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ABSTRACT: Readily available 1,2-amino alcohols provide the
framework for a new generation of chiral carboxylic acid catalysts
that rival the acidity of the widely used chiral phosphoric acid
catalyst (S)-TRIP. Covalently linked thiourea sites stabilize the
carboxylate conjugate bases of these catalysts via anion-binding,
an interaction that is largely responsible for the low pK, values.
The utility of the new catalysts is illustrated in the context of chal-
lenging [4+2] cycloadditions of salicylaldehyde-derived acetals
with homoallylic and bishomoallylic alcohols, providing polycy-
clic chromanes in highly enantioselective fashion.

The burgeoning field of asymmetric Breonsted acid catalysis
continues to be driven largely by chiral phosphoric acids, first
introduced by Akiyama and Terada in 2004." Although chiral
carboxylic acids such as tartaric acid and mandelic acid are
abundant in nature, they have only occasionally been used in
asymmetric Bronsted acid catalysis.> This is likely due to the
rather weak acidity of simple carboxylic acids, significantly
limiting the types of substrates that can be activated.”® Indeed, the
most successful chiral carboxylic acids developed thus far contain
elements that further acidify the catalyst, as exemplified by the
elegant contributions of the Maruoka group (Figure 1).* In this
context, we recently reported a new class of easily prepared chiral
carboxylic acid catalysts that derive their high acidity from
conjugate-base-stabilization through anion-binding, facilitating a
number of asymmetric transformations  (Figure 1).>°
Computational studies suggest that the catalyst anions can adopt a
bowl-shaped structure, enabling the formation of well-defined ion
pairs with cationic substrate intermediates.>*” Our original design
of these catalysts was based on chiral 1,2-diamine backbones,
limiting the structural variety of catalysts that are -easily
accessible. We now report second-generation catalysts that are
based on chiral 1,2-amino alcohols. Not only are these backbones
more readily available and offer a range of other advantages, the
resulting catalysts show dramatically enhanced reactivity and
selectivity profiles as illustrated in the catalytic enantioselective
synthesis of polycyclic oxygenated chromanes.
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Figure 1. Catalyst Design.

Furanochromanes and  pyranochromanes are common
substructures of natural products such as parvinaphthol C,
medicarpin, and siccanin (Scheme 1).*® While there are various
examples of catalytic enantioselective cycloadditions of o-
quinone methide intermediates that provide access to simple
chromane frameworks lacking oxygenation in the 4-position,”'’
direct catalytic enantioselective approaches to 4-oxygenated
chromanes remain extremely rare.!' As the latter cycloadditions
require the intermediacy of oxocarbenium ions or protonated o-
quinone methides, they present a significant challenge to
asymmetric catalysis.'>"® Although a number of Brensted and
Lewis acids have been shown to facilitate
condensations/cycloadditions of salicylaldehyde derivatives with
homoallylic and  bishomoallylic  alcohols to  provide
furanochromanes and pyranochromanes in high yields and
diastereoselectivities,'* the only catalytic enantioselective variant
of such a reaction was recently published by the List group
(Scheme 1).'"®  Specifically, these researchers accomplished
highly enantioselective [4+2] cycloadditions of salicylaldehydes
with dienyl homoallylic alcohols, utilizing an imidodiphosphoric



acid catalyst (IDP). However, under identical conditions, a
simple homoallylic alcohol provided the desired product with
poor levels of stereocontrol, illustrating the need for a conjugated
alkene in this particular approach.

Scheme 1. Natural products containing 4-oxychromanes
and previous catalytic enantioselective approach to
furanochromanes.
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With the goal of developing an intramolecular [4+2]
cycloaddition with simple alkene substrates, we initiated our
investigations with salicylaldehyde dimethyl acetal la and
bishomoallylic alcohol 2a (Table 1). The previously reported
thiourea-carboxylic acid 4a was found to be a highly active
catalyst, furnishing the desired product 3a in good yield albeit low
ee (entry 1). Remarkably, the new 1,2-amino alcohol-based
catalyst 4b, differing from 4a only in the type of linker connecting
the thiourea and carboxylic acid functionalities (ester-linkage vs.
amide-linkage), was not only markedly more active, but also
provided a dramatic boost in enantioselectivity (entry 2). The
corresponding cis-isomeric catalyst 4¢ exhibited similarly high
activity but furnished the opposite enantiomer of 3a in low ee
(entry 3). Notably, no product was obtained with either of the
catalysts when 1a was replaced with salicylaldehyde (not shown).
Increasing the electron-withdrawing character of the thiourea aryl
group resulted in the even more active and selective catalysts 4d
and 4e (entries 4 and 5). In contrast, catalysts 4f and 4g provided
slightly less favorable results (entries 6 and 7). Thiourea-
carboxylic acids 4h—4k were also prepared from a range of other
chiral 1,2-amino alcohols. Although their evaluation did not
result in further improvements (entries 8—11), these catalysts
appear to hold significant potential for the future use in other
reactions. Finally, a modest reduction in reaction temperature to 0
°C further enhanced the performance of catalyst 4e, providing
product 3a in 89% yield and 99% ee after a reaction time of just
30 min (entry 12). For comparison purposes, the reaction was
conducted with the chiral phosphoric acid catalyst (S)-TRIP (5)'°
which was found to be relatively inactive. While low substrate
conversion was observed after 15 h, 3a was obtained in nearly
racemic form (entry 13). No improvement in selectivity was
achieved with IDP, although this catalyst proved to be
significantly more active than (S)-TRIP (5) (entry 14). It should
be noted that all ester-linked thiourea-carboxylic acids prepared in
the course of this study are stable and easily available in two steps
from their corresponding 1,2-amino alcohols, isothiocyanates, and
cheap tetrabromophthalic anhydride.

Table 1. Reaction development.”
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entry catalyst time yield (%) ee (%)
1 4a 30 min 86 25
2 4b 15 min 89 94
3 4c 15 min 80 =30
4 4d 10 min 97 95
5 4e 5 min 96 96
6 4f 5 min 95 90
7 4g 30 min 96 92
8 4h 30 min 92 -69
9 4i 50 min 75 19
10 4j 50 min 83 71
11 4k 30 min 88 55
12° 4e 30 min 89 99
13 S-TRIP (5) 15h 19 6
14 IDP 4h 89 2

 Reactions were performed with 0.1 mmol of 1a and 1.2 equiv of
2a. All yields correspond to yields of isolated product. The ee
values were determined by SFC analysis. ° Reaction was
performed at 0 °C.

The scope of the catalytic enantioselective [4+2] cycloaddition
reaction is summarized in Scheme 2. While the use of catalyst 4e
was optimal for the synthesis of product 3a from bishomoallylic
alcohol 2a (Table 1), catalyst 4b (readily prepared on scale in just
two steps from commercial materials) was found to be more
general and was therefore used for all other substrates. The
corresponding homoallylic alcohol also participated in this
transformation, providing furanochromane 3b in high ee. A
benzylic alcohol was also efficiently converted into the
corresponding product 3c. Different substituents on the alkene
moiety were well tolerated. Salicylaldehyde acetals containing
electronically diverse substituents in the 3-, 4-, 5-, and 6-positions
were readily accommodated. Excellent enantioselectivities and
good yields were generally achieved. In all cases, only the trans-
fused diastereomers of products 3 were observed.'



Scheme 2. Reaction scope.
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To gain insights into the stereospecificity of the [4+2]
cycloaddition and possibly its nature (concerted vs. stepwise),
reactions of la were conducted with the two E/Z-isomeric
bishomoallylic alcohols 6 and 8. Diastereomeric products 7 and 9
were formed as the only observable isomers in high albeit
nonidentical levels of enantioselectivity (Scheme 2). As pointed
out recently by Spivey and coworkers in an elegant
mechanistic/computational paper involving closely related
substrates,'*¢ this does not necessarily imply a concerted
cycloaddition pathway. Therefore, a Prins-like process with a
tertiary carbocation intermediate cannot be ruled out at present
and may in fact be more likely.

The possibility of achieving kinetic resolution or
diastereodivergent reactions was explored with representative,
racemic bishomoallylic alcohols 10 and 12 (Scheme 2)."
Interestingly, while the a-stereogenic center in substrate 10
dictates the diastereoselectivity of the reaction, consistent with
what has been observed in the corresponding non-asymmetric
reaction,'**® one enantiomer of 10 reacts significantly faster,
leading to an efficient kinetic resolution process and the formation
of product 11 as a single observable diastereomer in 71% yield
and 92% ee. In contrast, the B-stereogenic center in substrate 12
seems to not greatly bias the innate diastereoselectivity of the
reaction. Here a diastereodivergent process was observed with
each enantiomer of 12 providing a different product diastereomer,
both of which were obtained in excellent enantioselectivity.'®
Judging from the fact that the product dr is 3.8:1 (rather than 1:1),
a kinetic resolution process also took place simultaneously. These
transformations illustrate the ability to install additional
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stereogenic centers by utilizing readily available racemic starting
materials.'”

To further improve the overall efficiency of the [4+2]
cycloaddition, we evaluated the synthesis of pyranochromane 3a
at different substrate concentrations and catalyst loadings.
Gratifyingly, using only 0.5 mol% of catalyst 4e at a tenfold
increased substrate concentration in toluene solution allowed for
the preparation of product 3a in excellent yield and ee (Scheme
3). Even at this low catalyst loading, the reaction went to
completion within 1.5 hours at room temperature. Thus, the
amount of solvent needed for conducting the reaction on a 0.1
mmol scale is the same as for a 1 mmol scale.

Scheme 3. Reaction at low catalyst loading
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Detailed acidity measurements in acetonitrile were conducted for
several thiourea-carboxylic acid catalysts and control compounds
(Figure 2)." As reported previously, the amide-linked catalyst 4a
has a pK, value of 12.4°" Comparison of this value to the pK,
values of truncated versions of the catalyst, namely thiourea 14
and carboxylic acid 15, suggests that conjugate-base-stabilization
is responsible for an increase in acidity of nearly seven orders of
magnitude. To gauge the potential role of the amide NH in
stabilizing or destabilizing the conjugate base of the catalyst, we
subsequently prepared ester 16. Interestingly, 16 was found to be
two orders of magnitude more acidic than amide 15, suggesting



that stabilization of the carboxylate anion via hydrogen bonding to
the amide NH is unlikely to play a significant role. Rather, the
increase in acidity when replacing the amide substituent with an
ester group can be attributed to inductive effects. It was in fact
this observation that provided some of the motivation for pursuing
1,2-amino alcohol based catalysts as a potential avenue to more
acidic catalysts. However, the expected acidity trend does not
hold. The pK, value of 4b was determined to be 13.6. Clearly,
the model compounds do not fully capture all aspects that are
responsible for the overall pK, values of the actual catalysts.
Coincidentally, the acidities of 4b and (S)-TRIP (5) are
identical™® Their vastly different performances in the [4+2]
cycloaddition nicely illustrate that the acidity of a Brensted acid
catalyst is not necessarily correlated with its activity in a given
transformation. Comparing once again catalysts 4a and 4b, it is
clear that this consideration also applies to catalysts that are
structurally closely related. Finally, the cis-configured catalyst 4¢
was found to be the most acidic catalyst in the series with a pK,
value of 118, close to the pK, values of typical
imidodiphosphoric acids (pK, values ~ 11.5)* and significantly
more acidic than trifluoroacetic acid.?’ Presumably, the relative
spatial arrangement of the carboxylic acid and thiourea moieties
enables a more efficient stabilization of the conjugate base in the
cis-isomer 4c than is possible in the trans-isomer 4b.
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Figure 2. pK, values of thiourea-carboxylic acid catalysts and

comparison to other acids.

In conclusion, we have achieved highly efficient [4+2]
cycloadditions  of  salicylaldehyde-derived  acetals  with
homoallylic and bishomoallylic alcohols to provide polycyclic
furanochromanes and pyranochromanes in good to excellent
yields and enantioselectivities. This advance was enabled through
the development of a new generation of conjugate-base-stabilized
carboxylic acid catalysts. The observation that Brensted acids
with identical pK, values can exhibit vastly different catalytic
activities makes a compelling case for the continued exploration
of more structurally diverse catalysts.
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