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ABSTRACT: Readily available 1,2-amino alcohols provide the 

framework for a new generation of chiral carboxylic acid catalysts 

that rival the acidity of the widely used chiral phosphoric acid 

catalyst (S)-TRIP.  Covalently linked thiourea sites stabilize the 

carboxylate conjugate bases of these catalysts via anion-binding, 

an interaction that is largely responsible for the low pKa values.  

The utility of the new catalysts is illustrated in the context of chal-

lenging [4+2] cycloadditions of salicylaldehyde-derived acetals 

with homoallylic and bishomoallylic alcohols, providing polycy-

clic chromanes in highly enantioselective fashion. 

The burgeoning field of asymmetric Brønsted acid catalysis 

continues to be driven largely by chiral phosphoric acids, first 

introduced by Akiyama and Terada in 2004.1,2  Although chiral 

carboxylic acids such as tartaric acid and mandelic acid are 

abundant in nature, they have only occasionally been used in 

asymmetric Brønsted acid catalysis.3  This is likely due to the 

rather weak acidity of simple carboxylic acids, significantly 

limiting the types of substrates that can be activated.2g  Indeed, the 

most successful chiral carboxylic acids developed thus far contain 

elements that further acidify the catalyst, as exemplified by the 

elegant contributions of the Maruoka group (Figure 1).4  In this 

context, we recently reported a new class of easily prepared chiral 

carboxylic acid catalysts that derive their high acidity from 

conjugate-base-stabilization through anion-binding, facilitating a 

number of asymmetric transformations (Figure 1).5,6  

Computational studies suggest that the catalyst anions can adopt a 

bowl-shaped structure, enabling the formation of well-defined ion 

pairs with cationic substrate intermediates.5e,7  Our original design 

of these catalysts was based on chiral 1,2-diamine backbones, 

limiting the structural variety of catalysts that are easily 

accessible.  We now report second-generation catalysts that are 

based on chiral 1,2-amino alcohols.  Not only are these backbones 

more readily available and offer a range of other advantages, the 

resulting catalysts show dramatically enhanced reactivity and 

selectivity profiles as illustrated in the catalytic enantioselective 

synthesis of polycyclic oxygenated chromanes. 

 

Figure 1.  Catalyst Design. 

Furanochromanes and pyranochromanes are common 

substructures of natural products such as parvinaphthol C, 

medicarpin, and siccanin (Scheme 1).8  While there are various 

examples of catalytic enantioselective cycloadditions of o-

quinone methide intermediates that provide access to simple 

chromane frameworks lacking oxygenation in the 4-position,9,10 

direct catalytic enantioselective approaches to 4-oxygenated 

chromanes remain extremely rare.11  As the latter cycloadditions 

require the intermediacy of oxocarbenium ions or protonated o-

quinone methides, they present a significant challenge to 

asymmetric catalysis.12,13  Although a number of Brønsted and 

Lewis acids have been shown to facilitate 

condensations/cycloadditions of salicylaldehyde derivatives with 

homoallylic and bishomoallylic alcohols to provide 

furanochromanes and pyranochromanes in high yields and 

diastereoselectivities,14 the only catalytic enantioselective variant 

of such a reaction was recently published by the List group 

(Scheme 1).11a  Specifically, these researchers accomplished 

highly enantioselective [4+2] cycloadditions of salicylaldehydes 

with dienyl homoallylic alcohols, utilizing an imidodiphosphoric 



 

acid catalyst (IDP).  However, under identical conditions, a 

simple homoallylic alcohol provided the desired product with 

poor levels of stereocontrol, illustrating the need for a conjugated 

alkene in this particular approach. 

Scheme 1.  Natural products containing 4-oxychromanes 

and previous catalytic enantioselective approach to 

furanochromanes. 

 

With the goal of developing an intramolecular [4+2] 

cycloaddition with simple alkene substrates, we initiated our 

investigations with salicylaldehyde dimethyl acetal 1a and 

bishomoallylic alcohol 2a (Table 1).  The previously reported 

thiourea-carboxylic acid 4a was found to be a highly active 

catalyst, furnishing the desired product 3a in good yield albeit low 

ee (entry 1).  Remarkably, the new 1,2-amino alcohol-based 

catalyst 4b, differing from 4a only in the type of linker connecting 

the thiourea and carboxylic acid functionalities (ester-linkage vs. 

amide-linkage), was not only markedly more active, but also 

provided a dramatic boost in enantioselectivity (entry 2).  The 

corresponding cis-isomeric catalyst 4c exhibited similarly high 

activity but furnished the opposite enantiomer of 3a in low ee 

(entry 3).  Notably, no product was obtained with either of the 

catalysts when 1a was replaced with salicylaldehyde (not shown).  

Increasing the electron-withdrawing character of the thiourea aryl 

group resulted in the even more active and selective catalysts 4d 

and 4e (entries 4 and 5).  In contrast, catalysts 4f and 4g provided 

slightly less favorable results (entries 6 and 7).  Thiourea-

carboxylic acids 4h–4k were also prepared from a range of other 

chiral 1,2-amino alcohols.  Although their evaluation did not 

result in further improvements (entries 8–11), these catalysts 

appear to hold significant potential for the future use in other 

reactions.  Finally, a modest reduction in reaction temperature to 0 

°C further enhanced the performance of catalyst 4e, providing 

product 3a in 89% yield and 99% ee after a reaction time of just 

30 min (entry 12).  For comparison purposes, the reaction was 

conducted with the chiral phosphoric acid catalyst (S)-TRIP (5)15 

which was found to be relatively inactive.  While low substrate 

conversion was observed after 15 h, 3a was obtained in nearly 

racemic form (entry 13).  No improvement in selectivity was 

achieved with IDP, although this catalyst proved to be 

significantly more active than (S)-TRIP (5) (entry 14).  It should 

be noted that all ester-linked thiourea-carboxylic acids prepared in 

the course of this study are stable and easily available in two steps 

from their corresponding 1,2-amino alcohols, isothiocyanates, and 

cheap tetrabromophthalic anhydride.   

 

Table 1.  Reaction development.
a
 

 

entry catalyst time yield (%) ee (%) 

1 4a 30 min 86 25 

2 4b 15 min 89 94 

3 4c 15 min 80 –30 

4 4d 10 min 97 95 

5 4e 5 min 96 96 

6 4f 5 min 95 90 

7 4g 30 min 96 92 

8 4h 30 min 92 –69 

9 4i 50 min 75 19 

10 4j 50 min 83 71 

11 4k 30 min 88 55 

 12b 4e 30 min 89 99 

13 S-TRIP (5) 15 h 19 6 

14 IDP 4 h 89 2 
a Reactions were performed with 0.1 mmol of 1a and 1.2 equiv of 

2a.  All yields correspond to yields of isolated product.  The ee 

values were determined by SFC analysis.  b Reaction was 

performed at 0 °C. 

The scope of the catalytic enantioselective [4+2] cycloaddition 

reaction is summarized in Scheme 2.  While the use of catalyst 4e 

was optimal for the synthesis of product 3a from bishomoallylic 

alcohol 2a (Table 1), catalyst 4b (readily prepared on scale in just 

two steps from commercial materials) was found to be more 

general and was therefore used for all other substrates.  The 

corresponding homoallylic alcohol also participated in this 

transformation, providing furanochromane 3b in high ee.  A 

benzylic alcohol was also efficiently converted into the 

corresponding product 3c.  Different substituents on the alkene 

moiety were well tolerated.  Salicylaldehyde acetals containing 

electronically diverse substituents in the 3-, 4-, 5-, and 6-positions 

were readily accommodated.  Excellent enantioselectivities and 

good yields were generally achieved.  In all cases, only the trans-

fused diastereomers of products 3 were observed.16 



 

Scheme 2.  Reaction scope. 

 
 

To gain insights into the stereospecificity of the [4+2] 

cycloaddition and possibly its nature (concerted vs. stepwise), 

reactions of 1a were conducted with the two E/Z-isomeric 

bishomoallylic alcohols 6 and 8.  Diastereomeric products 7 and 9 

were formed as the only observable isomers in high albeit 

nonidentical levels of enantioselectivity (Scheme 2).  As pointed 

out recently by Spivey and coworkers in an elegant 

mechanistic/computational paper involving closely related 

substrates,14g this does not necessarily imply a concerted 

cycloaddition pathway.  Therefore, a Prins-like process with a 

tertiary carbocation intermediate cannot be ruled out at present 

and may in fact be more likely. 

The possibility of achieving kinetic resolution or 

diastereodivergent reactions was explored with representative, 

racemic bishomoallylic alcohols 10 and 12 (Scheme 2).17  

Interestingly, while the α-stereogenic center in substrate 10 

dictates the diastereoselectivity of the reaction, consistent with 

what has been observed in the corresponding non-asymmetric 

reaction,14a,e one enantiomer of 10 reacts significantly faster, 

leading to an efficient kinetic resolution process and the formation 

of product 11 as a single observable diastereomer in 71% yield 

and 92% ee.  In contrast, the β-stereogenic center in substrate 12 

seems to not greatly bias the innate diastereoselectivity of the 

reaction.  Here a diastereodivergent process was observed with 

each enantiomer of 12 providing a different product diastereomer, 

both of which were obtained in excellent enantioselectivity.18  

Judging from the fact that the product dr is 3.8:1 (rather than 1:1), 

a kinetic resolution process also took place simultaneously.  These 

transformations illustrate the ability to install additional 

stereogenic centers by utilizing readily available racemic starting 

materials.17 

To further improve the overall efficiency of the [4+2] 

cycloaddition, we evaluated the synthesis of pyranochromane 3a 

at different substrate concentrations and catalyst loadings.  

Gratifyingly, using only 0.5 mol% of catalyst 4e at a tenfold 

increased substrate concentration in toluene solution allowed for 

the preparation of product 3a in excellent yield and ee (Scheme 

3).  Even at this low catalyst loading, the reaction went to 

completion within 1.5 hours at room temperature.  Thus, the 

amount of solvent needed for conducting the reaction on a 0.1 

mmol scale is the same as for a 1 mmol scale. 

Scheme 3.  Reaction at low catalyst loading 

 
Detailed acidity measurements in acetonitrile were conducted for 

several thiourea-carboxylic acid catalysts and control compounds 

(Figure 2).19  As reported previously, the amide-linked catalyst 4a 

has a pKa value of 12.4.5f  Comparison of this value to the pKa 

values of truncated versions of the catalyst, namely thiourea 14 

and carboxylic acid 15, suggests that conjugate-base-stabilization 

is responsible for an increase in acidity of nearly seven orders of 

magnitude.  To gauge the potential role of the amide NH in 

stabilizing or destabilizing the conjugate base of the catalyst, we 

subsequently prepared ester 16.  Interestingly, 16 was found to be 

two orders of magnitude more acidic than amide 15, suggesting 



 

that stabilization of the carboxylate anion via hydrogen bonding to 

the amide NH is unlikely to play a significant role.  Rather, the 

increase in acidity when replacing the amide substituent with an 

ester group can be attributed to inductive effects.  It was in fact 

this observation that provided some of the motivation for pursuing 

1,2-amino alcohol based catalysts as a potential avenue to more 

acidic catalysts.  However, the expected acidity trend does not 

hold.  The pKa value of 4b was determined to be 13.6.  Clearly, 

the model compounds do not fully capture all aspects that are 

responsible for the overall pKa values of the actual catalysts.  

Coincidentally, the acidities of 4b and (S)-TRIP (5) are 

identical.20  Their vastly different performances in the [4+2] 

cycloaddition nicely illustrate that the acidity of a Brønsted acid 

catalyst is not necessarily correlated with its activity in a given 

transformation.  Comparing once again catalysts 4a and 4b, it is 

clear that this consideration also applies to catalysts that are 

structurally closely related.  Finally, the cis-configured catalyst 4c 

was found to be the most acidic catalyst in the series with a pKa 

value of 11.8, close to the pKa values of typical 

imidodiphosphoric acids (pKa values ~ 11.5)2i and significantly 

more acidic than trifluoroacetic acid.21  Presumably, the relative 

spatial arrangement of the carboxylic acid and thiourea moieties 

enables a more efficient stabilization of the conjugate base in the 

cis-isomer 4c than is possible in the trans-isomer 4b. 

 

Figure 2.  pKa values of thiourea-carboxylic acid catalysts and 

comparison to other acids. 

In conclusion, we have achieved highly efficient [4+2] 

cycloadditions of salicylaldehyde-derived acetals with 

homoallylic and bishomoallylic alcohols to provide polycyclic 

furanochromanes and pyranochromanes in good to excellent 

yields and enantioselectivities.  This advance was enabled through 

the development of a new generation of conjugate-base-stabilized 

carboxylic acid catalysts.  The observation that Brønsted acids 

with identical pKa values can exhibit vastly different catalytic 

activities makes a compelling case for the continued exploration 

of more structurally diverse catalysts. 
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