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Abstract

The merger of two neutron stars (NSs) or an NS and a black hole (BH) produces a radioactively powered transient
known as a kilonova, first observed accompanying the gravitational wave event GW170817. While kilonovae are
frequently modeled in spherical symmetry, the dynamical ejecta and disk outflows can be considerably asymmetric. We
use Monte Carlo radiative transfer calculations to study the light curves of kilonovae with globally axisymmetric
geometries (e.g., an ellipsoid and a torus). We find that the variation in luminosity in these models is most pronounced at
early times and decreases until the light curves become isotropic in the late optically thin phase. The light-curve shape
and peak time are not significantly modified by the global asymmetry. We show that the projected surface area along the
line of sight captures the primary geometric effects, and we use this fact to provide a simple analytic estimate of the
direction-dependent light curves of the aspherical ejecta. For the kilonova accompanying GW170817, accounting for
asymmetry with an oblate (prolate) ellipsoid of axial ratio 2 (1/2) leads to an ~40% decrease (increase) in the inferred
ejecta mass compared to the spherical case. The pole-to-equator orientation effects are expected to be significantly larger
(a factor of ~5-10) for the more extreme asymmetries expected for some NS-BH mergers.
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1. Introduction

Neutron-rich matter ejected from the merger of two neutrons
stars (NSs) or an NS and a black hole (BH) can assemble into
heavy elements via rapid neutron capture (the r-process;
Lattimer & Schramm 1974; Symbalisty & Schramm 1982;
Eichler et al. 1989; Freiburghaus et al. 1999). The radioactive
decay of the heavy elements produces a thermal transient
known as a kilonova (Li & Paczyriski 1998; Metzger et al.
2010). The kilonova can be used to infer the properties of the
merger, particularly when combined with the gravitational
wave (GW) signal; this was shown explicitly in the recent
binary NS merger event GW170817 /AT 2017gfo (for the GW
event, see Abbott et al. 2017a, 2017b; for the kilonova
emission, see, e.g., Abbott et al. 2017b; Arcavi et al. 2017;
Chornock et al. 2017; Coulter et al. 2017; Cowperthwaite et al.
2017; Drout et al. 2017; Evans et al. 2017; Kasen et al. 2017;
Kasliwal et al. 2017; Kilpatrick et al. 2017; Lipunov et al.
2017; McClully et al. 2017; Nicholl et al. 2017; Pian et al. 2017;
Shappee et al. 2017; Smartt et al. 2017; Soares-Santos et al.
2017; Tanaka et al. 2017; Tanvir et al. 2017; Villar et al. 2017).

The NS-NS mergers may eject mass via three general
mechanisms (Metzger 2017): tidal tails that are stripped from
the tidally disrupted stars during inspiral, a shocked outflow
that is expelled from the collision interface, and a disk wind
emitted by the accretion disk formed after the merger. The first
two mechanisms are referred to as the dynamical ejecta of the
merger. In addition to these three processes, NS-NS mergers
may produce outflows driven by more particular or speculative
mechanisms (Fujibayashi et al. 2018; Metzger et al. 2018;
Radice et al. 2018a; Nedora et al. 2019).

The composition of an ejecta is determined by the electron
fraction Y, = n,/(n, + n,), where n, and n, are the number
densities of protons/electrons and neutrons, respectively.
Neutron-rich ejecta (Y, < 0.25) can synthesize r-process
material past the second r-process peak at A ~ 130, including

the lanthanide species known to have very high opacities
(Kasen et al. 2013). The emission when lanthanides are present
has a redder spectrum and a later and broader peak (Barnes &
Kasen 2013; Kasen et al. 2013).

Simulations of NS-NS mergers indicate that their ejecta are
likely aspherical. The tidal tails lie primarily in the equatorial
plane and have low Y, (<0.25), and the shocked material lies
primarily in a conical polar region and has a higher Y, due to
neutrino and weak interactions (for early work on the tidal tails
with Newtonian codes, see Rosswog et al. 1999, 2000; for more
recent work on the tidal tails and collision ejecta with relativistic
codes, see, e.g., Bauswein et al. 2013; Hotokezaka et al. 2013;
Radice et al. 2016, 2018b; Dietrich et al. 2017). The wind from
the postmerger disk is fairly spherical, though mildly prolate, and
likely comprised of a broad distribution of Y, (Perego et al. 2014;
Siegel & Metzger 2017, 2018; Fujibayashi et al. 2018; Radice
et al. 2018b; Fernandez et al. 2019). The properties of the NSs and
the binary system will influence the geometry and mass of each of
these components. Mergers with more asymmetric mass ratios
produce more massive tidal ejecta, and mergers with lower-radius
NSs produce more massive shocked ejecta. More massive disk
winds are produced by mergers with more asymmetric mass ratios
or longer-lived NS remnants. The ejecta from NS-BH mergers is
similar but with two main differences: there is a single large tidal
tail from the disruption of the NS only, and there is likely no
collision interface ejecta, since the BH does not have a material
surface (e.g., Foucart et al. 2013, 2019; Kyutoku et al. 2013, 2015;
Kawaguchi et al. 2015; Kiuchi et al. 2015).

The initial radiative transfer models of kilonovae assumed
spherical symmetry (Metzger et al. 2010; Barnes &
Kasen 2013; Kasen et al. 2013). These were used to fit the
light curves and spectra of the event AT 2017gfo and infer its
basic properties (e.g., Chornock et al. 2017; Cowperthwaite
et al. 2017; Kasen et al. 2017; Kilpatrick et al. 2017; Nicholl
et al. 2017; Tanaka et al. 2017; Villar et al. 2017). Following
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this, several studies have examined aspherical kilonova ejecta
using both radiative transfer simulations and semianalytic
models. Roberts et al. (2011) carried out 3D radiation transport
simulations and found a factor of ~3 variation in the brightness
with viewing angle. Subsequent radiation transport simulations
that aimed to replicate the realistic, heterogeneous, multi-
component ejecta structure have found similar results (Kasen
et al. 2015, 2017; Kawaguchi et al. 2018, 2020; Wollaeger
et al. 2018; Bulla 2019). Grossman et al. (2014; and
subsequently, Perego et al. 2014; Martin et al. 2015) used a
semianalytic “diffusive model” to postprocess the ejecta from
merger simulations and found a factor of ~2 variation in the
brightness with viewing angle. Barbieri et al. (2019) recently
developed an autonomous semianalytic model for multi-
messenger parameter estimation and derived a projection factor
that yields a factor of ~2-3 variation.

A robust understanding of the dependence of kilonova light
curves on geometry and inclination is needed to more
accurately estimate the properties of kilonova ejecta (e.g.,
mass, kinetic energy, opacities). In addition, a constraint on the
inclination of the NS-NS merger from the kilonova would
partly break the distance—inclination degeneracy in the GW
data and reduce the number of detections needed for an
accurate Hubble constant measurement using joint kilonova,/
GW observations (Abbott et al. 2017c; Feeney et al. 2019). We
note, though, that the inclination can also be measured by other
means (Mooley et al. 2018; Hotokezaka et al. 2019), and the
Hubble constant can be measured with the GW or kilonova
data alone (Coughlin et al. 2020; Fishbach et al. 2019).

In this paper, we study the time-domain signatures from
aspherical kilonovae produced by NS-NS and BH-NS
mergers. In particular, we consider simple geometric models
that describe the global behavior of kilonova ejecta to build
intuition into how viewing angle effects depend on geometry.
We focus on an ellipsoid and a ring torus and extend our
analysis to a conical section embedded in a sphere. We
characterize the systematic uncertainties involved in using a
spherical or aspherical model and quantify the uncertainties as
a function of sphericity. We find that the scale of the light-
curve variation with viewing angle is primarily determined by
the projected surface area, and the light curves converge with
time as they become more isotropic.

In Section 2, we outline the parameters and geometries of
our ejecta models. In Section 3, we present our results and
provide a simple, semianalytic prescription to estimate the
direction-dependent light curve of the aspherical ejecta from
the light curve of the equivalent spherical ejecta. In Section 4,
we discuss the range and limitations of our results and apply
them to a general conical geometry and to AT 2017gfo. In
Appendix A, we provide equations for the parallel projected
areas of our geometries. In Appendix B, we present the fitting
parameters, discuss the limitations of the semianalytic
prescription of Section 3, and provide more involved
parameterizations.

2. Methods
2.1. General Properties

We study the emission from a homologously expanding
ejecta using the time-dependent Monte Carlo radiative transfer
code SEDONA (Kasen et al. 2006). We study an ejecta with
mass M and kinetic energy E; = M2, /2, where vy, = B, € 1S
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the characteristic velocity and c is the speed of light. We use a
one-component, constant gray opacity s to parameterize the
strength of the interaction between the thermal photons and
matter.

The light-curve evolution is determined by two timescales.
The first is the effective diffusion timescale ty = (MK /vy, c)l/ 2,
which characterizes the time at which photons escape the ejecta
faster than the ejecta can expand. We take this as our definition
of ¢4 but note that other definitions exist that contain additional
numerical factors (Arnett 1982). We use this to define the
dimensionless time T = #/t,, where 7 is the physical time. The
second is the thermalization timescale ?., which characterizes
the time at which the absorption of radioactive decay products
begins to become inefficient. This can be written in terms of the
dimensionless parameter 7, = f,/fy. For neutron-rich ejecta, the
radioactive power from the r-process alone can be approxi-
mated by a power law (Metzger et al. 2010; Lippuner &
Roberts 2015; Hotokezaka et al. 2017) and thus does not itself
have an intrinsic timescale. We note that ejecta with Y, 2 0.35
can exhibit a different time dependence (Wanajo et al. 2014).

The light curves are powered by the radioactive decay of
neutron-rich elements synthesized by the r-process (Metzger
et al. 2010). The fraction of the radioactive power that will
thermalize and contribute to the electromagnetic emission is
determined by its distribution in the different decay channels
(beta, alpha, and fission) and their thermalization efficiencies
(Metzger et al. 2010; Barnes et al. 2016), though the total
contribution can be reduced to a simple approximate prescrip-
tion (Kasen & Barnes 2019). We adopt the latter, yielding the
specific heating rate

q(t; ) = QOtd,]dayTUI(l + _) > (1)

Te

where 7. is the thermalization timescale, 74 4,y is the diffusion
time in days, and we take go = 10" erg s™' g~', 0y =—1.3,
and 0, =—1.2. The term 7y gives the time dependence of the
radioactive power from an ensemble of r-process nuclei
(Metzger et al. 2010; Lippuner & Roberts 2015; Hotokezaka
et al. 2017), and the term in parentheses is the thermalization
efficiency (Kasen & Barnes 2019). We take 7. = 10 for our
canonical example but also examine the effects of different
values. The total heating rate is then Q = Mgq.

Given the above specific heating rate, we define the
dimensionless luminosity A = L/L,, where L is the physical
luminosity and L, = Mqy1yy,, is the scale factor. If all parts of
the outflow are in the diffusive regime, then ejecta profiles with
the same 7. would be degenerate and exhibit the same
dimensionless light curves A(7); i.e., the light-curve shape
and anisotropy will not depend on the individual values of M,
K, (B, and ¢go but rather only on the combinations
ty = MK/ Ben AHY? and L, = Mqot(f,lday (as well as the
variables 7., oy, etc.). In practice, this scaling breaks down
for outflows with a sufficiently high G, or low M, for which
the outer ejecta layers are of low density and become optically
thin. However, for a given 7., we find that outflows with
Ben < 0.1 generally remain in the diffusive regime.

With the above framework and qualifications, we run our
simulations with the fiducial ejecta parameters M = 10> M.,
Ben =0.1,and k = 1 cm? gfl. We start our simulations at the
initial time 75 = 0.01 and nondimensionalize our results.
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(a) Ellipsoid

(b) Torus

Darbha & Kasen

(c) Conical Section

Figure 1. Three ejecta geometries studied in this paper. The black dots show the points where the axes intersect the surfaces. (a) Ellipsoid. The semimajor axes are (a,,
ay, a;), and we study the axisymmetric case a, = a, (spheroid) with axial ratios R = a,/a, (oblate here, R > 1). (b) Torus. The spine radius is a. and the tube radius is
a,, and we study radius ratios K = a./a, > 1 (ring torus). The crosses mark the points where the torus spine (i.., the center of the tube) intersects the vy-axis. (c)
Conical section embedded in a sphere. The sphere has a radius a, and the conical section has a half-opening angle 6..

2.2. Geometries

We study several idealized axisymmetric geometries that can
represent the ejecta from a kilonova as described in Section 1.
We summarize these geometries in Figure 1. We primarily
study an ellipsoid and a ring torus and extend our analysis to a
conical section embedded in a sphere.

These geometries are robust and versatile and can replicate
the shape of the different ejecta components described in
Section 1. An ellipsoid is one of the simplest geometries that
has dipolar asymmetry and thus serves as a generic model for
deviations from sphericity. A modestly prolate ellipsoid with an
axial ratio R (defined in Section 2.2.1) near unity can serve as a
model for the disk wind, which magnetohydrodynamics
(MHD) simulations have shown can have a global distortion
(Fernandez et al. 2019), with the amount of mass ejection
varying by ~2 from pole to equator. An oblate ellipsoid with
R 2 2 can serve as a model for the tidal tail, and a prolate
ellipsoid with R < 1/2 can serve as a model for the collision
interface ejecta. A torus with a radius ratio K (defined in
Section 2.2.2) near unity can serve as a model for the wind in
the aftermath of jet puncture, and one with K 2 2 can also
serve as a model for the tidal tail. A conical section embedded
in a sphere can serve as a model for the low-opacity polar ejecta
from the collision enshrouded by both the high-opacity
equatorial ejecta from the tidal tail and the postmerger wind.

Since the geometries we study are axisymmetric, we
parameterize the viewing angle with p = cosf, where 6 is
the polar angle measured from the z-axis. We record the
emission in 20 uniformly spaced bins in p € [—1, 1]. In
Appendix A, we calculate the parallel projected areas as a
function of pu for each of these geometries, which are useful for
understanding the light curves.

2.2.1. Ellipsoid

We study an ellipsoid with velocity coordinates (v, vy, v;)
and velocity space semimajor axes (a,, a,, a,), where a, = a,
(axisymmetric, spheroid). We define the axial ratio R = a,/a,
and examine several values in the range R € [1/4, 6]. We

define the dimensionless velocity coordinate

) 2 e
)]
ay a, a,
where 0 < s < 1. A surface of constant s is the surface of an
ellipsoid with its center at the origin and semimajor axes
(say, say, sa;); s = 1 corresponds to the outer surface of the
ejecta.

We adopt a density profile of the form p = p(s, 7), in
which surfaces of constant density correspond to surfaces of
constant s. We study two types: (1) a constant density profile
with a sharp cutoff at the surface and (2) a broken power-law
density profile. The constant profile is given by p.(s, 7) =
£.0(10) (10 /7)3. The broken power-law profile has been
successfully used to model kilonovae and more general

transients (Chevalier & Soker 1989; Barnes & Kasen 2013;
Kasen et al. 2017) and is given by

0
(i) , 5 < S
Sh

s52
(—) , Sp<s< 1.

Sb

@)

3
py(s, T) = pb()(ro)(%) 3)

Here s,, is the location of the break in the power law, and ¢; and
b, are the exponents in the broken power law that satisfy
0> 6> —3 and 6; > &, to have a declining profile that
decreases more precipitously after s, and has finite M and E;.
We take s, = 0.5, §; =—1, and 6, =—10. We examine these
two types of profiles in order to identify the trends in our results
that are robust to changes in the form or parameters of the
density profile. We use the values of M, B, and 79 given in
Section 2.1 and choose a value for R, and this sets the
parameters a,, a,, and either p.o(7o) or puo(To).

2.2.2. Torus

We study a torus with velocity coordinates (vy, vy, v,),
velocity space spine radius a., and tube radius a,, where a. > a,
(ring torus). We define the radius ratio K = a./a, > 1 and
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Figure 2. The isotropic-equivalent bolometric light curves L(r, u; R) for an ellipsoid outflow with a broken power-law density profile and axial ratio R = 4 at different
viewing angles ;. = cos . The time ¢ has been scaled by the diffusion time 74 as 7 = t/14, and the thermalization time is 7. = 10. (a) The isotropic-equivalent
luminosity has been scaled by the factor L, = Mgyt ‘day (Section 2.1). The solid black curve shows the angle-averaged luminosity, the dashed black curve shows
the luminosity of the equivalent spherical ejecta (R = 1 with the same 7.), and the dotted black curve shows the total heating rate. The dashed colored curves show the
curve fits using the functions in Equations (9) and (10). The bottom panel shows the error of the fits. (b) The isotropic-equivalent luminosity has been scaled by
the angle-averaged luminosity L,,(7; R). The solid black horizontal line shows the angle-averaged luminosity, and the solid black vertical line shows its time to peak.

The bottom panel shows the error of L(7, ji.s; R) from L,,(7; R) for pier = 0.55.

examine several values in the range K € [1, 5]. We define the
dimensionless velocity coordinate

(0 +vD/? — a.)? + 2172
s = -

a;

; “)

where 0 < s < 1. A surface of constant s is the surface of a torus
with spine radius a, and tube radius sa;; s = 1 corresponds to the
outer surface of the ejecta.

We adopt the same types of density profile as in Section 2.2.1,
though with two modifications: the variable s has the present
definition, and the exponents satisfy 0 > §; > —2 and &; > 6,.
We take the same values for s,, 6;, and 6,. We use the values
of M, B4, and T given in Section 2.1 and choose a value for K,
and this sets the parameters a., a,, and either p.o(7o) or pPro(To)-

3. Results

The features of kilonova light curves are determined by the
properties of the underlying ejecta, and robust models are
needed to extract the ejecta parameters from the observed light
curves. In this section, we quantify the geometric effects that
exist in aspherical ejecta and present a simple and intuitive
method to roughly estimate the anisotropic light curves of
aspherical kilonovae given the light curve of the equivalent
spherical model (with the same M, E;, and 7).

We first study an ellipsoid as a generic model for dipolar
deviations from sphericity. The bolometric light curves from
this geometry serve as a surrogate for the frequency-integrated
(e.g., blue or red) unobstructed light curves of the different
ejecta components after reintroducing the appropriate scales.
We focus on a broken power-law density profile and highlight
the differences in the constant density case. We then examine a
torus and describe the geometry-specific differences compared
to the ellipsoid. Appendix B presents the values of various

fitting parameters and approximations used in our prescriptions
for both geometries and density profiles. The numerical models
are also available if accurate light curves are needed.

3.1. Ellipsoid

Figure 2 shows the isotropic-equivalent light curves L(7, u;
R) for the ellipsoidal kilonova with a broken power-law density
profile and an axial ratio R = 4. The viewing angle is defined
by p = cos 6§ (where 0 is the polar angle measured from the z-
axis), and each value of p has equal probability of being
observed. The light curves are invariant under the transforma-
tion 4 — —p due to reflection symmetry about z = 0, so the
figure shows only the viewing angles p > 0.

The light curves of the ellipsoidal model are brightest along
the pole (§ =0, or = 1) and dimmest along the equator
(0 = 7/2, or p=0). The total variation in the luminosity
at peak is a factor of ~9. The time to peak 7,(u; R) ~ 0.1,
though, remains largely unchanged with viewing angle. The
viewing angle dependence is most pronounced at early times
but decreases over time until the light curves become mostly
isotropic by 7 ~ 5 and converge to the total heating rate Q(7; 7).
This is because at late times, the ejecta becomes fully optically
thin, so that all parts of the ejecta radiate equally in all directions
(apart from small relativistic corrections).

Figure 2 also shows the angle-averaged light curve L,,(7; R)
of the ellipsoidal model and the isotropic-equivalent light
curves normalized to this. The light curve of an intermediate
viewing angle pier ~ 0.55 (Or = 57°) roughly equals the
angle-averaged light curve, L(7, p.; R) =~ L,y (7; R), with an
error € < 0.1. The polar light curves are brighter than these,
and the equatorial ones are dimmer. The angle-averaged light
curve is comparable to the light curve L(7) of the equivalent
spherical model (R =1 with the same 7.), L,,(7; R) >~ Ly(7),
with an error € < 0.5 (Figure B3).
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Figure 3. Spectra for an ellipsoid outflow with a broken power-law density profile and axial ratio R = 4 at different viewing angles and times. The time ¢ has been
scaled by the diffusion time #4 as T = t/t,, the frequency v has been scaled as 29 = vt3,/10%°, and the luminosity L (i, 7, ft; R) has been scaled by 759 and
L, = Mgyt ‘day (Section 2.1). The spectra are shown at times (a) 7 >~ 0.1 and (b) 7 = 1. The solid black curves show the angle-averaged spectra, and the dashed black
curves show the spectra of the equivalent spherical ejecta. The dashed colored curves show the curve fits to an effective blackbody (Equation (7)).

The basic viewing angle dependence of the light curves can
be understood by considering the parallel projected surface area
of the ejecta at different inclinations. If we consider a simple
approximation in which an ellipsoidal photospheric shell emits
blackbody radiation at a fixed temperature Ty, then the
luminosity would be proportional to the projected area, which
is found to be (Appendix A.1)

Aproj(p; R) = mRaZ[(R* — 1)pi? + 1172, (5)

For an oblate ellipsoid, the projected area is a maximum along
the pole and decreases monotonically to a minimum at the
equator. The pole-to-equator projected area ratio is

ApI'O_](,LL - 1’ R) _ R, (6)

Aproj(/u =0;R)
and this gives a rough scale for the luminosity variation of the
light curve from pole to equator.

In reality, the kilonova ejecta is not described by a constant
temperature ellipsoidal photosphere. Rather, the photosphere
recedes with time, and there will be emission from a surface of
nonconstant temperature plus emission from the optically thin
volume outside the photosphere. The different viewing angles
will have different effective diffusion times and effective
photospheric parameters. Nevertheless, we show below that the
projected area appears to capture the primary geometric effects
on the light curve.

Figure 3 shows the spectra as a function of viewing angle at
two different times for R = 4. The spectra for different p are
well described by an effective blackbody,

L(v, 7, pi; R) = 47R24(T)B(v, Togr (7)), (7

where v is the photon frequency and B is the blackbody
spectrum,

2hv3/c?

B(v, Tegr) = W’ (8)

with effective temperature 7 and effective areal radius Ry,r. The
blackbody form arises because we used a constant gray opacity
(Section 2.1). The effective temperatures and radii increase with
projected surface area: they are larger for ;. toward the poles and
smaller for p toward the equator. The temperatures decrease
and the radii increase with time until 7 ~ 2; the temperatures
then converge to one constant value, and the radii decrease
exponentially with time while retaining their dependence on .
The viewing angle variation of the spectra thus decreases with
time, as expected from the light curves.

Figure 4 shows the variation of the luminosity ratio
L(t, pt; R)/L(T, pts; R) with viewing angle at different times
for R = 4. At the time 7 ~ 0.65 (not shown in the figure), the
angular dependence is remarkably well fit by the ratio of projected
surface areas Aproj(t; R) /Aproj(firer; R) (Equation (5)). At other
times, the viewing angle dependence has the same shape
(Figure Al) but with a different scale. This suggests that
we can roughly describe the basic behavior of the light curve
with a simple time-dependent function of the projected area
(Equation (5)), such as

1), €))

where k(7; R) is a dimensionless fitting parameter that describes the
scale of the viewing angle variation as a function of time. The
dashed lines in Figure 4 show the fits to L(7, p; R)/L(T, ft,e; R)
using this function.

The fitting parameter k(7; R) rises with time to a peak around
7~ 03 and then decays to zero roughly exponentially
(Figure B1). We can see its effect in Figure 2, which shows
the ratio L(7, u; R)/L,(T; R) as a function of time for R = 4.
The curves show that the orientation effects are largest at early
times, when the ejecta is optically thick, and converge at late
times, when the ejecta becomes optically thin and the emission
becomes isotropic (apart from Doppler shift effects, which are
small for the values of [, of interest). The effects fall off
roughly exponentially with time.

L(7, p; R)

Aproj(u; R)
L(T’ Hrets R)

~ 14 k(7 R)[ —
Aproj (:uref; R)
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Figure 4. Isotropic-equivalent bolometric luminosities for an ellipsoid outflow
with a broken power-law density profile and axial ratio R = 4 as a function of
viewing angle ;¢ = cos 6 and at different times. The time 7 has been scaled by
the diffusion time 74 as 7 = t/tq (Section 2.1), and the isotropic-equivalent
luminosity L(7, p; R) has been scaled by that in the reference direction
Jret = 0.55, since in this direction, the luminosity roughly equals the angle-
averaged luminosity. The thermalization time is 7. = 10. The points and solid
colored curves show the luminosities at different values of 7 < 4. The dashed
colored curves show the fits to the function in Equation (9). The bottom panel
shows the error of the fits.

A more detailed inspection suggests that we can approximate
k(T; R) with the analytic expression

2 + 7/7(R)

k(7; R) =~ ko(R) T o/

(10)

with the fitting parameters ko(R) and 7,(R), where ko(R) sets the
value at 7 = 0 and 7,(R) is an estimate of the timescale for the
anisotropy to decay. At early times 7 < 7,(R), the expression
becomes k(7; R) ~ ko(R) with 9, k = 0. At late times 7 >
T»(R), it becomes k(7; R) ~ e~ ™/»®_ which is close to the
observed exponential falloff. Using this expression for R = 4,
we find the values kp = 1.4 and 75, = 0.59 and the fit residual
[6] < 0.1 (Figure B1).

We can thus obtain a rough projection factor from Ly(7) to L
(r, w; R) by using Equation (9), with the replacement
L(7, ptor; R) — L¢(7), and Equation (10), with the values
given for ko and 7,. Figure 2 shows the semianalytic light
curves for R = 4 obtained by applying this projection factor,
along with their errors. The projected light curves are not
impeccable; they typically have lower peaks and converge
more quickly to the heating rate at late times. However, they
are accurate to within an error of ¢ < 0.4 before peak and
€ < 0.3 after peak and thus roughly capture the temporal
evolution of the emission and the correct scale of the variation.

The projection factor obtained from this approach provides a
workable estimate of the viewing angle dependence, though it
has limitations and should not be used cavalierly. First, the
fitting parameter k(7; R) rises to a peak and decays, and is
bounded above because Equation (9) must be positive; in
contrast, the analytic approximation in Equation (10) starts at a
peak with zero slope and decreases monotonically with
increasing 7. Second, the angle-averaged light curves L, (T;
R) are not quite equal to the equivalent spherical light curves
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Figure 5. Pole-to-equator light-curve ratio for an ellipsoid outflow with a
broken power-law density profile and different axial ratios R. The time ¢ has
been scaled by the diffusion time 74 as 7 = t/14 (Section 2.1), and the isotropic-
equivalent luminosity L(7; u, R) roughly takes a polar value in the direction
1 = 0.95 and an equatorial value in the direction ;¢ = 0.05. The thermalization
time is 7. = 10. The dashed black vertical line shows the time to the peak of
the light curve of the equivalent spherical ejecta (R = 1 with the same 7). The
dashed colored curves show the fits using the functions in Equations (9) and
(10). The bottom panel shows the error of the fits.

Ly(7), and the divergence between the two is more pronounced
for larger axial ratios. Appendix B quantifies the scale of these
effects and provides more accurate but more involved
parameterizations.

The features presented above for R = 4 generalize over our
range of R € [0.25, 6]. Ejecta with higher R have a larger spread
in brightness since the projected area changes more from pole to
equator (Equation (6)). The time to peak 7,(u; R) is largely
insensitive to R in addition to p and falls within 0.05 < 7,,(1;
R) < 0.12. The various fits and approximations are more accurate
for R closer to unity and grow less accurate with increasing
asphericity. The relation L(7, i, R) =~ Loy (7; R) for the
reference value jur = 0.55 has errors € < 0.1. The relation
L. (1; R) ~ Ly(7) has an error € < 0.1 for 0.25 < R < 2, rising to
€ <09 for R=6 (Figure B3). For different R, the fitting
parameter k(7; R) has a similar time evolution, and the analytic
approximation for k(7; R) remains robust (Figure Bl). The
semianalytic light curves have errors ¢ < 0.2 for 0.25 < R < 2,
rising to € < 0.6 for R = 6, which are comparable to those from
uncertainties in the opacity (Bames & Kasen 2013) and heating
rate (Metzger et al. 2010; Korobkin et al. 2012; Lippuner &
Roberts 2015). More simply, we find that the constant values
ko(R) = 1.2 and 7,(R) ~ 0.7 produce semianalytic light curves
within these error bounds.

We summarize the inclination dependence for different R
with the pole-to-equator luminosity ratio, shown in Figure 5.
The curves inherit the behavior described in Figures 2 and 4
and the related text. In particular, at early times, the luminosity
ratio is larger than the corresponding projected area ratio (~R;
Equation (6)), and at late times, it approaches unity as the
emission becomes isotropic. The dashed colored curves show
fits using the analytic approximations in Equations (9) and (10)
with the fitting parameters ko(R) and 7,(R) in Figure B1. The
fits are accurate within errors € < 0.3 during the rise phase
T S (i3 R) ~ 0.1 and € < 0.2 after this.
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Figure 6. Isotropic-equivalent bolometric light curves L(7, p; R) for an ellipsoid outflow with a constant density profile and axial ratio R = 4 at different viewing
angles ;1 = cos 6. The time # has been scaled by the diffusion time 74 as 7 = #/1,4, and the thermalization time is 7, = 10. (a) The isotropic-equivalent luminosity has
been scaled by the factor L, = Mgty tay (Section 2.1). The solid black curve shows the angle-averaged luminosity, the dashed black curve shows the luminosity of the
equivalent spherical ejecta (R = 1 with the same 7.), and the dotted black curve shows the total heating rate. The dashed colored curves show the curve fits using the
functions in Equations (9) and (10). The bottom panel shows the error of the fits. (b) The isotropic-equivalent luminosity has been scaled by the angle-averaged
luminosity L,,(7; R). The solid black horizontal line shows the angle-averaged luminosity. The bottom panel shows the error of L(7, fi.s; R) from L,(7; R) for

Href = 0.55.

The constant density case is similar to the broken power-law
case, with some systematic differences. Figure 6 shows the
isotropic-equivalent light curves for a constant density profile
and an axial ratio R = 4 as an example. The light curves begin
at a peak and decline monotonically, since the constant density
ejecta has more mass at larger distances. The pole-to-equator
projected area ratio again gives the rough scale of the
luminosity variation at intermediate times. The relation
L(T, pheps R) =2 Lay (75 R) has errors € < 0.1 for the reference
value fuer = 0.55. This suggests that z.¢ is a function primarily
of the geometry. The relation L,,(7; R) ~ Ly(7) has an error
€ <0.1 for 0.25 <R <2, rising to e<04 for R=6
(Figure B3). The fitting parameters k(7; R) begin at lower
values at early time but exhibit similar peak values and decline
rates as the broken power-law case, and the analytic
approximation for k(7; R) has similar parameters (Figure B1).
The projection factor then yields semianalytic light curves with
errors of € < 0.3 for 025 <R <2, rising to €< 0.8
for R = 6.

The results here strictly apply only to an ellipsoidal
geometry. However, since the light curves arise as an
integration of the emission over the entire ejecta, they depend
primarily on the global morphology and only weakly on small-
scale distortions. The orientation effects of general, compact,
contiguous geometries can thus be roughly estimated by
considering a closely fitting ellipsoid with an effective axial
ratio Reg. In what follows, though, we analyze other geometries
using the geometry-specific parallel projected area method,
since this approach turns out to be fairly robust.

3.2. Torus

The light curves of a torus ejecta are analogous to those of an
ellipsoid ejecta. In particular, we can explain the inclination

variation of the light curves using the same projected surface
area method, with two main geometry-specific differences. The
first is that the torus has a more complicated projected area
(Appendix A.2). In particular, it has a characteristic break at
F e = £1/K, which corresponds to the viewing angle at
which the torus begins to fully block the central hole. For
|l > K~'/2, the torus does not block the hole; for
K'<|u| < K2, it partially blocks the hole; and for
|ul < K71, it fully blocks the hole. The projected area thus
transitions from a shallower to a steeper dependence on
viewing angle at = K~ ' (Figure Al). The scale of the
variation is again given by the pole-to-equator projected area
ratio,

Aproj(ﬂ =1;K) o 47K
Apoj(p = 0; K) 4K + 7

(1)

The second is that the torus has a different reference direction,
tref = 0.45. The relation L(7, pi; K) =~ Ly (7; K) has
errors € < 0.1 with this pu.r for both the broken power-law
and constant density profiles. As before, this suggests that fi.s
is a function primarily of the geometry.

To illustrate these differences, we present the signatures for a
torus ejecta with a constant density profile and a radius ratio
K = 3. Figure 7 shows the isotropic-equivalent light curves.
Figure 8 shows the variation of the luminosity ratio L(7, u; K)/
L(7, pr; K) with viewing angle at different times.

The features shown in this specific case generalize to both
density profiles (broken power-law and constant) and over our
range of K € [1, 5] in a way analogous to the ellipsoid ejecta.
The light curves in the broken power-law case have a rise-peak-
fall time evolution. The relation L,.(7; K) =~ Ly«(7) for the
constant density case has errors € < 0.2 for 1 < K < 2 rising
to € < 2.2 for K = 5, and for the broken power-law case, it has
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Figure 7. Isotropic-equivalent bolometric light curves L(7, p; K) for a torus outflow with a constant density profile and radius ratio K = 3 at different viewing angles
1 = cos 6. The time 7 has been scaled by the diffusion time 74 as 7 = 7/#4, and the thermalization time is 7, = 10. (a) The isotropic-equivalent luminosity has been
scaled by the factor L, = Mgty tay (Section 2.1). The solid black curve shows the angle-averaged luminosity, the dashed black curve shows the luminosity of the
equivalent spherical ejecta (with the same M, E;, and 7.), and the dotted black curve shows the total heating rate. The dashed colored curves show the curve fits using
the functions in Equations (9) and (10), with the replacement R — K. The bottom panel shows the error of the fits. (b) The isotropic-equivalent luminosity has been
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Figure 8. Isotropic-equivalent bolometric luminosities for a torus outflow with
a constant density profile and radius ratio K = 3 as a function of viewing angle
1 = cos @ and at different times. The time ¢ has been scaled by the diffusion
time 74 as T = t/t4 (Section 2.1), and the isotropic-equivalent luminosity L(7, f;
R) has been scaled by that in the reference direction pur = 0.45, since in this
direction, the luminosity roughly equals the angle-averaged luminosity. The
torus has a constant density profile. The thermalization time is 7. = 10. The
points and solid colored curves show the luminosities at different values of
7 < 4. The dashed colored curves show the fits to the function in Equation (9)
with the replacement R — K. The bottom panel shows the error of the fits.

errors € < 0.3 for 1 < K < 2rising to € < 3.7 for K = 5. The
fitting parameters k(7; K) have similar shapes but different
values compared to the ellipsoidal case, and thus the analytic
approximation for k(7; K) has different values for ko(K) and
T,(K) (Figure B2). It is interesting to compare the values for K

€ [1, 5] to those for R € [2, 6], since they have similar degrees
of asphericity; in general, the parameters ko and 7, appear to
depend on both the geometry and density profile. The
semianalytic light curves for the broken power-law case have
errors € < 0.4 for 1 < K < 2rising to e < 0.8 for K = 5, and
those for the constant density case have errors € < 0.55 for
1 < K < 2rising to € < 0.75 for K = 5.

4. Discussion

The light curves presented here used ejecta models with
idealized geometries and constant opacity to capture the effects
of asymmetry. The idealized approach provides intuition for the
fundamentally geometric effect that global asymmetry has on
the light curves. Given that approximate models are frequently
used to estimate kilonova light curves, the synthetic light
curves presented here and the simple analytic prescriptions for
them (Equations (9) and (10)) should be valuable for estimating
the impact of asphericity and orientation.

We have focused here on the bolometric light curves of
kilonovae and only marginally discussed their spectra and
colors. However, the scale invariance of our models leads to
dimensionless light curves, which we argued can serve as
surrogates for the unobstructed emission produced by the
different ejecta components, after reintroducing the appropriate
scales of ejecta mass, opacity, and expansion velocity. Indeed,
though the models used a uniform composition and a gray
opacity, the resulting blackbody spectra provide a workable
approximation of the colors. The colors are sensitive to the
composition of the ejecta, tending to redder wavelengths when
high-opacity lanthanide species are present (Kasen et al. 2013).

In general, though, kilonova ejecta have multiple interacting
components, compositional inhomogeneities, and multiwave-
length opacity. This structure implies that blocking,
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reprocessing, and funneling effects, in addition to geometric
effects, may also produce substantial color variation with
viewing angle (Perego et al. 2014, 2017; Kasen et al.
2015, 2017; Kawaguchi et al. 2018, 2020; Wollaeger et al.
2018; Bulla 2019). The extent and efficacy of these depend on
the spatial distribution and properties of the low-Y, (lanthanide-
rich, high opacity) material of dynamical origin and low- to
high-Y, (lanthanide-poor, low opacity) material of wind origin.
For example, current dynamical simulations show that the
lanthanide-rich material concentrates torus-like in the equator-
ial region and the lanthanide-poor material concentrates cone-
like in the polar regions (e.g., Radice et al. 2018b). If the
lanthanide-rich material has a larger radius and expansion
velocity than the lanthanide-poor material, then the former can
modify the blue emission from the latter: blocking inhibits the
emission from penetrating along the equator (Kasen et al.
2015, 2017; Kawaguchi et al. 2018, 2020; Wollaeger et al.
2018; Bulla 2019); reprocessing shifts the observed photo-
sphere to larger radii and velocities, reduces the effective
temperatures and frequencies, and isotropizes the direction
(Perego et al. 2017; Kawaguchi et al. 2018, 2020; Bulla 2019);
and funneling redirects the diffusing photons in the polar
direction (Kawaguchi et al. 2020). The aggregate result is that
the blue emission is obscured in the equatorial direction, and
thus bluer spectra are observed at near-polar angles and redder
spectra at near-equatorial angles. In contrast, if the lanthanide-
rich material is enshrouded in lanthanide-poor material, then
analogously, the red emission from the former is reprocessed
into blue emission and isotropized (Kawaguchi et al. 2020).

More simply, we can use the projected surface area approach
to make a rough estimate of the impact of geometry and
blocking from this ejecta. We model the outflow as a cone of
low-opacity ejecta with a half-opening angle 6. € [0, 7/2]
embedded inside a high-opacity sphere of radius a (Figure 1).
In this model, only the polar “caps” of the low-opacity cone
will be visible, as the interior is obscured by the high-opacity
lanthanide-rich envelope. The projected surface area
A;ﬁgs(u; i,) of the caps then provides a rough estimate of
the viewing angle dependence of the blue light curve, while
that for the red light curve can be described by the
complementary geometry A0 (u; 1) = ma* — A (s ).

Appendix A.3 gives analytic formulae for the projected
surface area of the conical caps, and Figure Al shows the
variation of the area with viewing angle. The results indicate
that the blue light curve will be brighter for polar viewing
angles where the cap is fully visible and dimmer for equatorial
ones where only a small region of the cap is visible. The pole-
to-equator projected area ratio has the simple analytic
expression

Aproj(,u =1 ,UC) . 7 sin? 0.
Aproj(p = 035 1) 2(6. — sin 6, cos 6.

12)

For a typical conical opening angle 6.~ 45° (u. = 0.71)
(Radice et al. 2018b), the projected area ratio is ~2.8. We thus
expect the blue luminosity to vary by a factor of ~3-5 with
viewing angle at peak, consistent with prior detailed transport
models (Kasen et al. 2015; Kawaguchi et al. 2018, 2020;
Wollaeger et al. 2018; Bulla 2019). For smaller opening angles
6. =~ 20° (1. =~ 0.94), the variation can be a factor of ~5-10 at
peak, i.e., up to an order of magnitude. While detailed
calculations are needed for quantitative modeling, this
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semianalytic approach using the projected surface area roughly
gauges the size of the geometric effects. A similar approach
could presumably be used for modified geometries as well. For
instance, this conical cap model assumes the lanthanide-poor
and lanthanide-rich materials have a comparable radial extent,
whereas a modified setup could potentially accommodate two
different component velocities.

The results in this paper suggest potential diagnostics for
inferring the orientation angle from kilonova observations. As
the orientation of a merging binary system is only partially
constrained by its GW signal, a complementary constraint from
kilonova observations would be of considerable interest. Since
the inclination dependence of the light curves diminishes with
time, the ratio of the luminosity on the light-curve tail to that at
peak is highly correlated with orientation, as shown in Figure 9.
The tail-to-peak ratio declines more rapidly for viewing angles
with larger projected areas, since these have higher peaks and
must converge to the total heating rate Q(7; 7.) at late times.
The ratio of curves of different u at late times equals the ratio
of their peak luminosities L,(u; R). Ejecta with higher R have a
larger spread in decline rates, since the projected area changes
more from pole to equator.

The tail-to-peak luminosity ratio thus provides a potential
way to constrain the outflow geometry and inclination.
However, the luminosity ratio is partly degenerate with other
inputs, such as the heating rate (Figure 9), which complicates
efforts to use the light curve alone to infer the ejecta geometry
or the underlying radioactivity and thermalization. It remains to
be seen the extent to which multiparameter fitting of the light
curves can individually constrain the parameters.

The parameters (mass, velocity, etc.) of the blue and red
components of GW170817/AT 2017gfo were inferred by
fitting the observed light curves with synthetic ones from
spherically symmetric models (Chornock et al. 2017; Cow-
perthwaite et al. 2017; Nicholl et al. 2017; Kasen et al. 2017;
Tanaka et al. 2017). Aspherical models would generally lead to
different inferred parameters. To quantify the size of the
difference, we compare a spherical model (with parameters
labeled with the subscript s) to ellipsoidal models with axial
ratios R = 1/2 and 2, which encapsulate the two directions the
asphericity might tend. Indeed, the red component likely comes
from the postmerger disk wind, which is mildly prolate, but the
source of the blue component is more uncertain and could arise
from the dynamical ejecta or more hypothetical outflows
(Metzger 2017). We use the current estimates for the viewing
angle, 6 ~ 30° (u ~ 0.87; Finstad et al. 2018; Abbott et al.
2019; Wu & MacFadyen 2019). We then infer the mass,
opacity, velocity, and thermalization time that yield the same
peak and late-time behavior in the physical light curve as in the
spherical case. For R = 1/2, we find M ~ 1.4M; (i.e., ~40%
larger than the spherical case), k/Ben ~ 0.7(k/Bch)s, and
Te ~ 0.8 (7)s. For R =2, we find M ~ 0.6M, (i.e., ~40%
smaller than the spherical case), k/B ~ 1.7(k/Ben)s, and
Te ~ 1.5 (7.)s. The mass uncertainties from geometric effects of
this magnitude are a factor of <2 and comparable to those from
uncertainties in the ejecta opacities (Barnes & Kasen 2013) and
the heating rate (Metzger et al. 2010; Korobkin et al. 2012;
Lippuner & Roberts 2015).

In BH-NS mergers, the tidal component of the dynamical
ejecta can be highly asymmetric. In general terms, if the binary
has a low mass ratio, the BH has high aligned spin, and the NS
has low compactness, then tidal disruption can occur far



THE ASTROPHYSICAL JOURNAL, 897:150 (14pp), 2020 July 10

_ e T 1.0

E_t_ 1004 — Lav(T; R)/Lay, p(R) L 0.9

2 1.~ N\ Ls(T)/Ls,p

iy 0.8

< 0.7

3

E 10— 0.6

51075 3 2

2 ] 0.5;}

S 043

£

= 0.3

= -2 L

= 10774 ! 02

3 ]

S 0.1

” 0.0
107! 100 10t

Scaled time T =t/ty

(a) R =2, varying u

Darbha & Kasen

1 L 1

- e
2 100+ E 45 .9
- 3 Il
g 40 o
o )

: 35.§
F 1071, || [30¢
> E =
: 25 g
c 207c
€ IS
5 15 5
- 10774 2 S
R} b 105
© 9]
3 5
o ¥

A A
101 10°
Scaled time T=t/ty

(b) R =1, varying e

Figure 9. (a) Isotropic-equivalent bolometric light curves for an ellipsoid outflow with axial ratio R = 2 at different viewing angles ;1 = cos 6. The time ¢ has been
scaled by the diffusion time 74 as 7 = /14 (Section 2.1), and the isotropic-equivalent luminosity L(7, j; R) has been scaled by its peak value Ly(y1; R). The solid black
curve shows the angle-averaged luminosity, and the dashed black curve shows the luminosity of the equivalent spherical ejecta (R =1 with the same 7). (b)
Bolometric light curve of a spherical outflow with different thermalization times 7. = f./fq. The luminosity has been scaled by its peak value L,(7.). We note that
Ly(7e) varies little for the values of 7. shown, since they satisfy 7. > 7,(1; R) ~ 0.1. A comparison of the two panels shows that there is some degeneracy between
observing (1) an ellipsoidal outflow at different viewing angles and (2) a spherical outflow with different heating rates, though the two may be distinguishable by

careful measurement of the power-law decline at late times.

outside the BH horizon, leading to a single tidal tail
concentrated in the equatorial plane (v,/v, ~ 5) with a limited
azimuthal range (A¢ < m; Foucart et al. 2013, 2019; Kyutoku
et al. 2015). Though this is a typical case, the detailed
properties of the tidal tail and the fraction of unbound mass
depend sensitively on the particulars of the merger, such as the
BH spin alignment and the NS equation of state (Kawaguchi
et al. 2015; Kyutoku et al. 2015; Foucart et al. 2017). We can
roughly model the tidal tail as an ellipsoid with axial ratio
R =5 or a torus with radius ratio K = 5. The luminosity
variation with polar viewing angle is then roughly a factor of
~5-10 near peak before reducing to ~1 at late times. Global
geometric effects are thus important inputs to accurately
constrain the mass ejected from these systems.
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Appendix A
Projected Area

In this appendix, we present equations for the parallel
projected areas of the ejecta geometries studied in the paper
(Figure 1): an ellipsoid, a ring torus, and a conical cap. The
geometries are axisymmetric, so we parameterize the viewing
angle with u = cos @, where 0 is the polar angle. Figure Al

10

shows the projected areas as a function of u, normalized to
their values at p = +£ 1.

A.l. Ellipsoid

We study an ellipsoid with semimajor axes (a,, a,, a.), where
a, = a, (axisymmetric, spheroid), and we define the axial ratio
R =a,/a, (Figure 1). A straightforward analysis of the
geometry shows that the parallel projected area of the ellipsoid
in the direction g is an ellipse with semimajor axes
(ay, a.[(R* — 1)p? + 11'/2). The parallel projected area in
the direction g is thus

Aproj (1 R) = mRaZ[(R? — 1)y + 11V/2 (A

Figure Al shows a plot of Ap.i(i; R). The pole-to-equator
ratio is

Aproj(ﬂ =1;R) —R

= (A2)
Aproj(ﬂ = 0; R)

A.2. Torus

We study a torus with spine radius a. and tube radius a,
where a, > a, (ring torus), and we define the radius ratio
K =a./a, > 1 (Figure 1). A straightforward analysis of the
geometry shows that the parallel projected area of the torus in
the direction g is the area bounded by the parallel curves of an
ellipse with semimajor axes (a., a. 1). The outer (+) and inner
(—) parallel curves can be expressed with the parametric
equations

I
(1 — (1 — pP)cos?r)!/?

X)) = a,(K + )cos t, (A3)

1
(1 — (1 — pPcos?)l/?

v = a,(K cosf + )sint. (A4)
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Figure A1l. Analytic projected area Ap;(s4; R) for several axisymmetric geometries. The panels show the projected area for (a) an ellipsoid with axial ratio R = a,/
a, > 1, (b) aring torus with radius ratio K = a./a, > 1, and (c) two conical caps with half-opening angle s € [0,1]. Equations for the analytic functions A;(11) are

given in the text (Appendix A).

The parallel projected area in the direction u can be
written as

Aproj(,U; K) = Aouter (185 K) — Ajpner (13 K), (AS)

where Agye(1t; K) and Ajpne(pt; K) are the areas contained
inside the outer and inner parallel curves, respectively. The
following integrals will be useful for evaluating these areas:

12
Lt 1) = f " sin? rdt, (A6)
n
by t t)*flz sinc ¢ dt, (A7)
PR A = Deost 2
1 sin? ¢
JAE, :f dr, A8
3(1; 1, 1) " A== Deot ) (AB)
1 sin? ¢t
Li(p; 4, t :f dt. A9
415 1, 12) 0= = Deostn? (A9)

We note that [;(0, 7) = 7/2 and I4(u; 0, ) = 7/2|p|. The
outer projected area can be written as

Aouter (113 K) = 2a [Kplh 0, ) + Kb (p; 0, )
+ KBL(1; 0, m) + |pella(ps; 0, m)1.

The form of the inner projected area depends on the range of u:
for different p, the torus blocks the central hole to a different
degree, which leads to a different degree of overlap of the inner
parallel curve with itself. The inner projected area can be
divided into three domains as follows.

(A10)

1. |u| = K~'/%: no blocking/overlap,
Ainner (13 K) = 2a} [Kplh 0, ) — Kb (p; 0, )

—KL(p; 0, m) + |plls(ps 0, m)]. (A11)
2. K2 > |u| > K~ ': partial blocking/overlap,
Ainner(,ul; K) = 2a12 [Kzlﬂ,l[l([,, ™ — tr)
— Kb (s t, © — 1) — KB(us 1y, @ — 1)
+ s (s 1y, ™ — 1], (A12)

where #,(u; K) = cos™ ' (1 — p2)V2[1 — K2u~21'/2).
3. K~' > |p|: full blocking/overlap,

Ajpner (13 K) = 0. (A13)

All of the integrals above can be evaluated either explicitly or
in terms of elliptic integrals. Figure A1 shows a plot of Ayt
K). The curves show a characteristic break at =4 fipeax =
+ 1/K, which corresponds to the viewing angle at which the
torus begins to fully block the central hole. The pole-to-equator
ratio 1s

Aproj(,u =1;K) _ 4K
Aproj(t = 05 K) 4K + 7

(Al4)

A.3. Conical Cap

We study a cone with a half-opening angle 6. € [0, 7/2]
(. = cos b € [0, 1]) embedded inside a sphere of radius a
(Figure 1). The parallel projected area has a different form
depending on the viewing angle and can be divided into four
domains. In the interval —(1 — p)'/2 < p < (1 — pH)'/2, the
following variables will be useful:

Op (3 1)) = cos™! ((1“—) €10.6].  (Al5)

1)1/

ino (1 — ,2)/2
Ba (s 1) :tanl[sm p(1 = ) ]e [o, 1]. (A16)
e |l 2

The parallel projected area of the top and bottom caps
together, when the rest of the cone is blocked by the sphere, can
be written as

Aproj (15 1) = Apb (113 1) + ApB (=15 1), (A17)

where Apbi(; p.) is the parallel projected area of the top cap

alone, when the rest of the cone is blocked by the sphere, which
takes the following form in the four domains.

Lizp>d— )2

AR (s ) = ma* (1 — pi2)p. (A18)

2. (1—pH'? > p>0:
AR (s 1) = a® (0, — sin 6, cos by)
—a*(l - Mf)l/zu(ed — sinfy cos by — 7).
(A19)



THE ASTROPHYSICAL JOURNAL, 897:150 (14pp), 2020 July 10
30> p > —(1 — )2
A;?(%(M ) = a*(0, — sinf, cos 6,)
+a*(1 — 112)'?p(0s — sinfgcos fy). (A20)
4. —(1 =) > p> -1
AR (s ) = 0. (A21)

proj

Figure Al shows a plot of Ap.;(1; pe). The pole-to-equator
ratio is
Apmj(,UJ = 1; ,uc) _ ™ SiIl2 90
Aproj(t = 03 1) 2(0, — sin 6. cos 96)'

(A22)

Appendix B
Additional Features of the Light Curves

The projection factor presented in Section 3 involves several
approximations and parameters. Here we present data on the
size of the approximations and the values of the parameters and
quantify their limitations and domains of applicability. We
present the data for both geometries (ellipsoid and torus) and
density profiles (broken power-law and constant) but focus in
the text on an ellipsoid kilonova.

B.1. Analytic Approximation for k

Figure Bl shows the fitting parameter k(7; R) from
Equation (9) for an ellipsoid outflow over our range
R € [0.25, 6]. The curves have a similar behavior for different
R. They rise to peak values >1 at times 7 < 1 and then decay
to zero roughly exponentially. The ejecta with higher R take
longer to converge. Figure B1 also shows the fitting parameters
ko(R) and T,(R) from the analytic approximation to k(7; R)
given in Equation (10). We find that the constant values
ko(R) ~ 1.2 and 7,(R) ~ 0.7 yield semianalytic light curves
with errors € < 0.2 for 0.25 < R < 2 rising to € < 0.6
for R = 6.

The light curves L(t, u; R) > 0, and thus k(7; R), must lie in
the range 0 < k(73 R) < kypper (75 R), where kypper (75 R) =
(1 — miny, Aproj (163 R) /Aproj(fieers R))™'. The lower bound

Darbha & Kasen

ensures that the semianalytic approximation for L(7, u; R) in
Equation (9) satisfies L(7, pi; R) > L(t, pp; R) when
Aproj (i1 R) > Aproj(115 R), and the upper bound ensures that
it satisfies L(7, p; R) > 0 when Apoj (145 R) /Aproj (heers B) < 1.
An analytic approximation for k(7; R) should remain within
the above bounds as well. However, the expression given in
Equation (10) increases monotonically with decreasing 7 and
can potentially surpass kypper (75 R) at early times if the fitting
parameters ko(R) and 7,(R) are chosen carelessly and thereby
produce negative values for L(7, p; R). This additional
constraint can potentially restrict the range of R over which
the analytic approximation is accurate. The values for ko(R) and
Tp(R) given above preserve a positive value for L(7, u; R).
The torus outflow has analogous results, shown in Figure B2.

B.2. Comparison of L,, and L

Figure B3 shows the curves L, (7; R)/L,(7) for an ellipsoid
outflow over our range R € [0.25, 6], which we can examine to
quantify the deviation of L,.(7; R) from Ly (7). There is a time
Ter(R) at which L., (7; R) /Ly(7) = 1, i.e., where L,,(7; R) and
Ly(7) cross, and it falls in the range 0.3 < 7(R) < 0.37. For
T > T(R), Law(T; R) and Ly(7) differ by an error € < 0.2, and
we can roughly take L(7; R)/Ly(1) =~ 1. For 7 < Tc(R), Lay(T;
R) is larger than Ly(7), and the deviation is greater for ejecta
with higher R. This is because photons can escape more easily
in the z-direction for the ellipsoidal ejecta, leading to a lower
effective diffusion time. In this region, we can roughly take
L. (7; R)/Ly(7) ~ 1 for R < 3, since we only incur an error
€ < 0.2, but we should use a more accurate expression for
R 2 3. It is important to be accurate in this region, since the
light curves experience their peak here.

Motivated by this behavior, we adopt the following analytic
approximation:

Lo (7, R)

~ 1 R)e /TR, Bl
Lo + a(R)e (BD)

Here a(R) is the amplitude and 7,(R) is the decay time, which
falls in the range 7,(R) < 7.(R). The function thus provides a
fit in the region 7 < 7.(R) and is L,,(7; R)/Ls(7) =~ 1 in the
region 7 2 7., (R). Figure B3 shows the fitting parameters c«(R)
and 7,(R) obtained from fitting the curves L, (7; R)/Ly(T)
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Figure B1. (a) and (b) Fitting parameter k(7; R) in Equation (9) for an ellipsoid outflow with the two density profiles studied in the paper (Section 2.2): (a) a broken
power law and (b) a constant. The colors show different axial ratios R = a,/a,. The time 7 has been scaled by the diffusion time 74 as 7 = #/t4 (Section 2.1). The
dashed black vertical line shows the time to peak of the light curve of the equivalent spherical ejecta (R = 1 with the same 7). The dashed colored curves show the fits
to the analytic approximation given in Equation (10), and the bottom panels show the residuals of the fits. (c) Parameters ko(R) (black) and 7,(R) (red) for the broken

power-law (solid) and constant (dashed) density profiles.
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shows the time to the peak of the light curve of the equivalent spherical ejecta. The dashed colored curves show the fits to the function in Equation (B1), and the
bottom panel shows the residuals of the fits. (c) Parameters a(R) (black) and 7,(R) (red) for the broken power-law (solid) and constant (dashed) density profiles.
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with g(r; R). For R <3, we can approximate L,(T;R)/
Ly(7) ~ 1, incurring an error of € < 0.2 for all 7. For R 2 3,
one should use the full expression for L,,(7; R)/L(7) if an error
<0.2 is needed.

We can thus obtain a more accurate projection factor from
Ly(7) to L(t, p; R) by combining Equations (9) (with the
replacement L(7, ft.; R) — Lu(7; R)), (B1), and (10). This
parameterization is more involved. The numerical models are
also available if accurate light curves are needed.

The torus outflow has analogous results,
Figure B4.

shown in
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