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a b s t r a c t

We study the models submitted to round 12 of the Critical Assessment of protein Structure Prediction
(CASP) experiment to assess how well the binding properties are conserved when the X-ray structures
of the target proteins are replaced by their models. To explore small molecule binding we generate dis-
tributions of molecular probes – which are fragment-sized organic molecules of varying size, shape, and
polarity – around the protein, and count the number of interactions between each residue and the probes,
resulting in a vector of interactions we call a binding fingerprint. The similarity between two fingerprints,
one for the X-ray structure and the other for a model of the protein, is determined by calculating the cor-
relation coefficient between the two vectors. The resulting correlation coefficients are shown to correlate
with global measures of accuracy established in CASP, and the relationship yields an accuracy threshold
that has to be reached for meaningful binding surface conservation. The clusters formed by the probe
molecules reliably predict binding hot spots and ligand binding sites in both X-ray structures and reason-
ably accurate models of the target, but ensembles of models may be needed for assessing the availability
of proper binding pockets. We explored ligand docking to the few targets that had bound ligands in the X-
ray structure. More targets were available to assess the ability of the models to reproduce protein–
protein interactions by docking both the X-ray structures and models to their interaction partners in
complexes. It was shown that this application is more difficult than finding small ligand binding sites,
and the success rates heavily depend on the local structure in the potential interface. In particular, pre-
dicted conformations of flexible loops are frequently incorrect in otherwise highly accurate models, and
may prevent predicting correct protein–protein interactions.
! 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

1. Introduction

Protein structure prediction is both a scientific challenge and an
important application. The worldwide protein structure prediction
experiment called Critical Assessment of protein Structure Predic-
tion (CASP) has been providing an important platform for testing
various methods and exchanging ideas [1–6]. CASP is a large-
scale community experiment, conducted every two years. The
key feature is that participants make bona fide blind predictions
of structures. Information about soon-to-be experimentally deter-
mined protein structures is collected and passed on to registered
predictors [2]. During the past 26 years, CASP has monitored the

state of the art in modeling protein structure from sequence. Dur-
ing this period, there has been substantial progress in template-
based modeling of structure (using information from an evolution-
arily related structural template), template-free modeling, and
model refinement. Although CASP is essentially a competition, it
has introduced a new area of reproducibility and openness in com-
putational structural biology, and resulted an ever improving body
of predictive methods.

The evaluators of CASP have developed a large variety of predic-
tion quality measures [1–6] (see also https://predictioncenter.org/-
casp12/doc/help.html). The most important ones are GDT_TS
(GlobalDistanceTest_TotalScore), defined as GDT_TS = (GDT_P1 +
GDT_P2 + GDT_P4 + GDT_P8)/4, where GDT_Pn denotes percent
of residues under distance cutoff below nÅ, and GDT_HA (High
accurate GDT), defined as GDT_HA = (GDT_P0.5 + GDT_P1 + GD
T_P2 + GDT_P4)/4. The global distance test (GDT) scores are
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effective for the automatic evaluation of predictions as they reflect
absolute and relative accuracy of models for a wide range of target
difficulty. These measures focus on the accuracy of the backbone
atoms, but similar measures have been defined for side chain
atoms as GDC_SC (Global Distance Calculation for sidechains),
which uses a characteristic atom near the end of each sidechain
type (instead of CA’s) for the evaluation of residue-residue dis-
tance. A similar measure, GDC_ALL, takes into account the protein
all non-hydrogen atoms. The ranking of models is determined by
the CASP organizers using these measures.

One important problem the organizers of CASP have been strug-
gling with is to better define whether and in what types of applica-
tions will protein structure prediction be useful, or more generally,
to better describe the biological and functional relevance of CASP
predictions [7–9]. This problem is far from simple, since proteins
can act as enzymes, cell surface receptors, transporters, ion chan-
nels, agents in the immune system, and drug targets [10,11]. They
can also participate in genetic and metabolic regulation and in sig-
nal transduction [12]. Information on structure has varying impor-
tance in these applications, as the transition from structure to
function is generally not straightforward. In the previous CASP
rounds, the organizers sought to emphasize the biological implica-
tions of structure prediction by asking the authors providing the
experimental structures to describe their rationale for pursuing
structure determination [7–9]. Such information was given for
some targets, and ranged from interest in the oligomeric structure
of the protein, the positions of ligands in the experimental struc-
ture, and structural explanations of missense mutations associated
with disease [7]. However, the small number of responses from the
depositors limited the generality of the analysis.

In the recent CASP rounds, efforts have been devoted to explor-
ing whether the models can replace the X-ray structures in predict-
ing protein properties, primarily interactions with other molecules.
Dunbrack and coworkers [7] assessed the utility of the CASP11
results to perform quantifiable tasks related to biological function,
including (i) protein–protein docking, (ii) drug design (small ligand
docking), (iii) assessing the missense mutations. The part of their
study regarding protein–protein docking employed the ClusPro
program [13], while their main goal was to measure the Jaccard
similarity of contacts (Q score) in the ClusPro-modeled homodimer
with those in the experimental structure [7]. Regardless of the
measure of model accuracy (GDT_TS, RMSD, LDDT) most of the
models were not able to form the correct homodimer in any of
the top clusters produced by ClusPro. They also tested whether
the protein-small molecule docking programs SwissDock [14]
and Autodock Vina [15] were able to re-create a nitroreductase-
flavodoxin complex using the nitroreductase models submitted
by the CASP participants. For CASP12 the function evaluator team
examined nine sites with known ligand binding and nine sites that
were expected or were suggested by experimental authors for
small molecule binding [8]. The sites in the models and the X-ray
structures of the targets were compared in terms of their microen-
vironments, defined by a variety of physicochemical properties col-
lected over concentric spherical shells around selected functional
centers. It was found that the overall structural quality correlated
with functional utility, but the best-ranked predictions generally
did not have the best functional quality. The team also analyzed
features from protein assemblies of two targets that had active
sites in the protein–protein interface. Although focusing on bind-
ing rather than any property made these studies better defined,
binding site information was available only for a few targets, and
in CASP13 the investigators returned to the original idea of analyz-
ing functional and biological significance based on the descriptions
provided by the authors of the structures [9].

One of the unifying features of a protein function is the ability
to interact with other molecules in the cell, including small ligands,

proteins, DNA, or RNA. Thus, in this paper we focus on molecular
interactions and study essentially all targets of CASP12 to deter-
mine how well the models retain the surface properties that are
important for binding, either to small molecule ligands or to other
proteins. The motivation for focusing on CASP12 is that X-ray
structures have already been deposited in the Protein Data Bank,
and papers related to the structures have also been published for
many targets, which enables better understanding of the underly-
ing biology. We hope that our results will provide examples of
potential quality measures relevant to molecular interactions, as
such are not currently available in CASP. To explore the small
ligand binding properties of the target proteins and their models
we use a computational method based on protein mapping, also
known as solvent mapping. The method has been introduced by
Ringe and coworkers, who determined structures of target proteins
in aqueous solutions of several organic solvents by X-ray crystal-
lography [16,17]. Superimposing the resulting structures demon-
strated that the number of interactions between a residue and
the probes predict the importance of the residue for ligand binding.
In particular, the small organic ‘‘probe” molecules were found to
cluster at binding hot spots that provide major contributions to
the free energy of ligand binding [18–20]. The clustering of small
organic molecules at ligand binding sites can also be observed by
NMR, as demonstrated by Fesik and colleagues [21]. They showed
that the fragments cluster at ligand binding sites, and described
such regions as ‘‘hot spots on protein surfaces” [22]. The X-ray
and NMR based experiments formed the basis for fragment based
ligand design, an increasingly successful approach to drug discov-
ery [23,24].

The potential of X-ray structures and models of the CASP12 tar-
gets to bind small molecules will be explored using the FTMap pro-
gram, which was developed as a computational analogue of the
above protein mapping experiments [25,26]. We generate distribu-
tions of molecular probes around the target protein, and count the
number of interactions between each residue and the probes,
resulting in a vector of interactions we will call the binding finger-
print. The similarity between two fingerprints, one for the X-ray
structures and the other for a model of the protein, will be deter-
mined by calculating the correlation coefficient between the two
vectors. As will be described, we studied models for 51 regular tar-
gets, as well as models for 31 refinement targets, the latter were
selected for exploring methods designed to achieve higher predic-
tion accuracy. Based on the increased scale of the analysis we were
able to investigate the relationships between the conservation of
the binding surface and classical measures of model quality such
as GDT_TS. In addition to the global characterization of the protein
surface in terms of the probe-residue interactions we studied the
clustering of probes at specific sites, since such clusters provide
information on binding hot spots that can be related to specific
ligand binding. It will be shown that the clusters formed by the
probe molecules reliably predict binding hot spots and ligand bind-
ing sites in both X-ray structures and the models with reasonable
accuracy, but ensembles of models may be needed for assessing
the availability of proper binding pockets. Unfortunately binding
site information was available only for nine CASP12 targets, con-
sidered the ‘‘holo” structures by Liu et al. [8], and hence the global
analysis based on the FTMap fingerprints is potentially more
important, since it can be applied to many targets.

The second property of interest is the ability of the models to
reproduce the protein–protein interactions observed in the X-ray
structures. As mentioned, Dunbrack and co-workers considered
this problem for a number of CASP11 targets [7]. Two factors
enabled us to make this approach somewhat more informative
when we apply it to the CASP12 targets. First, we have 23 regular
and 14 refinement targets that are subunits of multimeric struc-
tures, and in all cases the X-ray structures of the complexes have
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been deposited to the PDB. Thus, in addition to docking models to
the X-ray structure of the partner protein, we can also dock the
subunits extracted from the complex, and thus to determine
whether or not using models leads to a substantial drop in predic-
tion quality. Second, we used the accuracy measures established by
the CAPRI (Critical Assessment of Predicted Interactions) experi-
ment [27,28] and the widely used quality evaluation program
DockQ [29], which enabled us to determine the numbers of accept-
able, medium, and high accuracy docked structures. Using these
measures, we were able to compare our results to the usual success
rates observed in docking separately crystallized protein
structures.

2. Methods

2.1. Selection of regular targets for the analysis of surface binding

properties

The CASP12 competition was comprised of 77 regular targets.
However, for the analysis of the small molecule binding we consid-
ered only the regular targets that had experimentally determined
structures deposited in the Protein Data Bank (PDB) by March
2020, resulting in 51 targets (Table 1SI). The structure for each of
these 51 targets was identified by a BLAST search of the sequence,
provided on the CASP12 website, against the PDB. We note that
wherever possible we selected PDB structures that matched the
PDB code provided on the CASP12 website. Thus, a total of 26 reg-
ular CASP12 targets were removed from the analysis for either hav-
ing no experimental structure (T0867, T0871, T0874, T0875,
T0876, T0881, T0888, T0890, T0896, T0897, T0898, T0899, T0901,
T0905, T0906, T0913, T0923, T0934, T0941, T0946, T0947) or being
duplicates of previous targets (T0929, T0930, T0931, T0932,
T0933). Table 1SI also shows the query cover and percent identity,
both determined by BLAST, for each target sequence. With four
exceptions the sequence of the structure in the PDB covers at least
97% of the CASP sequence, and the percent identity exceeds 96%.
The experimental structures were frequently longer, and were
trimmed (if needed) to match the sequence of the target or target
domain.

The CASP12 assessment team ranked the submitted models
according to their GDT_TS. These rankings, along with other indi-
vidual score metrics are published on the CASP12 website
(https://predictioncenter.org/casp12/index.cgi) for each target.
For the analysis described in this paper, we considered only the
models ranked 1–5 by GDT_TS, and refer to them as the Top 1,
Top 2, etc. models throughout the paper. In the case of a tie (i.e.
two or more models with the same rank in the top 5), we consid-
ered the top 5 models listed in the CASP12 results file. For example,
T0863 has an 11-way tie for rank 4, so the top 5 models for T0863
are taken as Rank 1, 2, 3 and the first two targets listed as rank 4. In
addition, if duplicate models existed in the top 5, defined by having
equivalent GDT_TS, GDT_HA and GDC_SC to two significant digits,
the duplicate was removed and subsequently ranked models were
added to comprise the top 5 unique models for the target.

2.2. Selection of refinement targets for the analysis of surface binding

properties

The organizer of CASP selected 42 refinement targets to test
whether the quality of initial models can be further improved.
The goal was to select interesting targets but discard cases where
the experimental structure is dictated by extensive multimeric
interactions, or where submitted models are already good and
not much room is left for refinement [30]. To assess the impact
of refinement on surface binding properties we considered these

refinement targets separately. Using the sequences provided by
the CASP12 website for the refinement targets, we identified 31
structures by BLAST searches of the refined sequences against the
PDB; the query coverage and percent identity recorded correspond
to the structure listed as the PDB ID in Table 2SI. We note that the
regular and refinement targets are identified as T0 and TR, respec-
tively, in front of the target ID. A total of 11 CASP12 refinement tar-
gets were removed from the analysis for having no experimental
structure deposited in the PDB (TR874, TR875, TR876, TR881,
TR890, TR896, TR898, TR901, TR905, TR913, TR947). To focus on
the well-defined regions of the target structures, CASP organizers
further trimmed many of the refinement targets. For example,
the regular target T0862 has 239 residues (see Table 1SI), but the
refinement target TR862 has only 101 residues (Table 2SI). Thus,
the experimental structure (Chain B of the PDB structure 5J5V)
was trimmed accordingly for this case, and all similar cases.

2.3. Selection of homologs for the analysis of surface binding properties

To establish a baseline for how surface properties are conversed
between homologs, we searched for homologs of the CASP12 tar-
gets published in the PDB. We performed this search by running
mmseqs2 on the CASP12 reference PDB (listed in Table 1SI), and
selected structures with high sequence similarity (generally
>90%), and good query coverage [31]. We manually checked and
trimmed the structures to make sure they properly aligned to the
target X-Ray PDB structure. In these manual alterations, homolo-
gous structures for targets T0866, T0892 and T0914 were trimmed
to match the target sequence. One homologous structure for T0859
(5LQP) was removed due to low resolution – it is a CryoEM recon-
struction of a homo-180-mer with 6 Å resolution. Additionally, one
homologous structure for target T0907 was removed (6EY6_A)
because the structure was missing one domain of the protein (resi-
dues 217–319). Homologous structures for T0948 were also
removed (5TIB_A, 5TJ2_A, 5TJ4_A) because they were missing coor-
dinates for residues 1372–1382, a loop critical for binding site
detection. Finally, for T0866, a homolog (6TS8_A) was removed
because it has a cysteine mutation (177G to 177C) that signifi-
cantly impacted binding site detection near the mutation [32]. In
total, we evaluated 51 homologs for CASP12 targets in the PDB.

2.4. Targets for testing protein–protein interactions

To investigate whether the models can be used to reproduce
observed protein–protein interactions we selected the 17 targets
that interacted with a different chain - wherever possible, we used
the PDB structures shown in Table 1SI. These targets included 6
homo-dimers, 3 homo-trimers, 2 homo-tetramers, 4 hetero-
dimers, one hetero-trimer, and one hetero-tetramer with the
A2B2 stoichiometry. In each case we focused on the interaction
between the chain that defined the target and the rest of the inter-
acting protein in the PDB structure, resulting in 23 binary interac-
tions (see Table 3SI). The same method was applied to the
refinement targets, which provided binary interfaces for an addi-
tional 14 targets.

2.5. Generating binding fingerprints using the FTMap program

The FTMap program globally samples the conformations of 16
different molecular probes (ethanol, isopropanol, isobutanol, ace-
tone, acetaldehyde, dimethyl ether, cyclohexane, ethane, acetoni-
trile, urea, methylamine, phenol, benzaldehyde, benzene,
acetamide, N,N-dimethylformamide) on a dense grid around the
protein, generating over 70,000 conformations for each probe type
[26,33]. FTMap has been developed as a computational analog of
the experimental technique called Multiple Solvent Crystal Struc-
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tures (MSCS), which involves determining X-ray structures of a tar-
get protein in aqueous solutions containing high concentrations of
organic co-solvents, and then superimposing the structures to find
consensus binding sites that accommodate a variety of the organic
probes. Ringe and coworkers have shown that such consensus sites
identify hot spots that provide major contributions to the binding
free energy, and that the number of probes interacting with speci-
fic regions of the proteins represent the importance of the region
for ligand binding [16,17]. The fast Fourier transform (FFT) correla-
tion method makes the global grid sampling computationally fea-
sible [33]. The energies of the protein-probe interactions are
evaluated using an energy function that includes molecular
mechanics, continuum electrostatics, and structure based empiri-
cal energy terms. For each probe type the 2000 lowest energy
docked structures are retained for further analysis. The retained
structures are minimized using the CHARMM energy function
[34] with the analytical continuum electrostatics (ACE) term [35],
allowing for the flexibility of the probes and of protein side chains.
The resulting probe positions are used both for describing the
binding properties of the entire protein surface and for determin-
ing binding sites (see below). For each structure, the binding fin-
gerprint is calculated as the number of probe-residue contacts
associated with each residue, where a residue and a probe are con-
sidered to be in contact if any probe atom is within 3 Å of any atom
of the residue. Since the experimental structure deposited in the
PDB often varies slightly (typically by a few residues) from the
given CASP sequence, we align the two sequences using the
Needleman-Wunsch algorithm [36] with the Gonnet substitution
matrix [37]. Gaps are represented in the fingerprint with zero
probe-residue contacts. Two fingerprint vectors are compared sim-
ply via calculation of the Pearson correlation coefficient (denoted
as PCC in the rest of the paper).

2.6. Determining binding hot spots and ligand binding sites

After calculating the binding fingerprints, the 2000 lowest
energy docked positions generated by FTMap for each of the 16
probes are clustered, and the clusters are ranked on the basis of
the average energy [26]. The six lowest energy probe clusters of
each probe type are retained, and clustering is performed once
more on the clusters of all probe types to form consensus clusters,
which are ranked by the number of included probe clusters. It was
shown that such consensus clusters identify the locations of bind-
ing hot spots, which are the regions with the highest contribution
to the binding free energy [26], and provide information on the
potential druggability of the protein [38]. Although this algorithm
includes heuristic elements, its results have been rigorously tested
in a large number of applications [39–45]. We note that the probes
used by FTMap vary in size, and mostly consist of polar and nonpo-
lar moieties [26]. It was observed that the ligand binding regions
generally exhibit mosaic-like arrangement of polar and nonpolar
patches that enable the binding of multiple probes [41], and hence
the clustering of probe clusters mostly occur at such locations, sub-
stantially reducing the possibility of false positives [26]. We have
also shown that the 16 probes we currently use provide reliable
information, and additional probes did not further improve the
prediction of binding hot spots.

Merging hot spots that are close to each other yields high accu-
racy prediction of ligand binding sites. This algorithm was imple-
mented in the FTSite server and is adapted for this study [46]. In
this analysis, the binding sites are simply ranked by the number
of probe clusters in the binding site. Nine CASP12 targets in the
PDB have been either co-crystallized with small ligand molecules
or information on binding site residues was available, and we will
use the mapping to determine whether the binding sites of these
ligands can be found both in the X-ray structures and in the mod-

els. We note that the results presented in this paper were obtained
by a command line version of the FTMap and FTSite programs [47],
and the specific clustering and ranking of the binding sites may
slightly differ from those produced by the FTMap and FTSite web
servers. The command line version was used to accommodate
the large number of mapping jobs required to assess the CASP12
targets, their homologs, and their 5 highest ranked models, 543
structures in total.

2.7. Docking of small ligands to proteins

As will be discussed, structures co-crystallized with small
ligands were available only for a few targets. Nevertheless, we
explored docking of such ligands to the X-ray structures and to
the models of the receptor proteins to investigate the relationship
between model quality and the accuracy of binding pose predic-
tion. All docking calculations were performed by using AutoDock
Vina 1.12 [15]. For each target we docked the ligand to the X-ray
structure of the receptor extracted from the protein–ligand com-
plex in the PDB, and to the 30 models with the highest GDT_TS
scores. In preparation for the docking, all inorganic molecules, such
as water molecules or ligands, were removed, and the protein
structures were prepared using AutoDockTools (ADT) 1.5.7 [48]
to add hydrogen atoms and to create PDBQT format files required
for AutoDock Vina. Ligand structures for the docking simulations
were generated based on the SMILES description given in the
PDB, and the ligands were considered flexible - hydrogen atoms
were added by using OpenBabel 2.4.0 and then manually adjusted
to pH 7 [49]. The resulting structures were processed by ADT to
generate PDBQT format files that were used in all docking calcula-
tion for the given target. Docking was restricted to a box with 15 Å
sides, centered at the geometric center of ligand atoms in the crys-
tal structure. However, it is generally also possible to define the
‘‘docking box” around the center of the strongest hot spot. Indeed,
as will be further discussed, for all targets selected for ligand dock-
ing in this paper the ligand binding site was identified as the top
binding site by FTMap. Thus, for cases where the ligand-binding
location is unknown it would be useful to center the box over
the predicted FTMap binding sites. AutoDock Vina parameters
were set to default, apart from the exhaustiveness parameter that
was increased from the default value of 8–10 to search the space in
the box more exhaustively. The program samples and clusters the
binding poses of the ligand, and returns the representative struc-
ture for each cluster. We used DockRMSD [50] to calculate the
RMSD values of the representative structures by taking the ligand
in the X-ray structure for reference.

In addition to AutoDock Vina, the small ligands were also
docked to the three targets using a template-based method called
ClusPro LigTBM [51], which was one of the best performing meth-
ods in the blind small-molecule docking competition Drug Design
Data Resource (D3R) Grand Challenge. The method is based on the
observation that high resolution structures of all major protein
families are available in the Protein Data Bank, and the active cen-
ters of many of these structures contain low-molecular-weight
substrates, inhibitors, or other assorted ligands. This structural
information is used to perform template-based pose prediction
by searching the PDB for known complexes containing a ligand
sharing common substructure with the target and bound to a
remotely-homologous protein. The target ligand is initially posi-
tioned based on the template and then refined using Monte Carlo
minimization with a molecular-mechanics force field.

2.8. Protein-protein docking by ClusPro

As described, we selected the complexes in the PDB that
included any CASP12 target, and performed two types of docking
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calculations. First, we removed the chain representing the target,
trimmed it to agree with the sequence of the target in CASP, and
docked back to the rest of the complex. We used the biological
assembly listed on the PDB website for the complex after confirm-
ing it with PISA (see Table 1SI). Each X-ray structure was docked
twice. Once with the target chain as the ligand and the rest of
the complex as the receptor, and then again with the target chain
as the receptor and the rest of the complex as the ligand. The better
of the two results was retained. Second, the better performing
combination was used to carry out the same calculations using
the top 5 models of the target rather than the X-ray structure of
the target chain.

The docking was performed using our server ClusPro [13],
which includes the program PIPER as its docking engine [52]. PIPER
performs rigid body docking in the 6D space of rotations and trans-
lations. The 70,000 rotations we consider correspond to about 5
degrees in terms of the Euler angles. The step size of the transla-
tional grid is 1 Å. Although the program evaluates the energy for
billions of conformations, this can be efficiently done using fast
Fourier transforms. For this paper we used the balanced energy
coefficients as implemented in PIPER [52]. The 1000 lowest energy
docked structures were clustered using pairwise interface root
mean square deviation (IRMSD) as the distance measure. The
structures at the centers of the 10 largest clusters are considered
as the predictions of the complex, and are refined by local energy
minimization using the CHARMM potential [34].

The quality of docking results was assessed using the measures
introduced for CAPRI (Critical Assessment of PRedicted Interac-
tions), the community-wide docking experiment similar to CASP
[27]. In CAPRI three related parameters were used for assessing a
model: the fraction of native contacts, the backbone root mean
square deviation of the ligand (LRMSD) from the reference ligand
structure after superimposing the receptor structures, and the
backbone RMSD of the interface residues (IRMSD) [28]. Based on
these measures, the organizers of CAPRI defined four categories
of accuracy, which are incorrect, acceptable, medium, and high
accuracy. More recently a continuous score called DockQ was
developed that encapsulated the above three measures [29]. The
DockQ values range from 0 to 1, where a value exceeding 0.80
implies high accuracy, between 0.80 and 0.49 medium accuracy,
and between 0.49 and 0.23 acceptable accuracy. DockQ has been
widely accepted and hence is used in this paper.

3. Results

3.1. Analysis of binding surface conservation using binding fingerprints

Binding fingerprints were generated using FTMap for the
CASP12 targets with experimentally determined structures depos-
ited in the protein data bank (Tables 1SI and 2SI), and for the top 5
ranked models for each target. The similarity between the target
structure and each model was assessed by calculating the Pearson
correlation coefficient (PCC) of the two vectors. An example of a
target with highly correlated predicted structures is T0861.
Fig. 1A and B show, respectively, mapping results for the target
protein, chain A of cysteine synthase A of escherichia coli 536
(PDB ID 5J5V_A) [53], and that of the model T0861TS359_5, which
is ranked second by CASP but has the highest binding fingerprint
correlation with the X-ray structure (PCC = 0.87). The binding fin-
gerprints for the target and the model in Fig. 1C show the high level
of binding surface similarity. As shown in Fig. 1A, in the X-ray
structure most of the probes fall into one large binding area on
the protein. Part of this region is the active site of the enzyme,
which binds the C-terminal Gly-Tyr-Gly-Ile peptide tail of another
protein, tRNA nuclease CdiA (T0862, PDB ID 5J5V_B) [53]. The other

part of the binding region extends beyond the interface with T0862
and accommodates an L-peptide linker, a covalently bound ligand
[53]. The top 5 models for T0861 have very similar binding finger-
prints to that of the X-ray structure, with the average PCC of 0.79,
and thus this serves as an example where the surface properties of
the predicted structures closely match the real structure. In con-
trast, the mappings of the target T0921 and its model (Fig. 1D
and E, respectively), show a case where all five top ranked models
have very poor binding fingerprint correlation with the experimen-
tal structure (Chain A of 5AOZ), with the average PCC being 0.09.
The sequence for T0921 encodes a cellulosomal scaffold protein
that presents as a monomer, and the protein folds as an
immunoglobulin-like b – sandwich domain. The mapping places
several moderately strong hot spots in a shallow cavity between
two b strands in the X-ray structure. In the models a slightly mis-
predicted loop expands into this cavity and excludes the probes,
which become distributed in many places all over the protein sur-
face, resulting in the very poor correlation shown in Fig. 1F. The
highest ranked model by CASP (T0921TS220_2) for T0921
(GDT_TS = 70.65) has the lowest mapping correlation,
PCC = !0.08, and the binding fingerprint of the model is clearly
very different from that of the X-ray structure.

Fig. 2A shows the box plot of the binding fingerprint PCC values
for the top five models of the 51 CASP12 regular targets, ranging
from !0.11 to 0.87, with an overall mean PCC of 0.33 and standard
deviation of 0.24. The average GDT_TS and PCC values for the top
five models of each target are listed in Table 4SI. An interesting
question is whether refinement can improve the prediction of
binding properties and thus improve PCC values. As we described,
the refinement targets in CASP were based on regular targets, with
the initial models released for refinement. Fig. 2B shows the aver-
age PCC values of the top 5 models for the 31 refinement targets
and for the corresponding regular targets side-by-side. The average
GDT_TS and PCC values for the top five models of the refinement
targets are listed in Table 5SI. These results show a minor overall
improvement in the PCC values for the refinement targets (mean
PCC = 0.40, std = 0.27) relative to their regular counterparts (mean
PCC = 0.36, std = 0.24). According to a t-test, the difference is not
significant at the 5% level (p = 0.104), and the PCC histogram is only
slightly shifted toward higher values (Fig. 2C). Thus, while there
was only mild improvement collectively, some targets improved
significantly with refinement (i.e. 868, 887, 891, 893, 894, 942),
and others got worse (i.e., 872, 910, 948).

Before further discussion of similarity between X-ray structures
andmodels in termsof theirbindingsurfaces it is important toestab-
lish a baseline for howwell the fingerprints for independently deter-
mined experimental structures of the same protein correlate.
Therefore, we calculated the pairwise binding fingerprint correla-
tions for all CASP12 targets that had two or more experimentally
determined structures deposited in the PDB (see Fig. 3 and
Table 6SI). Between such structures the average binding fingerprint
PCC is 0.80 with standard deviation of 0.16 across the 51 homologs
evaluated. In the interest of creating a conservative guideline for
homolog surface property correlation, we suggest that binding fin-
gerprint PCC" 0.5 represents general surface property conservation
and is observed across most homologs in the PDB, as 49 of the 51
homologsweevaluatedmeet this threshold.Notably, the twohomo-
logs for target T0866 that fall below this threshold (6ZY2_A with
PCC = 0.29 and 6ZY9_A with PCC = 0.42) appear very similar to the
T0866referencePDB(5UW2),bothwithGDT_TS>85,butshowsome
different side chainorientations that appear tohavea large impactof
the surface properties (see Fig. 1SI). We note that such changes are
biologically relevant, andwe have observed in the past that changes
in protein conformation can dramatically affect the surface binding
properties (i.e. a kinaseDFG-in versusDFG-out conformation).How-
ever, acrossmost of the CASP12homologous structures,we see good
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conservation of binding sites, and therefore propose to roughly
equate this observation with a criterion of binding fingerprint
PCC " 0.5. Below this threshold, we observe significant differences
inthebindingpropertiesof thestructures,andwhilesuchdifferences
may be explained by biological conformational changes, they do not
seem common among the CASP12 targets evaluated here.While the
average PCC = 0.8 among homologs is higher than correlations

betweenX-ray structures andmodels, for 24of the51 regular targets
and for19of31refinement targets thebestPCCvaluesamongthe top
5 models exceed 0.5 (see Table 4SI and Table 5SI), demonstrating
fairly high level conservation of the binding surface in thesemodels.

One of the main goals of our study is to determine how the
accuracy measures used by CASP relate to surface binding proper-
ties described in terms of PCCs. Fig. 4A and B, respectively, show

Fig. 1. Examples of mapping CASP12 targets. (A) Mapping of the X-ray structure PDB ID 5J5V, chain A, of target T0861. The protein is shown as gray cartoon, and clusters of
probes molecules as colored sticks. (B) Mapping of the best model T0861TS359_5 of target T0861 with GDT_TS = 99.04. Notation is same as in (A). (C) Binding fingerprints for
the X-ray structure PDB 5J5V_A (black) and the model T0861TS359_5 (green). The binding fingerprint Pearson correlation coefficient (PCC) between the two fingerprints is
0.87. (D) Mapping of the X-ray structure PDB 5AOZ, chain A, of target T0921. (E) Mapping of the best model T0921TS220_2 of target T0921with GDT_TS = 70.65. (F) Binding
fingerprints for the X-ray structure PDB 5AOZ_A (black) and the model T0921TS220_2 (red), with PCC = !0.08. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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the PCC values for both the regular and the refinement CASP12 tar-
gets as functions of GDT_TS and GDT_HA, averaged over the top
five models for each target. For the regular targets the PCC values
are correlated with both GDT_TS and GDT_HA (R2 = 0.52 in both
cases). Since the refinement targets are in a narrower range of
the quality measures, the PCC values have somewhat weaker cor-
relations, R2 = 0.29 for both GDT_TS and GDT_HA. The two plots
are very similar, and hence we focus on the dependence of PCC val-
ues on GDT_TS as shown in Fig. 4A. The most important

observation is that to reach PCC = 0.5, the low threshold observed
for different structures of the same proteins, it is necessary to gen-
erate models with GDT_TS = 80 or higher. About 50% of models
above this threshold have PCC > 0.5. Among the targets with the
highest PCC values are the already discussed T0861, which has a
deep active site pocket that also binds a covalent ligand, and is
reproduced very well in all models. As will be discussed, targets
T0893/TR893 and T0873 also have bound ligands [8], and although
ligand information is generally not used in the modeling of the

Fig. 2. FTMap binding surface property conservation for CASP12 targets. (A) Box plots of binding fingerprint Pearson correlation coefficient (PCC) values for the top five
models of the 51 CASP12 regular targets. The yellow center-hash indicates the average PCC and the whiskers extend to capture the range of the data. (B) Box plots of binding
fingerprint PCC values for the top five models of the 31 CASP12 targets that have both regular and refinement versions. The PCC values for regular and refinement targets are
shown as black and gray boxes, respectively. (C) Histograms of PCC values for regular (light blue) and refinement (light green) targets. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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proteins, the surface properties are easier to model for proteins
that have well-defined ligand binding sites. In TR868 and TR894
the most likely explanation for the high PCC values is that these
proteins have large concave binding sites primarily determined
by regular secondary structures that are well reproduced in the
models. In TR868 (chain A of PDB ID 5J4A) the target is a tRNA
nuclease CdiA [54]. The main hot spot is in a deep cavity, sur-
rounded by four a-helices and a long loop. The pocket provides
the binding site for the protein CdiI [54], forming a complex with
the target in 5J4A. In the top 5 models the four helices essentially
overlap with the ones in the X-ray structure, resulting in both high
GDT_TS and PCC values. Although the loop partially covers the site
in the models, it does not prevent the binding of the small probes.
In TR894 the target is a very simple small domain, which consists
of a single a-helix on top of a 3-strand b-sheet, and the only strong
binding hot spot is located between these secondary structure ele-
ments. The site is correctly identified in all good models, which
again leads to both high GDT_TS and PCC. However, GDT_TS > 80
does not necessarily imply that the models correctly capture the
surface binding properties of the X-ray structure, and Fig. 4A shows
several targets that have only models with PCC values much lower
than 0.55 in spite of the high GDT_TS. As we just discussed, targets
with well-defined ligand binding sites or sites defined by invariant
secondary structure elements are likely to have models with
PCC > 0.55. In contrast, targets that have binding sites defined by
flexible loops or a largely featureless surface are likely to have
models with low PCC values. For example, in TR948 the probes
bind in a deep pocket at the end of three helices among loops. In
the models, the helices are slightly extended, and some of the
incorrectly predicted loops cover the entrance of the pocket, which
becomes inaccessible. Although the average GDT_TS = 80.8 is very
high, almost no probes can bind at the main binding pocket and
hence distribute in various shallow pockets on the protein surface,
resulting in the average PCC of !0.03.

While GDT_HA is a more demanding quality measure than
GDT_TS, Fig. 4A and B show that the PCC values depend very sim-
ilarly on the two measures, and hence we focus on GDT_TS, which
is used for ranking the CASP models. We have also studied the
dependence of PCC values on many different quality criteria intro-
duced for CASP, and expected that some of the measures will pro-
vide additional information. One such measure is GDC_SC (Global
Distance Calculation for sidechains), a GDT-like metric, which uses
a characteristic atom near the end of each side chain type instead
of a-carbons used in GDT_TS and GDT_HA, and is defined by

GDC_SC = 2*(k*GDC_P1 + (k ! 1)*GDC_P2 . . . + 1*GDC_Pk)/(k + 1)
*k, k = 10, where GDC_Pk denotes the percent of residues under
the distance cutoff # 0.5 kÅ. This measure is potentially relevant
since the surface binding properties depend on side chain confor-
mations. Nevertheless, the PCC versus GDC_SC plot (see Fig. 5A)
is similar to the PCC versus GDT_TS plot, indicating that the pri-
mary determinant of model quality is the accuracy of the back-
bone, even when considering the prediction of surface properties.
Another local measure is the LDDT (Local Distance Difference Test)
score [55]. The LDDT values were computed using the following
procedure: a list of pairwise nonbonded distances was generated
from the target protein structure. For each atom i, all atoms j not
part of the same residue as i and lying within 5 Å from i were con-
sidered as interactions partners of i. The cumulative list of i-j inter-
actions stemming from all atoms in the experimental protein
structure was taken as reference against which to score predic-
tions. Specifically, interaction distances in the protein structure
were compared with distances between corresponding atoms in
the predictions. If the difference between the two distances was
below a defined threshold, the interaction was considered to be
preserved in the prediction. The final LDDT-all score was computed
by averaging the fraction of correctly modeled interactions for the
following four distance difference thresholds: 0.5, 1, 2, and 4 Å (the
same thresholds as GDT_HA). Although the concept of LDDT sub-
stantially differs from that of GDT_TS and GDT_HA, according to
Fig. 5B the relationship between the binding fingerprint PCC and
LDDT provides limited additional information. Tables 7SI and 8SI,
respectively, list the GDC_SC, LDDT, and binding fingerprint PCC
values for the top 5 ranked models of the CASP12 regular and
refinement targets.

3.2. Conservation of binding sites in predicted structures

Previous functional assessment of CASP12 targets by Altman
and colleagues [8] identified nine targets where a ligand was co-
crystalized with the protein, and therefore had a known ligand-
binding site. For two targets (T0873 and T0910) the ligand was
not co-crystalized with the protein in the PDB structure currently
available, and the binding site was determined based on the bind-
ing residues identified by the authors of the structures and
described by Liu et al. [8]. FTMap was applied to all structures after
removing the ligands. The mapping, followed by the clustering of
the probes and probe clusters (see Methods) correctly identified
the ligand binding site as the strongest or second strongest hot

Fig. 3. Binding fingerprint PCC for CASP12 targets with multiple X-ray structures in the Protein Data Bank.
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spot region in eight of the nine targets (see Table 1, Fig. 6, and
Table 9SI). The exception, target T0863 (PDB ID 5SY1_A) encodes
a transmembrane protein, STRA6 [56], and provides a challenging
case both for structure and binding site prediction, due to the
hydrophobic nature of the protein and the binding pocket. All mod-
els are very poor with the best GDT_TS = 10.22, and average
GDT_TS = 9.86 (Table 3SI). With such poor models we cannot
expect meaningful binding site prediction. In addition, since
FTMap was developed for the analysis of soluble proteins [26], it
does not identify the cholesterol binding site located in the
protein-membrane interface [56]. However, in the other 8 targets
FTMap placed a substantial number of probe clusters at the ligand
binding site (note that in Table 1 ‘‘Probes” actually accounts for the
number of probe clusters). Since FTMap uses 16 different probe
types and retains the six lowest energy clusters for each [26], the
maximum number of probe clusters is 96, thus in most targets

the ligand binding site attracted close to 50% of all probe clusters
(see Table 1). In seven targets the site was the strongest (had the
highest number of probe clusters among all sites) and the second
strongest in T0879 co-crystallized only with a Zn2+ ion. In Table 1
we show the conservation of ligand binding sites in the models in
terms of an overlap measure, calculated as the total number of
probe clusters in the site found by mapping the model, divided
by the total number of probe clusters in the X-ray structure found
in the binding site overlapping with the ligand. Although the over-
laps vary among the top five models, the level of conservation is
fairly high. Fig. 6 shows each of the nine targets as a gray cartoon
and the predicted ligand-binding site as mesh, with the rank of the
site indicated by the color scheme shown in the figure. As men-
tioned, for target T0863 the predicted binding sites do not overlap
with the bound ligand, and for targets T0873 and T0910 no ligand-
bound structure is available in the PDB, but information was avail-

Fig. 4. Binding fingerprint PCC values versus GDT Scores. (A) Average PCC values for the 5 top ranked regular and refinement models vs. GDT_TS. (B) Average PCC values for
the 5 top ranked regular and refinement models vs. GDT_HA. Regular targets average PCCs are shown as black dots, standard deviations are shown as gray lines, and the linear
regression is shown as a black line. Refinement targets average PCCs are shown as green dots, standard deviations are shown as gray lines, and the linear regression is shown
as a green line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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able on the ligand binding residues, shown as green sticks in Fig. 6
[8]. Table 1 also shows that well-defined ligand binding site can be
identified even at moderate GDT_TS values around 60, since the
probes tend to cluster in large cavities. In Table 9SI we list the resi-
dues within 5 Å of the probes that define the binding site.

According to Fig. 4A, GDT_TS > 80 is required for PCC > 0.5, but a
high GDT_TS does not guarantee a high PCC, which is lower than
0.5 for about half of such targets. An example is target T0891
(PDB ID 4YMP), a bacillus anthracis Hal NEAT domain in complex
with heme. Although the average GDT_TS for the top five models
is 91.34, the average PCC value is only 0.38 (see Table 1SI and
Fig. 4A). The low PCC values are, in part, due to changes in the
heme binding site (discussed below), but are also due to the vari-
ations in surface properties due to changes in the conformations
of two loops in this protein (residues 1–9 and 63–69), both of
which have missing coordinates in the CASP12-given X-ray

structure, 4YMP_A. Table 1 shows that mapping of the X-ray
structure reveals a very strong heme binding site with 41 probe
clusters, and the site is also identified in models ranked 2, 3, and
4. However the top 1 and top 5 models show no heme binding
site at all, despite having very high GDT_TS scores (91.74 and
91.07, respectively). The top 5 models for target T0891 are very
similar, so the stark contrast in outcome of binding site
identification is surprising. However, the surface representation
in Fig. 7 shows that the heme binding site is too narrow in the
top 1 model, seemingly closing the site, which is completely
closed in the top 5 model. Thus, even very subtle local
differences in the binding pocket structure can change the
potential strength of the site. Importantly, because binding
pockets can change conformation, a closed binding site may still
bind ligands, but without alternative experimental structures or
molecular dynamics simulations we cannot comment on the

Fig. 5. Binding fingerprint PCC values versus GDC_SC and LDDT values. (A) Average PCC values for the 5 top ranked regular and refinement models vs. GDT_SC. (B) Average
PCC values for the 5 top ranked regular and refinement models vs. LDDT. Regular targets average PCCs are shown as black dots, standard deviations are shown as gray lines,
and the linear regression is shown as a black line. Refinement targets average PCCs are shown as green dots, standard deviations are shown as gray lines, and the linear
regression is shown as a green line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

M. Egbert, K.A. Porter, U. Ghani et al. Computational and Structural Biotechnology Journal 19 (2021) 2549–2565

2558



Fig. 6. Binding sites of CASP12 targets with ligands. The X-ray structure of each target (PDB IDs and ligand IDs are listed in Table 1) is shown as a gray cartoon, and the bound
ligand is shown in pink sticks. In target T0879 the pink dot represents the bound Zn2+ ion. The relevant ligand-binding sites are shown as mesh and color-coded according to
their rank (cyan > magenta > yellow > salmon). For targets with no ligand shown and T0879, the a priori known binding site residues are shown as green sticks. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

FTMap analysis of structures with known ligand binding sites.

target PDB ID ligand average
GDT_TS

average
PCC

X-ray structure probe cluster overlap (%) with binding site

rank probesa top 1 top 2 top 3 top 4 top 5

T0861 5J43_A LLPb 98.77 0.85 1 44 38.02 46.39 31.56 37.26 38.02
T0863 5SY1_A CLRc 9.86 0.07 – 0 0 0 0 0 0
T0873 6DA6_A FMNd 82.93 0.69 1 36 56.19 54.12 51.55 51.55 57.22
T0879 5JMU_A ZN 78.09 0.54 2 22 89.91 73.39 80.73 51.38 82.57
T0889 5JO9_A SOR 86.69 0.70 1 43 55.98 54.07 46.41 44.98 54.07
T0891 4YMP_A HEM 91.34 0.38 1 41 0 69.96 60.54 83.41 0
T0893 5IDJ_A ADP 60.74 0.60 1 51 84.42 32.25 52.9 31.16 47.1
T0910 6BDL_A ANPd 86.49 0.65 1 38 49.21 63.49 74.6 55.03 68.78
T0911 6E9N_A GCO 65.99 0.74 1 84 39.82 37.14 16.33 3.58 12.98

a The number of probe clusters in the binding site.
b L-peptide linking (covalent ligand).
c Binding at the protein-membrane interface.
d No ligand in the PDB structure, Binding site residues are based on information from the author of the target.
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existence of the binding site. The structure in T0891 was also given
as a refinement target in CASP 12, and the top 5 refinement models
have a profile similar to the unrefined target with all structures
GDT_TS > 90, but models 2 and 3 have very low binding site
overlap, 1.35% and 4.04%, respectively, whereas the other three
predictions have substantial overlap, 27.35%, 65.02%, and 52.02%.
Thus, both for the regular and the refinement targets multiple
models provide a conformational ensemble that can be used to
assess the availability of a binding site.

Protein mapping of the remaining seven holo targets show
ligand-binding sites identified across all 5 top predicted models,
see Table 1. While some model binding sites are weaker than the
X-ray binding site, we expected the latter to have better defined
binding sites since they were co-crystalized with the ligand.
Importantly, the presence of these binding sites shows promise
for the use of these high quality predicted structures, in the
absence of an experimental structure, to identify druggable bind-
ing sites [38], particularly when an entire ensemble of models
are available. However, as shown for target T0891, due to local
conformational variations a strong binding site may be seen in
some but not necessarily in all models. The conformational varia-
tion can substantially affect the docking of small ligands, to be dis-
cussed in the next section.

3.3. Docking of small ligands to proteins

Ligand docking calculations are meaningful only to three of the
nine ‘‘holo” structures in Table 1. In fact, targets T0873 and T0910
have no co-crystallized ligands in the PDB, T0863 binds cholesterol
at the protein-membrane interface and all models are of low accu-
racy, targets T0861 and T0891 have covalent ligands, the just dis-
cussed T0891 is a hemoprotein, with the iron of the heme group

coordinated by a Tyr side chain, and the ligand in T0879 is a Zn2+

ion. Since we exclude these targets, docking is limited to targets
T0889, T0893 and T0911. It is clear that no general conclusions
can be based on such few cases. However, since docking of small
molecules was explored in previous CASP functional evaluations,
we include these calculations here.

Target T0889 (PDB ID 5JO9) is a complex of sorbitol dehydroge-
nase from thermostable Bradyrhizobium japonicum and sorbitol
[57]. Sorbitol is a small molecule, and in such cases 2 Å RMSD is
considered a good docking result. As shown in Table 10SI, for the
X-ray structure the best RMSD is 2.04 Å, thus it is very close to
the native, and this structure is among the five lowest energy
docked structures provided by AutoDock Vina. The RMSD of the
lowest energy (Top 1) structure is 2.21 Å. Similar accuracy is
achieved for a number of models, with 3.04 Å as the average RMSD
of the best structures. Nevertheless, there is considerable variation
in accuracy among different models, and the RMSD of the best
structure can be as high as 5.27 Å (Table 10SI). The crystal struc-
ture indicates that the bound sorbitol is stabilized via hydrogen
bond interactions with the side chain of Glu150 and Ser140, and
the carbonyl groups in the backbone of Pro183 and Gly184. All
30 models for this target have high GDT_TS (average value is
85.09), and the backbone and even the Ser140 side chain show
only very small deviation from the X-ray structure. Thus, the vari-
ation in the position of the ligand is entirely due to the variation in
the position of the Glu150 side chain, and it follows that there is no
observable correlation between either the GDT_TS or the PCC val-
ues and the accuracy of the docking. This observation will be dis-
cussed further in this section.

Target T0893 is a complex of a bifunctional histidine kinase and
ADP (PDB ID 5IDJ) [58]. ADP is much bigger than sorbitol and has
five rotatable bonds. In addition, the binding site of the protein

Fig. 7. Protein mapping results of target T0891 structures, with heme overlaid. The X-Ray structure (PDB ID 4YMP) is shown in gray, and is co-crystalized with heme, shown
as pink sticks. The structure of the model (red/green) is overlaid along with the binding site identified in the model, and the placement of the heme molecule, for reference.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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in the X-ray structure includes a bound magnesium ion, which is
removed prior to docking. Nevertheless, docking to the X-ray struc-
ture yields 1.89 Å RMSD as the top (lowest energy) docked struc-
ture (Table 11SI). The high accuracy is mostly due to the fact that
the kinase has a well-defined binding site, and ADP is stabilized
by nine hydrogen bonds. However, the top 30 models have only
the average GDT_TS of 58.0, with substantial variations of two
loops around the binding site. Accordingly, the accuracy of the
docked structures also vary. The average RMSD of the best struc-
tures is 4.1 Å, and the average RMSD of the lowest energy struc-
tures is 5.41 Å, both about is 1 Å higher than for target T0889.
The RMSD of some lowest energy structures reaches 7.96 Å. Com-
paring these results with those for T0889 emphasizes that substan-
tially higher accuracy of models leads to better docking results.
However, the latter are affected by local conformational changes,
and hence relatively small differences in GDT_TS do not predict
the differences in docking results.

Target T0911 (PDB ID 6E9N) is a complex of an escherichia coli

D-galactonate transporter and D-gluconic acid [59]. The models
have the average GDT_TS of 63.79. The added complexity of the
target is that the protein has been crystallized in the presence of
nonyl beta-D-glucopyranoside molecules, and one of these com-
pounds binds close to the D-gluconic acid ligand. The results of
docking the ligand to the X-ray structure are poor, 5.29 Å and
6.69 Å for the RMSD of the best and the lowest energy structures,
respectively (Table 12SI). The possible explanations for this large
error are that the bound D-gluconic acid in the X-ray structure is
stabilized by a single hydrogen bond (to the side chain of Asn
393), and that the docking was performed without placing the
nearby nonyl beta-D-glucopyranoside molecule. The results of
docking the ligand to the models are not much worse, or even
slightly better, with the average a global measure of the conserva-
tion of binding properties, the RMSD of a ligand docked to different
models depends on the conformations of the side chains around
the ligand binding site. RMSD values of 5.97 Å and 6.63 Å for the
best and lowest energy structures, respectively. However, since
even docking to the X-ray structure does not work well, this result
is not very informative. Tables 10SI, 11SI, and 12SI also show,
respectively, the binding fingerprint PCC for each of the top 30
models for targets T0889, T0893, and T0911, relative to the X-ray
structure. No correlation is seen between the best RMSD and the
binding fingerprint PCC for T0889 or T0893, and the correlation
is very weak for T0911 (R2 = 0.2844). The lack of correlation
between these two metrics is expected, because while the binding
fingerprint PCC is

In addition to AutoDock Vina, the ligands to targets T0889,
T0893, and T0911 were also docked using the template based
method ClusPro LigTBM [51], described in Section 2.7, and the
results are also shown in Tables 10SI, 11SI, and 12SI. Note that
docking by LigTBM requires only the sequence of the target pro-
tein, since the method itself finds homologous proteins with bound
ligand to be used as templates. Thus, in its basic application mode
the LigTBM results are independent of the CASP models. Therefore,
while using AutoDock Vina we list docking results for the top 30
models, for LigTBM the we show only a single result for each target.
These results emphasize that the accuracy of a template based
method may substantially differ from target to target, and most
likely heavily depends on the structures available as templates.
In particular, LigTBM performs slightly better than AutoDock Vina
for target T0889, it performs much better for target T0893, and
worse for target T0911. However, as already noted, in this last case
both methods yield very poor results.

3.4. Analysis of protein–protein interactions

As described in the Methods, we first docked the X-ray struc-
tures of each selected CASP12 target to its interacting partner in
the PDB, and then replaced the target structure with each of the
5 top models and performed the same docking calculations. Table 2
shows the results for the regular targets. In the second column we
show the PDB code of the multichain complex that includes the
target. The next two columns identify the ligand and receptor as
used in the process of docking. The two positions are not equiva-
lent, since the receptor is fixed at the origin of the coordinate sys-
tem, whereas the ligand is moved on rotational and translational
grids. Depending on the arrangement which produced better
docked structures of the X-Rays, the target can be either the ligand
or the receptor, and is indicated in boldface fonts in Tables 2 and 3.
In each docking we retain and analyze ten models, obtained as the
centers of the ten largest clusters of docked structures generated
by ClusPro. The quality of models is determined by calculating
the DockQ score, and selecting the model with the highest score.
Table 2 shows the rank of the best docked structure among the
10 options, along with the DockQ score. As mentioned, in terms
of the categories introduced by CAPRI, DockQ " 0.80 implies high
accuracy, 0.80 > DockQ " 0.49 medium accuracy, and 0.49 > Dock
Q " 0.23 acceptable accuracy, whereas DockQ < 0.23 means that
the structure is incorrect. The right side of Table 2 shows the
results for replacing the target with each of the 5 best CASP12
models, thus performing five docking calculations. We select the
model that yields the docked structure with the highest DockQ
score, and list the rank of the docked structure among the 10
options for the selected model, as well as the DockQ score. The
same calculations were carried out for the CASP12 refinement tar-
gets, with the results shown in Table 3.

As shown in Table 2, docking the X-ray structures we obtained
high or medium accuracy results for almost all targets. The only
exception is T0873-D1, for which the best docked structure is only
acceptable accuracy. It is important that since we dock back the
structures taken from the complexes, the success rate of ClusPro
docking is biased towards experimental structures in bound con-
formation. Switching from X-ray structure of the target to its mod-
els, the quality of docking remains in the same category for three
targets, gets better only for target T0873-D1, and drops into a
lower category for all other targets. However, for 13 of the 23 tar-
gets the docking of models still yields acceptable or better docked
structures, which means a 57% success rate. This percentage is
about the same as obtained when docking separately crystallized
protein structures using the ClusPro server [60]. Here we need to
note that ClusPro is a ‘‘soft” rigid body docking method, which
means that the scoring function allows for some level of steric
overlap, but the approach may not be able to overcome large con-
formational changes upon protein–protein association [60].

The docking of models fails for ten of the 23 targets (T0859,
T0862, T0863, T0869, T0878, T0880, T0887, T0893, T0921, and
T0922). As shown in Table 4SI, five of these (T0859, T0863,
T0869, T0878, and T0880) have very low GDT_TS scores, so it is
not surprising that the models cannot form complexes. The models
for T0893 are also of rather poor quality, with the highest GDT-TS
score of 61.98. We have already discussed that target T0862 (Chain
B in 5J5V) is a 3-helix bundle with flexible loops on one end that
are supposed to fit into the major cavity of 5J5V_A, but due to
the conformational changes in multiple loops the association is
not feasible. Target T0887 (PDB ID 6F03) forms a dimer by co-
folding of helical regions. Although the best model has the moder-
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ate 6F03 GDT_TS score of 57.45, it is difficult to see how the dimer
can be formed without unfolding and refolding. It is not entirely
clear why the dockings of the models for the heterodimer protein
5M2O (targets T0921 and T0922) are so difficult. The docking of
the X-ray structures yield a high accuracy complex. The top
GDT_TS values for T0921 and T0922 are 70.65 and 83.78, respec-
tively, so the models are fairly good, and none of the models exhi-
bit unstructured regions in the interface that would explain why
no highly ranked near-native docked structures are found. We
have performed the same analyses for the 14 refinement targets.
The results, listed in Table 3, show limited deviation from the
result for regular targets. Indeed, the accuracy level of model dock-
ing became worse for ten targets, and remained the same for four
targets.

Fig. 8A shows the relationship between the DockQ score and
GDT_TS for both the regular and the refinement targets. As men-
tioned, for each target we dock the five best CASP models, and
for each model retain the 10 best docked structures. Here we show
the best DockQ score attained, the ones listed in Tables 2 and 3. The
figure indicates that, on the average, refinement does not improve
the docking results. The highest DockQ value is achieved for T0861,
the target already discussed. The average GDT_TS for T0861 is
98.77, and as we mentioned, the protein (5J5V_A) has a well-
defined large cavity that binds the C-terminal Gly-Tyr-Gly-Ile pep-
tide tail of the partner protein, 5J5V_B. The relationship between
the DockQ score and GDT_HA (Fig. 8B) shows the same structures
as outliers, and since it provides essentially the same information
as Fig. 8A, it will not be discussed separately.

Table 2

Docking of CASP12 regular cases, best DockQ score of top 10 ClusPro models.

CASP ID Native Docking of X-ray structures Docking of models to X-ray structures

PDB ID protein 1
ligand

protein 2
receptor

ClusPro
rank

DockQ accuracy protein 1
ligand

protein 2
receptor

ClusPro
rank

DockQ accuracy

T0859-D1 5JZR_AB 5JZR_A 5JZR_B 2 0.574 Medium TOP3 5JZR_B 3 0.064 Incorrect
T0860-D1 5FJL_ABCa 5FJL_BC 5FJL_A 1 0.82 High 5FJL_BC TOP1 5 0.687 Medium
T0861-D1 5J5V_AD 5J5V_A 5J5V_D 1 0.856 High TOP1 5J5V_D 2 0.89 High
T0862-D1 5J5V_AB 5J5V_B 5J5V_A 2 0.891 High TOP3 5J5V_A 4 0.053 Incorrect
T0863-D2 5SY1_ABb 5SY1_A 5SY1_B 3 0.807 High TOP5 5SY1_B 9 0.022 Incorrect
T0868-D1 5J4A_AB 5J4A_A 5J4A_B 1 0.733 Medium TOP1 5J4A_B 9 0.508 Medium
T0869-D1 5J4A_AB 5J4A_A 5J4A_B 1 0.733 Medium 5J4A_A TOP4 1 0.169 Incorrect
T0870-D1 5J5V_BC 5J5V_B 5J5V_C 1 0.715 Medium 5J5V_B TOP2 1 0.326 Acceptable
T0873-D1 6DA6_ABCDc 6DA6_BCD 6DA6_A 3 0.46 Acceptable 6DA6_BCD TOP4 4 0.567 Medium
T0878-D1 5UNB_AB 5UNB_A 5UNB_B 1 0.844 High TOP5 5UNB_B 2 0.065 Incorrect
T0880 5N83_ABCa 5N83_A 5N83_BC 8 0.815 High TOP4 5N83_BC 9 0.143 Incorrect
T0884-D1 5T87_AE 5T87_A 5T87_E 1 0.83 High 5T87_A TOP1 2 0.442 Acceptable
T0885-D1 5T87_AE 5T87_A 5T87_E 1 0.83 High TOP2 5T87_E 10 0.408 Acceptable
T0887-D1 6F03_AB 6F03_A 6F03_B 2 0.862 High TOP2 6F03_B 4 0.072 Incorrect
T0889-D1 5JO9_ABCDc 5JO9_A 5JO9_BCD 1 0.532 Medium TOP1 5JO9_BCD 2 0.447 Acceptable
T0893 5IDJ_AB 5IDJ_A 5IDJ_B 1 0.757 Medium TOP4 5IDJ_B 3 0.079 Incorrect
T0894-D2 5HKQ_AIb 5HKQ_I 5HKQ_A 6 0.67 Medium 5HKQ_I TOP1 1 0.444 Acceptable
T0895-D1 5HKQ_AI 5HKQ_A 5HKQ_I 2 0.585 Medium 5HKQ_A TOP4 7 0.369 Acceptable
T0909-D1 5G5N_ABCa 5G5N_A 5G5N_BC 1 0.74 Medium TOP5 5G5N_BC 6 0.408 Acceptable
T0917-D1 5YVR_AB 5YVR_B 5YVR_A 1 0.669 Medium 5YVR_B TOP3 2 0.661 Medium
T0921-D1 5M2O_AB 5M2O_A 5M2O_B 5 0.909 High TOP1 5M2O_B 4 0.09 Incorrect
T0922-D1 5M2O_AB 5M2O_A 5M2O_B 5 0.909 High 5M2O_A TOP5 7 0.088 Incorrect
T0945-D1 6BW6_AB 6BW6_A 6BW6_B 5 0.64 Medium TOP2 6BW6_B 7 0.405 Acceptable

a Modeled trimer chain A as one subunit and chains BC as the other.
b Modeled CASP designated D2 domain only, and D2-D2 interface.
c Modeled tetramer chain A as one subunit and chains BCD as the other.

Table 3

Docking of CASP12 refinement targets, best DockQ score of top 10 ClusPro Models.

CASP ID Native
PDB ID

Docking of X-ray structures Docking of models to X-ray structures

protein 1
ligand

protein 2
receptor

ClusPro
rank

DockQ accuracy protein 1
ligand

protein 2
receptor

ClusPro
rank

DockQ accuracy

TR862 5J5V_AB 5J5V_B 5J5V_A 2 0.891 High TOP1 5J5V_A 1 0.044 Incorrect
TR868-D1 5J4A_AB 5J4A_A 5J4A_B 8 0.827 High TOP1 5J4A_B 4 0.504 Medium
TR869 5J4A_AB 5J4A_A 5J4A_B 1 0.733 Medium 5J4A_A TOP4 7 0.155 Incorrect
TR870-D1 5J5V_BC 5J5V_C 5J5V_B 1 0.645 Medium TOP2 5J5V_B 2 0.161 Incorrect
TR884 5T87_AE 5T87_A 5T87_E 1 0.83 High 5T87_A TOP2 7 0.432 Acceptable
TR885-D1 5T87_AE 5T87_A 5T87_E 3 0.73 Medium TOP1 5T87_E 1 0.559 Medium
TR887 6F03_AB 6F03_A 6F03_B 2 0.862 High TOP2 6F03_B 7 0.552 Medium
TR894 5HKQ_AIa 5HKQ_I 5HKQ_A 6 0.67 Medium 5HKQ_I TOP4 7 0.651 Medium
TR895 5HKQ_AI 5HKQ_A 5HKQ_I 2 0.585 Medium 5HKQ_A TOP5 10 0.131 Incorrect
TR909 5G5N_ABCb 5G5N_A 5G5N_BC 1 0.74 Medium TOP1 5G5N_BC 3 0.346 Acceptable
TR917 5YVR_AB 5YVR_B 5YVR_A 1 0.669 Medium 5YVR_B TOP5 2 0.639 Medium
TR921 5M2O_AB 5M2O_A 5M2O_B 5 0.909 High TOP4 5M2O_B 7 0.058 Incorrect
TR922-D1 5M2O_AB 5M2O_A 5M2O_B 4 0.901 High 5M2O_A TOP3 7 0.825 High
TR945 6BW6_AB 6BW6_A 6BW6_B 5 0.64 Medium TOP1 6BW6_B 8 0.298 Acceptable

a Modeled 5HKQ, chain A trimmed to domain given by sequence.
b Modeled trimer chain A as the ligand and chains BC as the receptor.
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4. Conclusions

Functional analysis of CASP targets in the past has heavily relied
on notes from the experimentalist to determine regions of interest
on the protein, or potential binding sites [7–9]. While this informa-
tion can be incredibly valuable, it also limits the functional analysis
of the CASP predicted structures by necessitating target-specific
analyses, rather than a more generic approach. This is the case
again in CASP12, where only 9 of 51 regular CASP targets were
co-crystalized with a ligand. As the majority of structures in
CASP12 are crystalized as apo structures, there is no one particular
binding site of interest to focus on for these cases. Therefore, to
compare the surface binding properties of the target proteins to
the properties of their models we developed the concept of binding
fingerprint, which measures the interactions of individual residues

with small molecules sampling the protein surface. The finger-
prints can be used to compare all binding regions on a predicted
structure to the X-ray structure by calculating the Pearson correla-
tion coefficient (PCC) between the two fingerprints. Calculating
PCC values for 51 regular and 31 refinement targets has shown that
the conservation of surface binding properties correlate with the
accuracy of the models measured in terms of GDT_TS. Comparing
different X-ray structures of the same proteins was used to estab-
lish the threshold PCC = 0.5 as the lowest correlation between the
binding fingerprints of such structures. Thus, we assume that
PCC > 0.5 between the X-ray structure and a model of a protein
indicates good capture of surface binding properties by the model.
Based on the results of our analysis we concluded that with a few
exceptions, PCC " 0.5 occurs only for models with GDT_TS " 80. It
was shown that models achieve this accuracy for a substantial frac-

Fig. 8. Best DockQ score within the first 10 ClusPro-produced docking models versus GDT scores. (A) DockQ score vs. GDT_TS. (B) DockQ score vs. GDT_HA. Regular targets are
shown as black dots, and the linear regression is shown as a black line. Refinement targets are shown as green dots, and the linear regression is shown as a green line. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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tion of CASP12 targets, but the PCC values exceed 0.5 for only about
half of such targets, because the binding properties are determined
by both global and local measures of accuracy. However, while
high GDT_TS is generally required for PCC > 0.5, high GDT_TS or
GDT_HA values do not guarantee a high PCC. Thus, the surface
binding properties of a protein cannot be modeled well without
high quality modeling of the fold, but the global accuracy of the
backbone does not necessarily imply accurate modeling of surface
properties (see Fig. 4). As shown in Fig. 5, this statement remains
true when GDT_TS is replaced by side chain focused measures
GDC_SC and LDDT.

The advantage of our analysis based on comparing fingerprints
is that we were able to study 82 targets and thus to reach some
general conclusions. In contrast, we had only nine structures with
known binding sites. The analysis of these structures suggests that
for the identification of binding sites capable of binding drug-sized
molecules with high enough affinity it may be sufficient to reach
GDT_TS values around 60, since the probes tend to cluster in large
cavities (see Table 1). However, it was also shown that small con-
formational differences may affect the ability of the site to actually
accommodate ligands, and hence generating and analyzing an
ensemble of models may be necessary to estimate the level of
reliability. The results of docking small ligands to the models of
targets T0889 and T0893, with the average GDT_TS values of
86.69 and 60.74, suggest that substantially better models yield
higher accuracy docking results. However, the smaller variations
in the GDT_TS values among the models of the same target do
not reflect the local conformational changes that can substantially
impact the accuracy of docking. As potential caveats we note that
docking of small molecules in this paper was restricted to three
targets, and we used Autodock Vina [15], which accounted for
the rotational degrees of freedom of the ligand, but kept the X-
ray structure of the receptor extracted from the protein–ligand
complex rigid, Thus, this part of our study is clearly limited, and
proper analysis would require much larger sets of models for pro-
teins that have known bound ligands, and possibly the use of other
docking programs. In addition, given the fact that here we had only
three examples for docking, we did not consider the quality of crys-
tal structures as a condition for inclusion in this study.

We have also studied the ability of the models to form protein–
protein complexes seen in the X-ray structures. Docking calcula-
tions were carried out for 23 regular and 14 refinement targets.
Results suggest that this application is more demanding than the
identification of small ligand binding sites. Rigid body programs
and servers such as ClusPro [13] used here are consistently among
the best performers in the CAPRI experiments for docking sepa-
rately crystallized protein structures [60]. The methods allow for
some steric clashes and hence can account for moderate conforma-
tional changes upon forming a complex. Both the CAPRI results and
application to protein docking benchmark sets show about 60%
success rates [60]. Docking models to X-ray structures of partner
proteins extracted from the complexes we observe similar success
rates. However, the docking almost always fails if the interface
region of the modeled protein includes loops, particularly if the
loops are in a convex region of the structure rather than in a
well-defined cavity. In such structures loops have considerable
conformational freedom. Mispredicted loops in a model may have
minor impact on the GDT_TS score, but lead to steric clashes that
prevent forming near-native complexes. We think that the need
for improving the accuracy of loops for assembly predictions was
made less urgent by the success of template based docking meth-
ods in both CASP and CAPRI, particularly because most targets have
been homo-oligomers with fairly similar structures available in the
PDB [61–65]. However, such templates will not always be avail-
able, and we emphasize here that docking protein models is still
an important challenge [66].
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