleting above a ridge” of A means to consider
the simplicial complex whose facets are the facets of A not containing that ridge. A cligue of A is any
subset V' C [n] such that all subsets of V' of size d + 1 appear among the facets of A. For example, if A
is the graph {12,23,13,14}, then 1, 12 and 123 are cliques, whereas 124 and 1234 are not.

A pure d-dimensional simplicial complex A is called ridge-chordal if A = () or if it can be reduced to
the empty set by repeatedly deleting above a ridge r such that the vertices of the star of r form a clique
[8]. One can see that “ridge-chordal 1-complexes” are precisely the graphs admitting a perfect elimination
ordering, i.e. graphs in which every minimal vertex cut is a clique; by Dirac’s theorem, these are precisely
the “chordal graphs”, the graphs where every cycle of length at least four has a chord [17].

Now, let CI(A) be the “clique complex” of A, i.e., the simplicial complex whose faces are the cliques
of A. This CI(A) is a simplicial complex of dimension at least d, with the same d-faces of A and the same
(d — 1)-faces of the n-simplex. The following conjecture appeared naturally, in several recent works:

Conjecture A ([7, Question 6.3], [18, Conjecture 4.8], [22, Statement A]).

If the Alexander dual of Cl(A) is shellable, then A is ridge-chordal.
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There are three reasons why Conjecture A is natural and of interest:

(1) As explained by Bigdeli et al. [9, Corollary 3.7] and [22, Corollary 4.16], Conjecture A directly implies
Simon’s conjecture, cf. Remark 6.

(2) The conjecture is true if one slightly strengthens the assumption “shellable” into “vertex-decomposable”.
This fact is proven in the pure case by Nikseresht [22, Theorem 3.10], and in full-generality by Bigdeli—
Faridi [7, Theorem 5.2]; see also Remark 5 below. Also, Conjecture A holds for dim A = 1.

(3) Some partial converse holds: If A is ridge-chordal, then the Alexander dual of CI(A) is Cohen—
Macaulay over any field [8, Theorem 3.2], although not necessarily shellable or constructible [8,
Example 3.14].

The purpose of this short note is to strongly disprove Conjecture A:

Theorem A. For any k > 2 there is a constructible 2-dimensional complex Ay that is not ridge-chordal,
such that the Alexander dual of C1(Ay) is pure (5k — 2)-dimensional, shellable, and even 4-decomposable.

Theorem A provides a non-trivial class of complexes that are 4- but not 0-decomposable (cf. Remark 5)
in arbitrarily high dimension. This infinite family does not disprove Simon’s conjecture, because the
shelling of the Alexander dual of C1(Ag), which is (5k — 2)-dimensional on 5k + 2 vertices, does extend
to a shelling of the (5k — 2)-skeleton of the (5k + 1)-simplex, as we will see in Remark 8.

2. CONSTRUCTION OF THE COUNTEREXAMPLES

Recall that the link and the deletion of a face o € A are defined respectively by
linka(o) :={r€A:0nN7=0,0 CF D7 for some facet F} and dela(c):={r€A:0Z7}.

We say that a face o in a pure simplicial complex A is shedding if dela (o) is pure of dimension dim A. An
equivalent formulation (see for instance [27, Definition 3.1]) is the following: o is shedding if and only if for
every face F' € A such that ¢ C F and for every v € o, there exists w ¢ F such that (F'\ {v})U{w} € A.
A pure simplicial complex A is k-decomposable if A is a simplex or if there exists a shedding face o € A
with dimo < k such that linka (o) and dela (o) are both k-decomposable [23]. It is easy to see that if A
is k-decomposable then it is also t-decomposable, for every k < ¢ < dim A. The notion of k-decomposable
interpolates between vertex-decomposable complexes (which are the same as 0-decomposable complexes)
and shellable complexes (which are the same as d-decomposable complexes, where d is their dimension).

We start with a Lemma that is implicit in the work of Bigdeli-Faridi [7]. Recall that a free face in a
simplicial complex A is a face strictly contained in only one facet of A.

Lemma 1. Let r be a ridge of a pure d-dimensional simplicial compler A, with d > 1. Let S be the set
of vertices of Star(r,A). Then S € CI(A) <= r is a free face in Cl(A).

Proof. =: If r lies in two facets F} and Fy of CI(A), then F; = r U S; for some S; C [n]. Since Fi, Fs €
Cl(A), for every s € S; U Sy we have r U {s} € A. So rU (51 US3) C S is a clique of A. Since
r U S1 and r U Sy are both facets of CI(A), we have S; = Sy, whence F} = F5.

<: Let F be the unique facet of CI(A) that contains r. Were there a vertex s of S outside F', we would
have r U {s} € A C Cl(A); so there would be G € CI(A), G # F, such that r U {s} C G, a
contradiction. Hence S C F' and S € Cl(A). O
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Lemma 2. Let A be a pure simplicial complex. If A is ridge-chordal and dim A = dim CI(A), then A

has at least one free ridge.

Proof. If A is ridge-chordal, then it must have a ridge r such that the vertices of Star(r, A) form a clique.
By Lemma 1, this r is a free face of CI(A). But since dimA = dim CI(A), the set of free ridges of A
coincides with the set of (dim A — 1)-dimensional free faces of CI(A), because any ridge we add when
passing from A to CI(A) belongs to no face of dimension equal to dim A. O

FIcUrRE 1. The constructible contractible 2-complex A% without free edges, constructed
by Barmak in [5, Example 11.2.9], is not ridge-chordal: See Proposition 3 below.

Recall that a pure d-dimensional complex A with N facets is constructible if either d(N — 1) = 0, or if
A splits as A = A1 U Aq, with Ay, Ay constructible d-dimensional complexes and A1 N Ay constructible
(d — 1)-dimensional. All shellable complexes are constructible, but the converse is false, cf. e.g. [6,
Prop. 6.7].

Proposition 3. For any integers d, k > 2 there is a constructible, contractible d-dimensional complex on
k24 + k + d wvertices that is not ridge-chordal.

Proof. For any d > 2, there exists a shellable contractible simplicial d-complex Cy on 2¢ + d + 1 vertices
that has only one free ridge [3]. Let Az be the d-complex obtained by glueing together k copies of the
complex Cy via the identification of their free ridges; the case d = k = 2 is illustrated in Figure 1,
and appeared also in Barmak’s book [5, Example 11.2.9]. By definition, Aﬁ is constructible and has
k(24 +d+ 1) — (k— 1)d = k2% + k + d vertices. By van Kampen’s theorem, A¢{ is contractible. We
claim that dim A¢ = dim C1(A¢). In fact, were there a face in CI(A¢) of dimension ¢ > d, then A{ would
contain an induced subcomplex S on ¢+ 1 vertices with the same d-skeleton of the ¢-simplex. So S would
have nontrivial d-th homology, against the contractibility of Az. This proves the claim. But since Ag has
no free ridge, it is neither ridge-chordal (by Lemma 2) nor shellable (because all shellable contractible
complexes are collapsible, cf. [19, Lemma 17]). O

All minimal non-faces of C1(A¢) have dimension d. So the Alexander dual of C1(A{) is pure (k2¢+k—2)-
dimensional, with 2%+ k+d vertices and (kzc;i‘f“k) — fd(A‘,f) facets. To disprove Conjecture A, it remains
to find values of d and k for which the Alexander dual of CI(A¢) is shellable. Already for d = 2 and
k = 2 this is computationally difficult, and beyond the reach of our computer. But we shall now use the

theoretical trick of face-decomposability to establish shellability for d = 2 and arbitrary k.
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Lemma 4. Let A be a pure simplicial complex on [n]. Suppose that the minimal non-faces N, ..., Ny of
A have the property that N; N\ Ny, =0 for every j # h. Then A is vertez-decomposable.

Proof. Let m := max{|N;|}1<i<; and V := [n] \ Ui, Ni. If m = 1, then |N;| = 1 for every 1 <i < t. So

A {0} ifv=>0
a simplex if V # ().

Either way, A is vertex-decomposable and we are done. Now suppose m > 1 and denote by ON; the
boundary of a simplex on the vertices of N;. Then

A ONy * - % ON; ifvV=>0
|\ V0N % xON, iV £,

where * denotes the join of simplicial complexes on disjoint sets of vertices. Either way, A is the join
of vertex-decomposable complexes, hence vertex-decomposable. O

Proof of Theorem A. Let k > 2 and let Ay be the Alexander dual of CI(A2). Since all minimal non-
faces of C1(A?) have dimension 2, this Ay is pure (5k — 2)-dimensional, with n := 5k + 2 vertices and
(5k§r2) — 13k facets. Let 7, be the set of vertices in the j-th copy of C3 that do not belong to the free
face. Then [n] \ v, is not in C1(A%), because dim([n] \ v;) = 5(k — 1) + 1 > 2 = dim CI(A%). So v; € Ay,
for all 1 < j < k. Define

DE = Ay, Df = delD;tl(fyj), and L;? = linkDﬁl(’yj), for 1 <j <k

If j > 1 and t > j, we have 3 € Df_l, because v, € =, for every h < j — 1. Moreover, if k£ > 2,
vi—1U; € Df_Q, ie yj_1 € linkD;_t2 (75), because dim([n]\ (vj—1Uv;)) = 5(k—2)+1 > 2 = dim C1(A3).

We are going to show that A is 4-decomposable by induction on k > 2. Let k = 2. We checked using
[14] that D? and D3 are pure 8-dimensional. Moreover, we checked that L? ~ L3 ~ A;, where A; is the

Alexander dual of Cl(C2). The reader may verify that a shelling for such 3-complex is

[4,5,6,7],[3,5,6,7],[2,4,6,7],[1,4,6,7),[1,3,6,7],[1,2,6,7],[3,4,5,7],[1,3,5,7],
11,2,5,7],[2,3,5,7],[2,3,4,7],[1,2,4,7],[3,4,5,6], [2,3,4,6], [2,3,5,6], 1,2, 5, 6],
[1,3,4,6],[1,2,4,6],[1,2,3,6],[1,3,4,5],[1,2,4,5], [1,2,3, 4].

Since D3 is vertex-decomposable, it follows that As is 4-decomposable.

)

Now let k& > 2. Notice that linkg, (v;) ~ Ag_1, for every j, where ‘~’ stands for ‘combinatorially
equivalent’. In particular, L’f ~ Ai_1. In general, we have L? ~ Df:ll. We proceed by induction on j.
Let 5 > 1. We have

k-1
J—1

LF =linkpe (v5) =linkger , (4,1 (7) = delimi () (j—1) = del pr1(y5-1) = D
i1 pk_, pk_, i—2

where the combinatorial equivalence is ensured by linkx 2(fyj) ~ L?_l ~ D;“:%. Moreover, the third
k
equality holds because, for every G € A and F € linka(G), we have linkge), (r)(G) = deljji, (q) (F). We

have to verify that for j = 1,2,3, v; is a shedding face of D;-[l. Here is a proof:



5

e Let FF = [n]\ S be a facet of Ay = D containing 7;. Let w € ;. We claim that there exists
s € S such that {s,w} ¢ A?. In fact, SN~; # 0 for some j > 2, otherwise U?:z v; € F. Let r be
the free ridge of Cy. Hence S C rU~; and S N7y # (), a contradiction. Let v € S\ {s} and we
have (F \ {w}) U {v} € Ay, because (S \ {v}) U {w} ¢ CI(AZ).

e Let F' = [n]\ S be a facet in D¥ containing 2. Let w € 2. Notice that SNy, # 0. Let s € SNy,
and consider v € S\ {s}. We have (F\ {w}) U {v} € D}. In fact, (S \ {v}) U {w} ¢ CI(A2),
because {s,w} ¢ A%, and [(S\ {v}) U{w}] N~y # 0.

e Let F = [n]\ S be a facet in D} containing 3. Let w € v3. Notice that SNy, # 0 and SNy # 0.
Let s; € SN;, for i = 1,2, and consider v € S\ {s1,52}. We have (F\ {w}) U {v} € D5. In fact,
(S\ {v}) U{w} ¢ CI(A2), because {s1,s2} ¢ A7, and [(S\ {v}) U{w}] N~ # 0, for i = 1,2.

Now we are ready to conclude.
Since L? ~ D;.“:ll, the complexes Lf are 4-decomposable for 1 < j < 3, by the inductive assumption.
The unique minimal non-faces of D]?f are {v1,72,73}, because the set of facets of D’g is

{[W\ S €Ay [S]=3,[5N7[=1,7=1,2,3}.

Since {71, y2,73} are disjoint, then Dé“ is vertex-decomposable by Lemma 4. Hence Ay, is 4-decomposable,
as desired. O

Remark 5. By the work of Bidgeli, Faridi [7] and Nikseresht [22] there cannot be any 0-decomposable
counterexample to Conjecture A. To see this, recall that the d-closure of a pure d-dimensional simplicial
complex A (see [7, Definition 2.1]) is exactly the clique complex CI(A). Hence, by [7, Proposition 2.7]
and [7, Theorem 3.4], the following properties are equivalent:

e A is ridge-chordal;

e CI(A) is d-chordal, in the sense of Bigdeli-Faridi [7, Definition 2.6];

e CI(A) is d-collapsible, in the sense of Wegner [26].
Now, let A be a complex such that the Alexander dual of CI(A) is 0-decomposable. By [7, Theorem 5.2],
the complex CI(A) is d-chordal; so by the equivalence above, A is ridge-chordal and Conjecture A holds.
En passant, this also explains why Conjecture A is equivalent to [7, Question 6.3]. Our complex A3 of
Figure 1 is not ridge-chordal, so in particular C1(A3) is not 2-chordal.

Remark 6. In the literature, the problems we discussed are often phrased in terms of “clutters”. Let
d > 1 be an integer. A d-uniform clutter C is the collection of the facets of a pure (d — 1)-dimensional
simplicial complex I'c. Denote by I(C) the edge ideal of C. Let C be the clutter with vertices 1,...,n
whose edges are the (d — 1)-dimensional non-faces of I'c. It is easy to see that the edge ideal of C is the
Stanley—Reisner ideal of C1(I'¢). Moreover, the ridge-chordality of I'¢ is equivalent to the chordality of C,
as defined in [8]. With this terminology, Conjecture A can be rephrased as

“For d > 2, if C is a d-uniform clutter such that 1(C) has linear quotients, then C is chordal.”
Theorem A, forgetting the constructibility and the 4-decomposability claims, could be then stated as

“Infinitely many 3-uniform clutters C such that I(C) has linear quotients, are not chordal.”

Remark 7. Ridge-chordality was introduced in [8] with the goal to extend Froberg’s characterization of
the squarefree monomial ideals with 2-linear resolutions [21]. This notion was also implicit in [4, Section
6.2] and [15]. Several other higher-dimensional extensions of graph chordality exist in the literature: see

for instance [1], [20], [25], [27]. A weakening of ridge-chordality is the demand that I(A) have a linear



6

resolution over any field [8, Theorem 3.2], where A is the complex whose facets are the d-dimensional
non-faces of A. As shown by [7, Example 4.8] or by our complex A3 of Figure 1, some complexes satisfying
this property are not ridge-chordal. En passant, this clarifies what is new in Proposition 3: examples
of constructible and even shellable non-ridge-chordal complexes were previously known, but they are not
contractible, see for instance [11, Exercise 7.37, pag. 277]. Examples of contractible non-ridge-chordal
complexes were also known, like [7, Example 4.8], but they are not constructible.

Remark 8. Let A be a pure d-complex on n + 1 vertices such that dim A = dim C1(A). We claim that
if the Alexander dual of CI(A) is shellable, then the shelling extends to the (n — d — 1)-skeleton of the
n-simplex. In fact, all the minimal non-faces of CI(A) have cardinality d+ 1. Hence the Alexander dual A
of CI(A) has dimension k — 1, where k = n — d. Moreover, the (k — 2)-skeleton of A is the (k — 2)-skeleton
of the n-simplex. By contradiction, let N be a minimal non-face of A, with |[N| < k. Then [n+ 1]\ N is
a facet of CI(A) of cardinality |[n+ 1] — N|=n+1—|N|>n+1—k=d+ 1 and dim CI(A) > d. This
implies that all the missing facets of A of dimension k£ — 1 can be attached along their whole boundary to
extend the shelling.

3. OPEN PROBLEMS

We conclude proposing two questions:
Question 9. Is it true that the Alexander dual of CI(A¢) is 2¢-decomposable?

Question 10. If both A and the Alexander dual of C1(A) are shellable, is it true that A is ridge-chordal?
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