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SUMMARY 

The development of fast Fourier transform (FFT) algorithms enabled the sampling of billions of 

complex conformations and thus revolutionized protein-protein docking. FFT based methods are 

now widely available and have been used in hundreds of thousands of docking calculations. 

Although the methods perform “soft” docking, which allows for some overlap of component 

proteins, the rigid body assumption clearly introduces limitations on accuracy and reliability. In 

addition, the method can work only with energy expressions represented by sums of correlation 

functions. In this paper we use a well-established protein-protein docking benchmark set to 

evaluate the results of these limitations by focusing on the performance of the docking server 

ClusPro, which implements one of the best rigid body methods. Furthermore, we explore the 

theoretical limits of accuracy when using established energy terms for scoring, provide 

comparison to flexible docking algorithms, and review the historical performance of servers in the 

CAPRI docking experiment.  

 

  



INTRODUCTION 

Protein-protein interactions (PPIs) are essential to the basic functioning of cells and larger 

biological systems in all living organisms. The golden standard of validating and understanding 

PPIs is X-ray crystallography. However, crystallizing protein complexes is sometimes very 

difficult, and the number of PPIs discovered is far outpacing the number of complex structures. 

Protein-protein docking is a computational tool that can potentially fill this gap by giving atomic-

level details of the interactions between two proteins. In particular, docking can generate models 

that can be validated by simple tools such as crosslinking or site directed mutations.  

It is widely recognized that one of the most important developments in protein-protein docking 

has been the introduction of fast Fourier transform (FFT) for energy evaluation (Katchalski-Katzir 

et al., 1992).  In FFT based methods one of the proteins is placed at the origin of the coordinate 

system on a fixed grid, the second protein is placed on a movable grid, and the interaction energy 

is written as a sum of a few correlation functions. The numerical efficiency of the methods stems 

from the fact that such energy functions can be simultaneously evaluated for all translations using 

fast Fourier transforms, and only rotations need to be considered explicitly. This results in the 

ability of exhaustively sampling billions of the conformations of the two interacting proteins, 

obtaining energy values at each grid point.  Thus, the FFT based algorithm enables global docking 

without any a priori information on the structure of the complex.  

While the use of FFT yields impressive speed-up, it results in two major limitations. The first is 

the need for rigid body approximation. In all rigid body methods the shape complementarity term 

in the scoring function allows for some overlaps, and hence the methods are able to tolerate 

moderate differences between bound and unbound (separately crystallized) structures. However, 

the need for reducing sensitivity also reduces the specificity defined by the complementarity of 

the shape of the two proteins. In particular, the docked conformations that are close to the native 

structure do not necessarily have the lowest energies, whereas low energy conformations may 

occur far from the X-ray structures.  Therefore rigid body methods must retain a large set of low 

energy docked structures for secondary processing that may include some type of refinement, 

hoping that the retained set includes at least some that are close to the native structure of the 

complex. The second limitation is that the energy expression should be written as a sum of 

correlation functions.  The original work (Katchalski-Katzir et al., 1992) used a simple scoring 

function that accounted only for shape complementarity. However, subsequent methods based 

on the FFT correlation approach to docking introduced more complex and more accurate scoring 



functions that also included terms representing electrostatic interactions (Gabb et al., 1997; 

Mandell et al., 2001), or both electrostatic and desolvation terms (Chen and Weng, 2002; Kozakov 

et al., 2006). In fact, better models of the desolvation/nonpolar contributions to the binding free 

energy played a major role in making protein-protein docking useful for applications (Camacho et 

al., 2000; Camacho and Vajda, 2001), and remain critically important for the development of rigid 

body methods (Brenke et al., 2012; Chuang et al., 2008). 

The goal of this paper is to rigorously evaluate the performance of rigid body protein-protein 

docking in view of the above limitations. The accuracy of docking methods has been continuously 

monitored since 2004 by the community-wide experiment called Critical Assessment of PRedicted 

Interactions (CAPRI) (Janin et al., 2003). More recently, another community-wide experiment 

focused on protein structure determination, Critical Assessment of Structure Prediction (CASP), 

joined with CAPRI. In CAPRI/CASP the challenge is predicting protein complex structures based 

on the sequences of the individual component proteins rather than their crystal structures, thus 

requiring the use of homology modeling tools. It is useful that CAPRI and CAPRI/CASP are blind 

prediction experiments and hence provide unbiased information on the accuracy of docking 

methods. However, the number, quality and diversity of these sporadic challenges lack the ability 

to give a full picture of a method’s strengths and weaknesses. In particular, in CAPRI/CASP the 

majority of new targets were homo-oligomers rather than complexes formed by two different 

proteins. In many cases such structures have homologous templates available in the Protein Data 

Bank (PDB), and the problems can be solved by homology modeling without the need for any 

docking (Porter et al., 2019a). In view of the limitations of the CAPRI and CAPRI/CASP 

experiments, evaluating docking methods on diverse and well-populated benchmark sets is still 

needed. Here we use version 5.0 of the well-established Protein Docking Benchmark which 

contains 230 protein pairs known to form complexes (Vreven et al., 2015). A key feature of the 

benchmark set is the availability of both the structure of each target complex and the unbound 

structures of the component proteins. The most recent version 5 of the Protein Docking 

Benchmark (BM5) includes 40 antibody-antigen, 88 enzyme-containing and 102 “other” type 

complexes. Based on the difference between bound and unbound conformations of the 

component proteins, these complexes are classified as 151 rigid-body (easy), 45 medium 

difficulty, and 34 difficult targets. 

An important step in the evaluation of docking methods is calculating measures that describe the 

closeness of the models to experimentally determined crystal structures. CAPRI uses three 

related parameters for assessing a model: the fraction of native contacts, the backbone root mean 



square deviation of the ligand (LRMSD) from the reference ligand structure after superimposing 

the receptor structures, and the backbone RMSD of the interface residues (IRMSD). Based on 

these measures CAPRI defined four categories of accuracy, which are incorrect, acceptable, 

medium, and high accuracy (see Star Methods). More recently a continuous score called DockQ 

was developed that encapsulated the above three measures (Basu and Wallner, 2016). The 

DockQ values range from 0 to 1, where a value exceeding 0.80 implies high accuracy, between 

0.80 and 0.49 medium accuracy, and between 0.49 and 0.23 acceptable accuracy. DockQ has 

been widely accepted and was even implemented in the official evaluations of the latest CAPRI 

round, and hence it is also used here.  

While trying to reach general conclusions, here we discuss the results generated by the ClusPro 

server that performs rigid body docking (Kozakov et al., 2017). We focus on ClusPro results for 

three reasons. First, the use of a fully automated server makes the results reproducible. Second, 

ClusPro has consistently been one of the best docking servers as demonstrated in CAPRI rounds 

over the last 15 years. However, the other rigid body docking programs, including ZDOCK (Chen 

et al., 2003), GRAMM (Tovchigrechko and Vakser, 2005, 2006), pyDOCK (Cheng et al., 2007), 

and FTDock (Gabb et al., 1997) perform very similarly to ClusPro, and hence the latter can be 

used to explore the accuracy and limitations of rigid body methods. The third reason is that 

ClusPro has been developed in our lab, and hence we can also explore how variations in the 

parameters affect the docking results.  

The main differences among FFT based docking methods are in the sampling density and in the 

scoring function used. The sampling density is defined by the step size of the translational grid, 

generally between 0.8 Å and 1.2 Å, and the number of rotations of the ligand protein, resulting in 

5 to 12 degrees step size in terms of the Euler angles. For scoring, all methods use linear 

combinations of several energy terms that include attractive and repulsive van der Waals 

contributions describing shape complementarity, and one or more terms representing the 

electrostatic part of the binding energy. In spite of some differences, these energy terms are fairly 

standard. The scoring functions in most programs also include some structure-based energy 

expression for adding desolvation energy contributions, which is a key factor in determining the 

accuracy of docking results. In particular, ClusPro uses the pairwise potential DARS, based on 

decoys as the reference state (Chuang et al., 2008). As will be discussed, a major uncertainty is 

the relative weighting of these energy terms. Nevertheless, the best rigid body methods have 

similar success rates, and hence we assume that by analyzing the results provided by ClusPro 

we can assess the general limitations of the approach. 



A protocol describing the use of ClusPro was published in 2017 (Kozakov et al., 2017). However, 

a detailed look at the advantages of each feature, strengths and weaknesses when it comes to 

different classes of proteins and rigidity of complexes has not been previously studied. This paper 

outlines the first systematic and rigorous evaluation of ClusPro on a well-accepted protein-protein 

docking benchmark. We mainly look at the performance across two dimensions: the 

conformational change upon complex formation, and the type of proteins in the target (antibody, 

enzyme, or “others”). As expected, results are better for more rigid complexes compared to 

complexes that have large conformational differences between unbound and bound states. As 

mentioned, an important question related to specific types of complexes is how to select the 

weights of energy terms to obtain the best results. Here we go one step further, and generate 

models using 105 different combinations of such coefficients. This will enable us to determine 

how the choice of weights affects docking accuracy and to find the best coefficient set for each 

particular complex to explore the theoretical limits of accuracy of rigid body docking with the given 

energy terms. Finally we compare ClusPro to some of the best flexible docking methods in terms 

of their success rates, considering both a well-studied subset of the benchmark set and a historical 

review of the CAPRI docking experiments.  

RESULTS 

Performance on the protein docking benchmark  

For evaluating the ClusPro server we use the benchmark set 5.0 (BM5) (Vreven et al., 2015). The 

component proteins of all 230 target complexes were directly downloaded from BM5 and docked 

using ClusPro. For each complex, the 1000 lowest energy models were retained. The top 30 

models (centers of the 30 largest clusters) were evaluated using the DockQ program. We note 

that some complexes may have fewer than 30 clusters and that a DockQ result of 0.23 and above 

(acceptable or better) will be termed as a good solution. In many cases we also list the success 

rates (i.e., the percentages of targets with acceptable, medium, or high accuracy models) in the 

top 1, top 5, top 10, and top 30 predictions, in some figures denoted as T1, T5, T10, and T30, 

respectively. These numbers are of interest for two reasons. First, as will be shown, docking 

methods rarely identify the best model as the top 1 prediction, but 5 or 10 models can be subjected 

to further refinement and rescoring. Second, recognizing this limitation, CAPRI generally allowed 

for the submission of 10 models for each target (Lensink et al., 2007; Lensink and Wodak, 2010, 

2013; Mendez et al., 2003; Mendez et al., 2005), although in the more recent rounds ranking of 



the different groups was based on the top 5 rather than top 10 predictions (Lensink et al., 2019b; 

Lensink et al., 2018; Lensink et al., 2017).  

Figures 1A, 1B, and Table 1 show the percentages of good models obtained by ClusPro in the 

top 10 and in the top 30 predictions. Unless otherwise noted, all figures of ClusPro’s results show 

with balanced coefficient set for enzymes, antibody mode for antibodies, and “others” mode for 

“other” type complexes (see Star Methods). The detailed results for each target in BM5, with the 

number of acceptable, medium and high accuracy predictions in T1, T5, T10 and T30, are shown 

in Data S1. According to Figure 1A and 1B, ClusPro performs best on enzyme containing targets. 

Indeed, 51 of the 88 such complexes (57.9%) had acceptable or better models in the top 10 

predictions, compared to 19 of the 40 antibody-antigen complexes (50%) (note that only 38 of the 

40 were evaluated successfully as DockQ failed to evaluate the predictions for 2 targets because 

of their large size), and 27 of the 102 “other” type complexes (26.7%) (only 101 of the 102 were 

evaluated successfully by DockQ). Increasing the number of predictions from top 10 to top 30, 

eight more enzyme containing complexes, five more antibody-antigen complexes, and nine more 

“other” type complexes had acceptable or better solutions. In total, 42.7% of the benchmark set 

had acceptable or better solutions in the top 10 predictions, which increases to 52.4% in the top 

30. (Note that all percentages are based on the 227 successfully evaluated targets). That amounts 

to 97 and 119 good solutions in the top 10 and in the top 30, respectively.  

As expected, ClusPro performs best for rigid body protein complexes. As shown in Figure 1C, 

1D, and Table 1, ClusPro solves 51.7% of rigid (easy) targets compared to 31.8% for intermediate 

and 17.6% for flexible (difficult) targets in the top 10 (T10) predictions. The overall success rate 

still reaches 42.7% because 151 of the 230 targets are classified as rigid body. The success rate 

increases to 63.1%, 36.36% and 26.5%, respectively, when considering the top 30 (T30) models. 

For enzymes, both in top 10 and top 30 models, more than twice the percentage of rigid targets 

were solved compared to intermediate, and over 3 times that of flexible ones. Similar trends are 

seen for antibodies. All high accuracy predictions were from the rigid category in both antibody 

and enzyme containing cases.  

Energy-based versus cluster-based model selection 

The set of the 1000 lowest energy models retained from PIPER is too large for post-processing 

and has to be reduced by selecting a number of predictions that are likely to be near-native. One 

of the major features of ClusPro is that it clusters the 1000 models using interface RMSD with a 



9Å radius and ranks the clusters based on cluster population, retaining the top 1, top 5, top  10, 

and top 30 clusters. In Figure 2 we show the fraction of good models retained in this process, and 

compare energy-based and cluster-based model selection. Note that we consider only the top 30 

clusters, and hence the performance of cluster-based selection does not improve beyond 30. 

However, up to that number selecting the centers of most populated clusters always provides 

substantially better performance than selecting the same number of lowest energy structures, and 

this is true for all types of protein complexes. Figures 2A-2C also show that PIPER generates 

good structures in the 1000 structures for 71.6%, 73.68%, and 51.2% of enzyme, antibody, and 

“other” type containing complexes, respectively.  When retaining only the 100 best energy 

structures the success rates are about 10% lower. The top 30 cluster centers provide almost the 

same success rates as the top 100 energy ranked models for antibodies and “others”, showing 

only 2.6 and 3.9 percentage points loss. In enzymes, the top 30 cluster centers actually perform 

better than the top 100 energy ranked models.  Thus, going from 1000 structures to 30 cluster 

centers does not lead to losing a very large fraction of good solutions (4.6%, 10.5%, and 15.8% 

for enzymes, antibodies and “others”, respectively). However, as shown in Figure 2, there is 

substantial drop from the top 30 cluster centers when considering only the top 10, top 5, and 

particularly the top 1 cluster.  

Antibody-Antigen Docking 

Determining the structure of antibody-antigen complexes is an important application of protein 

docking, and results have been substantially improved by developing a structure based potential 

specific to these interactions (Brenke et al., 2012). Due to the limited number of antigen-antibody 

complex structures, the potential is defined for fewer atom types than the DARS potential 

developed for enzyme-inhibitor and “other” type complexes (Chuang et al., 2008). Antibody-

antigen docking has two more special properties. The first is that the interactions are generally 

restricted to the Complementarity Determining Regions (CDRs) of antibodies. Thus, the docking 

can be restricted by “masking” the surface of the antibody except for the CDRs and a few 

additional surrounding residues. ClusPro includes both automated and manual options for 

masking. Automated masking recognizes known starting and ending motifs of CDR sequences, 

adds one to four residues on each end of the loops to allow for some flexibility in the docking, and 

masks the rest of the antibody surface (see Star Methods). Manual masking allows users to 

upload a masking file by themselves.  



Figure 3A shows the percentage of antibody complexes solved without masking, with automated 

masking, and with a manually uploaded mask file. The manual masking in this study used the 

Chothia numbering system and boundaries for CDRs (Al-Lazikani et al., 1997). Masking generally 

increases the success rate, but the gain is moderate. Without masking ClusPro predicts good 

solutions in the top 30 for 63.2%% of antibody-antigen targets, compared to 68.4% with the 

automated masking option. The relative improvements are somewhat larger in the top 1, top 5 

and top 10 predictions. Manual masking also shows only moderate improvements in T1, T5, and 

T10 over no masking. Thus, the interaction potential on its own is able to identify the CDR regions.  

The second special property specific to antibody-antigen docking in the Protein Docking 

Benchmark is that 12 targets of the 40 antibody-antigen targets in BM5 include the structure of a 

separately crystallized antigen and the structure of the antibody extracted from the target 

complex. As shown in Figure 3B, the success rate for such complexes is much higher than for 

the separately crystallized antibodies. Calculated with masking of non-CDRs, 91.7% of targets 

with bound antibody structures had a good model in the top 30 predictions, compared to only 

57.7% for targets with unbound antibody structures. In the top 1 prediction the difference is 

insignificant (16.7% versus 15.39%).  High accuracy predictions were obtained only for targets 

with bound antibodies (Figure 3B). There is substantial difference in medium accuracy 

predictions, which was nearly 58% for targets with bound antibodies but only about 15% for the 

unbound cases in top 30. This is in line with the results shown for enzymes and rigid-body cases, 

demonstrating that ClusPro does well for targets with moderate conformational changes upon 

complex formation. Thus, as expected, the flexibility of the CDRs in antibodies makes docking 

much more challenging. 

Weights of the Energy Terms 

As described in Star Methods, unless the target is specified as an antibody-antigen or “other” type 

complex, ClusPro simultaneously generates four sets of models using the scoring schemes called 

balanced (denoted as 00), electrostatics-favored (02), hydrophobicity-favored (04), and van der 

Waals + electrostatics, i.e., no structure-based DARS energy term (06). Although all four 

predictions are available, for enzyme-inhibitor complexes we suggested using the results obtained 

by the balanced coefficient set (00). For “other” type complexes we have developed a special 

option that uses three different coefficient sets, generates 500 conformations for each, and 

clusters the resulting 1500 structures. These suggestions were based on a limited number of 

docking runs (Kozakov et al., 2013). However, application of ClusPro to the entire benchmark set 



enabled us to further investigate these choices. As shown in Figure 4A, for enzyme containing 

complexes the use of the balanced set (00) and of the electrostatics-favored set (02) yield about 

the same success rates, but the latter increases the number of targets with medium and high 

accuracy predictions, in agreement with the observation that many enzyme-inhibitor interactions 

are primarily driven by electrostatics. The coefficient sets 04 (hydrophobicity favored) and 06 (no 

Epair) yield substantially worse predictions (Figure S1, related to Figure 4A).  These results were 

tested by five-fold cross-validation on 71 enzymes in Protein Docking Benchmark 4 (BM4) (Figure 

S2) and also tested on the BM5 additions (see Star Methods). According to the cross validation, 

the parameter set 00 generally yields slightly better results. However, this is not true for the test 

set (i.e., the added enzyme cases in BM5), as the parameter set 00 gave acceptable or better 

solutions for 7 targets in the top 10 predictions, and 10 targets in the top 30, whereas the 

parameter set 02 gave good solutions for 10 targets in the top 10 and 11 targets in the top 30. 

Thus, there is no clear preference, and either set 00 or 02 can be used. The coefficient set 04 

was able to obtain good solutions only for 7 and 8 cases, while the coefficient 06 only gave 3 and 

4 cases in T10 and T30 respectively, and thus these coefficient sets should not be used.  

The reanalysis of the “other” type complexes were more successful, as it became clear that the 

electrostatic-favored set (02) yields the best results for these complexes, and there is no need for 

using the more complex algorithm of generating 1500 structures with three different parameter 

sets (Figure 4B). A five-fold cross validation was performed on 80 BM4 cases and in 4 of the 5 

folds, the electrostatically driven coefficient set was found to be superior (Figure S3). Testing on 

BM5 additions, the coefficient set 02 obtained good solutions for 5 targets in the top 5 predictions 

and 6 targets in the top 10, and the coefficient set 00 gave 4 good predictions in T5 and 6 good 

predictions in T10. Both sets worked slightly better than the “others” option 03, which gave 3 good 

predictions in T5 and 5 good predictions in T10, and hence we recommend that users should use 

standard docking for complexes containing “others”. When all “others” targets in BM5 are 

evaluated, 4, 7, 3 and 4 more complexes were solved using the electrostatic-favored set (02) in 

the top 1, top 5, top 10 and top 30 predictions, respectively, than the currently preferred  “others” 

mode. Figure 4B also shows that even the balanced coefficient set (00) has a slight advantage 

over the current “others” mode in top 5 and top 10 predictions.  

The second interesting question concerning the coefficients of energy terms is the optimality of 

selected values, i.e., how much the results could be improved by selecting the individually best 

coefficient set for each target. To answer this question, we generated predictions using 105 

different sets of coefficient values, and calculated the overall success rate considering the best 



result for each complex. Results are compared to the currently implemented coefficient sets in 

Figure 4C. For the antibody-antigen complexes the non-CDR regions were masked using the 

automatic feature available on the ClusPro server. However, 1KXQ and 2VIS did not have a light 

chain and so were docked with antibody mode but without masking. The “others” mode (03) for 

“others” and the balanced coefficient set (00) for enzymes were maintained for comparison. 

Figure 4C shows that taking the best of the 105 coefficients enables PIPER to find a good model 

in the top 1 prediction for 14 of the 38 antibody-antigen complexes compared to only 6 by the 

current implementation of ClusPro. The gap narrows significantly to only 2 complexes when 

considering the top 30 models. In the top 1 predictions for enzyme-containing complexes the best 

weight set yields a good solution for more than 60% of the cases as opposed to only 19% using 

the balanced parameter set. Even in the top 30 predictions, for enzymes the theoretical best 

parameter set yields 11 more cases than the current implementation of ClusPro (70 versus 59). 

The trend continues for the “other” type complexes. In the top 1 prediction there is nearly a three-

fold increase in success rate from the current implementation (from 11 to 32). In top 30, there 

were 59 successful cases when using the best coefficient set compared to only 34 using the 

standard method. Overall, by using the best coefficient set, ClusPro could find good models for 

76.1% of enzymes, 68.4% of antibodies and 52.5% of “others” in the top 10 predictions. This is 

compared to 57.9%, 55.3%, and 26.7%, respectively, for the currently selected coefficient sets. 

In addition to the number of cases solved, the accuracy of predictions also increases. Using the 

best of the 105 coefficient sets, almost 80% of the good solutions in T30 are medium accuracy or 

better, compared to only 50% with the currently implemented coefficient set. Although selecting 

the best coefficient for each protein significantly outperforms ClusPro using the standard 

coefficient sets, Figure S2, related to Figure 4C, shows that the latter still represents a reasonable 

choice. In particular, for antibodies the current set is better than three quarters of the sets 

available. In all cases, the selected coefficient set is better than the median.  

Comparison to Flexible Docking 

Four of the best docking servers have been tested on 55 complexes that were added to docking 

benchmark 4 (Hwang et al., 2010) to create version 5 of the benchmark (Vreven et al., 2015). 

These servers included two rigid body servers, ZDOCK (Pierce et al., 2014) and pyDock (Pons 

et al., 2010) that are similar to ClusPro, and the servers SwarmDock (Moal et al., 2018; Torchala 

et al., 2013), and HADDOCK (High Ambiguity Driven DOCKing) (de Vries et al., 2010; Vangone 

et al., 2017) that implement flexible docking algorithms. Overall, the success rates (at least one 

acceptable prediction for a benchmark case) ranged between 5% and 16% for the top 1 prediction 



and 20–38% for the top 10 predictions (Vreven et al., 2015). Overall the best results were obtained 

using SwarmDock, followed by ZDOCK (Vreven et al., 2015). We attempted to compare ClusPro 

to the four servers on the same 55 targets. However, the structures 1EXB, 4GXU, 4GAM and 

4FQI all have more than 10,000 atoms in the PDB file, which could not be handled by the 

SWARMDOCK server, since it limits the number of atoms to 10,000. We also note that these four 

are multi-protein rather than binary complexes, and thus docking only two selected subunits is 

not an entirely valid test. Therefore, the testing was limited to the remaining 51 structures. Docking 

antibodies by ClusPro we selected the “antibody mode” with automated masking. For enzymes 

and the “other” type targets, the electrostatically driven coefficient (02) set was used. Success 

rates of the other four servers for the 51 remaining targets were adopted from the original 

publication (Vreven et al., 2015). Results in Figure S5 (related to Figure 5), show that ClusPro 

provides the highest number of good models, but SWARMDOCK produces slightly more models 

in the top 1 prediction, and HADDOCK yields more high accuracy models.  

Recently, the performance of SwarmDock has been substantially improved by the addition of a 

methodology of re-ranking models (Moal et al., 2017). The method employs an information-driven 

machine learning rescoring scheme called IRaPPA (Integrative Ranking of Protein–Protein 

Assemblies) (Moal et al., 2017). IRaPPA combines a large selection of metrics using support 

vector machines (R-SVMs) to obtain consensus ranking based on a voting method, resulting in 

so-called “democratic” modification of SwarmDock.  Figure 5 shows success rates on the 51 

targets for the standard SwarmDock, for the “democratic” versions of SwarmDock, and for 

ClusPro. The “democratic” ranking significantly improves the SwarmDock success rate, but 

ClusPro still performs somewhat better and obtains acceptable or better solutions for ~47% and 

~41% compared to SWARMDOCK’s ~41% and ~35%, respectively, in the top 10 and in the top 

5 predictions. However, the “democratic” SwarmDock predicts good models as the top 1 

prediction for 23.5% of the 51 targets, whereas ClusPro obtains such result only for 15.69 % of 

the targets.  

The CAPRI and CAPRI/CASP experiments 

CAPRI is an ongoing protein docking experiment (Janin et al., 2003). Each round of CAPRI has 

a number of prediction targets, which are unpublished experimentally determined structures of 

protein-protein complexes. Given the atomic coordinates of the component proteins or of their 

homologs, the participants attempt to predict the structures of native complexes. Each group can 

submit up to ten predictions for each target, and the submitted models are evaluated by 



independent assessors. In 2014, CAPRI joined the protein structure prediction experiment CASP, 

adding target complexes to be predicted from the sequences of the individual component proteins 

(Lensink et al., 2016). The importance of these experiments is that the target structures are 

blinded, reducing any potential bias. ClusPro predictions have been submitted to CAPRI since 

2004, but HADDOCK and SwarmDock started to participate only in 2009 and 2013, respectively, 

and hence we analyze only the past-2009 results. The predictions submitted by participating 

groups and servers have been evaluated at four CAPRI and three CAPRI/CASP meetings, 

namely at CAPRI 4 (Lensink and Wodak, 2010), CAPRI 5 (Lensink and Wodak, 2013), CAPRI 6 

(Lensink et al., 2017), CAPRI 7 (Lensink et al., 2019b), CAPRI/CASP 11 (Lensink et al., 2016), 

CAPRI/CASP 12 (Lensink et al., 2018), and CAPRI/CASP 13 (Lensink et al., 2019a). While the 

limited number of targets in each round of CAPRI and CAPRI/CASP introduced substantial 

uncertainty into comparing the performances of the different methods, the reports on the above 

seven meetings present results for a total of 101 protein-protein targets. As shown in Table 2, 

based on all these results, ClusPro consistently produced more good predictions in the top 10 

than HADDOCK, the second best performing server. SwarmDock did not participate in 2009, and 

hence its results cannot be directly compared to others. Assuming that SwarmDock would 

produce 4 acceptable or better predictions as ClusPro did, the latter still would be the best 

performer. However, Table 2 also shows that both HADDOCK and SwarmDock are better than 

ClusPro in terms of high accuracy predictions, although both are substantially worse in terms of 

medium accuracy ones. We note that other servers also had great performance in some CAPRI 

rounds, for example, the server LZerD had more good models than either SwarmDock or 

HADDOCK in both 2017 and 2018 (Peterson et al., 2017; Peterson et al., 2018). Nevertheless 

we focus on HADDOCK and SwarmDock in Table 2 because of their high overall success rates 

from 2009 through 2019.  

DISCUSSION 

As shown both by the benchmark-based evaluation and the overview of CAPRI and 

CAPRI/CASP experiments, the rigid body docking program ClusPro produces more good 

models in the top 5 and top 10 predictions than the best flexible docking methods. Since the 

performance of ClusPro heavily depends on the magnitude of conformational change between 

the separately crystallized component proteins and their bound forms, this result implies that the 

rigid body approximation is acceptable for a substantial fraction of interacting proteins. However, 

ClusPro has two shortcomings relative to methods such as SwarmDock and HADDOCK. First, 

the more advanced “democratic” version of SwarmDock produces more hits as the top 1 



prediction. Second, both flexible methods generate more high accuracy models than ClusPro. 

These shortcomings are due to different but interrelated limitations on the scoring function 

available to a rigid body method. Indeed, some good solutions that are present in the top 5 or 

top 10 predictions are lost when restricting consideration to the top 1 model. This loss is 

particularly stark when it comes to protein types categorized as “other” type since the drop of 

success rate from top 1000 energy ranked models to the top 30 selected models was nearly 

16% as noted in the results.  

Optimal weighting of energy terms in ClusPro more than doubles the number of targets that 

have a good model as the top prediction. While this is a theoretical limit requiring the use of 

different weights for each target, the success of the “democratic” SwarmDock shows that the 

number of targets with a good model as the top 1 prediction can be improved by applying a 

higher accuracy scoring function. SwarmDock employs machine learning to optimally combine a 

very large number of energy terms from a variety of scoring functions (Moal et al., 2017). In 

addition to the DARS energy term used by ClusPro (Chuang et al., 2008), these include scoring 

functions such as the one implemented in the Rosetta program, which can be meaningfully 

evaluated only following energy minimization, thus allowing for flexibility (Gray et al., 2003). 

Based on these observations, we conclude that re-ranking of models generated by ClusPro 

after some flexible refinement is a reasonable and apparently necessary approach to increasing 

the number of good models as the top 1 prediction.  

The need for flexible refinement is also emphasized by the relative scarcity of high accuracy 

models produced by ClusPro. Creating such models would require even more fundamental 

refinement, most likely by Monte Carlo minimization or by molecular dynamics simulation, 

adopting methods that currently achieved success in protein structure refinement (Heo et al., 

2019; Terashi and Kihara, 2018). This can be done in a refinement stage following rigid body 

docking. Due to ongoing work it is likely that progress will be made to increase both the number 

of high accuracy models and the number of acceptable or better models in the top 1 prediction. 

The only disadvantage will be the increased computing time, which will be a problem for a heavily 

used public server such as ClusPro (see below).  

A more  important concern is that using any docking method, either rigid or flexible, the overall 

success rate in the top 10 predictions is still only around 43%, somewhat higher (~58%) for 

enzyme-containing complexes and much lower for complexes that are classified as “others” in the 

benchmark set (26.7%). The fraction of good solutions is also around 50% in the CAPRI 



experiments, with ClusPro producing 53 good predictions for the 101 targets since 2009. In spite 

of such low success rates, docking methods are heavily used. For example, ClusPro has almost 

15,000 registered users (registration is not required), and has performed 98,300 docking 

calculations in 2019. The calculations have impact, as docked models generated by ClusPro have 

been reported in at least 600 publications. Thus, the question is, why are docking methods used 

at all with such a high level of uncertainty? The answer is that additional information is available 

in most applications, which can be used to restrain or validate the docking results, and thereby 

substantially reduce the uncertainty. Most frequently this information provides distance restraints 

that can be directly used in the process of docking. Accordingly, HADDOCK has been explicitly 

developed with these restraints in mind, and has included them as part of their scoring function. 

Since FFT based methods such as ClusPro perform a systematic search, restraints can be 

enforced simply by restricting considerations to the relevant regions of the search space, and the 

option to consider restraints has been added to the server (Xia et al., 2016). ClusPro also has the 

option of defining extra attraction or repulsion for selected residues (Kozakov et al., 2017).  

The information to define restraints can come from a variety of sources. The most direct sources 

are experimental techniques, including cross-linking and site-directed mutagenesis, the latter 

paired with NMR, calorimetry, FRET, or surface plasmon resonance. Note that even the 

knowledge of a single interprotein residue-residue contact can remove a large number of false 

positive predictions. Accordingly, the majority of ClusPro users rely on some type of experimental 

information to validate docking results. Second, an increasing source of information is the 

availability of homologous complexes that can serve as templates for the structure to be 

determined. Such templates can be used for defining distance restraints to guide the docking. It 

is important to note that if a very good template complex with high sequence similarity is available, 

then accurate models can be obtained using homology modeling without any docking (Porter et 

al., 2019a; Porter et al., 2019b). However, docking with template-based restraints can be very 

useful if the available templates are less perfect. Finally, if neither experimental data nor structural 

templates are available, one can still predict inter-protein residue contacts by extracting co-

evolutionary information. The analysis is based on the observed tendency for compensating 

mutations that occur at interacting residue positions in orthologous protein sequences across 

evolutionary lineages (Hopf et al., 2014; Marks et al., 2011; Ovchinnikov et al., 2014). The 

disadvantage of the method is that it usually requires sequences of the two component proteins 

in a very large number of organisms, and such information may not be available for eukaryotes. 

While acquiring additional information by any of the three methods is independent of the particular 



approach to docking, we emphasize that rigid body methods can efficiently account for the 

resulting distance restraints without altering the scoring function. \ 
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Main tables and corresponding titles and legends 
 

Table 1.  ClusPro’s performance in top 10 and top 30 predictions for 227 targets in 
benchmark 5.0 (BM5) 

Target  
type 

Number of 
targets testeda 

Performance by target difficultyb “Good” modelsd 

Easyc Intermediatec Difficultc Number % 

Enzyme 88/61/13/14 
44/2***/18** 4/0***/2** 3/0***/1** 51 57.95% 

50/2***/21** 5/0***/2** 4/0***/2** 59 67.04% 

Unbound 
antibody 

26/20/5/1 
11/0***/6** 1/0***/0** 0/0***/0** 12 46.15% 

12/0***/6** 2/0***/0** 0/0***/0** 14 53.85% 

Bounde 
antibody 

12/11/0/1 
7/2***/4** N/A 0/0***/0** 7 58.33% 

10/3***/6** N/A 0/0***/0** 10 83.33% 

“Others” 101/57/26/18 
15/0***/5** 9/0***/2** 3/0***/1** 27 26.73% 

22/0***/5** 9/0***/2** 5/0***/1** 36 35.64% 

Totalc 227/149/44/34 
87/4***/33** 14/0***/4** 6/0***/2** 97 42.73% 

94/5***/38** 16/0***/4** 9/0***/3** 119 52.42% 

% “Good” predictions  
51.68% 31.82% 17.65% 

  

63.09% 36.36% 26.47%   
aTotal/easy/medium/difficult targets 
bNumber of targets with “good” (acceptable or better) predictions, among them predictions with   

high (***) and medium (**) accuracy.  
cLine 1: top 10 predictions, line 2: top 30 predictions 
dTargets with “good” (acceptable or better) predictions 
eTargets with the antibody structure from the complex 

 

Table 2. Performance of three servers in CAPRI and CAPRI/CASP 

Namea Yearb ClusProc HADDOCKc SwarmDockc,d 

CAPRI 4 2010 4/1***/3** 3/1***/1** N/A 
CAPRI 5 2013 5/4** 3/1*** 3/1** 
CAPRI/CASP 11 2016 16/8** 16/9** 11/4** 
CAPRI 6 2017 5/2** 2/2** 2/2** 
CAPRI/CASP 12 2018 7/3** 6/1***/1** 5/1***/1** 
CAPRI 7 2019 4/3** 4/1***/2** 3/1***/1** 
CAPRI/CASP 13 2019 12/10** 9/3***/3** 9/5***/4** 
Total  53/1***/33** 43/7***/18** 33/7***/13** 

aName of the meeting where the submissions were discussed 
bYear of the publication reporting the results 
cNumber of targets with “good” (acceptable or better) predictions, among 
them predictions with high (***) and medium (**) accuracy, based on the top 
10 models for each target 

dSwarmDock did not participate in CAPRI 4 



STAR METHODS 

RESOURCE AVAILABILITY 
 

Lead Contact  

Further information and requests for resources should be directed to and will be fulfilled by the 

Lead Contact, Sandor Vajda (vajda@bu.edu). 

Materials Availability 

This study did not generate new unique reagents. 
 
Data and Code Availability  

The published article includes all datasets generated  during this study in the file Data S1. \ 

The ClusPro server is available free for academic and governmental use at 

https://cluspro.bu.edu.  The PIPER docking engine of the server can be downloaded from the 

same site.  

METHOD DETAILS  

 The Protein-Protein Docking Program PIPER 

The program PIPER performs rigid body docking in the 6D space of rotations and translations. 

The center of mass of the receptor is fixed at the origin of the coordinate system, and the possible 

rotational and translational positions of the ligand are evaluated at the given level of discretization. 

The rotational space is sampled on a sphere-based grid that defines a subdivision of a spherical 

surface in which each pixel covers the same surface area as every other pixel (Yershova et al., 

2010). The 70,000 rotations we consider correspond to about 5 degrees in terms of the Euler 

angles. The step size of the translational grid is 1 Å, and hence the program evaluates the energy 

for 109-1010 conformations. 

The interaction energy between two proteins is described by the expression  

E = w1Erep + w2Eattr + w3Eelec + w4Epair,  

where Erep and Eattr denote the repulsive and attractive contributions to the van der Waals 

interaction energy, and Eelec is an electrostatic energy term. Epair is a pairwise structure-based 



potential constructed by the Decoys as the Reference State (DARS) (Chuang et al., 2008) 

approach. As required for using FFT, all energy terms are written as correlation functions. Since 

Eelec is a truncated Columbic potential, it is already in this form. Erep and Eattr are written in terms 

of interacting atoms as correlation functions, whereas the pairwise potential Epair is converted by 

eigenvalue-eigenvector decomposition into the sum of a few correlation functions (Kozakov et al., 

2006). The coefficients w1, w2, w3, and w4 define the weights of the corresponding terms, and are 

adjusted for different types of docking problems as will be discussed below.  

The ClusPro Server 

ClusPro is a web based server for docking of two interacting proteins. The server performs three 

computational steps as follows: (1) rigid body docking using PIPER, (2) clustering the 1000 lowest 

energy docked structures using pairwise IRMSD as the distance measure (Comeau et al., 2004; 

Kozakov et al., 2005),  and (3) refinement of the predicted complex structures located at cluster 

centers by minimizing their energy.  Unless specified otherwise, the server generates four sets of 

models using the scoring schemes called balanced (denoted as 00 in the server), electrostatics-

favored (02), hydrophobicity-favored (04), and van der Waals + electrostatics only, i.e., no Epair 

term (06). In the balanced set 00, the weighting coefficients are selected to yield similar weights 

for the four different energy terms (Kozakov et al., 2017). The set was shown to generally provide 

good results for enzyme-inhibitor complexes. If it is known or assumed that the association of two 

proteins is mainly driven by their electrostatic interactions, then we select results obtained by the 

electrostatic-favored weights 02, in which the weight of the electrostatics is doubled relative to the 

balanced energy expression. In contrast, for complexes primarily stabilized by hydrophobic 

interactions, we use the hydrophobicity-favored potential 04, which thus doubles the weight of the 

Epair term. In the fourth option (van der Waals + electrostatics, the parameterization option 06 in 

the server) the pairwise potential Epair is not used. ClusPro has an additional option for complexes 

that are classified as “others” in the protein-protein docking benchmark (Vreven et al., 2015). The 

motivation for developing a special scoring function is the diverse nature and the generally limited 

shape and electrostatic complementarity in these complexes. In view of the assumed weaker 

shape complementarity and higher structural uncertainty, we reduce the coefficients of Eattr and 

Eelec and use three different values for the coefficient of Epair.. Using each of the three sets of 

weighting coefficients, PIPER generates 500 structures and retains the resulting 1500 

conformations. Finally, docking antibodies to antigens employs atom types and energy 

coefficients specifically designed for this type of target (Brenke et al., 2012).  



As mentioned, the second step of ClusPro is clustering the lowest energy 1000 docked structures 

(or 1500 in the case of “other” type complexes) using pairwise IRMSD as the distance measure 

(Comeau et al., 2004; Kozakov et al., 2005). IRMSD values are calculated for each pair among 

the 1000 structures, and the structure that has the highest number of neighbors within 9Å IRMSD 

radius is identified. The selected structure will be defined as the center of the first cluster, and the 

structures within the 9Å IRMSD neighborhood of the center will constitute the first cluster. The 

members of this cluster are then removed, and we select the structure with the highest number 

of neighbors within the 9Å IRMSD radius among the remaining structures as the next cluster 

center. These neighbors will form the next cluster. Up to 30 clusters are generated in this manner. 

Finally, the energy of each cluster center structure is minimized with fixed backbone using only 

the van der Waals term of the Charmm potential (Brooks et al., 1983). The minimization removes 

steric overlaps but generally yields only very small conformational changes.  

Antibody-Antigen Docking 

ClusPro includes a special option to dock antigens to antibodies. First, we have developed a 

structure-based pairwise potential that is asymmetric, and thus a Phe residue of the antibody 

interacting with, say, a Leu of the antigen contributes more to the binding energy than a Phe 

residue of the antigen interacting with a Leu on the antibody. This asymmetric function represents 

the observed importance of some residues, such as Phe and Tyr, in the CDRs on the antibody 

side of the interface. The potential has been parameterized on antibody-antigen complexes, and 

since the number of such complexes is limited, the potential is defined for fewer atom types than 

the DARS potential developed for enzyme-inhibitor and “other” type complexes (Chuang et al., 

2008). 

The second special factor in antibody-antigen docking is that the interactions are generally 

restricted to the Complementarity Determining Regions (CDRs) of antibodies. Thus, the docking 

can be restricted by “masking” the surface of the antibody except for the CDRs and a few 

additional surrounding residues. Accordingly, ClusPro includes both automated and manual 

options for masking. Manual masking allows users to upload a masking file by themselves. The 

automated masking that is currently implemented on ClusPro includes the following steps. (1) 

The residue sequences are obtained from the input PDB file of the antibody and the chains are 

separated. (2) Each chain is aligned to a set of known heavy and light chains using CLUSTAL 

(Madeira et al., 2019) and scored according to the alignment. The gap penalty was set to 10 

and gap extension penalty was set as 0.1 with the GONNET identity matrix. (3) The location of 



the CDR termini for both the light and the heavy chains are determined using the Fab fragment 

from a mouse monoclonal antibody, NMC-4, from the crystal structure 1OAK where it is bound 

to the A1 domain of the von Willebrand factor as a reference (MacCallum et al., 1996). (4)  After 

obtaining the indices of the start and end residues from 1OAK, the start and end indices for the 

aligned FASTA sequence of the target antibody are used to create a PDB file of the non-CDR 

region. This PDB format masking file is uploaded with the ligand and the antibody, and ClusPro 

essentially “ignores” the atoms in the masked regions during the docking.  

QUANTIFICATION AND STATISTICAL ANALYSIS 

Protein Docking Benchmark Version 5.0 

Benchmark set 5.0 (BM5) is a nonredundant and fairly diverse set of protein complexes for testing 

protein–protein docking algorithms. For each complex the 3D structures of the complex and one 

or both unbound components are available. The set includes 40 antibody-antigen, 88 enzyme-

containing and 102 “others” complexes. In terms of docking difficulty, the complexes are classified 

into the following groups: 151 rigid-body (easy), 45 medium difficulty and 34 difficult targets.  

The CAPRI Criteria of Prediction Accuracy 

CAPRI uses three related parameters for assessing a model: Fnat, iRMSD, and LRMSD(Lensink 

and Wodak, 2013). Fnat is the fraction of true interface contacts that were accurately predicted to 

non-native interface contacts in the predicted model where two residues are in contact if they are 

within 5Å of each other. Interface RMSD (iRMSD) is defined as the RMSD of all interface 

backbone atoms once superposed on the native structure (interface atoms are defined as those 

within 10Å of the other component of the complex) (Mendez et al., 2005). Finally, ligand RMSD 

(LRMSD) is calculated between the ligand backbone atoms, when the receptor of the predicted 

complex is superposed on that of the native. Four categories of prediction accuracy were defined 

by these three measures as follows. A prediction is considered of high accuracy if Fnat ≥ 0.5 and 

LRMSD ≤ 1.0 Å or iRMSD ≤ 1.0 Å. It is of medium accuracy if 0.5 > Fnat ≥ 0.3, and LRMSD ≤ 5.0 

Å or iRMSD ≤ 2.0 Å, or if Fnat ≥ 0.5 but LRMSD > 1.0 Å and iRMSD > 1.0 Å. A prediction is 

acceptable if 0.3 > Fnat ≥ 0.1 and LRMS ≤ 10.0 Å or iRMSD ≤ 4.0 Å, or if Fnat ≥ 0.3 but LRMSD 

> 5.0 Å and iRMSD > 2.0 Å.  Finally, the prediction is incorrect if none of these categories apply, 

i.e., if Fnat < 0.1 or LRMSD > 10 Å and iRMSD > 4.0 Å.  

Evaluating Prediction Accuracy Using DOCKQ 



To serve the docking community, a continuous score called DockQ was developed that 

encapsulated the three measures Fnat, iRMSD, and LRMSD (Basu and Wallner, 2016). The 

resulting combined measure adequately reproduced evaluation classes of CAPRI and is able to 

score predictions between 0 and 1 where ≥ 0.23 is acceptable, ≥ 0.49 is medium and ≥ 0.80 is 

high accuracy. Since DockQ recapitulates the CAPRI classification very well, it can be viewed as 

a higher resolution version of the classification scheme, making it possible to estimate model 

accuracy in a more quantitative way. Therefore DockQ has been widely accepted and was even 

implemented in the official evaluations of the latest CAPRI round. The program is available at 

http://github.com/bjornwallner/DockQ/. 

Validation of energy weight coefficient sets for enzymes and “other” type complexes 

As described, ClusPro currently generates results using four different sets of energy weights, 

which are the balanced set (denoted as 00), the electrostatics-favored set (02), hydrophobicity-

favored set (04), and finally a set using only the van der Waals + electrostatics terms (06). In 

addition, special parameterization is used for “other” type complexes (03), and also for antibody-

antigen targets. We reexamined the use of these coefficient sets for enzyme and “other” type 

complexes. In both cases we performed 5-fold cross-validation on the proteins in BM4, and also 

applied the selected parameters sets to the 55 targets in BM5 that were not part of BM4. The 71 

enzyme-containing complexes in BM4 were shuffled randomly with a python script and divided 

into 5 sets. Each group was considered a test set, while the other four was considered the training 

sets for the balanced (00), the electrostatics-favored (02), the hydrophobicity-favored (04), and 

the van der Waals + electrostatics (06) sets. The best performing coefficient set on the other 4 

groups was tested on the fifth group. The number of times each set would be considered the best 

and shown to be superior on the test set was used to determine the chosen coefficient set. Figure 

S2 shows the number of successful cases for each fold in the training set for better illustration. 

For enzyme containing complexes we concluded that the results obtained by using balanced (00) 

and electrostatics favored (02) do not significantly differ, and hence there is no preference using 

any of these two sets. The same validation protocol was applied to 80 “other”-containing 

complexes in Benchmark 4. Here we primarily compared the special protocol (03) suggested for 

this type of complexes to the use of the balanced (00) and electrostatics favored (02) sets. The 

5-fold cross-validation revealed that the electrostatic-favored set (02) yields the best results, and 

there is no need for using the more complex algorithm of generating 1500 structures with three 

different parameter sets (Figure 4B). 

Supplemental item titles  



Figure S1. Related to Figure 4A. Success rates for enzyme containing complexes using different 

sets of weight in the scoring function of ClusPro.  

Figure S2. Related to Figure 4A and Figure S1. Results of a five-fold cross validation on enzyme-

containing BM4 cases. 

Figure S3. Related to Figure 4B. Results of a five-fold cross validation on “others”-containing BM4 

cases. 

Figure S4. Related to Figure 4C. Comparing the performance of ClusPro with the currently 

implemented weight coefficients to the performance range with the 105 different coefficient sets,  

Figure S5.  Related to Figure 5. Comparing the success rate of ClusPro to those of four other 

servers.  

Data S1.xlsx. Related to Table 1. ClusPro results for 227 targets in the BM5 benchmark set.  
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Figure 2. Cluster-based versus energy-based ranking of models. A. Percentage of “good” 

models in the top 1, top 5, top 10, top 30, and top 1000 predictions for enzyme containing 

complexes, based on either cluster size or energy value. We consider only up to 30 clusters, 

and hence the performance of cluster-based selection does not improve beyond 30. Note that 

energy-based selection of the top 1000 models means that all structures generated by ClusPro 

are retained. B. Same as A, but for antibody-antigen complexes. C. Same as A, but for “other” 

type complexes. 

 

  







Figure 4. Impact of weighting the energy terms and exploring the limits of performance. A. 

Success rates for enzyme containing targets using the balanced (00) and electrostatics favored 

(02) weighting coefficient set in the ClusPro scoring function. B. Success rates for “other” type 

targets using the balanced (00), electrostatics favored (02), or special “other” (03) sets of 

weighting coefficients. For “other” type complexes, ClusPro employs 3 different sets of 

weighting coefficients, generates 500 conformations for each, and clusters the resulting 1500 

structures. C. Success rates for the different types of targets obtained by using the best of 105 

weighting coefficient sets (theoretical limit, TL), versus success rates obtained by using the 

weighting coefficient sets as currently implemented (CI) in ClusPro. 

  




