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SUMMARY

The development of fast Fourier transform (FFT) algorithms enabled the sampling of billions of
complex conformations and thus revolutionized protein-protein docking. FFT based methods are
now widely available and have been used in hundreds of thousands of docking calculations.
Although the methods perform “soft” docking, which allows for some overlap of component
proteins, the rigid body assumption clearly introduces limitations on accuracy and reliability. In
addition, the method can work only with energy expressions represented by sums of correlation
functions. In this paper we use a well-established protein-protein docking benchmark set to
evaluate the results of these limitations by focusing on the performance of the docking server
ClusPro, which implements one of the best rigid body methods. Furthermore, we explore the
theoretical limits of accuracy when using established energy terms for scoring, provide
comparison to flexible docking algorithms, and review the historical performance of servers in the

CAPRI docking experiment.



INTRODUCTION

Protein-protein interactions (PPIs) are essential to the basic functioning of cells and larger
biological systems in all living organisms. The golden standard of validating and understanding
PPls is X-ray crystallography. However, crystallizing protein complexes is sometimes very
difficult, and the number of PPIs discovered is far outpacing the number of complex structures.
Protein-protein docking is a computational tool that can potentially fill this gap by giving atomic-
level details of the interactions between two proteins. In particular, docking can generate models

that can be validated by simple tools such as crosslinking or site directed mutations.

It is widely recognized that one of the most important developments in protein-protein docking
has been the introduction of fast Fourier transform (FFT) for energy evaluation (Katchalski-Katzir
et al.,, 1992). In FFT based methods one of the proteins is placed at the origin of the coordinate
system on a fixed grid, the second protein is placed on a movable grid, and the interaction energy
is written as a sum of a few correlation functions. The numerical efficiency of the methods stems
from the fact that such energy functions can be simultaneously evaluated for all translations using
fast Fourier transforms, and only rotations need to be considered explicitly. This results in the
ability of exhaustively sampling billions of the conformations of the two interacting proteins,
obtaining energy values at each grid point. Thus, the FFT based algorithm enables global docking

without any a priori information on the structure of the complex.

While the use of FFT yields impressive speed-up, it results in two major limitations. The first is
the need for rigid body approximation. In all rigid body methods the shape complementarity term
in the scoring function allows for some overlaps, and hence the methods are able to tolerate
moderate differences between bound and unbound (separately crystallized) structures. However,
the need for reducing sensitivity also reduces the specificity defined by the complementarity of
the shape of the two proteins. In particular, the docked conformations that are close to the native
structure do not necessarily have the lowest energies, whereas low energy conformations may
occur far from the X-ray structures. Therefore rigid body methods must retain a large set of low
energy docked structures for secondary processing that may include some type of refinement,
hoping that the retained set includes at least some that are close to the native structure of the
complex. The second limitation is that the energy expression should be written as a sum of
correlation functions. The original work (Katchalski-Katzir et al., 1992) used a simple scoring
function that accounted only for shape complementarity. However, subsequent methods based

on the FFT correlation approach to docking introduced more complex and more accurate scoring



functions that also included terms representing electrostatic interactions (Gabb et al., 1997,
Mandell et al., 2001), or both electrostatic and desolvation terms (Chen and Weng, 2002; Kozakov
et al., 2006). In fact, better models of the desolvation/nonpolar contributions to the binding free
energy played a major role in making protein-protein docking useful for applications (Camacho et
al., 2000; Camacho and Vajda, 2001), and remain critically important for the development of rigid
body methods (Brenke et al., 2012; Chuang et al., 2008).

The goal of this paper is to rigorously evaluate the performance of rigid body protein-protein
docking in view of the above limitations. The accuracy of docking methods has been continuously
monitored since 2004 by the community-wide experiment called Critical Assessment of PRedicted
Interactions (CAPRI) (Janin et al., 2003). More recently, another community-wide experiment
focused on protein structure determination, Critical Assessment of Structure Prediction (CASP),
joined with CAPRI. In CAPRI/CASP the challenge is predicting protein complex structures based
on the sequences of the individual component proteins rather than their crystal structures, thus
requiring the use of homology modeling tools. It is useful that CAPRI and CAPRI/CASP are blind
prediction experiments and hence provide unbiased information on the accuracy of docking
methods. However, the number, quality and diversity of these sporadic challenges lack the ability
to give a full picture of a method’s strengths and weaknesses. In particular, in CAPRI/CASP the
majority of new targets were homo-oligomers rather than complexes formed by two different
proteins. In many cases such structures have homologous templates available in the Protein Data
Bank (PDB), and the problems can be solved by homology modeling without the need for any
docking (Porter et al., 2019a). In view of the limitations of the CAPRI and CAPRI/CASP
experiments, evaluating docking methods on diverse and well-populated benchmark sets is still
needed. Here we use version 5.0 of the well-established Protein Docking Benchmark which
contains 230 protein pairs known to form complexes (Vreven et al., 2015). A key feature of the
benchmark set is the availability of both the structure of each target complex and the unbound
structures of the component proteins. The most recent version 5 of the Protein Docking
Benchmark (BM5) includes 40 antibody-antigen, 88 enzyme-containing and 102 “other” type
complexes. Based on the difference between bound and unbound conformations of the
component proteins, these complexes are classified as 151 rigid-body (easy), 45 medium
difficulty, and 34 difficult targets.

An important step in the evaluation of docking methods is calculating measures that describe the
closeness of the models to experimentally determined crystal structures. CAPRI uses three

related parameters for assessing a model: the fraction of native contacts, the backbone root mean



square deviation of the ligand (LRMSD) from the reference ligand structure after superimposing
the receptor structures, and the backbone RMSD of the interface residues (IRMSD). Based on
these measures CAPRI defined four categories of accuracy, which are incorrect, acceptable,
medium, and high accuracy (see Star Methods). More recently a continuous score called DockQ
was developed that encapsulated the above three measures (Basu and Wallner, 2016). The
DockQ values range from 0 to 1, where a value exceeding 0.80 implies high accuracy, between
0.80 and 0.49 medium accuracy, and between 0.49 and 0.23 acceptable accuracy. DockQ has
been widely accepted and was even implemented in the official evaluations of the latest CAPRI

round, and hence it is also used here.

While trying to reach general conclusions, here we discuss the results generated by the ClusPro
server that performs rigid body docking (Kozakov et al., 2017). We focus on ClusPro results for
three reasons. First, the use of a fully automated server makes the results reproducible. Second,
ClusPro has consistently been one of the best docking servers as demonstrated in CAPRI rounds
over the last 15 years. However, the other rigid body docking programs, including ZDOCK (Chen
et al., 2003), GRAMM (Tovchigrechko and Vakser, 2005, 2006), pyDOCK (Cheng et al., 2007),
and FTDock (Gabb et al., 1997) perform very similarly to ClusPro, and hence the latter can be
used to explore the accuracy and limitations of rigid body methods. The third reason is that
ClusPro has been developed in our lab, and hence we can also explore how variations in the

parameters affect the docking results.

The main differences among FFT based docking methods are in the sampling density and in the
scoring function used. The sampling density is defined by the step size of the translational grid,
generally between 0.8 A and 1.2 A, and the number of rotations of the ligand protein, resulting in
5 to 12 degrees step size in terms of the Euler angles. For scoring, all methods use linear
combinations of several energy terms that include attractive and repulsive van der Waals
contributions describing shape complementarity, and one or more terms representing the
electrostatic part of the binding energy. In spite of some differences, these energy terms are fairly
standard. The scoring functions in most programs also include some structure-based energy
expression for adding desolvation energy contributions, which is a key factor in determining the
accuracy of docking results. In particular, ClusPro uses the pairwise potential DARS, based on
decoys as the reference state (Chuang et al., 2008). As will be discussed, a major uncertainty is
the relative weighting of these energy terms. Nevertheless, the best rigid body methods have
similar success rates, and hence we assume that by analyzing the results provided by ClusPro

we can assess the general limitations of the approach.



A protocol describing the use of ClusPro was published in 2017 (Kozakov et al., 2017). However,
a detailed look at the advantages of each feature, strengths and weaknesses when it comes to
different classes of proteins and rigidity of complexes has not been previously studied. This paper
outlines the first systematic and rigorous evaluation of ClusPro on a well-accepted protein-protein
docking benchmark. We mainly look at the performance across two dimensions: the
conformational change upon complex formation, and the type of proteins in the target (antibody,
enzyme, or “others”). As expected, results are better for more rigid complexes compared to
complexes that have large conformational differences between unbound and bound states. As
mentioned, an important question related to specific types of complexes is how to select the
weights of energy terms to obtain the best results. Here we go one step further, and generate
models using 105 different combinations of such coefficients. This will enable us to determine
how the choice of weights affects docking accuracy and to find the best coefficient set for each
particular complex to explore the theoretical limits of accuracy of rigid body docking with the given
energy terms. Finally we compare ClusPro to some of the best flexible docking methods in terms
of their success rates, considering both a well-studied subset of the benchmark set and a historical

review of the CAPRI docking experiments.
RESULTS
Performance on the protein docking benchmark

For evaluating the ClusPro server we use the benchmark set 5.0 (BM5) (Vreven et al., 2015). The
component proteins of all 230 target complexes were directly downloaded from BM5 and docked
using ClusPro. For each complex, the 1000 lowest energy models were retained. The top 30
models (centers of the 30 largest clusters) were evaluated using the DockQ program. We note
that some complexes may have fewer than 30 clusters and that a DockQ result of 0.23 and above
(acceptable or better) will be termed as a good solution. In many cases we also list the success
rates (i.e., the percentages of targets with acceptable, medium, or high accuracy models) in the
top 1, top 5, top 10, and top 30 predictions, in some figures denoted as T1, T5, T10, and T30,
respectively. These numbers are of interest for two reasons. First, as will be shown, docking
methods rarely identify the best model as the top 1 prediction, but 5 or 10 models can be subjected
to further refinement and rescoring. Second, recognizing this limitation, CAPRI generally allowed
for the submission of 10 models for each target (Lensink et al., 2007; Lensink and Wodak, 2010,
2013; Mendez et al., 2003; Mendez et al., 2005), although in the more recent rounds ranking of



the different groups was based on the top 5 rather than top 10 predictions (Lensink et al., 2019b;
Lensink et al., 2018; Lensink et al., 2017).

Figures 1A, 1B, and Table 1 show the percentages of good models obtained by ClusPro in the
top 10 and in the top 30 predictions. Unless otherwise noted, all figures of ClusPro’s results show
with balanced coefficient set for enzymes, antibody mode for antibodies, and “others” mode for
“other” type complexes (see Star Methods). The detailed results for each target in BM5, with the
number of acceptable, medium and high accuracy predictions in T1, T5, T10 and T30, are shown
in Data S1. According to Figure 1A and 1B, ClusPro performs best on enzyme containing targets.
Indeed, 51 of the 88 such complexes (57.9%) had acceptable or better models in the top 10
predictions, compared to 19 of the 40 antibody-antigen complexes (50%) (note that only 38 of the
40 were evaluated successfully as DockQ failed to evaluate the predictions for 2 targets because
of their large size), and 27 of the 102 “other” type complexes (26.7%) (only 101 of the 102 were
evaluated successfully by DockQ). Increasing the number of predictions from top 10 to top 30,
eight more enzyme containing complexes, five more antibody-antigen complexes, and nine more
“other” type complexes had acceptable or better solutions. In total, 42.7% of the benchmark set
had acceptable or better solutions in the top 10 predictions, which increases to 52.4% in the top
30. (Note that all percentages are based on the 227 successfully evaluated targets). That amounts

to 97 and 119 good solutions in the top 10 and in the top 30, respectively.

As expected, ClusPro performs best for rigid body protein complexes. As shown in Figure 1C,
1D, and Table 1, ClusPro solves 51.7% of rigid (easy) targets compared to 31.8% for intermediate
and 17.6% for flexible (difficult) targets in the top 10 (T10) predictions. The overall success rate
still reaches 42.7% because 151 of the 230 targets are classified as rigid body. The success rate
increases t0 63.1%, 36.36% and 26.5%, respectively, when considering the top 30 (T30) models.
For enzymes, both in top 10 and top 30 models, more than twice the percentage of rigid targets
were solved compared to intermediate, and over 3 times that of flexible ones. Similar trends are
seen for antibodies. All high accuracy predictions were from the rigid category in both antibody

and enzyme containing cases.
Energy-based versus cluster-based model selection

The set of the 1000 lowest energy models retained from PIPER is too large for post-processing
and has to be reduced by selecting a number of predictions that are likely to be near-native. One

of the major features of ClusPro is that it clusters the 1000 models using interface RMSD with a



9A radius and ranks the clusters based on cluster population, retaining the top 1, top 5, top 10,
and top 30 clusters. In Figure 2 we show the fraction of good models retained in this process, and
compare energy-based and cluster-based model selection. Note that we consider only the top 30
clusters, and hence the performance of cluster-based selection does not improve beyond 30.
However, up to that number selecting the centers of most populated clusters always provides
substantially better performance than selecting the same number of lowest energy structures, and
this is true for all types of protein complexes. Figures 2A-2C also show that PIPER generates
good structures in the 1000 structures for 71.6%, 73.68%, and 51.2% of enzyme, antibody, and
“other” type containing complexes, respectively. When retaining only the 100 best energy
structures the success rates are about 10% lower. The top 30 cluster centers provide almost the
same success rates as the top 100 energy ranked models for antibodies and “others”, showing
only 2.6 and 3.9 percentage points loss. In enzymes, the top 30 cluster centers actually perform
better than the top 100 energy ranked models. Thus, going from 1000 structures to 30 cluster
centers does not lead to losing a very large fraction of good solutions (4.6%, 10.5%, and 15.8%
for enzymes, antibodies and “others”, respectively). However, as shown in Figure 2, there is
substantial drop from the top 30 cluster centers when considering only the top 10, top 5, and

particularly the top 1 cluster.
Antibody-Antigen Docking

Determining the structure of antibody-antigen complexes is an important application of protein
docking, and results have been substantially improved by developing a structure based potential
specific to these interactions (Brenke et al., 2012). Due to the limited number of antigen-antibody
complex structures, the potential is defined for fewer atom types than the DARS potential
developed for enzyme-inhibitor and “other” type complexes (Chuang et al., 2008). Antibody-
antigen docking has two more special properties. The first is that the interactions are generally
restricted to the Complementarity Determining Regions (CDRs) of antibodies. Thus, the docking
can be restricted by “masking” the surface of the antibody except for the CDRs and a few
additional surrounding residues. ClusPro includes both automated and manual options for
masking. Automated masking recognizes known starting and ending motifs of CDR sequences,
adds one to four residues on each end of the loops to allow for some flexibility in the docking, and
masks the rest of the antibody surface (see Star Methods). Manual masking allows users to

upload a masking file by themselves.



Figure 3A shows the percentage of antibody complexes solved without masking, with automated
masking, and with a manually uploaded mask file. The manual masking in this study used the
Chothia numbering system and boundaries for CDRs (Al-Lazikani et al., 1997). Masking generally
increases the success rate, but the gain is moderate. Without masking ClusPro predicts good
solutions in the top 30 for 63.2%% of antibody-antigen targets, compared to 68.4% with the
automated masking option. The relative improvements are somewhat larger in the top 1, top 5
and top 10 predictions. Manual masking also shows only moderate improvements in T1, T5, and

T10 over no masking. Thus, the interaction potential on its own is able to identify the CDR regions.

The second special property specific to antibody-antigen docking in the Protein Docking
Benchmark is that 12 targets of the 40 antibody-antigen targets in BM5 include the structure of a
separately crystallized antigen and the structure of the antibody extracted from the target
complex. As shown in Figure 3B, the success rate for such complexes is much higher than for
the separately crystallized antibodies. Calculated with masking of non-CDRs, 91.7% of targets
with bound antibody structures had a good model in the top 30 predictions, compared to only
57.7% for targets with unbound antibody structures. In the top 1 prediction the difference is
insignificant (16.7% versus 15.39%). High accuracy predictions were obtained only for targets
with bound antibodies (Figure 3B). There is substantial difference in medium accuracy
predictions, which was nearly 58% for targets with bound antibodies but only about 15% for the
unbound cases in top 30. This is in line with the results shown for enzymes and rigid-body cases,
demonstrating that ClusPro does well for targets with moderate conformational changes upon
complex formation. Thus, as expected, the flexibility of the CDRs in antibodies makes docking

much more challenging.
Weights of the Energy Terms

As described in Star Methods, unless the target is specified as an antibody-antigen or “other” type
complex, ClusPro simultaneously generates four sets of models using the scoring schemes called
balanced (denoted as 00), electrostatics-favored (02), hydrophobicity-favored (04), and van der
Waals + electrostatics, i.e., no structure-based DARS energy term (06). Although all four
predictions are available, for enzyme-inhibitor complexes we suggested using the results obtained
by the balanced coefficient set (00). For “other” type complexes we have developed a special
option that uses three different coefficient sets, generates 500 conformations for each, and
clusters the resulting 1500 structures. These suggestions were based on a limited number of

docking runs (Kozakov et al., 2013). However, application of ClusPro to the entire benchmark set



enabled us to further investigate these choices. As shown in Figure 4A, for enzyme containing
complexes the use of the balanced set (00) and of the electrostatics-favored set (02) yield about
the same success rates, but the latter increases the number of targets with medium and high
accuracy predictions, in agreement with the observation that many enzyme-inhibitor interactions
are primarily driven by electrostatics. The coefficient sets 04 (hydrophobicity favored) and 06 (no
Eyair) yield substantially worse predictions (Figure S1, related to Figure 4A). These results were
tested by five-fold cross-validation on 71 enzymes in Protein Docking Benchmark 4 (BM4) (Figure
S2) and also tested on the BM5 additions (see Star Methods). According to the cross validation,
the parameter set 00 generally yields slightly better results. However, this is not true for the test
set (i.e., the added enzyme cases in BM5), as the parameter set 00 gave acceptable or better
solutions for 7 targets in the top 10 predictions, and 10 targets in the top 30, whereas the
parameter set 02 gave good solutions for 10 targets in the top 10 and 11 targets in the top 30.
Thus, there is no clear preference, and either set 00 or 02 can be used. The coefficient set 04
was able to obtain good solutions only for 7 and 8 cases, while the coefficient 06 only gave 3 and

4 cases in T10 and T30 respectively, and thus these coefficient sets should not be used.

The reanalysis of the “other” type complexes were more successful, as it became clear that the
electrostatic-favored set (02) yields the best results for these complexes, and there is no need for
using the more complex algorithm of generating 1500 structures with three different parameter
sets (Figure 4B). A five-fold cross validation was performed on 80 BM4 cases and in 4 of the 5
folds, the electrostatically driven coefficient set was found to be superior (Figure S3). Testing on
BMS additions, the coefficient set 02 obtained good solutions for 5 targets in the top 5 predictions
and 6 targets in the top 10, and the coefficient set 00 gave 4 good predictions in T5 and 6 good
predictions in T10. Both sets worked slightly better than the “others” option 03, which gave 3 good
predictions in T5 and 5 good predictions in T10, and hence we recommend that users should use
standard docking for complexes containing “others”. When all “others” targets in BM5 are
evaluated, 4, 7, 3 and 4 more complexes were solved using the electrostatic-favored set (02) in
the top 1, top 5, top 10 and top 30 predictions, respectively, than the currently preferred “others”
mode. Figure 4B also shows that even the balanced coefficient set (00) has a slight advantage

over the current “others” mode in top 5 and top 10 predictions.

The second interesting question concerning the coefficients of energy terms is the optimality of
selected values, i.e., how much the results could be improved by selecting the individually best
coefficient set for each target. To answer this question, we generated predictions using 105

different sets of coefficient values, and calculated the overall success rate considering the best



result for each complex. Results are compared to the currently implemented coefficient sets in
Figure 4C. For the antibody-antigen complexes the non-CDR regions were masked using the
automatic feature available on the ClusPro server. However, 1KXQ and 2VIS did not have a light
chain and so were docked with antibody mode but without masking. The “others” mode (03) for
“others” and the balanced coefficient set (00) for enzymes were maintained for comparison.
Figure 4C shows that taking the best of the 105 coefficients enables PIPER to find a good model
in the top 1 prediction for 14 of the 38 antibody-antigen complexes compared to only 6 by the
current implementation of ClusPro. The gap narrows significantly to only 2 complexes when
considering the top 30 models. In the top 1 predictions for enzyme-containing complexes the best
weight set yields a good solution for more than 60% of the cases as opposed to only 19% using
the balanced parameter set. Even in the top 30 predictions, for enzymes the theoretical best
parameter set yields 11 more cases than the current implementation of ClusPro (70 versus 59).
The trend continues for the “other” type complexes. In the top 1 prediction there is nearly a three-
fold increase in success rate from the current implementation (from 11 to 32). In top 30, there
were 59 successful cases when using the best coefficient set compared to only 34 using the
standard method. Overall, by using the best coefficient set, ClusPro could find good models for
76.1% of enzymes, 68.4% of antibodies and 52.5% of “others” in the top 10 predictions. This is
compared to 57.9%, 55.3%, and 26.7%, respectively, for the currently selected coefficient sets.
In addition to the number of cases solved, the accuracy of predictions also increases. Using the
best of the 105 coefficient sets, almost 80% of the good solutions in T30 are medium accuracy or
better, compared to only 50% with the currently implemented coefficient set. Although selecting
the best coefficient for each protein significantly outperforms ClusPro using the standard
coefficient sets, Figure S2, related to Figure 4C, shows that the latter still represents a reasonable
choice. In particular, for antibodies the current set is better than three quarters of the sets

available. In all cases, the selected coefficient set is better than the median.
Comparison to Flexible Docking

Four of the best docking servers have been tested on 55 complexes that were added to docking
benchmark 4 (Hwang et al., 2010) to create version 5 of the benchmark (Vreven et al., 2015).
These servers included two rigid body servers, ZDOCK (Pierce et al., 2014) and pyDock (Pons
et al., 2010) that are similar to ClusPro, and the servers SwarmDock (Moal et al., 2018; Torchala
et al., 2013), and HADDOCK (High Ambiguity Driven DOCKIing) (de Vries et al., 2010; Vangone
et al., 2017) that implement flexible docking algorithms. Overall, the success rates (at least one

acceptable prediction for a benchmark case) ranged between 5% and 16% for the top 1 prediction



and 20-38% for the top 10 predictions (Vreven et al., 2015). Overall the best results were obtained
using SwarmDock, followed by ZDOCK (Vreven et al., 2015). We attempted to compare ClusPro
to the four servers on the same 55 targets. However, the structures 1EXB, 4GXU, 4GAM and
4FQl all have more than 10,000 atoms in the PDB file, which could not be handled by the
SWARMDOCK server, since it limits the number of atoms to 10,000. We also note that these four
are multi-protein rather than binary complexes, and thus docking only two selected subunits is
not an entirely valid test. Therefore, the testing was limited to the remaining 51 structures. Docking
antibodies by ClusPro we selected the “antibody mode” with automated masking. For enzymes
and the “other” type targets, the electrostatically driven coefficient (02) set was used. Success
rates of the other four servers for the 51 remaining targets were adopted from the original
publication (Vreven et al., 2015). Results in Figure S5 (related to Figure 5), show that ClusPro
provides the highest number of good models, but SWARMDOCK produces slightly more models
in the top 1 prediction, and HADDOCK yields more high accuracy models.

Recently, the performance of SwarmDock has been substantially improved by the addition of a
methodology of re-ranking models (Moal et al., 2017). The method employs an information-driven
machine learning rescoring scheme called IRaPPA (Integrative Ranking of Protein—Protein
Assemblies) (Moal et al., 2017). IRaPPA combines a large selection of metrics using support
vector machines (R-SVMs) to obtain consensus ranking based on a voting method, resulting in
so-called “democratic” modification of SwarmDock. Figure 5 shows success rates on the 51
targets for the standard SwarmDock, for the “democratic” versions of SwarmDock, and for
ClusPro. The “democratic” ranking significantly improves the SwarmDock success rate, but
ClusPro still performs somewhat better and obtains acceptable or better solutions for ~47% and
~41% compared to SWARMDOCK’s ~41% and ~35%, respectively, in the top 10 and in the top
5 predictions. However, the “democratic’ SwarmDock predicts good models as the top 1
prediction for 23.5% of the 51 targets, whereas ClusPro obtains such result only for 15.69 % of

the targets.
The CAPRI and CAPRI/CASP experiments

CAPRI is an ongoing protein docking experiment (Janin et al., 2003). Each round of CAPRI has
a number of prediction targets, which are unpublished experimentally determined structures of
protein-protein complexes. Given the atomic coordinates of the component proteins or of their
homologs, the participants attempt to predict the structures of native complexes. Each group can

submit up to ten predictions for each target, and the submitted models are evaluated by



independent assessors. In 2014, CAPRI joined the protein structure prediction experiment CASP,
adding target complexes to be predicted from the sequences of the individual component proteins
(Lensink et al., 2016). The importance of these experiments is that the target structures are
blinded, reducing any potential bias. ClusPro predictions have been submitted to CAPRI since
2004, but HADDOCK and SwarmDock started to participate only in 2009 and 2013, respectively,
and hence we analyze only the past-2009 results. The predictions submitted by participating
groups and servers have been evaluated at four CAPRI and three CAPRI/CASP meetings,
namely at CAPRI 4 (Lensink and Wodak, 2010), CAPRI 5 (Lensink and Wodak, 2013), CAPRI 6
(Lensink et al., 2017), CAPRI 7 (Lensink et al., 2019b), CAPRI/CASP 11 (Lensink et al., 2016),
CAPRI/CASP 12 (Lensink et al., 2018), and CAPRI/CASP 13 (Lensink et al., 2019a). While the
limited number of targets in each round of CAPRI and CAPRI/CASP introduced substantial
uncertainty into comparing the performances of the different methods, the reports on the above
seven meetings present results for a total of 101 protein-protein targets. As shown in Table 2,
based on all these results, ClusPro consistently produced more good predictions in the top 10
than HADDOCK, the second best performing server. SwarmDock did not participate in 2009, and
hence its results cannot be directly compared to others. Assuming that SwarmDock would
produce 4 acceptable or better predictions as ClusPro did, the latter still would be the best
performer. However, Table 2 also shows that both HADDOCK and SwarmDock are better than
ClusPro in terms of high accuracy predictions, although both are substantially worse in terms of
medium accuracy ones. We note that other servers also had great performance in some CAPRI
rounds, for example, the server LZerD had more good models than either SwarmDock or
HADDOCK in both 2017 and 2018 (Peterson et al., 2017; Peterson et al., 2018). Nevertheless
we focus on HADDOCK and SwarmDock in Table 2 because of their high overall success rates
from 2009 through 2019.

DISCUSSION

As shown both by the benchmark-based evaluation and the overview of CAPRI and
CAPRI/CASP experiments, the rigid body docking program ClusPro produces more good
models in the top 5 and top 10 predictions than the best flexible docking methods. Since the
performance of ClusPro heavily depends on the magnitude of conformational change between
the separately crystallized component proteins and their bound forms, this result implies that the
rigid body approximation is acceptable for a substantial fraction of interacting proteins. However,
ClusPro has two shortcomings relative to methods such as SwarmDock and HADDOCK. First,

the more advanced “democratic” version of SwarmDock produces more hits as the top 1



prediction. Second, both flexible methods generate more high accuracy models than ClusPro.
These shortcomings are due to different but interrelated limitations on the scoring function
available to a rigid body method. Indeed, some good solutions that are present in the top 5 or
top 10 predictions are lost when restricting consideration to the top 1 model. This loss is
particularly stark when it comes to protein types categorized as “other” type since the drop of
success rate from top 1000 energy ranked models to the top 30 selected models was nearly

16% as noted in the results.

Optimal weighting of energy terms in ClusPro more than doubles the number of targets that
have a good model as the top prediction. While this is a theoretical limit requiring the use of
different weights for each target, the success of the “democratic’ SwarmDock shows that the
number of targets with a good model as the top 1 prediction can be improved by applying a
higher accuracy scoring function. SwarmDock employs machine learning to optimally combine a
very large number of energy terms from a variety of scoring functions (Moal et al., 2017). In
addition to the DARS energy term used by ClusPro (Chuang et al., 2008), these include scoring
functions such as the one implemented in the Rosetta program, which can be meaningfully
evaluated only following energy minimization, thus allowing for flexibility (Gray et al., 2003).
Based on these observations, we conclude that re-ranking of models generated by ClusPro
after some flexible refinement is a reasonable and apparently necessary approach to increasing

the number of good models as the top 1 prediction.

The need for flexible refinement is also emphasized by the relative scarcity of high accuracy
models produced by ClusPro. Creating such models would require even more fundamental
refinement, most likely by Monte Carlo minimization or by molecular dynamics simulation,
adopting methods that currently achieved success in protein structure refinement (Heo et al.,
2019; Terashi and Kihara, 2018). This can be done in a refinement stage following rigid body
docking. Due to ongoing work it is likely that progress will be made to increase both the number
of high accuracy models and the number of acceptable or better models in the top 1 prediction.
The only disadvantage will be the increased computing time, which will be a problem for a heavily

used public server such as ClusPro (see below).

A more important concern is that using any docking method, either rigid or flexible, the overall
success rate in the top 10 predictions is still only around 43%, somewhat higher (~58%) for
enzyme-containing complexes and much lower for complexes that are classified as “others” in the

benchmark set (26.7%). The fraction of good solutions is also around 50% in the CAPRI



experiments, with ClusPro producing 53 good predictions for the 101 targets since 2009. In spite
of such low success rates, docking methods are heavily used. For example, ClusPro has almost
15,000 registered users (registration is not required), and has performed 98,300 docking
calculations in 2019. The calculations have impact, as docked models generated by ClusPro have
been reported in at least 600 publications. Thus, the question is, why are docking methods used
at all with such a high level of uncertainty? The answer is that additional information is available
in most applications, which can be used to restrain or validate the docking results, and thereby
substantially reduce the uncertainty. Most frequently this information provides distance restraints
that can be directly used in the process of docking. Accordingly, HADDOCK has been explicitly
developed with these restraints in mind, and has included them as part of their scoring function.
Since FFT based methods such as ClusPro perform a systematic search, restraints can be
enforced simply by restricting considerations to the relevant regions of the search space, and the
option to consider restraints has been added to the server (Xia et al., 2016). ClusPro also has the

option of defining extra attraction or repulsion for selected residues (Kozakov et al., 2017).

The information to define restraints can come from a variety of sources. The most direct sources
are experimental techniques, including cross-linking and site-directed mutagenesis, the latter
paired with NMR, calorimetry, FRET, or surface plasmon resonance. Note that even the
knowledge of a single interprotein residue-residue contact can remove a large number of false
positive predictions. Accordingly, the majority of ClusPro users rely on some type of experimental
information to validate docking results. Second, an increasing source of information is the
availability of homologous complexes that can serve as templates for the structure to be
determined. Such templates can be used for defining distance restraints to guide the docking. It
is important to note that if a very good template complex with high sequence similarity is available,
then accurate models can be obtained using homology modeling without any docking (Porter et
al., 2019a; Porter et al., 2019b). However, docking with template-based restraints can be very
useful if the available templates are less perfect. Finally, if neither experimental data nor structural
templates are available, one can still predict inter-protein residue contacts by extracting co-
evolutionary information. The analysis is based on the observed tendency for compensating
mutations that occur at interacting residue positions in orthologous protein sequences across
evolutionary lineages (Hopf et al., 2014; Marks et al., 2011; Ovchinnikov et al., 2014). The
disadvantage of the method is that it usually requires sequences of the two component proteins
in a very large number of organisms, and such information may not be available for eukaryotes.

While acquiring additional information by any of the three methods is independent of the particular



approach to docking, we emphasize that rigid body methods can efficiently account for the

resulting distance restraints without altering the scoring function. \
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Main tables and corresponding titles and legends

Table 1. ClusPro’s performance in top 10 and top 30 predictions for 227 targets in

benchmark 5.0 (BM5)

Performance by target difficulty®

“Good” models®

Target Number of
type targets tested® Easy® Intermediate® Difficult® Number %
A8 A0 3I0 51 57.95%
Enzyme — 88/61/13/14  goowuppqsn  pomepe 4ggmee 59  67.04%
106" 1/0™*0"  0/0"*/0** 12 46.15%
2255333 26/20/5/1 1200746 2/0%*0*  0/0***/0** 14 53.85%
Bound® 7/2%+ 4% N/A 0/0***/0* 7 58.33%
antibody 12110/ 10/3**/6** N/A 0/0***/0** 10 83.33%
“ ” 1B/0" /5% Q0T 30T 27 26.73%
Others™  101/57/26/18 oo jquusyes  growesom  Bjgms= 36 35.64%
87/4°4/33%  14J0%HA /02 97 42.73%
Total®  227/149/44134  gpiperejages  qgi0e A 0f03™ 119 52.42%
s “Good" predictions 51.68% 31.82% 17.65%
63.09% 36.36% 26.47%

“Total/easy/medium/difficult targets
®Number of targets with “good” (acceptable or better) predictions, among them predictions with
high (***) and medium (**) accuracy.
‘Line 1: top 10 predictions, line 2: top 30 predictions
Targets with “good” (acceptable or better) predictions
°Targets with the antibody structure from the complex

Table 2. Performance of three servers in CAPRI and CAPRI/CASP

Name? Year® ClusPro® HADDOCK® SwarmDock®*
CAPRI 4 2010  4/1***/3** 3/1***[1** N/A

CAPRI 5 2013 5/4** 3/1%** 3/1**
CAPRI/CASP 11 2016 16/8** 16/9** 11/4**

CAPRI 6 2017 5/2** 2/2** 2/2**
CAPRI/CASP 12 2018 7/3** 6/1***[1** B/1***[1**
CAPRI 7 2019 4/3** Q***[2** 3/1***[1**
CAPRI/CASP 13 2019 12/10** 9/3***[3** 9/5***[4**
Total 53/1***[33**  43/7***/18** 33/7***[13**

@Name of the meeting where the submissions were discussed
®Year of the publication reporting the results
°Number of targets with ‘good” (acceptable or better) predictions, among

them predictions with high (***) and medium (**) accuracy, based on the top

10 models for each target

dSwarmDock did not participate in CAPRI 4
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RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources should be directed to and will be fulfilled by the
Lead Contact, Sandor Vajda (vajda@bu.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The published article includes all datasets generated during this study in the file Data S1. \

The ClusPro server is available free for academic and governmental use at

https://cluspro.bu.edu. The PIPER docking engine of the server can be downloaded from the

same site.

METHOD DETAILS
The Protein-Protein Docking Program PIPER

The program PIPER performs rigid body docking in the 6D space of rotations and translations.
The center of mass of the receptor is fixed at the origin of the coordinate system, and the possible
rotational and translational positions of the ligand are evaluated at the given level of discretization.
The rotational space is sampled on a sphere-based grid that defines a subdivision of a spherical
surface in which each pixel covers the same surface area as every other pixel (Yershova et al.,
2010). The 70,000 rotations we consider correspond to about 5 degrees in terms of the Euler
angles. The step size of the translational grid is 1 A, and hence the program evaluates the energy

for 10°-10"° conformations.
The interaction energy between two proteins is described by the expression
E= W1Erep + WoEatr + W3Eejec + W4Epair,

where Erp and Eaw denote the repulsive and attractive contributions to the van der Waals

interaction energy, and Eeec is an electrostatic energy term. Epair is a pairwise structure-based



potential constructed by the Decoys as the Reference State (DARS) (Chuang et al., 2008)
approach. As required for using FFT, all energy terms are written as correlation functions. Since
Eeiec is a truncated Columbic potential, it is already in this form. E., and Eax are written in terms
of interacting atoms as correlation functions, whereas the pairwise potential Epair is converted by
eigenvalue-eigenvector decomposition into the sum of a few correlation functions (Kozakov et al.,
2006). The coefficients w1, w2, ws, and wy define the weights of the corresponding terms, and are

adjusted for different types of docking problems as will be discussed below.
The ClusPro Server

ClusPro is a web based server for docking of two interacting proteins. The server performs three
computational steps as follows: (1) rigid body docking using PIPER, (2) clustering the 1000 lowest
energy docked structures using pairwise IRMSD as the distance measure (Comeau et al., 2004;
Kozakov et al., 2005), and (3) refinement of the predicted complex structures located at cluster
centers by minimizing their energy. Unless specified otherwise, the server generates four sets of
models using the scoring schemes called balanced (denoted as 00 in the server), electrostatics-
favored (02), hydrophobicity-favored (04), and van der Waals + electrostatics only, i.e., no Epair
term (06). In the balanced set 00, the weighting coefficients are selected to yield similar weights
for the four different energy terms (Kozakov et al., 2017). The set was shown to generally provide
good results for enzyme-inhibitor complexes. If it is known or assumed that the association of two
proteins is mainly driven by their electrostatic interactions, then we select results obtained by the
electrostatic-favored weights 02, in which the weight of the electrostatics is doubled relative to the
balanced energy expression. In contrast, for complexes primarily stabilized by hydrophobic
interactions, we use the hydrophobicity-favored potential 04, which thus doubles the weight of the
Epair term. In the fourth option (van der Waals + electrostatics, the parameterization option 06 in
the server) the pairwise potential E,.iris not used. ClusPro has an additional option for complexes
that are classified as “others” in the protein-protein docking benchmark (Vreven et al., 2015). The
motivation for developing a special scoring function is the diverse nature and the generally limited
shape and electrostatic complementarity in these complexes. In view of the assumed weaker
shape complementarity and higher structural uncertainty, we reduce the coefficients of E.x and
Eeec and use three different values for the coefficient of Epai.. Using each of the three sets of
weighting coefficients, PIPER generates 500 structures and retains the resulting 1500
conformations. Finally, docking antibodies to antigens employs atom types and energy

coefficients specifically designed for this type of target (Brenke et al., 2012).



As mentioned, the second step of ClusPro is clustering the lowest energy 1000 docked structures
(or 1500 in the case of “other” type complexes) using pairwise IRMSD as the distance measure
(Comeau et al., 2004; Kozakov et al., 2005). IRMSD values are calculated for each pair among
the 1000 structures, and the structure that has the highest number of neighbors within 9A IRMSD
radius is identified. The selected structure will be defined as the center of the first cluster, and the
structures within the 9A IRMSD neighborhood of the center will constitute the first cluster. The
members of this cluster are then removed, and we select the structure with the highest number
of neighbors within the 9A IRMSD radius among the remaining structures as the next cluster
center. These neighbors will form the next cluster. Up to 30 clusters are generated in this manner.
Finally, the energy of each cluster center structure is minimized with fixed backbone using only
the van der Waals term of the Charmm potential (Brooks et al., 1983). The minimization removes

steric overlaps but generally yields only very small conformational changes.
Antibody-Antigen Docking

ClusPro includes a special option to dock antigens to antibodies. First, we have developed a
structure-based pairwise potential that is asymmetric, and thus a Phe residue of the antibody
interacting with, say, a Leu of the antigen contributes more to the binding energy than a Phe
residue of the antigen interacting with a Leu on the antibody. This asymmetric function represents
the observed importance of some residues, such as Phe and Tyr, in the CDRs on the antibody
side of the interface. The potential has been parameterized on antibody-antigen complexes, and
since the number of such complexes is limited, the potential is defined for fewer atom types than
the DARS potential developed for enzyme-inhibitor and “other” type complexes (Chuang et al.,
2008).

The second special factor in antibody-antigen docking is that the interactions are generally
restricted to the Complementarity Determining Regions (CDRs) of antibodies. Thus, the docking
can be restricted by “masking” the surface of the antibody except for the CDRs and a few
additional surrounding residues. Accordingly, ClusPro includes both automated and manual
options for masking. Manual masking allows users to upload a masking file by themselves. The
automated masking that is currently implemented on ClusPro includes the following steps. (1)
The residue sequences are obtained from the input PDB file of the antibody and the chains are
separated. (2) Each chain is aligned to a set of known heavy and light chains using CLUSTAL
(Madeira et al., 2019) and scored according to the alignment. The gap penalty was set to 10

and gap extension penalty was set as 0.1 with the GONNET identity matrix. (3) The location of



the CDR termini for both the light and the heavy chains are determined using the Fab fragment
from a mouse monoclonal antibody, NMC-4, from the crystal structure 10AK where it is bound
to the A1 domain of the von Willebrand factor as a reference (MacCallum et al., 1996). (4) After
obtaining the indices of the start and end residues from 10AK, the start and end indices for the
aligned FASTA sequence of the target antibody are used to create a PDB file of the non-CDR
region. This PDB format masking file is uploaded with the ligand and the antibody, and ClusPro

essentially “ignores” the atoms in the masked regions during the docking.
QUANTIFICATION AND STATISTICAL ANALYSIS
Protein Docking Benchmark Version 5.0

Benchmark set 5.0 (BM5) is a nonredundant and fairly diverse set of protein complexes for testing
protein—protein docking algorithms. For each complex the 3D structures of the complex and one
or both unbound components are available. The set includes 40 antibody-antigen, 88 enzyme-
containing and 102 “others” complexes. In terms of docking difficulty, the complexes are classified

into the following groups: 151 rigid-body (easy), 45 medium difficulty and 34 difficult targets.
The CAPRI Criteria of Prediction Accuracy

CAPRI uses three related parameters for assessing a model: Fnat, iRMSD, and LRMSD(Lensink
and Wodak, 2013). Fnat is the fraction of true interface contacts that were accurately predicted to
non-native interface contacts in the predicted model where two residues are in contact if they are
within 5A of each other. Interfface RMSD (iRMSD) is defined as the RMSD of all interface
backbone atoms once superposed on the native structure (interface atoms are defined as those
within 10A of the other component of the complex) (Mendez et al., 2005). Finally, ligand RMSD
(LRMSD) is calculated between the ligand backbone atoms, when the receptor of the predicted
complex is superposed on that of the native. Four categories of prediction accuracy were defined
by these three measures as follows. A prediction is considered of high accuracy if Fnat = 0.5 and
LRMSD < 1.0 A or iRMSD < 1.0 A. It is of medium accuracy if 0.5 > Fnat 2 0.3, and LRMSD < 5.0
A or iRMSD < 2.0 A, or if Fnat = 0.5 but LRMSD > 1.0 A and iRMSD > 1.0 A. A prediction is
acceptable if 0.3 > Fnat 2 0.1 and LRMS < 10.0 A or iRMSD < 4.0 A, or if Fnat = 0.3 but LRMSD
> 5.0 A and iRMSD > 2.0 A. Finally, the prediction is incorrect if none of these categories apply,
i.e., if Fnat < 0.1 or LRMSD > 10 A and iRMSD > 4.0 A.

Evaluating Prediction Accuracy Using DOCKQ



To serve the docking community, a continuous score called DockQ was developed that
encapsulated the three measures Fnat, iRMSD, and LRMSD (Basu and Wallner, 2016). The
resulting combined measure adequately reproduced evaluation classes of CAPRI and is able to
score predictions between 0 and 1 where = 0.23 is acceptable, =2 0.49 is medium and = 0.80 is
high accuracy. Since DockQ recapitulates the CAPRI classification very well, it can be viewed as
a higher resolution version of the classification scheme, making it possible to estimate model
accuracy in a more quantitative way. Therefore DockQ has been widely accepted and was even
implemented in the official evaluations of the latest CAPRI round. The program is available at
http://github.com/bjornwallner/DockQ/.

Validation of energy weight coefficient sets for enzymes and “other” type complexes

As described, ClusPro currently generates results using four different sets of energy weights,
which are the balanced set (denoted as 00), the electrostatics-favored set (02), hydrophobicity-
favored set (04), and finally a set using only the van der Waals + electrostatics terms (06). In
addition, special parameterization is used for “other” type complexes (03), and also for antibody-
antigen targets. We reexamined the use of these coefficient sets for enzyme and “other” type
complexes. In both cases we performed 5-fold cross-validation on the proteins in BM4, and also
applied the selected parameters sets to the 55 targets in BM5 that were not part of BM4. The 71
enzyme-containing complexes in BM4 were shuffled randomly with a python script and divided
into 5 sets. Each group was considered a test set, while the other four was considered the training
sets for the balanced (00), the electrostatics-favored (02), the hydrophobicity-favored (04), and
the van der Waals + electrostatics (06) sets. The best performing coefficient set on the other 4
groups was tested on the fifth group. The number of times each set would be considered the best
and shown to be superior on the test set was used to determine the chosen coefficient set. Figure
S2 shows the number of successful cases for each fold in the training set for better illustration.
For enzyme containing complexes we concluded that the results obtained by using balanced (00)
and electrostatics favored (02) do not significantly differ, and hence there is no preference using
any of these two sets. The same validation protocol was applied to 80 “other’-containing
complexes in Benchmark 4. Here we primarily compared the special protocol (03) suggested for
this type of complexes to the use of the balanced (00) and electrostatics favored (02) sets. The
5-fold cross-validation revealed that the electrostatic-favored set (02) yields the best results, and
there is no need for using the more complex algorithm of generating 1500 structures with three

different parameter sets (Figure 4B).

Supplemental item titles



Figure S1. Related to Figure 4A. Success rates for enzyme containing complexes using different

sets of weight in the scoring function of ClusPro.

Figure S2. Related to Figure 4A and Figure S1. Results of a five-fold cross validation on enzyme-

containing BM4 cases.

Figure S3. Related to Figure 4B. Results of a five-fold cross validation on “others”-containing BM4

cases.

Figure S4. Related to Figure 4C. Comparing the performance of ClusPro with the currently

implemented weight coefficients to the performance range with the 105 different coefficient sets,

Figure S5. Related to Figure 5. Comparing the success rate of ClusPro to those of four other

servers.
Data S1.xIsx. Related to Table 1. ClusPro results for 227 targets in the BM5 benchmark set.
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Figure 1. Performance on the ClusPro server on the protein docking benchmark. A. Percentage

of targets with acceptable, medium, and high accuracy models in the top 10 (T10) predictions

for different protein types. B. Same as in A, but in the top 30 (T30) predictions. C. Percentage of

targets with acceptable, medium, and high accuracy models in the top 10 (T10) predictions,

depending on the level of docking difficulty. D. Same as in C, but in the top 30 (T30) predictions.






Success Rate (%)

B Cluster Ranking Energy Ranking

80

A
70F

T1 T5

T10 T30 T100 T1000

80
70
60 |-
50 -
40
30
20
10 |

T1 15

60

T10 T30 T100 T1000

50
40
30
20

T10 T30 T100 T1000




Figure 2. Cluster-based versus energy-based ranking of models. A. Percentage of “good”
models in the top 1, top 5, top 10, top 30, and top 1000 predictions for enzyme containing
complexes, based on either cluster size or energy value. We consider only up to 30 clusters,
and hence the performance of cluster-based selection does not improve beyond 30. Note that
energy-based selection of the top 1000 models means that all structures generated by ClusPro
are retained. B. Same as A, but for antibody-antigen complexes. C. Same as A, but for “other”

type complexes.
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Figure 3. Results of antibody-antigen docking. A. Percentage of antibody-antigen targets with
acceptable, medium, and high accuracy model in the top 1 (T1), top 5 (T5), top 10 (T10), and
top 30 (T30) predictions, obtained using no masking, automated masking, and manual masking
of non-CDR regions of the antibodies. B. Success rates for antibody-antigen targets with bound

and unbound (separately crystallized) antibody structures with automated masking.
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Figure 4. Impact of weighting the energy terms and exploring the limits of performance. A.
Success rates for enzyme containing targets using the balanced (00) and electrostatics favored
(02) weighting coefficient set in the ClusPro scoring function. B. Success rates for “other” type
targets using the balanced (00), electrostatics favored (02), or special “other” (03) sets of
weighting coefficients. For “other” type complexes, ClusPro employs 3 different sets of
weighting coefficients, generates 500 conformations for each, and clusters the resulting 1500
structures. C. Success rates for the different types of targets obtained by using the best of 105
weighting coefficient sets (theoretical limit, TL), versus success rates obtained by using the

weighting coefficient sets as currently implemented (Cl) in ClusPro.
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Figure 5. Rigid versus flexible docking. Success rates obtained by ClusPro, by the improved
(“democratic”) version of the SwarmDock server, and by the standard versions of SwarmDock.

All results are for 51 of the 55 new targets added to Benchmark version 4 (BM4) to form
Benchmark 5.



