
IEEE TRANSACTIONS ON RELIABILITY 1

Time-Based Node Deployment Policies for Reliable
Wireless Sensor Networks
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Abstract—Wireless Sensor Networks (WSNs) are commonly
used to monitor a remote environment over an extended period of
time. One important design consideration is the WSNs reliability
of area coverage, as sensors fail over time and functionality of the
network degrades. When the WSN no longer sufficiently covers
the region, maintenance actions may consider repairing failed
nodes or deploying new sensors to reestablish network capability.
Towards identifying an optimal maintenance policy, specifically
the deployment of new sensors, we present an optimization
model formulated using the network destruction spectrum (D-
spectrum), that seeks to determine a time-based deployment pol-
icy balancing cost and reliability. While the benefits of using the
D-spectrum in reliability are widely researched, the application
of the D-spectrum to enable the modeling and solving of an
optimization problem is new. With the complexity already present
in estimating reliability, the significance of this optimization
model is that it decouples the complexity of estimating the
D-spectrum from the estimation of network reliability in the
presence of a given deployment policy. This key feature allows us
to quickly evaluate a wide range of time-based deployment poli-
cies. Additionally, we present an efficient destruction algorithm
that performs a vital subroutine in estimating the D-spectrum,
allowing for a larger of number of replications to be performed
in the Monte Carlo simulation thereby reducing the variance of
the resulting reliability estimate. Finally, the optimization model
is illustrated through a numerical example.

Index Terms—Network Maintenance Optimization, Destruc-
tion Spectrum, Network Reliability, Wireless Sensor Networks.

NOTATION
N1 The set of sink and sensor nodes.
N2 The set of target nodes.
n1 The number of sensor nodes.
n2 The number of target nodes.
N The collection of all nodes.
d1 The communication radius of a sensor.
d2 The monitoring radius of a sensor.
E The undirected edge set created by con-

necting all nodes in N1 that can commu-
nicate with each other.

A1

{⋃
{i,j}∈E{(i, j), (j, i)}

}
, The expanded

directed communication edge set be-
tween sensors.

A2 The set of directed edges from a sensor
i ∈ N1\{0} to target j ∈ N2.

A {A1 ∪A2}, the collection of all directed
arcs.
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G′ = (N1, E) The undirected network consisting only
of sensor nodes.

G = (N ,A) The directed network consisting of all
nodes.

R The region of interest.
Hi The indexed set of all directed paths

from the sink node to node i.
hji The set of nodes on the jth path from

sink node to node i.
F (t) The c.d.f. of sensor lifetime.
π A random permutation of sensor fail-

ures.
qi The index of sensor i in order of sensor

failures π.
C[G(t)] The coverage of the network at time

t ≥ 0.
α The desired coverage level, 0 < α ≤ 1.
ηi The critical loss time: time at which

node i ∈ N is no longer connected to
sink node.

η̃(i) The sorted critical target loss times,
η̃(1) ≤ η̃(2) ≤ · · · ≤ η̃(n2).

sn1
α,i The probability that the ith sensor fail-

ure results in coverage falling below α.
r(t;α, n1) The reliability at time t.
δ The time between deployment actions.
cF The fixed cost of deploying sensors.
cV The variable cost (per sensor) of de-

ploying sensors.
G(t; δ) The c.d.f. of the stable residual life dis-

tribution for a sensor under deployment
interval δ.

r∞(t;α, n1, δ) The reliability at time t under time-
based deployment interval δ.

B(x;n, p) The binomial c.d.f., B(x;n, p) =
x∑
i=0

(
n
i

)
pi(1− p)n−i .

I. INTRODUCTION & LITERATURE REVIEW

W IRELESS sensor networks (WSNs) consist of a set
of sensors, distributed over a region of interest, that

monitor and report desired conditions within the region. The
number of sensors in these networks can vary greatly depend-
ing on the coverage required, the detection and communication
capabilities of sensors, as well as the initial effort to design and
allocate sensors across the network. The network application
can further influence network size ranging from areas such as
fire and flood detection [1], military operations with battlefield
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tracking and surveillance, or environmental control in build-
ings [2]. Another attractive feature of WSNs is that they can
be designed and constructed for a specific application (such
as those previously mentioned), but also offer the flexibility
to be quickly deployed as required. Whether a network is
specially designed or randomly deployed can be impacted by
the application or operational setting. For example, in areas
with harsh environmental conditions or rough terrain, sensors
can be air dropped over a desired location to achieve coverage
in a given area [3]. A consequence of this approach is that
sensors are randomly deployed throughout the region, but
the lack of control over specifically locating sensors can be
offset by deploying a larger number of sensors. The low-
cost characteristic of sensors is an additional component that
contributes towards the random deployment of a larger number
of sensors as a feasible strategy [4].

Once established it is important that the network operate
for a sufficient period of time, particularly when sensors are
deployed in remote areas and difficult to access for repair. The
performance of a WSN is primarily impacted by the number
of operating sensors and the ability of these sensors to com-
municate with each other [5]. These are both characteristics
of the network that decline over time as sensors start to fail.
The lifetime of an individual sensor is bounded by a battery or
power supply, and once diminished the sensor no longer op-
erates [6]. Sensors additionally have components required for
monitoring, processing, and routing information through the
network. Software errors in any of these functions, potentially
in the form of failing to properly send/receive information
from nearby sensors, result in a drop in network capability
and may propagate failures through the network [7]. Hardware
failures also arise with physical damage and can possibly cause
components to break, particularly when operating in a harsh
environment where sensors are exposed to weather or other
external factors [2].

The failure process has led to research on methods to
extend sensor lifetimes, commonly through topology control
algorithms. By modifying the communication range the power
consumed by a sensor can be managed while still ensuring
a message can be routed through the network [8]. Energy
consumption can further be controlled by specifying which
paths are used to route data, as well as aggregating data to
avoid sending duplicate messages [9]. Similarly, the network
topology can be dynamically controlled through periodically
turning sensors on and off. Such a sleep/wake schedule results
in redundant nodes conserving energy until required to help
prolong network lifetime [6], [10]. These algorithms com-
monly aim to maximize the time until the first sensor fails,
but sensor networks often have redundancy built in and can
tolerate some sensor failures without losing capability [11].
Another limitation is that sensor lifetime is treated to be
bounded by a battery supply that is consumed at some known
rate and once depleted the sensor fails. Addressing random
sensor failures that can arise (e.g., environmental interference,
physical damage [4]) adds a layer of difficulty to estimating
network lifetime, particularly when we are interested in the
status of the network beyond the first sensor failure.

Another approach to extend network lifetime is through the

use of movement based connectivity methods. With sensor
nodes randomly deployed throughout the region it may be
desirable to relocate sensors immediately after deployment in
an effort to improve the overall network coverage and connec-
tivity [12], [13]. We may also be interested in re-positioning
sensor nodes in response to failures that occur [14], [15],
[16]. One of the advantages of a movement based approach
is that network topology can be dynamically controlled to
prolong network lifetime. However the cost of mobile sensors
is typically significantly larger than static sensors [4], [15]
which introduces questions about their suitability for a large
scale WSN of interest.

The attractiveness of topology control algorithms and move-
ment based connectivity methods is their ability to extend
the lifetime of a given network. The long-term operation
of a WSN must also consider deploying new sensors in
the network, particularly in the presence of an increasing
number of sensor failures. In [17], different node replacement
policies are examined to maintain a coverage requirement
to maximize lifetime where a decision to replace a failed
sensor or not is made immediately after observing a failure,
however only a small number of sensors can be replaced. A
similar problem focuses on deploying new sensors to restore
some level of connectivity and/or coverage, with the additional
challenge of deploying the fewest number of new sensors
[18], [19], [20]. Problems related to optimal node placement
commonly fall in the NP-Hard class of problems [21], which
motivates the search for approximation algorithms. One of
the primary limitations of current models is that they are
framed in the context of single stage. That is, the deployment
of new sensors is concerned with immediately preserving
network functionality, but does not consider the future failure
probability of sensors. As a result it is reasonable to question
the reliability of the network after sensors have been deployed.
To the best of our knowledge, attempts at creating a durable
network with the deployment of additional sensors focus on
providing a level of redundancy or k-connectivity [20], [22].
This is certainly a desirable characteristic for the network, but
a node redeployment strategy should also be influenced by the
residual life distribution of sensors and how frequently such a
policy needs to be implemented.

Existing research has focused primarily on extending net-
work lifetime (common in topology control and movement
based methods) or maintaining a coverage/connectivity re-
quirement (common in node redeployment methods), but there
appears to be a lack of emphasis on analyzing a maintenance
policy with respect to network reliability. The focus of this
work is directly concentrated on evaluating and comparing the
performance of time-based maintenance policies, specifically
the deployment of new sensors in the network, with respect
to both cost and estimated reliability. One of the difficulties
of this task is that network reliability problems commonly
fall in the #P-Complete class of problems [23] and can be
difficult to solve exactly, particularly for larger size networks
or when reliability estimation is performed as a subroutine in
another algorithm. As a result network reliability problems are
routinely solved by approximate solution methods.

One theme that arises with respect to approximate methods



IEEE TRANSACTIONS ON RELIABILITY 3

is to bound network reliability. Compared to an exact method
that explores every possible network state, carefully selecting
a subset of states to evaluate can lead to more efficient
algorithms that provide upper and/or lower bounds on network
reliability [24]. Depending on the manner in which bounds are
constructed, these algorithms still require a large amount of
effort particularly for larger sized networks [25].

Closely related, and often utilized within bounding tech-
niques, is to use a Monte Carlo method to estimate network
lifetime. A naive/crude Monte Carlo approach is to randomly
generate a failure time for each sensor according to its life
distribution, order the sensor failures, and then examine the
network state after each successive sensor failure to determine
the instant of network failure. Repeating this process allows for
an estimation of overall network reliability upon completion.
One main drawback of this approach is the unbounded growth
of the relative error for highly reliable and highly unreliable
networks [26]. This issue has been addressed through the use
of improved Monte Carlo methods [27] and variance reduction
techniques [25], [28].

A crude Monte Carlo method can also be improved lever-
aging the destruction spectrum (D-spectrum) of the network,
also referred to as the network signature, where the resulting
reliability estimation has bounded relative error [29]. Under
the assumption of independent and identically distributed sen-
sor lifetimes, the destruction spectrum also yields an efficient
representation of the network’s reliability but depends only
on the system structure [30]. While both the D-spectrum and
crude Monte Carlo approaches require solving an embedded
destruction problem in order to determine the time at which
all sensors are disconnected from one or more sink nodes, we
show the destruction problem for the network signature can be
solved more efficiently than the one for crude Monte Carlo.

With an understanding of network reliability we can now
begin to explore the impact from the deployment of new
sensors in the network. The objective of deploying new sensors
is directed at restoring network function (i.e. as a corrective
maintenance action) or improving network capability (i.e., as
a preventive maintenance action) [31]. Depending on the ap-
plication of the WSN, a temporary failure of the network may
lead to serious consequences making corrective deployment
policies unattractive. For this reason we focus on preventive
deployment policies which could be based on the number of
functioning sensors, the size of the region the network covers,
or the time since the last deployment action. Preventive poli-
cies have also been explored in related network maintenance
models, such as power distribution networks studied in [32],
[33]. Also discussed is the added difficulty in that we must
now estimate the cost of such an action as well to compare
different policies, in addition to estimating network reliability
in the presence of a deployment policy.

Time-based (or periodic) deployment is one version of
a preventive deployment policy in which new sensors are
deployed at fixed time intervals. We examine a time-based
deployment policy in a network consisting of n1 sensors,
where every δ time units new sensors are deployed in the
network to increase the number of functioning sensors back
up to n1. An alternative action is to repair a failed sensor

node, but given the low-cost characteristic of sensors combined
with the potential difficulty in accessing a specific sensor for
repair, the deployment of new sensor nodes is an attractive
policy. Additionally, WSNs lack the requirement for a physical
connection between sensors (e.g., wire, cable, etc.) which
further avoids the need to repair failed sensors.

Towards identifying an optimal time-based deployment pol-
icy, the main contribution of this work is an optimization
model, formulated using the D-spectrum, that seeks to deter-
mine a time-based deployment policy balancing cost and relia-
bility. While the benefits of using the D-spectrum in reliability
are widely researched, the application of the D-spectrum to
enable the modeling and solving of an optimization problem
is new. The inclusion of the D-spectrum in determining an
optimal time-based deployment policy is of interest as the D-
spectrum is a property of the network structure impacted by
n1, which can be viewed as a network design variable, but
is independent of the deployment interval δ. As a result the
Monte Carlo simulation for estimating the signature, which
may be a large source of computational effort, is not impacted
by the time-based deployment policy. This modeling approach
thus decouples the complexity of estimating the network signa-
ture for evaluating reliability, and estimating reliability in the
presence of a given time-based deployment policy. In a related
effort, we demonstrate how to exploit random geometric graph
structure commonly used to model WSNs to efficiently update
the destruction spectrum estimate for networks of varying size,
yielding further computational advantages in the optimization
model.

Additionally, we provide an efficient destruction algorithm
that performs a vital subroutine in estimating the D-spectrum
and in turn reliability for a WSN. This algorithm is based on
recognizing that a single iteration of a Monte Carlo algorithm
(for estimating the D-spectrum) yields a maximum capac-
ity path problem. The D-spectrum’s unique characteristics
enable Dial’s implementation of Dijkstra’s algorithm to be
utilized when solving for the maximum capacity path. This
improvement in the algorithm allows for a larger number of
replications, thereby reducing the variance of our reliability
estimate beyond the traditional approach of estimating the
D-spectrum. We also discuss a simple extension that allows
network reliability to be calculated for different coverage re-
quirements without increasing the complexity of the algorithm.

The remainder of this work is organized as follows. Sec-
tion II summarizes the modeling of the WSN and the method-
ology to estimate reliability in the network both with and
without the deployment of new sensors. Section III presents a
destruction algorithm necessary for estimating the network sig-
nature, which is then used to estimate reliability and evaluate
various time-based deployment policies. Section IV conveys
the procedure of optimizing time-based deployment policies of
a WSN, which is then demonstrated in Section V. Section VI
summarizes conclusions and directions for further work.

II. MODELING FUNDAMENTALS & NETWORK
RELIABILITY

We model a WSN as a network whose node set consists of a
sink node 0, sensor nodes {1, . . . , n1}, and target nodes {n1+
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1, . . . , n1 + n2}. We define N1 = {0, 1, . . . , n1} as the set of
sink and sensor nodes and N2 = {n1 +1, . . . , n1 +n2} as the
set of target nodes. The two main functions of a sensor node
are to communicate with other sensor nodes and to monitor
targets. Sensor nodes i ∈ N1 and j ∈ N1 are capable of
communicating with one another provided they are within a
given range d1 > 0 of each other. Let E ⊆

(N1

2

)
denote the set

of undirected edges {i, j} created due to each pair of sensor
nodes i ∈ N1 and j ∈ N1 that can communicate, and define
A1 =

⋃
{i,j}∈E{(i, j), (j, i)} as the expanded, directed edge

set associated with E . A sensor node is capable of monitoring
any target within a range d2 > 0. Let A2 ⊆ N1 ×N2 denote
the set of directed edges that defines which targets are covered
by which sensors. Thus, an arc (i, j) ∈ A2 exists if sensor i ∈
N1\{0} monitors target j ∈ N2. Without loss of generality,
going forward we assume a single sink node is located in
the network. We can always transform the network to one that
contains a single sink by adding a new artificial sink node, and
adding an arc from this new node to every sensor connected to
one of the original sink nodes. The original set of sink nodes
and their adjacent arcs are then removed.

In what follows, it will be useful to consider both the
directed network G = (N1 ∪N2,A1 ∪A2) and the undirected
network G′ = (N1, E) as representations of the WSN. For
brevity, we define N = N1 ∪ N2 and A = A1 ∪ A2.
An example of both networks for n1 = 100 sensor nodes
randomly distributed over a [0, 1]× [0, 1] region is illustrated
in Fig. 1.

G = (N ,A) G′ = (N1, E)

Fig. 1: Example realization of the network G and G′ over
the [0, 1] × [0, 1] region, n = 100, d1 = 0.2, d2 =
0.1, and a single sink node (marked by “?”) located at
(0.5, 0.5). The set of 10 × 10 target nodes marked by
“�” is defined as N2 = {0.00, 0.11, 0.22, . . . , 1.00} ×
{0.00, 0.11, 0.22, . . . , 1.00}. Note that for ease of illustration
in the network G, the edge pair (i, j) and (j, i) is represented
by a single dashed arc, while a solid arc represents a sensor
to target arc.

Due to the failure of sensor nodes the WSN evolves over
time. At any time t ≥ 0 the network G, so that G′(t) is
well defined, is represented by G(t), and consists of only
sensors that are still functioning, indicated by the set N1(t),
and the resulting communication edges (i.e., excludes failed
nodes from N1 and adjacent edges). Let T ≥ 0 represent the
lifetime of a sensor, F (t) denote the cumulative distribution
function of T , and F (t) = 1 − F (t) the survival function
of T . Upon generating a deterministic failure time for each
sensor from the distribution of T , let π represent the order of

sensor failures where π(k) = i if node i ∈ N1\{0} is the kth

sensor to fail, and let qi ∈ {1, . . . , n1}, i ∈ N1\{0}, be the
index such that π(qi) = i. For the network constructed in this
manner, the following assumptions are also imposed.

Assumption 1: Sensor lifetimes are independent and identi-
cally distributed (i.i.d.).

Assumption 2: Sensor capabilities are identical.
Under Assumption 1, each sensor has the same life distri-

bution T and sensors fail independently of one another. This
yields favorable theoretical properties with respect to the D-
spectrum we can leverage to develop more efficient algorithms.
We later discuss the impacts of relaxing the assumption
that lifetimes are identically distributed, while maintaining
independent failures, in the context of deploying new sensors
in the network. Assumption 2 implies that all sensors also
have the same communication radius d1 and common sensing
radius d2. With identical sensors, this alleviates concerns of
sensor compatibility and integrating multiple sensor types to
function together.

Assumption 3: The sink node is perfectly reliable.
For a target to be covered it must be both within the

coverage radius of a functioning sensor, and there must exist
a communication path from this monitoring sensor back to
the sink. Given this requirement, it is clear that the sink node
is one of the most important nodes in the network. We can
guarantee that if the sink node fails we no longer cover any of
the targets, and the network fails as well. For this reason, with
Assumption 3 we assume that the sink node does not fail.

The network condition is classified into one of two states,
either operating or failed, and is determined by the proportion
of targets that are covered denoted by C(G). For a given
α-coverage requirement, 0 < α ≤ 1, the α-failure time is
the time at which C(G) drops below α and the network
transitions to a failed state. Depending on the size of the region
covered and application of the WSN, we may not require 100%
coverage of targets to construct a picture of the overall status.
Environmental applications such as office building climate
control may allow for a smaller α-coverage requirement, while
applications in target tracking or surveillance may require a
larger coverage requirement [2]. It may also be that 100%
coverage is too costly or impractical to maintain over the life
of the network. With an α-coverage requirement specified, the
network’s reliability r(t;α, n1) = Pr[C

(
G(t)

)
≥ α] is defined

to be the probability that the network’s coverage is at least
α at time t. In the following sections we are interested in
comparing the reliability of networks of varying size, resulting
in n1 appearing in the expression r(t;α, n1) to denote its
dependence on the number of sensors.

Assumption 4: The initial WSN G′(0) is a random geometric
graph (RGG) with uniform density over a bounded regionR ∈
R2.

The arrangement of sensors in a WSN is typically classified
as either deterministic or random [3]. With the complexity al-
ready present in (i) estimating network reliability and (ii) eval-
uating time-based deployment policies, Assumption 4 models
the the initial network as a random geometric graph with senor
nodes randomly distributed over a bounded region R ∈ R2.
Modeling the sensors as uniformly distributed imposes no
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additional loss of generality, as the results that follow hold for
any density function. This removes the difficulty of designing a
WSN in addition to considering these aspects, and also reflect
a scenario in which a network has to be rapidly deployed in
a remote area.

A. Homogeneous Network Reliability

In the absence of additional sensors being deployed in the
network, the collection of sensors is homogeneous in the sense
that all surviving sensors were installed at the same time and
therefore have i.i.d. residual life distributions. Given the diffi-
culty already present in estimating network reliability in this
case, we first turn attention to the homogeneous network relia-
bility using a Monte Carlo approach. Monte Carlo methods for
WSN reliability evaluation give rise to a network destruction
problem, an optimization problem that determines the instant
of network failure given fixed sensor failure times [29]. For
a network with node failures, the destruction spectrum is a
probability distribution on the number of failed nodes required
to cause network failure. The D-spectrum for a network can be
estimated with steps similar to the crude Monte Carlo where
the number of failed nodes corresponding to network failure
is recorded instead of the time at which this occurs.

Let sn1
α,i denote the probability that in the network G with

n1 sensors, the ith sensor failure results in C(G) falling below
α. Network reliability is then given by

r(t;α, n1) =

n1∑
i=1

sn1
α,iB(i− 1;n1, F (t)), (1)

where B(i−1;n1, F (t)) is the cumulative binomial probability
of no more than i − 1 successes in n1 trials with probability
of success F (t) [34]. Although algorithms exist for computing
sn1
α,i exactly, we use a Monte Carlo approach to estimate the

D-spectrum which is common especially for large, complex
networks [29], [35]. Therefore we use the notation ŝn1

α,i to
refer to the estimate of sn1

α,i, leading to the reliability estimate
r̂(t;α, n1) of r(t;α, n1).

An estimate on the variance of network reliability may also
be of interest, particularly if we wish to compare destruction
algorithms, and is given by

V ar(r(t;α, n1)) =
1

M

[ n1∑
i=1

sn1
α,i(1− s

n1
α,i)B(i− 1;n1, F (t))2

− 2

n1−1∑
j=1

n1∑
k=j+1

sn1
α,js

n1

α,kB(j − 1;n1, F (t))

B(k − 1;n1, F (t))
]
,

(2)

where M is the total number of replications [29]. Since we
again use the D-spectrum estimate ŝn1

α,i, the estimate of the
variance is denoted V̂ ar(r(t;α, n1)).

As mentioned previously an appealing aspect of the D-
spectrum is that it is a property of the network structure and
failure definition of the network, and does not depend on the
lifetimes of the individual components [30]. With Assump-
tion 1, the implication is that each of the n1! permutations

of sensor failures are equally likely. Therefore instead of
generating a random failure time from the distribution of T
for each sensor, we can proceed to generate a random order of
sensor failures. This is a key result that we revisit later towards
identifying an efficient destruction algorithm on estimating the
signature of the network.

B. A Generic Algorithm for Estimating the WSN’s Destruction
Spectrum

The first step towards estimating network reliability is now
calculating the D-spectrum. Estimating the D-spectrum is
outlined in Algorithm 1, based on the work in [29]. The driving
component of Algorithm 1 is Step 5 of determining which
sensor failure results in network failure.

Algorithm 1 Monte Carlo algorithm for estimating destruction
spectrum

1: function SIGNATUREMC
2: Set mi ← 0, ∀ i ∈ N1.
. mi = # network failures caused by ith sensor failure

3: Generate G by simulating (xi, yi) ∈ R, ∀ i ∈ N1.
. (xi, yi) = coordinates for sensor i

4: Simulate random permutation π of the sensors
{1, 2, . . . , n1}; π = (i1, i2, . . . , in1).

5: Find the smallest value i? ∈ {1, . . . , n1} such that
C(G \ {π(1), . . . , π(i?)}) < α.

. The i?-th sensor failure causes network failure
6: Set mi? ← mi? + 1.
7: Repeat Steps 3–6 M times.
8: Set ŝn1

α,i ← mi/M, ∀ i ∈ N1.
9: end function

In Step 5, the network is subject to a destruction process
where sensors are iteratively removed from the functioning
set of nodes based on the order π of sensor failures. After the
failure of each sensor, the network coverage C(G(t)) is com-
puted and compared to the α-coverage requirement. Consider a
straightforward destruction algorithm for this step. For each of
the networks G\{π(1), . . . , π(i)}, i = 0, 1, . . . , n1, implement
a breadth-first search algorithm in order to identify how many
of the target nodes N2 are reachable from the sink. Dividing
this count by |N2| we can determine C(G)\{π(1), . . . , π(i)}
based on the number of targets reached. Overall this requires
O(|A|n1) effort per iteration of Step 5. The destruction
algorithm is implemented in each of the M replications of
the Monte Carlo, which motivates the search for an efficient
algorithm of finding this sensor failure of interest. A binary
search method can improve the complexity of this step to
O(|A| log(n1)). In Section III we present a destruction algo-
rithm that improves on this complexity by exploiting aspects
of the D-spectrum and the network construction.

Each iteration of Step 5 returns an observation on the num-
ber of failed nodes resulting in network failure. By recording
this value for every iteration we are able to obtain our estimate
ŝn1
α,i of the D-spectrum upon completion, and finally estimate

network reliability by substituting into (1).
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C. Time-Based Deployment Policies

To prolong the functioning status of the WSN we are
interested in periodically deploying new sensors in the region
in an effort to increase the number of functioning senors,
thereby increasing network coverage. We focus on a time-
based deployment policy in which n1 sensors are initially
deployed over the region R. Every δ time units thereafter,
all failed sensors in the network are replaced by deploying
new sensors over R such that the total number of functioning
sensors in the network is increased back to n1. Such a policy
is identified as an (n1, δ) policy. By replenishing the number
of functioning sensors to a constant value, the present (n1, δ)
policy assumes that we have knowledge about the number of
failed sensors in the network prior to any deployment action.
Similar to the initial layout of sensors, by assuming that new
sensors are always deployed uniformly and independently over
R and that each sensor’s location is independent of its time
to failure we arrive at the following properties.

Property 1: For all t ≥ 0, the WSN G′(t) is a RGG with
uniform density over R.

Property 2: For all t ∈ {kδ : k ∈ Z≥0}, |N1(t)| = n1.

D. Heterogeneous Network Reliability

Towards identifying an optimal time-based deployment pol-
icy, we now analyze network reliability in the presence of a
given (n1, δ) policy. Compared to Section II-A, the collection
of sensors is now heterogeneous in the sense that the surviving
population of sensors have different ages, and thus different
residual life distributions. In [30] it was shown that the D-
spectrum representation of a network remains valid in stochas-
tic mixtures of components, provided that the components are
exchangeable. With this in hand, the D-spectrum approach in
the previous section can be extended to the present (n1, δ)
policy under consideration to estimate network reliability.

We refer to the time interval [(k−1)δ, kδ] as the kth epoch,
k ∈ Z≥0. Immediately after new sensors are deployed, the age
X of each sensor is a random variable in the range {kδ : k ∈
Z≥0}. In the presence of the (n1, δ) policy, we are interested in
the network’s reliability for the infinite-horizon setting, where
at the beginning of an epoch the probability distribution on
the age X of a sensor does not change from one epoch to the
next (i.e., there is a stable mix of sensors).

In the infinite-horizon setting, each sensor’s age at the
beginning of epochs k′ ∈ Z>0 can be viewed independently
as an irreducible Markov chain on the countably infinite state
space k ∈ Z≥0, where state k corresponds to the sensor having
age kδ. In this Markov chain, each state k transitions into
state k + 1 with probability F ((k + 1)δ)/F (kδ) and back to
state 0 otherwise. This Markov chain has the unique stationary
distribution

ρk =
F (kδ)∑∞
j=0 F (jδ)

, k ∈ Z≥0, (3)

provided that the denominator converges, in which case the
Markov chain is ergodic.

Now, let Tx ≥ 0 denote the residual life of a sensor at
age x > 0, and denote its c.d.f. by Fx(t) = [F (x + t) −

F (x)]/F (x). Ergodicity of the Markov chain described above
also implies exchangeability of the sensors at stationarity: That
is, immediately after the deployment of new sensors, a subset
of sensors selected at random have i.i.d. age described by the
probability distribution Pr{X = kδ} = ρk, k ∈ Z≥0. The
residual lifetime of such a sensor (considering the randomness
in its age), is then described (see, e.g., [36]) by the c.d.f.

G(t; δ) = E[FX(t)], (4a)

=
∞∑
k=0

F (kδ + t)− F (kδ)

F (kδ)
ρk, (4b)

=

∑∞
k=0[F (kδ + t)− F (kδ)]∑∞

j=0 F (jδ)
. (4c)

We will refer to TX as the stable residual life distribution of
a sensor under the (n1, δ) policy.

Considering the above, at stationarity, the remaining life
of sensors selected at random are independent and identical
random variables with c.d.f. given by (4c). Further, by Prop-
erty 2, at the beginning of every epoch k ∈ Z≥0 the network
contains n1 functioning sensors and the D-spectrum of the
network remains applicable. Therefore, applying (1) to the
i.i.d. residual life distribution, the stable network’s reliability
(i.e., the probability that its coverage remains at least α after
t ≥ 0 additional time units) is given by

r∞(t;α, n1, δ) =

n1∑
i=1

sn1
α,iB(i− 1;n1, G(t; δ)), (5)

where the∞-superscript has been appended to r to denote that
it applies to the infinite-horizon setting. The heterogeneous
network reliability estimate is represented by r̂∞(t;α, n1, δ),
as it again depends on the D-spectrum estimate ŝn1

α,i. The
variance of the (n1, δ) policy can be estimated applying (2),
again substituting the residual life c.d.f G(t; δ) for F (t). While
we are primarily interested in the stable network reliability
immediately prior to the deployment of additional sensors
(i.e., at time t = δ), (5) can be applied to evaluate the stable
network reliability for any time t ≤ δ. This property maintains
the ability to evaluate reliability over time, enabling system
performance availability measures to be estimated as well.

Notice also that the D-spectrum is independent of the
deployment interval δ. Thus, in the process of exploring
the space of (n1, δ) policies, we need only to estimate the
signature once for any value of n1 considered.

III. DESTRUCTION ALGORITHMS

With a basis to estimate both the homogeneous and het-
erogeneous network reliability relying on the D-spectrum, we
now revisit Step 5 of Algorithm 1 and search for an efficient
destruction algorithm. Over the course of exploring (n1, δ)
policies it may be necessary to estimate the D-spectrum for
assorted values of n1. While there are efficiencies that can be
gained as a result of Assumption 4 that are discussed later in
Section III-A, an improved destruction algorithm allows for a
larger number of Monte Carlo replications thereby reducing
the variance of our resulting reliability estimate. Towards this
effort, we present Algorithm 2 that seeks to identify which
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sensor failure, in a predefined sequence that specifies the time
of all sensor failures, causes network coverage to drop below
the α-coverage requirement.

Recall that for a target to be covered it must satisfy
two criteria. First the target must be within the coverage
radius of a functioning sensor, and second there must be a
communication path from this sensor back to the sink node.
From the construction of the network G, this equates to a
directed path from the sink node to the target node using only
functioning sensor nodes as internal nodes. Such a path fails
as soon as one of its internal sensor node fails, and the target
becomes disconnected as soon as all such paths fail. Among
all directed paths from the sink to the target, define a critical
path as one in which the time until the first failure of an
internal node in the path is maximized. Thus the failure time
of a critical path to a target node equals the time at which the
target is no longer covered. A critical path can be similarly
defined for sensor nodes, and equates to the earliest time at
which a sensor node is either failed or no longer connected to
the sink. With this characterization, a critical path is defined
for every node i ∈ N , and the failure time of this critical path
is referred to as the critical loss time, ηi. When necessary,
the critical loss time can be further distinguished as a critical
sensor loss time for a node i ∈ N1, or a critical target loss
time for a node i ∈ N2.

Finding a critical path to every node i ∈ N is equivalent
to the maximum capacity path problem discussed by [37]. In
a network with weights defined on every node, a maximum
capacity path between two nodes is a path such that the weight
of the smallest node on the path is maximized. Let hji denote
the jth directed path from the sink node to node i, and Hi =
{1, 2, . . . ,Hi} index the set of all directed paths from the sink
node to node i ∈ N . The value of a maximum capacity path
to node i ∈ N is then maxj∈Hi{min{qk : k ∈ hji}}. In a
directed network, such as the network G under consideration,
a maximum capacity path from a source node to every other
node can be found using a slight modification to Dijkstra’s
algorithm while updating node labels [37]. When solving for
the maximum capacity path, the label of a node is initialized
as ηi = 0 for all i ∈ N\{0}, and η0 = ∞. Nodes then have
their label updated according to

ηj = max{ηj ,min{ηi, qj}}. (6)

Under Assumption 3 the sink node does not fail, which is
equivalent to representing the sink node as the last node to
fail by q0 = n1, while target nodes are regarded in a similar
fashion with qi = n1 for all i ∈ N2.

Originally introduced as a variation of the shortest path
problem, the maximum capacity path is commonly defined
for weights associated with every edge [37]. The network G
can be transformed to adopt this convention by defining edge
weights according to the minimum of the two adjacent nodes,
with, wij = min{qi, qj} for all (i, j) ∈ A. The updating of
node labels in (6) can also be updated accordingly to compare
the weight of the edge by ηj = max{ηj ,min{ηi, wij}}.

A naive implementation of Dijkstra’s can be accomplished
in O(|N |2) time, and improved to O

(
|A| + |N | log(|N |)

)
with a heap data structure [38]. Further, the critical target loss

times will be marked permanent in a non-increasing manner
within Dijkstra’s algorithm which means they can be sorted
over the course of the algorithm, simplifying the search for
the α-failure time upon completion. While possible to sort the
critical loss time for all nodes, the order of critical target loss
times are of particular interest as these values correspond to
a change in network coverage. Therefore, let η̃(i) represent
the ith smallest critical target loss time for a node i ∈ N2,
resulting in η̃(1) ≤ η̃(2) ≤ · · · ≤ η̃(n2).

Algorithm 2 Coverage Destruction

1: function SIGNATURESUBROUTINE
2: Initialize η0 =∞, ηi = 0 ∀ i ∈ N\{0}.
3: Initialize S = ∅, S̄ = N .
4: While |S| < |N |.
5: Select node i ∈ S̄ such that ηi = max{ηj : j ∈ S̄}.
6: Update S = S ∪ {i}, S̄ = S̄\{i}.
7: For each j : (i, j) ∈ A.
8: Update ηj = max{ηj ,min{ηi, qj}}.
9: End For.

10: End While.
11: Let η̃(1) ≤ η̃(2) ≤ · · · ≤ η̃(n2) denote the sorted

ηi-values for i ∈ N2.
12: Find smallest integer κ such that n2−κ

n2
< α.

13: Set i∗ = η̃(κ).
14: end function

Using the D-spectrum to estimate network reliability
we can improve the complexity further. Because qi ∈
{1, 2, . . . , n1} for all i ∈ N1, the labels ηi, i ∈ N , are always
in the range {0, 1, . . . , n1}. This feature motivates the use
of Dial’s implementation of Dijkstra’s algorithm. In Dial’s
implementation the node to mark permanent in Step 5 of
Algorithm 2 during an iteration can be found more efficiently
by storing the temporary label of nodes in a sorted bucket
structure. Initially, buckets {0, 1, . . . , n1} are created with all
nodes in bucket zero, except for the sink node which is placed
in bucket n1. Starting with bucket n1, select the sink node to
mark permanent, and update the label of adjacent nodes (i.e.,
by moving to the bucket numbered with the new label value)
according to (6). Continuing in this manner, the node to mark
permanent at each iteration can be found efficiently as the node
in the largest valued non-empty bucket. Using Dial’s algorithm
with ordered sensor failures, the step of finding the critical
path from the sink node to every other node in the network
can now be accomplished in O(|N1|+ |A|) time [38].

The overall complexity of Algorithm 2 is also O
(
|N1| +

|A|
)
, driven by Dial’s implementation of Dijkstra’s in Steps 4-

10. Step 2 and 3 each require O(|N |) = O(|N1|+ n2) time,
and as a result of using modified Dijkstra’s algorithm nodes are
marked permanent in a non-increasing manner. Therefore the
sort in Step 11 can be accomplished by simply recording the
order in which target nodes are marked permanent in Step 6,
and the sorting of critical target loss times does not add to the
complexity. Step 12 requires O(n2) time, but can be improved
to O(1) time. With α known, network failure occurs when
κ∗ = dn2(1 − α)e targets are no longer covered and we can
simply return η̃(κ∗). In any case, under the assumption that
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each target is initially within range of at least one functioning
sensor, then |A2| ≥ n2, and since A = A1 ∪A2 Step 12 (and
Step 2-3) does not increase the complexity.

A. Extensions of Destruction Algorithms

In the exploration of various (n1, δ) policies, further effi-
ciency can be gained as a result of Assumption 4. With sensors
independently and randomly located in the network we have
the signature relation sn1

α,i = sn1−1
α,i−1 for i = 1, 2, . . . , n1. That

is, failure of one node in a RGG with n1 nodes yields a RGG
with n1 − 1 nodes. This result is also previously stated as
Property 1. Therefore it is not necessary to recompute the
network signature for every value of n1 desired. Utilizing this
feature allows the space of (n1, δ) policies to be explored in
a more efficient manner.

We may also be interested in the impact that α has on
network lifetime as this is ultimately the criteria used to
classify the network as operational. It seems reasonable to
expect that for a smaller α network lifetime would be longer,
and at any time t the network reliability would be higher.
We can make a slight modification to Algorithm 2 to explore
how large of an impact this will have. Note that the critical
target loss times are independent of α. If we are interested
in network reliability for various coverage requirements, one
option is to first specify these various levels upfront. Then
in Step 12 and 13 instead of returning a single value η̃(κ∗),
we can easily find the α-failure time for each of these levels
and update the D-spectrum estimate ŝn1

α,i for each different
requirement. Alternatively, we can store the entire sequence
of critical target loss times, specify α upon completion and
then search for the α-failure times as required. This second
approach may be of more interest, particularly with respect
to the D-spectrum where we are more concerned with sensor
failures that result in a change in coverage. By storing the
entire sequence of critical target loss times we can easily
determine how sensitive the network is to the next sensor
failure. In either case, the complexity of Algorithm 2 does
not increase as a result of estimating network reliability for
multiple coverage requirements.

B. Spanning Tree Destruction Algorithm

Thus far we have modeled the WSN as a directed network
G = (N ,A) that includes every node (sensor and target) in
the network. Since the network G′ is smaller than G, we might
find it appealing to first work with the smaller network before
expanding to the larger directed network as required. Whether
we work with the network G or G′, the critical path for a sensor
will not change. In undirected networks such as G′, it is known
that a maximum weight spanning tree contains a maximum
capacity path between all pairs of nodes in the network [39].
This property gives rise to an efficient approach for solving
the destruction problem in the case of K-terminal connectivity
[26], [27], [35]. Such an approach can also be adapted to our
problem. If we work with the smaller undirected network G′
and proceed with the spanning tree approach, edge weights
must be defined according to we = min{qi, qj} for every
edge e = {i, j} ∈ E . Using Prim’s Algorithm, a maximum

weight spanning tree over G′ can now be found requiring
O
(
|E| + |N1| log(|N1|)

)
effort [38]. Once the spanning tree

is constructed we are able to find the critical loss time ηi for
each sensor i ∈ N1. With the critical sensor loss times, we can
consider the sensor-to-target arcs A2 to determine the critical
loss times for all targets i ∈ N2. For each target computing
ηj requires O(|{i ∈ N1 : (i, j) ∈ A2}|); therefore the total
effort required for this step is O(

∑
j∈N2

|{i ∈ N1 : (i, j) ∈
A2}|) = O(|A2|). From ηj ∈ {0, . . . , n1} for all j ∈ N2,
a bucket sort algorithm can be used to sort the critical target
loss times resulting in O(|N1|+ n2) effort [40].

The spanning tree approach to the D-spectrum thus requires
O
(
|E|+ |N1| log(|N1|) + |A2|

)
effort. From this we can see

that it is actually advantageous to work on the entire directed
network G, as it allows us to implement a more efficient
algorithm to determine the critical target loss time, and in
turn the D-spectrum of the network.

IV. OPTIMAL (n1, δ) POLICIES

Section II-D provides a methodology for estimating network
reliability for a given (n1, δ) policy. We now focus on identi-
fying values of n1 and δ that will effectively balance cost and
reliability. We assume, in the vein of economic dependence
models in the multicomponent maintenance literature [41], that
a fixed cost of cF > 0 is incurred for each time at which
one or more new sensors are added to the network and a
variable cost of cV > 0 is incurred for each new sensor added.
(The fixed cost would likely be large relative to the variable
cost, for instance, in a WSN that monitors a harsh/remote
environment such as a glacier or another planet’s atmosphere.)
In the infinite-horizon setting the average cost per unit time,
or long-run average cost rate, associated with an (n1, δ) policy
is given by

υ(n1, δ) =
cF {1− [Ḡ(δ; δ)]n1}+ n1cVG(δ; δ)

δ
, (7)

where the first term in the numerator is the expected fixed
cost incurred (based on the probability that at least one sensor
fails), the second term is the expected variable cost incurred
(based on the expected number of sensor failures), and the
denominator is the time between deployment actions.

We incorporate reliability into the optimization via max-
imizing with respect to ω(n1, δ) = r∞(δ;α, n1, δ). The
resulting bi-objective optimization model is

max
n1,δ
{−υ(n1, δ), ω(n1, δ)}. (8)

The two-variable model (8) can be approximately solved
by enumerating combinations of n1 and δ, allowing for an
efficient frontier to be generated over the range of policies
evaluated.

V. NUMERICAL RESULTS

We now illustrate the methodology described in Sections II–
IV in an example scenario, where the lifetime T of each
sensor is distributed according to a Weibull distribution with
a shape parameter β = 1.5 and scale parameter λ = 10.
Sensor capabilities are defined according to a communication
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radius of d1 = 0.075 and a sensing radius of d2 = 0.075. The
coverage area consists of |N2| = 441 targets uniformly spaced
as a 21× 21 grid in the region R = [0, 1]× [0, 1].

Before proceeding to the reliability results there are two
components of Algorithm 1 that are also worth discussing,
those being the simulation of a RGG in Step 3 and the
random permutation of failures in Step 4. Implementing these
steps in a naive manner can result in significant effort. In a
straightforward approach, a RGG of n1 nodes can be generated
in O(n21) time by randomly placing each node in R, and then
comparing the distance between all

(
n1

2

)
pairs of nodes to

determine if an arc between the nodes is present. Given the
complexity of Algorithm 2 is O(|N1| + |A|), the potential
O(n21) cost is significant as we can now expect to spend
more time generating a RGG than implementing a destruction
algorithm. Efficient methods to generate a random graph have
thus attracted a large amount of attention. In an attempt to
reduce this source of complexity, Step 3 is implemented based
on the technique described in [42] which generates a RGG by
assigning each node in R2 to a bin, and then comparing nodes
i and j from the appropriate bins to determine if the arc (i, j)
is present. The complexity now depends on the number of bins
as well, but if done appropriately the expected complexity is
O(|N1|+ |E|) [42].

The next step of simulating a random permutation of sensor
failures is also worth examining further. A naive approach is
to generate a failure time for each sensor from the distribution
of T , then sort these values to determine the failure order.
A number of available algorithms (e.g., [40]) can accomplish
this in O(n1 log(n1)) time. Instead, we use a modern version
of the Fisher-Yates shuffle algorithm that generates a random
permutation directly in O(n1) time [43].

Fig. 2: Plot of ŝ9000.8,i

The D-spectrum was estimated using Algorithm 1 with
M = 50, 000 replications for a coverage requirement of
α = 0.8 in a network consisting of n1 = 900 sensors.
A plot of the resulting D-spectrum estimate is illustrated in
Fig. 2. By the discussion at the beginning of Section III-A,
we can also obtain an estimate of the signature for any
network containing n1 < 900 sensors with no additional
replications. This becomes particularly useful when evaluating
time-based deployment policies, as we can now examine any
(n1, δ) policy (such that n1 < 900) without re-implementing
Algorithm 1. As an example, Fig. 3(a) depicts the estimated

D-spectrum for a network with n1 = 500 sensor nodes, based
on the D-spectrum estimate from the 900 node estimate from
Fig. 2. To illustrate the accuracy of the signature relation, we
have also utilized Algorithm 1 to estimate the signature on a
network with 500 sensor nodes, which is plotted in Fig. 3(b).

Fig. 3: Comparison of D-spectrum estimates

We can now turn to reliability, and apply (1) to estimate
the homogeneous network reliability if desired. Since this
information is not specifically of interest in the context of
comparing (n1, δ) policies, the plot of r̂(t;α, n1) has been
omitted. Instead, we proceed to estimate the stable network’s
reliability under the presence of various (n1, δ) policies as
given by (5), and the cost of the policy as given by (7). In doing
so we assume a fixed cost of cF = 100 and a variable cost
of cV = 1. This information is plotted in Fig. 4 for networks
of four different selected sizes (n1 ∈ {450, 550, 650, 750}),
and δ evaluated over the range (1, 10) at 0.1 unit intervals.
Additionally, δ at specific intervals has been identified on
the plot. If there are factors that impose limitations on the
network size (e.g., n1 must be a multiple of 10) or the
deployment interval, then Fig. 4 can be particularly valuable in
comparing the performance of various policies. For example,
both the (550, 4.5) policy and the (650, 5.9) policy yield a
stable network reliability of 0.85. To meet a stable network
reliability requirement above 0.85 the deployment interval for
each policy must decrease, at which point the (650, δ < 5.9)
policy dominates any (550, δ < 4.5) policy.

Fig. 4: Plot of stable network reliability
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In the current context of a RGG and sensors randomly
deployed, we can assume to freely select both n1 and δ over
a continuous range. Therefore, Fig. 5 is of more significance
as it illustrates an efficient set of policies over a continuous
range of (n1, δ) of interest. The fairly intuitive result behind
Fig. 5 is that to satisfy a larger requirement on the stable
network reliability, in general the network should contain a
larger number of sensors and the deployment interval δ should
be smaller. We can also observe that near 100% reliability
can be achieved with n1 ≈ 675 with a deployment interval
of δ ≈ 4.5. As we deviate from this policy by either adding
more sensors or decreasing the deployment interval, the cost
rate increases significantly.

Fig. 5: Efficient Frontier for α = 0.8

Using the methods previously described to generate a RGG
and new failure order each iteration, along with the destruction
algorithm from Section III, estimating the D-spectrum for a
900 node network required approximately 374 seconds (ac-
complished with c++ on an Intel(R) Core i7-6600U CPU with
a 2.60 GHz processor and 16 GB of RAM). This D-spectrum
estimate is then used to evaluate the set of (n1, δ) policies
for n1 ∈ {500, 501, . . . , 900} and δ ∈ {1.0, 1.1, . . . , 10.0}
and plot the efficient frontier in Fig. 5. This process is
far more computationally expensive, requiring approximately
5, 061 seconds (∼ 84 minutes).

Delineating the time between these two step allows us to
clearly see the benefit of modeling assumption 4, and the
advantage of using the D-spectrum relation sn1

α,i = sn1−1
α,i−1

to estimate the signature of smaller networks. While we
could use Algorithm 1 to estimate the D-spectrum for each
network size under consideration, doing so would add up to
374× (900− 500) = 149, 600 seconds (∼ 41.5 hours) to the
overall computation time. Even though we expect the time
required to estimate the D-spectrum for smaller networks to
decrease (take Fig. 3(b) for example, which only required 163
seconds to estimate), the additional computation time by repet-
itively estimating the D-spectrum remains significant (using
this estimate the additional time is approximately 18 hours).

Finally, we may be interested in how sensitive the ef-
ficient frontier is to various parameters (e.g., cF , cV , β, λ).
Fig. 6 plots the efficient frontier for two different α-coverage
requirements: the original efficient frontier for α = 0.8,
along with the new efficient frontier for α = 0.9. This
plot can help illustrate the robustness of various policies and

the improvement in network performance for a minor cost
increase. Consider the (600, 5) policy, which incurs a cost
rate of 71.8. For a coverage requirement of α = 0.8 the
corresponding stable network reliability is 0.897, while for a
coverage requirement of α = 0.9 the stable network reliability
drops significantly to 0.678. Clearly, the same (n1, δ) policy
will have a smaller stable network reliability for a larger
coverage requirement. But now consider this relationship with
respect to the (675, 5) policy, which incurs a cost rate of 78.3.
For a coverage requirement of α = 0.8 the corresponding
stable network reliability is now 0.984, and for a coverage
requirement of α = 0.9 the stable network reliability is 0.922.
Thus by increasing the number of nodes in the network (at a
minor increase to the policy cost) we can implement a policy
that not only meets an α-coverage requirement of 0.8 with
high probability, but also achieve a coverage requirement of
0.9 with high probability.

Fig. 6: Efficient Frontier for different α-coverage requirements

A similar process can be used to explore the impact of
changing the associated costs of deployment actions or the
sensor failure distribution parameters. The change to the
efficient frontier in each scenario is similar to that illustrated
in Fig. 6, the general shape of the curve remains the same
but is shifted based on the direction of the parameter that is
altered.

A. Confidence Interval on Stable Network Reliability

From the discussion in Section II-A we can also obtain
an estimate on the network reliability variance, which in turn
can be used to construct a confidence interval. Computing the
confidence interval halfwidth will also help compare the per-
formance of different destruction algorithms, illustrating the
improvement that Algorithm 2 (using Dial’s implementation)
offers. With the variance in (2) a function of the number of
replications M , the more replications we dedicate towards
estimating the D-spectrum we can expect a tighter confidence
interval.

To show the significance of this improvement, we consider
a n1 = 650 node network as a test instance. The D-spectrum
is estimated using both Dial’s implementation of Algorithm 2
as previously described, and also by using a naive O(|N |2)
implementation of Dijkstra’s algorithm. For Dial’s implemen-
tation we use M = 50, 000 replications, while for Dijkstra’s
Algorithm we set M = 20, 000. These values were selected so
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that the total time dedicated towards estimating the D-spectrum
from the two methods was approximately equal.

For each D-spectrum estimate we can again compute the
stable network reliability for various (n1, δ) policies, while
in addition estimating the corresponding halfwidth. The 95%
confidence interval halfwidth on the stable network reliability
for the (650, δ) policy is plotted in Fig. 7. The improvement in
the confidence interval halfwidth is most notable for δ ∈ (5, 8).
If we revisit Fig. 4, this range is also where a change in δ
results in a significant change to the stable network reliability.
Thus, by using Dial’s implementation in Algorithm 2 we can
perform over twice as many replications in the same amount
of time compared to the traditional Dijkstra’s algorithm, which
in turn results in a confidence interval halfwidth that is twice
as small compared to the original Dijkstra’s estimate.

Fig. 7: Confidence Interval Halfwidth Comparison

It is also interesting to note that while the total time
estimating the D-spectrum between the two methods is ap-
proximately the same, there are different steps of Algorithm 1
that dominate the complexity. For this purpose we focus
primarily on Step 3 and Step 5. As previously presented,
generating a RGG of n1 nodes using [42] results in an
expected complexity of O(|N1| + |E|), while the complexity
of Algorithm 2, which accomplishes Step 5, is O(|N1|+ |A|).
With |A| = 2|E|+ |A2|, the complexity of these two steps is
relatively balanced. However when Dijkstra’s algorithm is used
as the destruction algorithm, the O(|N |2) now becomes a large
source of complexity and significantly more time is dedicated
to Step 5. Thus, by using Algorithm 2 we are performing a
larger number of replications while actually spending less time
in this step of the destruction spectrum algorithm.

B. Verification of Stable Network Reliability

The stable network reliability is derived from the stable
residual life distribution of a sensor, as given in (4c). This is
the long run residual life distribution which is based on new
sensors being deployed every δ time units. Since this applies in
the infinite-horizon setting, a compelling question that arises
is how long it takes to reach this steady state behavior.

To investigate this we can utilize a crude Monte Carlo
simulation that implements the given (n1, δ) policy, and check
the network status at various times over the length of the sim-
ulation. This was accomplished for the (650, 5.6) policy, with

the resulting estimated transient network reliability illustrated
in Fig. 8. The stable network reliability estimated using the
methodology in Section II-D is also plotted in Fig. 8.

Fig. 8: Verification of Stable Network Reliability

From Fig. 8 we can observe that the stable network relia-
bility is reached early on in the simulation, after the second
or third deployment action. This helps demonstrate that while
the stable network reliability is built on a long run horizon,
it is reached fairly early on the process of the (n1, δ) policy.
While the transient Monte Carlo simulation is informative,
particularly in plotting the change in reliability over time,
it is far more computationally expensive and not conducive
to optimizing time-based deployment policies. The transient
reliability data in Fig. 8 is based on 10,000 replications, and
required 1.7 hours. Additionally, this simulation evaluates a
single value of n1 and δ. The transient Monte Carlo simula-
tion therefore quickly becomes intractable, particularity if we
desire to evaluate the range of polices necessary to generate
an efficient frontier similar to Fig. 5.

C. Verification of Long Run Cost Rate

Similarly, the Monte Carlo simulation can also help verify
the long run cost rate estimated by (7). Based on the simulation
of the (650, 5.6) policy in Fig. 8, the estimated long run cost
rate is 70.3. This is smaller than the estimate using the stable
life distribution in (7), which results in an estimated cost rate
of 72.5. The difference in these estimates is attributed to the
very first deployment action in the Monte Carlo simulation.
Referring back to Fig. 8, this is the “cheapest” deployment
event in the sense that the fewest number of sensors have failed
at the time of the first deployment event compared to those
that occur later, which lowers the average cost rate slightly. If
we omit the cost of the first deployment action each replication
(i.e., only calculate the cost once the steady state behavior has
been reached), we observe an average cost rate of 72.25 from
the Monte Carlo simulation.

D. Multi-State Network

In Section II the network was characterized into either an
operating for failed state. There are numerous applications
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in which we may be interested in defining one or more
intermediate states to reflect a partial degradation in network
performance. An extension of the destruction spectrum to
multi-state networks is discussed in [44], which can also be
addressed with the current modeling framework. Since the
state of the network is dependent upon a coverage requirement,
multiple network states can be defined by multiple coverage
levels where the state of the network is now based on network
coverage falling within a given range. For example a three
state network can be defined in which State 1 corresponds
to C(G) ≥ α, State 2 (intermediate state) in which α′ ≤
C(G) < α, and State 3 in which C(G) < α′. For a given
(n1, δ) policy we are now interested in the probability that
the network is in each of the given states. The probability the
network is in State 1 can be estimated simply by Pr(State 1) =
r∞(δ;α, n1, δ). Similarly, the probability the network is in
State 3 can be estimated by Pr(State 3) = 1−r∞(δ;α′, n1, δ).
The probability the network is in the intermediate State 2
can now be estimated by Pr(State 2) = 1 − Pr(State 1) −
Pr(State 3) = r∞(δ;α′, n1, δ) − r∞(δ;α, n1, δ). Therefore,
the additional work required in a multi-state model corre-
sponds to estimating network reliability for different coverage
requirements.

An example for a three state network is illustrated in
Table I, where State 1 is defined by C(G) ≥ 0.9, State 2
by 0.8 ≤ C(G) < 0.9, and State 3 by C(G) < 0.8. While
it is straightforward to calculate each state probability for
the entire range of (n1, δ) policies explored, the results for a
smaller subset of policies are provided. Comparing the multi-

TABLE I: Multiple Network States

(n1, δ) Policy Cost Rate Pr(State 1) Pr(State 2) Pr(State 3)
(753, 4.5) 88.78 0.995 0.004 0.001
(676, 4.8) 79.78 0.946 0.044 0.010
(651, 5.1) 75.59 0.853 0.113 0.034
(615, 5.0) 73.13 0.752 0.180 0.069
(569, 5.1) 68.54 0.452 0.316 0.231
(555, 5.3) 66.17 0.282 0.339 0.379

state performance is of particular interest when a decision
must be made to select a specific policy to implement. For
example if we are comparing the (676, 4.8) policy with the
(651, 5.1) policy, the first policy achieves a coverage of 0.9
with higher probability but is also more costly. We may also
consider the second policy since it is less costly but still
achieves a coverage of 0.9 with fairly high probability, and in
the event coverage drops below the first coverage level is likely
to be in the intermediate state. Notice that the data required to
construct Table I is also previously illustrated in Fig. 6, and
the table presents similar information in a slightly different
manner. Modeling a larger number of network states is also
possible through the introduction of new coverage levels, at
the expense of an additional set of reliability calculations for
each new state.

It is also of interest to investigate the impact a multi-
state network has on optimizing a policy with respect to
multiple coverage levels. With this motivation, we compare the
similarity of the actual set of policies on each of the efficient

frontiers in Fig. 6. Based on the results in Fig. 6, from the
entire set of policies that are on the efficient frontier for at least
one of the coverage requirements, 85% of these policies are on
both efficient frontiers. This implies with high probability that
if we select an efficient (n1, δ) policy to achieve a coverage
requirement of 0.8, this is also an efficient policy to achieve a
coverage requirement of 0.9. Additionally, if we select some
(n1, δ) policy that is on the efficient frontier for a coverage
requirement of 0.8 but not 0.9, the improvement (with respect
to reliability) from deviating from this policy to an efficient
policy for the 0.9 coverage requirement is negligible.

VI. CONCLUSIONS

As technology advances and becomes more affordable,
WSNs are able to be integrated into an increasing number
of applications. While the deployment of a WSN is the initial
concern, the long run operating cost is an important factor to
consider. This is true in terms of designing a network to meet
requirements in addition to ensuring any maintenance policy
preserves network functionality without an excessive cost.
Existing research has emphasized methods to extend network
lifetime, but does not focus on analyzing a maintenance policy
with respect to network reliability.

Towards this goal, we have contributed an optimization
model that determines optimal time-based deployment policies
balancing cost and reliability. Of interest from this model is
the inclusion of the destruction spectrum to evaluate policies,
as the destruction spectrum is independent of the deployment
interval parameter δ. This aspect helps decouple the complex-
ity of estimating the destruction spectrum necessary to eval-
uate reliability, and evaluating the network’s reliability in the
presence of a given time-based deployment policy. Finally, we
have presented a destruction algorithm to efficiently estimate
the destruction spectrum, and illustrated the performance of
the optimization model through a computational example.

In the network model we have focused on sensor failures
that are identically distributed. One possible direction for
extending this work involves the modeling of multiple sensor
failure distributions. The incorporation of multiple failure
distributions can be attractive, for example, when modeling the
energy hole phenomena in which sensor nodes located closer
to the sink node are relied on more often to route information
through the network. As a result these nodes consume energy
at a faster rate which leads to a shorter expected lifetime [45].
The destruction spectrum approach from Section II can be
adapted to address this scenario (see [46]), with the drawback
that the dimension of the signature increases.

Along the same direction, future work might consider the
impact of load dependent failures. As sensor nodes fail in the
network, messages must be routed along different paths to
reach the sink. This inevitably results in various sensor nodes
being relied upon in a larger capacity to route information,
which can cause an increase in energy use and faster failure
rate.

Section V-D discussed the impact of modeling multiple net-
work states. A related version of this extension is to consider
multi-state sensors. This problem variant introduces several
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additional sources of complexity as we are now concerned
not only with the initial capability of a sensor and the total
number of functioning sensors in the network, but the number
of sensors in each state and the capability of a sensor in a
given state. A model must also be incorporated to reflect the
transition of a sensor among the various states. Investigating
how these components can be incorporated into a reliability
estimate, and the impact they have on the current optimization
model is a compelling problem to explore.

Another direction is to consider a deterministic network
topology. The assumption that sensor nodes are always ran-
domly deployed allowed us to leverage the D-spectrum rela-
tionship between networks of different sizes, saving a large
amount of computation time. However in many applications
we can control the network topology more precisely by
locating sensors at specific points. While many of the results
in Sections II–IV remain applicable in this case, it is not clear
what/if there is a relationship between the D-spectrum for
different networks, or if the D-spectrum can be found in a
more efficient manner due to a deterministic topology.

We have also primarily considered a time-based deployment
policy, in which new sensors are deployed every δ time units.
Instead of scheduling a deployment based on time intervals, an
improved policy could consider the condition of the network
as well, such as the current number of failed sensors or the
number of targets covered. Given the stochastic nature of
the network evolution and the potentially enormous state and
maintenance decision space, this modeling approach may be
more amenable to approximate dynamic programming.
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