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Insect mutualisms are essential for reproduction of many
plants, protection of plants and other insects, and provisioning
of nutrients for insects. Disruption of these mutualisms by
global change can have important implications for ecosystem
processes. Here, we assess the general effects of global
change on insect mutualisms, including the possible impacts
on mutualistic networks. We find that the effects of global
change on mutualisms are extremely variable, making broad
patterns difficult to detect. We require studies focusing on
changes in cost-benefit ratios, effects of partner dependency,
and degree of specialization to further understand how global
change will influence insect mutualism dynamics. We propose
that rapid coevolution is one avenue by which mutualists can
ameliorate the effects of global change.
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Introduction

Mutualism is a key outcome of many species interactions
that provide the energy, nutrients, and services for eco-
systems to function and persist. These interactions span a
wide range of associations from highly specialized, pair-
wise, obligate interactions to large, diffuse networks in
which many species interact to varying degrees [1].
Because of the importance of the many mutualisms
involving insects, it is critical to assess how these inter-
actions are impacted by anthropogenic disturbances
because entomofaunal and floral composition are chang-
ing at alarmingly fast rates as compared to natural cycles

[2°,3]. These human-induced alterations are forcing
mutualisms to respond rapidly to large-scale global
changes. A major challenge of global change ecology is
to synthesize the effects of different types of disturbance
on mutualisms.

In this review, we begin by briefly summarizing the most
recent progress on how global change can affect defense,
pollination, and dispersal mutualisms (Table 1). Because
mutualisms commonly involve complex communities, we
next explore how mutualistic network structure and
dynamics can be affected by global change, specifically
due to agricultural intensification, fire, and invasion.
Against this backdrop, we conclude by discussing the
characteristics of mutualisms that may help us predict
insect responses to global change.

Diverse effects of global change on insect
mutualisms

Global warming can have disparate effects on insect
mutualisms depending on the geographic location and
degree of warming as well as the mutualists’ tolerances
and temperature optima. For instance, mutualists can
experience negative effects when temperatures exceed
the thermal tolerance of at least one of the partners (but
see Ref. [4] for a review on insect thermal tolerance).
Some negative outcomes of warming include disruption
of defensive mutualisms between aphids and ants [5], and
potential mutualism abandonment in aphid-bacteria sym-
bioses (reviewed in Refs. [6°°,7°,8]). In contrast, positive
effects of warming on insect mutualism can occur when
temperatures approach the physiological optimum of the
insect. Positive effects of warming have occurred in the
defensive mutualism between ghost ants and mealybugs
where ghost ants become more active and better defend
their partners at higher temperatures [9]. Interestingly, all
the above examples involve phloem-feeding hemipter-
ans, emphasizing that there can be variable effects of
global change even within insect groups with similar life
habits.

Part of the reason that insect mutualisms vary widely in
response is because multiple disturbances can covary,
while at the same time, insects can also be indirectly
affected by responses in other trophic levels. For insect-
plant mutualisms in particular, the response of plants to
global change will influence their associated insects. For
example, two disturbances that can covary with warming
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Table 1
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Types of insect mutualisms and anthropogenic disturbances considered in this review (papers from 2017-2020). The type of mutualism,
dependency, and degree of generalization as considered from the insects’ perspective. This is not a comprehensive list of mutualisms

involving insects

Type of mutualism Partners Dependency Generalization Disturbances considered Ref.
Defensive Warming [5,9,297]
Ant-Hemiptera Facultative Mostly generalist Invasion [9]
Habitat alteration [28]
Hemiptera-bacteria Obligate or facultative  Mostly specialist Warming [7°,8]
Nutritional Drought [12]
Fire [40-42]
. Temporal mismatch [15,16°,
- . . Mostly ger.1eralllst; 17-20,34]
Pollination Obligate or facultative .brood—polllnatl.on. Spatial mismatch [22,23,24°,34]
is mostly specialist IvEsten [21,44°,45-47]
Habitat alteration [36,37,39°°,43]
Agricultural intensification  [33,35]
Myrmecochory Facultative Mostly generalist Drought [11]
Beetle-slime mold Unknown Specialist or generalist  Drought [49]
Ant-plants bearing EFN®  Facultative Generalist Elevated CO, [14]
Insect-bacteria Obligate or facultative  Specialist or generalist ~ Warming [6°7

2 EFN = extrafloral nectaries.

and directly affect plant fitness are changes in water
availability and increases in atmospheric carbon dioxide
(COy). Drought negatively affects plants, causing
decreases in nectar production or quality [10] which,
in turn, can reduce pollinator visitation, seed dispersal,
and plant fitness [11,12]. In contrast, increased atmo-
spheric CO; can enhance plant growth [13], and can lead
to increased nectar production [10]. However, elevated
CO, does not always translate into increased benefits for
insect mutualists. For instance, elevated CO, may neg-
atively impact ant protection and pollination mutualisms
by reducing nectar quality [10]. Furthermore, elevated
CO; may alter the timing of nectar production [14]. If
the time shift in production of mutualistic commodities
is large, this may cause temporal mismatches between
mutualists. Thus, elevated CO, may be another cause of
potential temporal mismatches between mutualists in
addition to changes in temperature and snowmelt [15].
That said, the evidence for global change causing
phenological mismatches between partners involved in
pollination mutualisms is weak, as most studies have
demonstrated little overall support for this prediction
([16°,17,18], but see Refs. [19,15]). Some authors
have suggested that phenological mismatches may be
unlikely because of the long evolutionary history of
synchrony in the cues used by pollinators and plants
[16°,20]; however, it remains to be tested if this is also
the case for potential phenological mismatches driven by
elevated CO,.

In response to warming, drought, and habitat alteration,
many species are changing their range to track suitable
habitats, which could result in geographic mismatches

between partners or disruption of the native mutualist
community [e.g., Ref. 21]. The individual responses of
the partner species will determine how range shifts influ-
ence mutualism persistence. When mutualists change
their ranges in different ways, mutualism breakdown will
occur if a mutualist partner is lost or cannot form new
interactions. However, if partner species shift ranges in
the same way or if one species can facilitate range
expansion of its partner [22] (Figure 1a), the mutualism
may persist as the ranges expand or contract across the
landscape. Alternatively, if the partners fail to track each
other (Figure 1b,c), insect mutualists can adopt new
partners, but these new partners may be of lower quality
[23,24°]-. Changes in range are expected to be accompa-
nied by adaptation [25]; thus, the effect of range changes
on mutualisms will depend not only on the immediate
ecological responses, but also on whether mutualist part-
ners adapt in parallel (Figure 1). We predict that locally
adapted species may be more strongly impacted by
changes in range and that changes in community context
between locations will determine the likelihood of mutu-
alism persistence following range shifts or expansions.

We also need to consider that most, if not all, mutualisms
are context-dependent [26], and as such, the effect of
global change on insect mutualisms is dependent upon
the response of the entire community. For instance,
global change could result in decreased natural enemy
pressure in ant-herbivore defensive mutualisms because
higher trophic levels can suffer more negatively from
global environmental changes than lower trophic levels
[27]. For instance, disturbed habitats with less forest
cover have been shown to have fewer parasitoids [28]
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Hypothetical responses by a pair of interacting mutualists adapting to global change. (a) Parallel responses to global change factors may keep the
mutualism intact; however, (b) different magnitudes or (c) directions of response may lead to range or trait incongruences that decrease the
efficacy of the mutualism. For example, in (a) shifts in the phenology of plants and pollinators in parallel can allow for the mutualism to persist. The
changes in parallel could occur when the mutualists use similar environmental cues for their phenology, or when mutualists are able to coevolve
rapidly or show plasticity in response to changes in their partners. In contrast, the mutualism might be threatened if, for example, a mutualistic
partner changes its range, whereas the other partner does not respond (b). Additionally, mutualisms might be threatened if changes in each
partner are in different directions, for example, when increases in temperature reaches the insect optimum but is detrimental for its symbiont (c).

In cases b and ¢, mutualisms could persist only if mutualists can form interactions with other partners.

and increased temperatures resulted in fewer predators in
a subalpine habitat [29°]. These studies suggest that the
benefits of defensive mutualisms could decrease as less
protection may be needed, potentially leading to mutu-
alism breakdown. Additionally, the overall community
composition and structure can have important implica-
tions for mutualism persistence (e.g. Refs. [30,31] making
it necessary to assess how mutualist networks will be
affected by global change.

Effect of global change on mutualistic
networks

Accumulating evidence shows that complex, multi-
species mutualisms are buffered from disturbances. At
least part of this resilience is derived from species-rich
mutualistic communities having more functional redun-
dancy of partners. Recent work shows that increasing
species richness and functional redundancy of experi-
mental mutualist communities enhances mutualism
persistence in the presence of exploitative species
[32°°]. Functional redundancy among mutualist partners
within networks may also increase network stability in the
face of other ecological stressors. For example, pollinators
may survive disturbance if they can use multiple host
plant species (e.g. Refs. [33,34,35°,36]). However, distur-
bance can decrease species richness (e.g. Ref. [37]) and
increase asymmetry of networks [38] which, in turn, are
predicted to reduce mutualism stability particularly when
highly connected species are lost from the network (e.g.
Ref. [32°°]). In this case, coevolution of mutualistic part-
ners can contribute to network stability through rewiring

of the interactions after species extinctions [39°°], sug-
gesting that network plasticity may help to buffer mutu-
alisms against disturbance.

The resilience of mutualistic networks, however, likely
has limits and catastrophic events such as intense, fre-
quent fires could have strong effects on mutualistic net-
work structure. Fire frequency has been correlated with
reduced pollinator diversity and high turnover rates in
burned sites [40], and fire can cause changes in pollinator
community composition [41]. Additionally, a post-fire
assessment of floral visitor networks found that interac-
tion strengths were stronger and more specialized in
refuge areas [42], showing that flower-rich refuge areas
can shelter networks from species extinction. Thus, ref-
uge sites with high mutualist diversity may be pivotal to
the persistence of networks in highly disturbed sites as
they could reduce species extinction.

Although species loss is a key predicted outcome of global
change, we also need to consider how mutualistic net-
works respond to the addition of novel species. Mutual-
istic networks are increasingly being invaded by alien
species, but this seems to have a limited effect on network
connectance, or the proportion of potential realized inter-
actions among species. Because connectance is positively
associated with the extinction threshold and species
persistence [43], this suggests that alien species may
not impact network stability. For example, although alien
floral visitors have been shown to interact with more
plants, native floral visitors have higher partner fidelity
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that could increase plant benefits, suggesting that native
pollination networks may be buffered from the negative
effects of invasion [44°]. Supporting this idea, some
pollination networks have been shown to be stable
despite the presence of alien pollinators [45,46]. Thus,
invaders are not expected to completely supplant native
pollinators, but the emerging patterns suggest that non-
native species of plants and pollinators are increasingly
becoming integrated into existing pollinator networks
[47].

Although empirical data suggest that networks are gen-
erally resilient to disturbance and the introduction of new
species, the question remains whether these complex
mutualistic communities will continue to persist as global
change escalates. Theory suggests that ‘tipping points’
and threshold responses could cause sudden, catastrophic
changes in networks, and that these tipping points may be
difficult to predict until they are already underway [48].
Furthermore, some types of mutualistic networks may be
more vulnerable to collapse, particularly those involving
specialized mutualisms that are more sensitive to distur-
bance. For instance, highly specialized beetle-slime mold
spore dispersal networks may be more susceptible to
extinction because erratic rainfall events threaten the
supply of the slime mold spores on which the beetles
feed [49]. Together, existing data suggest that while
mutualistic networks may be resilient to the negative
effects of global change, these networks can reach tipping
points as global change proceeds, potentially leading to
their collapse.

The future of global change for insect
mutualists

Recent work underscores that insect mutualisms experi-
ence a wide range of potential effects caused by global
change, making it difficult to provide general predictions
across all mutualism types. This review also highlights
that the effects of global change, either positive or nega-
tive, are going to be highly context-dependent and sys-
tem-specific. This is an important point because it means
thatapplying a broad statement about the effects of global
change on insect mutualisms is not an appropriate avenue
of discourse when planning for mitigation of the negative
effects. Instead, what is needed are data specific to the
particular insect mutualism under investigation. With this
caveat in mind, we discuss some features of mutualisms
that are likely to influence the response or magnitude of
effect of global change.

Costs and benefits

Mutualistic outcomes are determined by the benefits
surpassing the costs of providing a commodity in return.
If the benefits increase with global change, for instance
when plants are able to produce more rewards, then the
mutualism may be reinforced. Alternatively, a decrease in
benefits can lead to mutualism abandonment. For
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example, if disturbance reduces natural enemy abun-
dance, this may lower the benefits of protection and
increase the cost of defensive mutualisms. In some cases,
a mutualist might be so limited by the mutualistic com-
modity that any reduction in the benefits received can
result in an inability to respond to other environmental
factors [50]. Few studies have measured the costs and
benefits of mutualisms involving insects, especially with a
focus on global change (but see Refs. [5] and [24°]).
Although measuring benefits and costs in natural systems
can be difficult, knowing how mutualistic traits might
evolve or change in response to environmental conditions
will be instrumental in predicting the effects of global
change on mutualisms.

Partner dependency

The degree of partner dependency will likely determine
the strength of species responses to disturbances. On one
end of the dependency spectrum, strict obligate mutu-
alists depend entirely on one another for survival and
reproduction. As such, obligate mutualisms may be
threatened by global change if mutualists cannot track
the responses of their partners. Consequently, the main-
tenance of these mutualisms might depend on plastic
responses or rapid adaptation of the partner with the
shortest generation time. In instances in which the mutu-
alists cannot respond quickly, we predict that local or
global extinctions will occur (Figure 1b and c). Alterna-
tively, in the cases in which a partner obligately lives
within or on its mutualist, the symbiosis could facilitate
simultaneous range or phenological shifts without a need
for adaptation. In contrast to highly dependent mutual-
isms, facultative mutualists do not require the interaction
for their survival/reproduction. If partners become extinct
due to global change, facultative mutualists could obtain
resources or services from other sources. Thus, facultative
mutualisms should be more resilient to global change
than obligate mutualisms.

Specialization level

Generalists are arguably favored after disturbance
because they might be better able to use the narrow
range of available resources or form new partnerships
(e.g. Refs. [51°,52,35%]). In this sense, an obligate but
generalized mutualism might be resilient to breakdown
and extinction if alternative partners are available. In
contrast, when mutualisms are so specialized that the
interaction requires specific evolved traits, we expect
increased mutualism abandonment or extinction on short
timescales. On longer timeframes, specialized obligate
mutualists might evolve traits that help partners respond
in similar ways (e.g. Ref. [20]), and they may be better
able to evolutionarily track each other’s responses
(Figure 1a). These predictions do not likely apply broadly
to all types of global change, especially when a distur-
bance can affect the partners in disparate ways (e.g.
Ref. [6°°]). Disturbances that can have asymmetrically
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negative effects on at least one partner may potentially
lead to local extinctions (Figure 1c). Thus, being a
specialized, obligate mutualist should be a major detri-
ment to mutualism persistence with global change.

Coevolution

A key factor that could facilitate mutualism persistence is
coevolution among partners (e.g. Ref. [53]), especially if it
is rapid and allows tracking of the changes between
partners (Figure 1a). Most of the research in this area
has used theoretical network approaches to address the
debate about the strength of coevolution in large
mutualistic networks. Because of indirect effects,
multi-species mutualisms may require more time than
pairwise interactions to reach coevolutionary equilibrium
after disturbances [54°]. In contrast, other work has shown
that coevolution can buffer the negative effects of habitat
destruction and climate change on mutualistic networks
[39°°]. Observational approaches such as tracking changes
in trait values of interacting mutualists before and after a
disturbance would be a first step in understanding the role
of coevolution in mutualisms experiencing the effects of
global change. Short-term evolution experiments using
microbes or insects would also provide a powerful
approach to study the role of coevolution in buffering
mutualisms against disturbance.

Conclusions

In summary, the findings of this review suggests that we
may not identify general patterns in how insect mutual-
isms response to global environmental change because
these mutualisms are extremely variable. We advocate
returning to a natural history approach that considers the
set of features that make each mutualism unique, as well
as examining how these interactions (co)evolve in chang-
ing environments. To push the field forward, we need to
compare systems that vary in specialization and depen-
dency and directly measure the benefits and costs
involved in mutualisms experiencing different distur-
bance regimes. There is also a strong need to understand
coevolutionary dynamics in mutualistic systems because
global change is likely to place strong selection on mutu-
alist partners. By doing so, these studies will allow us to
integrate community and evolutionary ecology to advance
our understanding of mutualism and global change.
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