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Abstract. A recent conjecture that appeared in three papers by Bigdeli–Faridi, Dochtermann, and

Nikseresht, is that every simplicial complex whose clique complex has shellable Alexander dual, is ridge-

chordal. This strengthens the long-standing Simon’s conjecture that the k-skeleton of the simplex is

extendably shellable, for any k. We show that the stronger conjecture has a negative answer, by exhibiting

an infinite family of counterexamples.

1. Introduction

Shellability is a property satisfied by three important families of objects in combinatorics, namely,

polytope boundaries [28] (see also [2]) and order complexes of geometric lattices [10]. Moreover, skeleta of

shellable complexes are themselves shellable [13]. Extendable shellability is the stronger demand that any

shelling of any full-dimensional subcomplex may be continued into a shelling of the whole complex. This

property is less understood than shellability, and much less common. It is easy to construct polytopes

that are not extendably shellable [28]. In 1994 Simon conjectured that, for any integer 0 ≤ d ≤ n, the

d-skeleton of the n-simplex is extendably shellable [24, Conjecture 4.2.1]. For d ≤ 2 this was soon proven

by Björner and Eriksson [12], but for 3 ≤ d ≤ n− 3 the conjecture remains open.

Recently Bigdeli et al. [9] and Dochtermann et al. [16] established Simon’s conjecture for d ≥ n − 2,

showing also that shellability is equivalent to extendable shellability for d-complexes with up to d + 3

vertices [16]. Their approach is based on a higher-dimensional extension of the graph-theoretic notion of

chordality, called ridge–chordality, which we recall below. Given a d-dimensional pure simplicial complex

∆, any (d − 1)-dimensional face of it is called a ridge. “Deleting above a ridge” of ∆ means to consider

the simplicial complex whose facets are the facets of ∆ not containing that ridge. A clique of ∆ is any

subset V ⊆ [n] such that all subsets of V of size d+ 1 appear among the facets of ∆. For example, if ∆

is the graph {12, 23, 13, 14}, then 1, 12 and 123 are cliques, whereas 124 and 1234 are not.

A pure d-dimensional simplicial complex ∆ is called ridge-chordal if ∆ = ∅ or if it can be reduced to

the empty set by repeatedly deleting above a ridge r such that the vertices of the star of r form a clique

[8]. One can see that “ridge-chordal 1-complexes” are precisely the graphs admitting a perfect elimination

ordering, i.e. graphs in which every minimal vertex cut is a clique; by Dirac’s theorem, these are precisely

the “chordal graphs”, the graphs where every cycle of length at least four has a chord [17].

Now, let Cl(∆) be the “clique complex” of ∆, i.e., the simplicial complex whose faces are the cliques

of ∆. This Cl(∆) is a simplicial complex of dimension at least d, with the same d-faces of ∆ and the same

(d− 1)-faces of the n-simplex. The following conjecture appeared naturally, in several recent works:

Conjecture A ([7, Question 6.3], [18, Conjecture 4.8], [22, Statement A]).

If the Alexander dual of Cl(∆) is shellable, then ∆ is ridge-chordal.
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There are three reasons why Conjecture A is natural and of interest:

(1) As explained by Bigdeli et al. [9, Corollary 3.7] and [22, Corollary 4.16], Conjecture A directly implies

Simon’s conjecture, cf. Remark 6.

(2) The conjecture is true if one slightly strengthens the assumption “shellable” into “vertex-decomposable”.

This fact is proven in the pure case by Nikseresht [22, Theorem 3.10], and in full-generality by Bigdeli–

Faridi [7, Theorem 5.2]; see also Remark 5 below. Also, Conjecture A holds for dim∆ = 1.

(3) Some partial converse holds: If ∆ is ridge-chordal, then the Alexander dual of Cl(∆) is Cohen–

Macaulay over any field [8, Theorem 3.2], although not necessarily shellable or constructible [8,

Example 3.14].

The purpose of this short note is to strongly disprove Conjecture A:

Theorem A. For any k ≥ 2 there is a constructible 2-dimensional complex ∆k that is not ridge-chordal,

such that the Alexander dual of Cl(∆k) is pure (5k−2)-dimensional, shellable, and even 4-decomposable.

Theorem A provides a non-trivial class of complexes that are 4- but not 0-decomposable (cf. Remark 5)

in arbitrarily high dimension. This infinite family does not disprove Simon’s conjecture, because the

shelling of the Alexander dual of Cl(∆k), which is (5k − 2)-dimensional on 5k + 2 vertices, does extend

to a shelling of the (5k − 2)-skeleton of the (5k + 1)-simplex, as we will see in Remark 8.

2. Construction of the counterexamples

Recall that the link and the deletion of a face σ ∈ ∆ are defined respectively by

link∆(σ) := {τ ∈ ∆ : σ ∩ τ = ∅, σ ⊆ F ⊇ τ for some facet F} and del∆(σ) := {τ ∈ ∆ : σ 6⊆ τ}.

We say that a face σ in a pure simplicial complex ∆ is shedding if del∆(σ) is pure of dimension dim∆. An

equivalent formulation (see for instance [27, Definition 3.1]) is the following: σ is shedding if and only if for

every face F ∈ ∆ such that σ ⊆ F and for every v ∈ σ, there exists w /∈ F such that (F \ {v})∪{w} ∈ ∆.

A pure simplicial complex ∆ is k-decomposable if ∆ is a simplex or if there exists a shedding face σ ∈ ∆

with dimσ ≤ k such that link∆(σ) and del∆(σ) are both k-decomposable [23]. It is easy to see that if ∆

is k-decomposable then it is also t-decomposable, for every k ≤ t ≤ dim∆. The notion of k-decomposable

interpolates between vertex-decomposable complexes (which are the same as 0-decomposable complexes)

and shellable complexes (which are the same as d-decomposable complexes, where d is their dimension).

We start with a Lemma that is implicit in the work of Bigdeli–Faridi [7]. Recall that a free face in a

simplicial complex ∆ is a face strictly contained in only one facet of ∆.

Lemma 1. Let r be a ridge of a pure d-dimensional simplicial complex ∆, with d ≥ 1. Let S be the set

of vertices of Star(r,∆). Then S ∈ Cl(∆) ⇐⇒ r is a free face in Cl(∆).

Proof. ⇒: If r lies in two facets F1 and F2 of Cl(∆), then Fi = r ∪ Si for some Si ⊆ [n]. Since F1, F2 ∈

Cl(∆), for every s ∈ S1 ∪ S2 we have r ∪ {s} ∈ ∆. So r ∪ (S1 ∪ S2) ⊆ S is a clique of ∆. Since

r ∪ S1 and r ∪ S2 are both facets of Cl(∆), we have S1 = S2, whence F1 = F2.

⇐: Let F be the unique facet of Cl(∆) that contains r. Were there a vertex s of S outside F , we would

have r ∪ {s} ∈ ∆ ⊆ Cl(∆); so there would be G ∈ Cl(∆), G 6= F , such that r ∪ {s} ⊆ G, a

contradiction. Hence S ⊆ F and S ∈ Cl(∆). �
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Lemma 4. Let ∆ be a pure simplicial complex on [n]. Suppose that the minimal non-faces N1, . . . , Nt of

∆ have the property that Nj ∩Nh = ∅ for every j 6= h. Then ∆ is vertex-decomposable.

Proof. Let m := max{|Ni|}1≤i≤t and V := [n] \
⋃t

i=1Ni. If m = 1, then |Ni| = 1 for every 1 ≤ i ≤ t. So

∆ =

{

{∅} if V = ∅

a simplex if V 6= ∅.

Either way, ∆ is vertex-decomposable and we are done. Now suppose m > 1 and denote by ∂Ni the

boundary of a simplex on the vertices of Ni. Then

∆ =

{

∂N1 ∗ · · · ∗ ∂Nt if V = ∅

V ∗ ∂N1 ∗ · · · ∗ ∂Nt if V 6= ∅,

where ∗ denotes the join of simplicial complexes on disjoint sets of vertices. Either way, ∆ is the join

of vertex-decomposable complexes, hence vertex-decomposable. �

Proof of Theorem A. Let k ≥ 2 and let Ak be the Alexander dual of Cl(∆2
k). Since all minimal non-

faces of Cl(∆2
k) have dimension 2, this Ak is pure (5k − 2)-dimensional, with n := 5k + 2 vertices and

(

5k+2
3

)

− 13k facets. Let γj be the set of vertices in the j-th copy of C2 that do not belong to the free

face. Then [n] \ γj is not in Cl(∆2
k), because dim([n] \ γj) = 5(k − 1) + 1 > 2 = dimCl(∆2

k). So γj ∈ Ak,

for all 1 ≤ j ≤ k. Define

Dk
0 := Ak, Dk

j := delDk
j−1

(γj), and Lk
j := linkDk

j−1

(γj), for 1 ≤ j ≤ k.

If j > 1 and t ≥ j, we have γt ∈ Dk
j−1, because γh 6⊆ γt, for every h ≤ j − 1. Moreover, if k > 2,

γj−1∪γj ∈ Dk
j−2, i.e. γj−1 ∈ linkDk

j−2

(γj), because dim([n]\ (γj−1∪γj)) = 5(k−2)+1 > 2 = dimCl(∆2
k).

We are going to show that Ak is 4-decomposable by induction on k ≥ 2. Let k = 2. We checked using

[14] that D2
1 and D2

2 are pure 8-dimensional. Moreover, we checked that L2
1 ' L2

2 ' A1, where A1 is the

Alexander dual of Cl(C2). The reader may verify that a shelling for such 3-complex is

[4, 5, 6, 7], [3, 5, 6, 7], [2, 4, 6, 7], [1, 4, 6, 7], [1, 3, 6, 7], [1, 2, 6, 7], [3, 4, 5, 7], [1, 3, 5, 7],

[1, 2, 5, 7], [2, 3, 5, 7], [2, 3, 4, 7], [1, 2, 4, 7], [3, 4, 5, 6], [2, 3, 4, 6], [2, 3, 5, 6], [1, 2, 5, 6],

[1, 3, 4, 6], [1, 2, 4, 6], [1, 2, 3, 6], [1, 3, 4, 5], [1, 2, 4, 5], [1, 2, 3, 4].

Since D2
2 is vertex-decomposable, it follows that A2 is 4-decomposable.

Now let k > 2. Notice that linkAk
(γj) ' Ak−1, for every j, where ‘'’ stands for ‘combinatorially

equivalent’. In particular, Lk
1 ' Ak−1. In general, we have Lk

j ' Dk−1
j−1 . We proceed by induction on j.

Let j > 1. We have

Lk
j = linkDk

j−1

(γj) = linkdel
Dk
j−2

(γj−1)(γj) = dellink
Dk
j−2

(γj)(γj−1) ' del
Dk−1

j−2

(γj−1) = Dk−1
j−1 ,

where the combinatorial equivalence is ensured by linkDk
j−2

(γj) ' Lk
j−1 ' Dk−1

j−2 . Moreover, the third

equality holds because, for every G ∈ ∆ and F ∈ link∆(G), we have linkdel∆(F )(G) = dellink∆(G)(F ). We

have to verify that for j = 1, 2, 3, γj is a shedding face of Dk
j−1. Here is a proof:
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• Let F = [n] \ S be a facet of Ak = Dk
0 containing γ1. Let w ∈ γ1. We claim that there exists

s ∈ S such that {s, w} /∈ ∆2
k. In fact, S ∩ γj 6= ∅ for some j ≥ 2, otherwise

⋃k
j=2 γj ⊆ F . Let r be

the free ridge of C2. Hence S ⊆ r ∪ γ1 and S ∩ γ1 6= ∅, a contradiction. Let v ∈ S \ {s} and we

have (F \ {w}) ∪ {v} ∈ Ak, because (S \ {v}) ∪ {w} /∈ Cl(∆2
k).

• Let F = [n] \S be a facet in Dk
1 containing γ2. Let w ∈ γ2. Notice that S ∩γ1 6= ∅. Let s ∈ S ∩ γ1

and consider v ∈ S \ {s}. We have (F \ {w}) ∪ {v} ∈ Dk
1 . In fact, (S \ {v}) ∪ {w} /∈ Cl(∆2

k),

because {s, w} /∈ ∆2
k, and [(S \ {v}) ∪ {w}] ∩ γ1 6= ∅.

• Let F = [n]\S be a facet in Dk
2 containing γ3. Let w ∈ γ3. Notice that S∩γ1 6= ∅ and S∩γ2 6= ∅.

Let si ∈ S ∩ γi, for i = 1, 2, and consider v ∈ S \ {s1, s2}. We have (F \ {w})∪ {v} ∈ Dk
2 . In fact,

(S \ {v}) ∪ {w} /∈ Cl(∆2
k), because {s1, s2} /∈ ∆2

k, and [(S \ {v}) ∪ {w}] ∩ γi 6= ∅, for i = 1, 2.

Now we are ready to conclude.

Since Lk
j ' Dk−1

j−1 , the complexes Lk
j are 4-decomposable for 1 ≤ j ≤ 3, by the inductive assumption.

The unique minimal non-faces of Dk
3 are {γ1, γ2, γ3}, because the set of facets of Dk

3 is

{[n] \ S ∈ Ak : |S| = 3, |S ∩ γj | = 1, j = 1, 2, 3}.

Since {γ1, γ2, γ3} are disjoint, then Dk
3 is vertex-decomposable by Lemma 4. Hence Ak is 4-decomposable,

as desired. �

Remark 5. By the work of Bidgeli, Faridi [7] and Nikseresht [22] there cannot be any 0-decomposable

counterexample to Conjecture A. To see this, recall that the d-closure of a pure d-dimensional simplicial

complex ∆ (see [7, Definition 2.1]) is exactly the clique complex Cl(∆). Hence, by [7, Proposition 2.7]

and [7, Theorem 3.4], the following properties are equivalent:

• ∆ is ridge-chordal;

• Cl(∆) is d-chordal, in the sense of Bigdeli-Faridi [7, Definition 2.6];

• Cl(∆) is d-collapsible, in the sense of Wegner [26].

Now, let ∆ be a complex such that the Alexander dual of Cl(∆) is 0-decomposable. By [7, Theorem 5.2],

the complex Cl(∆) is d-chordal; so by the equivalence above, ∆ is ridge-chordal and Conjecture A holds.

En passant, this also explains why Conjecture A is equivalent to [7, Question 6.3]. Our complex ∆2
2 of

Figure 1 is not ridge-chordal, so in particular Cl(∆2
2) is not 2-chordal.

Remark 6. In the literature, the problems we discussed are often phrased in terms of “clutters”. Let

d ≥ 1 be an integer. A d-uniform clutter C is the collection of the facets of a pure (d − 1)-dimensional

simplicial complex ΓC . Denote by I(C) the edge ideal of C. Let C be the clutter with vertices 1, . . . , n

whose edges are the (d− 1)-dimensional non-faces of ΓC . It is easy to see that the edge ideal of C is the

Stanley–Reisner ideal of Cl(ΓC). Moreover, the ridge-chordality of ΓC is equivalent to the chordality of C,

as defined in [8]. With this terminology, Conjecture A can be rephrased as

“For d ≥ 2, if C is a d-uniform clutter such that I(C) has linear quotients, then C is chordal.”

Theorem A, forgetting the constructibility and the 4-decomposability claims, could be then stated as

“Infinitely many 3-uniform clutters C such that I(C) has linear quotients, are not chordal.”

Remark 7. Ridge-chordality was introduced in [8] with the goal to extend Fröberg’s characterization of

the squarefree monomial ideals with 2-linear resolutions [21]. This notion was also implicit in [4, Section

6.2] and [15]. Several other higher-dimensional extensions of graph chordality exist in the literature: see

for instance [1], [20], [25], [27]. A weakening of ridge-chordality is the demand that I(∆) have a linear
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resolution over any field [8, Theorem 3.2], where ∆ is the complex whose facets are the d-dimensional

non-faces of ∆. As shown by [7, Example 4.8] or by our complex ∆2
2 of Figure 1, some complexes satisfying

this property are not ridge-chordal. En passant, this clarifies what is new in Proposition 3: examples

of constructible and even shellable non-ridge-chordal complexes were previously known, but they are not

contractible, see for instance [11, Exercise 7.37, pag. 277]. Examples of contractible non-ridge-chordal

complexes were also known, like [7, Example 4.8], but they are not constructible.

Remark 8. Let ∆ be a pure d-complex on n+ 1 vertices such that dim∆ = dimCl(∆). We claim that

if the Alexander dual of Cl(∆) is shellable, then the shelling extends to the (n − d − 1)-skeleton of the

n-simplex. In fact, all the minimal non-faces of Cl(∆) have cardinality d+1. Hence the Alexander dual A

of Cl(∆) has dimension k−1, where k = n−d. Moreover, the (k−2)-skeleton of A is the (k−2)-skeleton

of the n-simplex. By contradiction, let N be a minimal non-face of A, with |N | < k. Then [n+ 1] \N is

a facet of Cl(∆) of cardinality |[n+ 1]−N | = n+ 1− |N | > n+ 1− k = d+ 1 and dimCl(∆) > d. This

implies that all the missing facets of A of dimension k− 1 can be attached along their whole boundary to

extend the shelling.

3. Open problems

We conclude proposing two questions:

Question 9. Is it true that the Alexander dual of Cl(∆d
k) is 2

d-decomposable?

Question 10. If both ∆ and the Alexander dual of Cl(∆) are shellable, is it true that ∆ is ridge-chordal?
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