Progress toward improved understanding of antibody maturation
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Upon encountering an antigen, antibodies mature through various rounds of somatic mutations,
resulting in higher affinities and specificities to the particular antigen. We review recent progress
in four areas of antibody maturation studies. (1) Next-generation and single-cell sequencing
have revolutionized the analysis of antibody repertoires by dramatically increasing the
sequences available to study the state and evolution of the immune system. Computational
methods, including machine learning tools, have been developed for reconstituting antibody
clonal lineages and for general repertoire analysis. (2) The availability of X-ray structures,
thermodynamic and kinetic data, and molecular dynamics simulations provide information on
the biophysical mechanisms responsible for improved affinity. (3) In addition to improved
binding to a specific antigen, providing affinity-independent diversity and self/nonself
discrimination are fundamental functions of the immune system. Recent studies, including X-ray
structures, yield improved understanding of both mechanisms. (4) Results from in vivo
maturation help to develop methods of in vitro maturation to improve antibody properties for

therapeutic applications, frequently combining computational and experimental approaches.
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Introduction

After exposure to an antigen, antibodies specific to that antigen will be enriched through the
process of antibody maturation, which involves clonal selection, expansion and somatic
hypermutation [1]. Immunoglobulin (Ig) genes are mutated and any resulting B cell receptors
(BCRs) which have acquired higher affinity are favored for survival; the humoral response will
become dominated by these mutated receptors, which confer protection in subsequent antigen
exposures. Such a rapid cycle of mutation and selection bolsters the host defense, with
antibody affinity improving 10 to 5,000 fold during the immune response [2]. This complex
process raises a number of interesting questions. Where do the mutations occur? What is the
effect of the mutations on antibody structure and flexibility? How do the mutations change
antibody properties, primarily affinity, on and off rates, specificity, and stability? How does the
immune system provide self/nonself discrimination? How deterministic are the developmental
pathways (lineages)? Are these similar in different individuals? While interpreting experimental
data to answer these questions provides necessary insight, the major test of understanding is
whether the changes associated with antibody maturation can be predicted with any reasonable
accuracy, and whether there is sufficient information for developing therapeutic antibodies. As
shown in this short review focusing on aspects of antibody maturation (Figure 1), during the last
two or three years a number of important discoveries substantially improved our understanding
of the immune system, and large scale collection of data and the development of novel methods

predict further progress.

Analysis of antibody repertoires

The collection, or repertoire, of antibodies within an organism convey its immune status,
describes its innate ability to deal with invading or harmful substances, and acts as a history of
how the organism has previously responded to similar challenges [1]. Recent advances in next-

generation sequencing (NGS) have revolutionized strategies for antibody repertoire analysis by



dramatically increasing sample depth compared to previous low-throughput methods [2]. New
methods have also been developed for single-cell sequencing, which allow large-scale
determination of paired light (L) and heavy (H) chains. In addition to computational tools for
reconstituting antibody clonal lineages [3], these advances can provide valuable insights into
how the immune system works, including how it is initially capable of protecting against diverse
threats, but produces higher affinity antibodies after antigen exposure [1]. Researchers now
have easy access to a vast number of sequences. For example, the Observed Antibody Space
(OAS) database, contains over 1 billion sequences [4]. A number of specialized sequence
analysis tools are also available [5], and have enabled accurate models of somatic
hypermutation to be established [6], leading to the creation of software that simulates the
repertoires [3,7]. In particular, the analyses were employed to study the effect of disease on the
immune system [8] and to monitor the impact of organ transplant [9]. Machine learning was also
used to predict vaccination status or the presence of disease [10], and in view of the availability

of sequence data it is expected to become a major tool to study the repertoires.

The impact of mutations on antibody structure, flexibility, and binding affinity
While sequences alone provide valuable information regarding the immune response, 3D
structures are the best to determine how an antibody governs its binding properties and

interacts with an antigen [1,11]. One of the mechanisms to achieve increased affinity in mature

antibodies has been shown to be mutations to the residues in the complementarity-determining
regions (CDRs) of the variable chains. The mutations in CDRs may drive affinity maturation
through two main mechanisms and their combinations. On one extreme, mutations that increase
shape complementarity of the interface, improve electrostatic interactions, hydrogen bonding,
and promote increased burial of hydrophobic regions in the interface all improve binding by
enthalpic means. The alternative and even better studied mechanism involves decreasing

entropic penalties associated with complex formation due to the rigidification of some CDRs.



The CDR H3 loop has proven to be of particular importance in both mechanism, as it has been
shown to form the most contacts on average with the antigen, while also demonstrating highest
structural variation even without direct mutations [12]. A well-studied example of the entropy-
driven increase of affinity is a B-cell lineage expressing broadly neutralizing influenza virus
antibodies, as discussed in Schmidt et al. [13]. The lineage was derived from a subject
immunized with a trivalent vaccine and was comprised of three mature antibodies, the
unmutated common ancestor, and a common intermediate (Figure 2), all with the CDR H3
inserting into the conserved receptor-binding pocket of influenza hemagglutinin. Mutations that
almost exclusively occur in non-H3 CDR and framework regions rigidify the conformation of the
H3 loop very close to its bound conformation, as demonstrated by the analysis of structures and
binding kinetics. Long time-scale molecular dynamics simulations revealed that the maturation
increases the probability of the H3 loop being close to its conformation in the antigen-bound
structure [13]. Rigidification of the H3 loop by remote mutations was also reported for an anti-
HIV neutralizing antibody [14]. In another recent study, Fernandez-Quintero et al. [15,16]
analyzed pairs of antibody fragments which differed in specificity and stage of affinity
maturation. Using a combination of metadynamics and molecular dynamics (MD) simulations,
they observed substantial rigidification in flexibility and plasticity as reflected by a decrease of
conformational diversity. However, a large scale study by Jeliazkov et al. [17] focusing on CDR
H3 loops did not find substantial differences in the flexibility of naive and antigen-experienced
antibodies. Molecular dynamics simulations revealed a spectrum of changes in flexibility,
indicating that while rigidification may be important, it is not the only biophysical mechanism

leading to improved affinity.

Changes in conformation and flexibility also determine the kinetics of antibody-antigen binding.
The already mentioned study of influenza antibody maturation by Schmidt et al. [13] reported

two orders of magnitude increase in the on-rate and one order of magnitude decrease in the off-



rate values, in good agreement with the observation that the major change is the
preorganization of the CDR H3 region. In contrast, Rosenfeld et al. [18] found that improved
antibody-based ricin neutralization by affinity maturation was correlated with slower off-rate
values. We think that this variation is due to the difference in the shape of the antibody epitopes.
The H3 loop of neutralizing antibodies targeting influenza HA must find the fairly narrow sialic
acid binding site [13], which is the major binding energy hot spot [19,20]. This suggests that
appropriate preorganization and rigidity of the H3 loop increases the kon values, whereas the Ko
values are less affected due the scarcity of mutations in H3. In contrast, modeling of the ricin-
binding antibody suggests that the mutations may increase this variant’s conformational

flexibility, which may improve its ability to bind ricin [18].

Maturation for improved specificity

The selection of antibody variants and somatic hypermutation play at least two main roles in
generating a robust B cell immune response [21]. The first is the classical process of affinity
maturation, in which the antibody adapts to fit more perfectly to the antigen structure. The
second role is the generation of affinity-independent diversity and the ability to adapt to changes
in the antigen. The latter outcome may be particularly important for protection against
pathogens such as influenza virus that mutate rapidly enough to reinfect a previously exposed
individual. McCarthy et al. [21] described an extensive structural and biophysical analysis of a
lineage of B cell antigen receptors (BCRs) directed against the receptor binding site of subtype
H1 influenza virus hemagglutinin (HA). The antibodies were obtained from a donor who was
born in 1989 and in 2008 received a trivalent influenza vaccine. The lineage included 8
antibodies, three in one principal branch and five in the other. As described previously [13], the
CDR H3 was found to fit with an invariant pose into the small sialic acid binding site of HA, but
in each of the two branches the rest of the Fab reoriented specifically from its position in the

unmutated common ancestor (UCA). The reorientation generated new contacts, which



compensated for contacts lost as the HA itself mutated during the time between the donor’s
initial exposure and his vaccination. The presence of cells producing antibodies from divergent
branches like these thus offers broader protection when compared to cells from only a single,
linear evolutionary trajectory [21]. In a large scale study, Shehata et al. [22] analyzed
biophysical properties of human antibodies derived from multiple B cell subsets, and found that
somatic hypermutation was associated with increased antibody specificity. However, they
observed that maturation reduced both hydrophobicity and thermal stability compared with naive
B cell-derived mAbs. In agreement with this finding, Julian et al. [23] reported that co-selection
of compensatory mutations to maintain thermodynamic stability was required for efficient affinity

maturation of antibody variable domains.

An important question is how antibodies develop the specificity to differentiate foreign antigens
that mimic self-antigens. Burnett et al. [24] generated B cells in a mouse model displaying an
antibody that cross-reacted with two related protein antigens expressed on self versus foreign
cells. They found that the concentration of B cells remained low until challenged with a high-
density foreign antigen, which initiated germinal center recruitment and antibody gene
hypermutation. The mutations primarily decreased self-affinity, and increased foreign affinity at
a slower rate. Crystal structures revealed that these mutations exploit subtle structural
differences in order to achieve 5000-fold preferential binding to foreign over self-epitopes. The
interesting conclusion was that antibody mutation away from self-reactivity deferred the need to
acquire stringent self-tolerance until after an infection. However, retaining self-reactive clones in
the naive antibody repertoire as substrates for protective antibody responses was required to

retain the ability to detect all foreign antigens.

Watanabe et al. [25] used single-cell cultures to determine the repertoires of human B cell
antigen receptors before and after the second B cell tolerance checkpoint in both healthy donors

and in patients with systemic lupus erythematosus (SLE). Among healthy donors, roughly 70%



of transitional B cells before the second checkpoint recognizing foreign antigens also bound
human self-antigens, but peripheral tolerance halved the frequency of the self-reactive mature B
cells. However, in SLE patients who are defective in the second tolerance checkpoint,
frequencies self-reactive B cells remained unchanged during maturation. The authors concluded
that cross-reactivity between foreign and self-epitopes may be more common than previously
believed [25]. This agrees with the observations of Burnett et al. [24] that such cell are needed
in the native repertoire, but their concentration is low and are increasingly eliminated upon

mutations to respond to an infection.

In vitro maturation of therapeutic antibodies

Antibodies have become very important therapeutics, as evidenced by an increasing number of
FDA-approved monoclonal antibodies [26-28]. Antibody drugs have many advantages over
small-molecule drugs, including superior specificity, prolonged serum half-life, and high
druggability [26,29]. Antibody discovery platforms use either a display-based library approach
(phage, yeast, ribosome, mammalian, or other systems) or an immunization and hybridoma
screening strategy for antibody isolation [30]. In vitro affinity is needed when the affinity of
antibodies generated by these methods does not meet the requirement for drug development.
Moreover, to reduce their antigenicity, humanization of antibodies generated from non-
humanized animals frequently results in reduction of antibody affinity, which has to be restored
[31]. The display methods mentioned above can be used for in vitro affinity maturation, and
successful applications have been reported [32]. Other tools are random mutagenesis by error-
prone PCR, and combinatorial mutagenesis limited to the CDRs [33]. Reprogramming the
antigen specificity of B cells using CRISPR-Cas9 genome-editing technologies is a more recent
and very innovative approach [34]. However, these methods of in vitro affinity maturation can
be laborious and time consuming, and hence a variety of computational approaches have been

developed [28,30,35]. Although the methods of in silico antibody maturation and methods of de



novo antibody design partially overlap, here we focus only on the first application, and refer to

recent reviews [11,36] for the design tools.

Computational antibody maturation generally requires a high-quality antibody-antigen co-crystal
structure as the starting point, and an algorithm which calculates the energy change ocurring
upon mutation. As an example, Purisima and co-workers developed the ADAPT (Assisted
Design of Antibody and Protein Therapeutics) platform for improving and modulating antibody
affinity [37,38]. The method uses a combination of three scoring functions, and tests the impact
of mutating residues one-by-one without changing the initial conformation of the backbone. In
spite of these simplifying assumptions, the platform provided triple mutants that exhibited over
30-fold improvements in binding affinity. Kuroda and Tsumoto [35] and Cannon et al. [30] also
provided examples of successful application, although in the latter the computational method

was guided by experimental alanine scanning.

In vitro maturation generally attempts to optimize several properties, including affinity,
specificity, stability, and solubility. A common challenge is that an improvement in one property
(e.g., affinity) can lead to a deficits in another (e.g., stability). Rabia et al. [29] studied potential
trade-offs and the possibility of co-optimizing multiple antibody properties [29]. An additional but
very important goal of antibody maturation is avoiding “developability issues” such as poor
stability or high levels of aggregation. Raybould et al. [27] provided guideline values for five
metrics implicated in poor developability, including the total length of CDRs, the extent and
magnitude of surface hydrophobicity, positive charge and negative charge in the CDRs, and
asymmetry in the net heavy- and light-chain surface charges. The guideline cutoffs for each

property were derived from the values seen in clinical-stage antibody therapeutics.



Conflict of interest statement

Nothing declared.

Acknowledgements

This work was supported in part by the Division of General Medical Sciences of the National
Institute Health (NIH grant R35GM118078) and by the the National Science Foundation (NSF

grants DBI 1759277 and AF 1645512).



References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

*

of special interest

*%

of outstanding interest

1. Marks C, Deane CM: How repertoire data are changing antibody science. J Biol
* Chem 2020, 295:9823-9837.
This paper is an excellent review of the opportunities provided by the availability of large

collections of antibody repertoires from next-generation and single-cell sequencing efforts.

2. Mishra AK, Mariuzza RA: Insights into the structural basis of antibody affinity

maturation from next-generation sequencing. Front Immunol 2018, 9:117.

3. Kepler TB, Wiehe K: Genetic and structural analyses of affinity maturation in the

humoral response to HIV-1. Immunol Rev 2017, 275:129-144.

4. Kovaltsuk A, Leem J, KelIm S, Snowden J, Deane CM, Krawczyk K: Observed antibody

space: a resource for data mining next-generation sequencing of antibody

repertoires. J Immunol 2018, 201:2502-2509.
5. Teraguchi S, Saputri DS, Llamas-Covarrubias MA, Davila A, Diez D, Nazlica SA,

* Rozewicki J, Ismanto HS, Wilamowski J, Xie J, et al.: Methods for sequence and
structural analysis of B and T cell receptor repertoires. Comput Struct Biotechnol J

2020, 18:2000-2011.

This paper lists the sequence analysis and 3D modeling software tools currently available to

study B-cell and T-cell receptor repertoirs.



10.

11.

12.

13.

Horns F, Vollmers C, Dekker CL, Quake SR: Signatures of selection in the human
antibody repertoire: Selective sweeps, competing subclones, and neutral drift.

Proc Natl Acad Sci U S A 2019, 116:1261-1266.

Yermanos A, Greiff V, Krautler NJ, Menzel U, Dounas A, Miho E, Oxenius A, Stadler T,
Reddy ST: Comparison of methods for phylogenetic B-cell lineage inference using
time-resolved antibody repertoire simulations (AbSim). Bioinformatics 2017,

33:3938-3946.

Bashford-Rogers RJM, Bergamaschi L, McKinney EF, Pombal DC, Mescia F, Lee JC,
Thomas DC, Flint SM, Kellam P, Jayne DRW, et al.: Analysis of the B cell receptor

repertoire in six immune-mediated diseases. Nature 2019, 574:122-126.

Lai L, Zhou X, Chen H, Luo Y, Sui W, Zhang J, Tang D, Yan Q, Dai Y: Composition
and diversity analysis of the B-cell receptor immunoglobulin heavy chain
complementarity-determining region 3 repertoire in patients with acute rejection
after kidney transplantation using high-throughput sequencing. Exp Ther Med

2019, 17:2206-2220.

Arora R, Kaplinsky J, Li A, Arnaout R: Repertoire-based diagnostics using statistical

biophysics. bioRxiv 2019:519108.

Raybould MI, Wong WK, Deane CM: Antibody—antigen complex modelling in the era
of immunoglobulin repertoire sequencing. Molecular Systems Design & Engineering

2019, 4:679-688.

Regep C, Georges G, Shi J, Popovic B, Deane CM: The H3 loop of antibodies shows

unique structural characteristics. Proteins 2017, 85:1311-1318.

Schmidt AG, Xu H, Khan AR, O'Donnell T, Khurana S, King LR, Manischewitz J, Golding



*%

H, Suphaphiphat P, Carfi A, et al.: Preconfiguration of the antigen-binding site
during affinity maturation of a broadly neutralizing influenza virus antibody. Proc

Natl Acad Sci U S A 2013, 110:264-269.

This paper describes the analysis of a lineage of broadly neutralizing influenza virus antibodies
binding to the head region of the hemagglutinin (HA) protein. The lineage includes three mature
antibodies, the unmutated common ancestor (UCA), and a common intermediate (I-2). X-ray
structures are available for UCA, 1-2, one unbound mature antibody, and two mature antibodies
bound to HA. Their CDR H3 inserts into HA’s conserved receptor-binding pocket. The structures
show that during maturation the H3 loop becomes preconfigured in its HA-bound conformation.
Long time-scale molecular dynamics simulations reveal that the maturation increases the
probability of the H3 loop being in such conformation, and thus the maturation is primarily

entropy driven.

14. Kondo HX, Kiribayashi R, Kuroda D, Kohda J, Kugimiya A, Nakano Y, Tsumoto K,
Takano Y: Effects of a remote mutation from the contact paratope on the structure

of CDR-H3 in the anti-HIV neutralizing antibody PG16. Sci Rep 2019, 9:19840.

15. Fernandez-Quintero ML, Loeffler JR, Bacher LM, Waibl F, Seidler CA, Liedl KR: Local
and global rigidification upon antibody affinity maturation. Front Mol Biosci 2020,

7:182.

16. Fernandez-Quintero ML, Loeffler JR, Kraml J, Kahler U, Kamenik AS, Liedl KR:
Characterizing the diversity of the CDR-H3 loop conformational ensembles in

relationship to antibody binding properties. Front Immunol 2018, 9:3065.

17. Jeliazkov JR, Sljoka A, Kuroda D, Tsuchimura N, Katoh N, Tsumoto K, Gray JJ:
Repertoire analysis of antibody CDR-H3 loops suggests affinity maturation does

not typically result in rigidification. Front Immunol 2018, 9:413.



18. Rosenfeld R, Alcalay R, Mechaly A, Lapidoth G, Epstein E, Kronman C, S JF, Mazor O:
Improved antibody-based ricin neutralization by affinity maturation is correlated

with slower off-rate values. Protein Eng Des Sel 2017, 30:611-617.

19. Kozakov D, Grove LE, Hall DR, Bohnuud T, Mottarella SE, Luo L, Xia B, Beglov D,
Vajda S: The FTMap family of web servers for determining and characterizing

ligand-binding hot spots of proteins. Nat Protoc 2015, 10:733-755.

20. Curran PR, Radoux CJ, Smilova MD, Sykes RA, Higueruelo AP, Bradley AR, Marsden
BD, Spring DR, Blundell TL, Leach AR, et al.: Hotspots API: A Python package for
the detection of small molecule binding hotspots and application to structure-

based drug design. J Chem Inf Model 2020, 60:1911-1916.
21. McCarthy KR, Raymond DD, Do KT, Schmidt AG, Harrison SC: Affinity maturation in a

o human humoral response to influenza hemagglutinin. Proc Nat/ Acad Sci U S A

2019, 10.1073/pnas.1915620116.

This paper shows how the loss of affinity due to mutations in the highly variable influenza
hemagglutinin protein are compensated by mutations of the antibodies outside the largely

conserved H3 region.

22. Shehata L, Maurer DP, Wec AZ, Lilov A, Champney E, Sun T, Archambault K, Burnina I,
Lynaugh H, Zhi X, et al.: Affinity maturation enhances antibody specificity but

compromises conformational stability. Cell Rep 2019, 28:3300-3308 €3304.

23. Julian MC, Li L, Garde S, Wilen R, Tessier PM: Efficient affinity maturation of
antibody variable domains requires co-selection of compensatory mutations to

maintain thermodynamic stability. Sci Rep 2017, 7:45259.



24, Burnett DL, Langley DB, Schofield P, Hermes JR, Chan TD, Jackson J, Bourne K, Reed
*%*

JH, Patterson K, Porebski BT, et al.: Germinal center antibody mutation trajectories

are determined by rapid self/foreign discrimination. Science 2018, 360:223-226.

This paper is a very interesting analysis of self/non-self discrimination. It describes the
observation of rapid selection for mutations that decrease self affinity and slower selection for
epistatic mutations that specifically increase foreign affinity. The conclusion is that the presence
of cross-reactive antibodies is necessary to avoid holes in the naive repertoir, but the mutation
away from self-reactivity in germinal center reactions defers the need to acquire stringent self-

tolerance until after an infection.

25. Watanabe A, Su KY, Kuraoka M, Yang G, Reynolds AE, Schmidt AG, Harrison SC,
Haynes BF, St Clair EW, Kelsoe G: Self-tolerance curtails the B cell repertoire to

microbial epitopes. JC/ Insight 2019, 4.

26. Wang J, An L, Zhao Y, Zhang C, Li S, Ye C, Jing S, Hang H: In vitro affinity
maturation of antibody against membrane-bound GPCR molecules. App/ Microbiol

Biotechnol 2019, 103:7703-7717.

27. Raybould MIJ, Marks C, Krawczyk K, Taddese B, Nowak J, Lewis AP, Bujotzek A, Shi J,
Deane CM: Five computational developability guidelines for therapeutic antibody

profiling. Proc Natl Acad Sci U S A 2019, 116:4025-4030.

28. Tabasinezhad M, Talebkhan Y, Wenzel W, Rahimi H, Omidinia E, Mahboudi F: Trends
in therapeutic antibody affinity maturation: From in-vitro towards next-generation

sequencing approaches. Immunol Lett 2019, 212:106-113.

29. Rabia LA, Desai AA, Jhajj HS, Tessier PM: Understanding and overcoming trade-offs
between antibody affinity, specificity, stability and solubility. Biochem Eng J 2018,

137:365-374.



30. Cannon DA, Shan L, Du Q, Shirinian L, Rickert KW, Rosenthal KL, Korade M, 3rd, van
Vlerken-Ysla LE, Buchanan A, Vaughan TJ, et al.: Experimentally guided
computational antibody affinity maturation with de novo docking, modelling and

rational design. PLoS Comput Biol 2019, 15:e1006980.

31. Zhou B, Xia L, Zhang T, You M, Huang Y, He M, Su R, Tang J, Zhang J, Li S, et al.:
Structure guided maturation of a novel humanized anti-HBV antibody and its

preclinical development. Antiviral Res 2020, 180:104757.

32. Colley CS, Popovic B, Sridharan S, Debreczeni JE, Hargeaves D, Fung M, An LL,
Edwards B, Arnold J, England E, et al.: Structure and characterization of a high
affinity C5a monoclonal antibody that blocks binding to C5aR1 and C5aR2

receptors. MAbs 2018, 10:104-117.

33. Simons JF, Lim YW, Carter KP, Wagner EK, Wayham N, Adler AS, Johnson DS:
Affinity maturation of antibodies by combinatorial codon mutagenesis versus

error-prone PCR. MAbs 2020, 12:1803646.
34. Voss JE, Gonzalez-Martin A, Andrabi R, Fuller RP, Murrell B, McCoy LE, Porter K,

* Huang D, Li W, Sok D, et al.: Reprogramming the antigen specificity of B cells using

genome-editing technologies. Elife 2019, 8.

This paper describes a novel approach to in vitro antibody maturation. The immunoglobulin

genes of mature B cells are directly edited using CRISPR-Cas9 in a homology directed repair
strategy, to replace the heavy chain variable region with that from an HIV broadly neutralizing
antibody. Endogenous activation-induced cytidine deaminase in engineered cells generated B

cell receptor variants with improved HIV neutralizing activity.

35. Kuroda D, Tsumoto K: Antibody affinity maturation by computational design.

Methods Mol Biol 2018, 1827:15-34.



36. Norman RA, Ambrosetti F, Bonvin A, Colwell LJ, Kelm S, Kumar S, Krawczyk K:

Computational approaches to therapeutic antibody design: established methods

and emerging trends. Brief Bioinform 2020, 21:1549-1567.

This paper is an excellent review of the design tools that can be used for de novo therapeutic

antibody design beyond the scope of in silico antibody maturation.

37. Sulea T, Hussack G, Ryan S, Tanha J, Purisima EO: Application of Assisted Design
of Antibody and Protein Therapeutics (ADAPT) improves efficacy of a Clostridium

difficile toxin A single-domain antibody. Sci Rep 2018, 8:2260.
38. Vivcharuk V, Baardsnes J, Deprez C, Sulea T, Jaramillo M, Corbeil CR, Mullick A,

Magoon J, Marcil A, Durocher Y, et al.: Assisted Design of Antibody and Protein

Therapeutics (ADAPT). PLoS One 2017, 12:e0181490.

This paper describes a remarkably simple approach to in vitro antibody maturation. Amino acid
mutations are introduced and tested one-by-one using a consensus z-score from three well
established scoring functions. In spite of this simplicity, triple mutants exhibited at least 30-fold
improvements in binding affinity, and over 90% of all the intermediate single and double mutants
showed higher affinities than the parent sequence. Results suggest that current scoring

functions are accurate enough to perform in vitro antibody maturation.



N

@ 1 H2  H3 1oL L3 ,__[

UCA

(b) (c) (d) °

Figure 1.

Focus areas in antibody maturation. (a) Large collections of sequences representing entire
antibody repertoires are now available to establish models of somatic hypermutation and to
reconstruct antibody clonal lineages. (b) Enthalpy-driven improvement of affinity is frequently
caused by mutations of contact residues in the CDRs that increase shape complementarity
interface, improve electrostatic interactions, hydrogen bonding, and promote increased burial of
hydrophobic regions in the interface. (¢) Alternatively, the binding affinity can be improved by
the rigidification of some interacting loops, in most cases H3, thereby reducing the entropy loss
upon binding. Binding can be improved by mutations outside the loops directly contacting the
antigen. (d) The panels represent mutations on the antibody (yellow spheres) to compensate for
the naturally occurring mutations of the antigen (shown as red spheres) in frequently mutating

viruses such as influenza.
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Figure 2.

Example of preconfigured H3 loop in entropy-driven improvement of binding affinity. (a) B-cell
lineage expressing broadly neutralizing influenza virus antibodies that bind to the sialic acid
receptor region of the hemagglutinin (HA), including the UCA (PDB ID 4hk0), a common
intermediate 1-2 (4hk3) and two of the mature antibodies. X-ray structures are available for both
the unbound and HA-bound variant CH67 (4hkb and 4hkx, respectively). Only the HA-bound
structure is solved for the variant CH65. (b) The conformations of the H3 loop in the five
structures shown on the left reveal that the unbound structure in the mature antibody CH67
(4hkb, purple) comes very close to the conformations of the loop in the HA-bound structures

(4hkx and 3smb5, colored green and blue, respectively). The star indicates HA-bound structures.



