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Multitaper Analysis of Semi-Stationary Spectra
from Multivariate Neuronal Spiking Observations

Anuththara Rupasinghe and Behtash Babadi

Abstract—Extracting the spectral representations of neural
processes that underlie spiking activity is key to understanding
how brain rhythms mediate cognitive functions. While spectral
estimation of continuous time-series is well studied, inferring the
spectral representation of latent non-stationary processes based
on spiking observations is challenging due to the underlying
nonlinearities that limit the spectrotemporal resolution of existing
methods. In this paper, we address this issue by developing a
multitaper spectral estimation methodology that can be directly
applied to multivariate spiking observations in order to extract
the semi-stationary spectral density of the latent non-stationary
processes that govern spiking activity. We establish theoretical
bounds on the bias-variance trade-off of our proposed estimator.
Finally, application of our proposed technique to simulated and
real data reveals significant performance gains over existing
methods.

Index Terms—Multivariate spiking observations, spectral den-
sity matrix, point processes, multitaper analysis.

I. INTRODUCTION

NEURAL oscillations are known to play a significant role
in mediating the cognitive and motor functions of the

brain [2]–[4]. The advent of high-density electrophysiology
recordings [5]–[7] from multiple locations in the brain has
opened a unique window of opportunity to probe these oscil-
lations at the neuronal scale. In order to exploit such exper-
imental data for inferring the mechanisms of brain function,
spectral analysis techniques tailored for such neuronal spiking
data are required [8].

While there exists a wide range of mathematical models for
capturing neuronal spiking dynamics [9], statistical approaches
based on the theory of point processes or generalized linear
models have gained popularity in recent years [8], [10]–[13].
These models relate the statistics of the neural stimulus (input)
and response (output) in a model-based fashion to facilitate
further analyses such as estimation, prediction, and decoding.
The input may consist of explicit (e.g., sensory stimuli) and
latent (e.g., internal neural processes) portions. Existing meth-
ods for spectral analysis under the point process framework
typically consider univariate spiking observations and take the
input to be a latent second-order stationary process during
the observation period [13]–[16]. Despite their relative success
in capturing the spectral properties of spiking activity, these
methods have several shortcomings to be addressed.

First of all, some of the existing methods first estimate the
latent input processes in the time domain, followed by spectral
analysis of these time-domain estimates [14], [15], [17]. The
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time-domain estimation techniques vary from averaging across
different trials [14] to estimating the latent process using
Kalman filtering and smoothing [15], [17]. Due to the time-
domain smoothing procedures used by these methods, the
resulting power spectral density (PSD) estimates undergo
distortion in the spectral domain.

Secondly, some of the existing methods that overcome the
aforementioned challenge and aim at directly estimating the
PSD without recourse to time-domain smoothing, can only
operate on univariate time-series [13], [16]. As such, they are
not able to capture the cross-spectral couplings of multiple
spike trains, which is crucial in understanding the underlying
circuit mechanisms of neural activity.

Finally, it is known that the brain oscillations that underlie
neuronal spiking are non-stationary and may exhibit rapid
changes corresponding to the brain state or behavioral dynam-
ics [17], [18]. Existing methods apply sliding window adapta-
tions of stationary spectral estimation methods to capture these
changes in the spectral domain, and thus provide sub-optimal
spectrotemporal resolutions due to the well-known limitations
of sliding window analysis. Indeed, non-stationary time-series
analysis has been well studied for multivariate continuous
signals and various methods have been proposed to quantify
the energy-frequency-time distributions [19]–[28]. One notable
example is the evolutionary power spectral characterization
[24], [25], which defines a time-varying spectral density matrix
in order to quantify the local spectral energy distributions at
each instant of time for a multivariate oscillatory process.

In light of the foregoing challenges, a unified framework for
capturing the non-stationary spectral properties of multivariate
neuronal spiking data with high spectrotemporal resolution
is lacking, but highly desired due to the emerging demands
of modern neuronal data analysis. In this work, we close
this gap by developing a framework to estimate the semi-
stationary spectral density (SSD) matrix of a multivariate non-
stationary latent process, given spiking observations under the
point process framework.

To address the first two challenges, we model the spiking
observations as multiple realizations of Bernoulli processes
with logistic links to the latent multivariate process. This
model is motivated by its univariate counterpart, which has
been previously utilized in the statistical analysis of spiking
data [10], [29]–[31]. We then pose the problem of spectral
estimation within a multitapering framework [32]–[36] to
directly estimate the SSD from multivariate spiking obser-
vations, and thus obviating the need for intermediate time-
domain smoothing.

To address the third challenge, we adopt the working
hypothesis that the latent processes under study conform
to the commonly-used regularity assumption in evolution-
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ary spectral estimation known as semi-stationarity. We em-
ploy a state-space model to characterize the dynamics of
the semi-stationary spectra [27] and derive an Expectation-
Maximization (EM) algorithm for efficiently computing the
maximum a posteriori (MAP) estimate of the Semi-stationary
Spectral Density (SSD) matrix. We also establish theoretical
bounds on the bias-variance performance of our proposed
estimator, and recover the favorable asymptotic properties of
the classical multitaper framework.

We compare the performance of our proposed method to
existing techniques through simulation studies and applica-
tion to experimentally-recorded neuronal data. We present
simulated case studies using non-stationary multivariate auto-
regressive processes, whose dynamics are inspired by neural
oscillations. These studies reveal that the proposed method
outperforms two of the widely used methods for deriving
spectral representations from spiking data. Finally, we apply
our proposed estimator to multi-unit recordings from the rat
cortical neurons during sleep [37], [38]. Our proposed method
corroborates existing results on spectrotemporal dynamics of
brain state transitions obtained by local field potential analysis,
by directly inferring said dynamics from spike recordings at
the neuronal scale and at high spectrotemporal resolutions.

In closing, our contributions can be summarized as follows:
1) Developing an algorithm for estimating the SSD matrix
directly from spiking observations with no recourse to time-
domain smoothing procedures, 2) Enhancing the spectrotem-
poral resolution by integrating the multi-tapering and state-
space modeling frameworks, and 3) Establishing theoretical
guarantees on the bias-variance performance of our proposed
estimator.

II. PROBLEM FORMULATION

Let N(t) and H(t) denote the point process representing
the number of spikes and spiking history of a neuron in [0, t),
respectively, where t ∈ [0, T ] and T denotes the observation
duration. The Conditional Intensity Function (CIF) [39] of a
point process N(t) is defined as:

λ(t|Ht) := lim
∆→0

P [N(t+ ∆)−N(t) = 1|Ht]

∆
. (1)

To discretize the continuous process, we consider time bins
of length ∆, small enough that the probability of having two
or more spikes in an interval of length ∆ is negligible. A
choice of ∆ ∼ 1 ms renders this assumption valid, due to the
absolute refractory period property of biological neurons [10].
Considering the binary nature of spiking data, this discretized
point process can be modeled by a Bernoulli process with
success probability λk := λ(k∆|Hk)∆, for 1 ≤ k ≤ K,
where K := T/∆ is an integer (with no loss of generality).
We refer to λk as CIF hereafter for brevity.

In a similar fashion, we consider spiking observations
from an ensemble of J neurons, with CIFs {λk,j}Kk=1, for
j = 1, 2, · · · , J . Additionally, for each neuron, we assume that
L independent realizations of spiking activity are observed.
Thus, we represent the lth realization corresponding to the
CIF λk,j by n

(l)
k,j . Further, we model λk,j by a logistic link

to the underlying latent random process, xk,j . The logistic

function is often referred to as the canonical link function for
a Bernoulli process in the generalized linear model and point
process frameworks, and significantly facilitates procedures
such as regression and maximum likelihood estimation [10].
Accordingly, we have

n
(l)
k,j ∼ Bernoulli(λk,j), (2)

where λk,j = `(xk,j) := 1/(1 + exp (−xk,j)), with `(·)
representing the logistic function. Our goal is to estimate the
time-varying power spectral density of each process xk,j , for
1 ≤ j ≤ J , as well as the time-varying cross spectra between
each pair of processes. To that end, we assume that the process
xk,j is a semi-stationary process in the sense of Priestly [24],
which implies a representation of the form,

xk,j − µk,j =

∫ π

−π
eikωAk,j(ω) dZj(ω), (3)

where µk,j is the mean of xk,j , Ak,j(ω) is the time-varying
amplitude function and dZj(ω) is an orthogonal increment
process. The semi-stationarity assumption restricts the rate of
change of Ak,j(ω) in the sense that for each fixed ω, the
Fourier transform of Ak,j(ω) with respect to k, is highly
concentrated around zero [21]. Note that this assumption is
the basis for the widely-used short-time periodogram analysis
as well as constructing estimators of the evolutionary spectra
[24]. Given that the dynamics of the neuronal processes
underlying spiking activity are typically much slower than
the sampling rate, the assumption of semi-stationarity is com-
monly adopted in neural data analysis.

To obtain a discrete-parameter harmonic process, we ap-
proximate Zj(ω) by a jump process over N frequency bins
[13], and thereby replace dZj(ωn) with π

N (aj,n + ibj,n), at
ωn = nπ/N, 1 ≤ n ≤ N − 1, where aj,n and bj,n are
real-valued random variables. Since the random process is
real, using the symmetry Zj(ω) = Zj(−ω), we express the
discretization of Eq. (3) as

xk,j = µk,j +
2π

N

N−1∑
n=1

Ak,j(ωn) (aj,n cos(ωnk)− bj,n sin(ωnk)).

To explicitly utilize the semi-stationarity assumption, we
consider a piece-wise constant approximation to Ak,j(ω),
implying that the J-variate random process {xk,j}K,Jk,j=1 is
jointly stationary in windows of small enough length W [27],
and divide the total data duration K into M non-overlapping
segments of length W , with K = MW . We thus have:

xk,j = µm,j +
2π

N

N−1∑
n=1

(pm,j,n cos(ωnk)− qm,j,n sin(ωnk)),

for (m − 1)W + 1 ≤ k ≤ mW , 1 ≤ m ≤ M , where
pm,j,n and qm,j,n are real-valued random variables. Defin-
ing Xm,j := [x(m−1)W+1,j , x(m−1)W+2,j , · · · , xmW,j ]>, vm,j :=
[ N2πµm,j , pm,j,1, qm,j,1, · · · , pm,j,N−1, qm,j,N−1]>, we have
the compact representation Xm,j = Amvm,j , where Am is a
W × (2N − 1) matrix with the fist column equal to 2π

N 1,
(Am)w,2n = 2π

N cos
(
n(m−1)W+w

N π
)

and (Am)w,2n+1 =

− 2π
N sin

(
n(m−1)W+w

N π
)

, for w = 1, 2, · · · ,W and n =

1, 2, · · · , N − 1.
The evolutionary spectrum of an oscillatory process
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xk,j , at frequency ωn, is defined as ψk,j(ωn) dωn =
|Ak,j(ωn)|2E[|dZj(ωn)|2] [24]. Moreover, for a J-variate sta-
tionary vector-valued orthogonal increment process Z(ωn) :=
[Z1(ωn), · · · , ZJ(ωn)]>, the spectral density matrix has been
expressed as Ψ(ωn)dωn := E[dZ(ωn)dZ(ωn)H ] [40]. Ex-
tending this notion to the semi-stationary spectra, we formulate
the SSD matrix as:

Ψm(ωn) =
π

N
E[(pm,n + iqm,n)(pm,n − iqm,n)>], (4)

where pm,n = [pm,1,n, pm,2,n, · · · , pm,J,n]> and qm,n =
[qm,1,n, qm,2,n, · · · , qm,J,n]>.

For brevity, we concatenate the vectors pm,n and qm,n as
wm,n := [p>m,n , q>m,n]>, 1 ≤ n ≤ N − 1, and define the
vector wm := [w>m,0,w

>
m,1, · · · ,w>m,N−1]>, with wm,0 :=

[µm,1, µm,2, · · · , µm,J ]>. Thus, we see that the SSD matrix
in Eq. (4), can be determined if E[wm,nw>m,n] is estimated
for 1 ≤ n ≤ N − 1. As such, the task of estimating the semi-
stationary spectra of the J-variate random process is reduced
to computing E[wmw>m], for m = 1, 2, · · · ,M , given the
ensemble spiking data D = {n(l)

k,j}
L,K,J
l,k,j=1. To this end, we first

develop a multitaper version of the foregoing SSD estimator
to enhance spectral resolution, and then complement it with a
suitable estimation algorithm within a Bayesian setting.

III. MULTITAPER ESTIMATION OF THE SSD MATRIX

A. The Proposed Multitaper Framework

The estimate Ψm(ωn) in Eq. (4) is based on conventional
Fourier analysis, which has its inherent bias and variance
limitations. Multitapering is a technique widely used in power
spectral estimation of stationary random processes, to over-
come these limitations [32]. Given that the latent process xk,j
is not directly observable, forming its multitaper estimate is
not straightforward. We will indeed develop multitaper spectral
estimates of xk,j based on its indirect observations nk,j .

For a stationary continuous process, x1, x2, · · · , xK the
classical multitaper estimator is given by:

Smt(ω) =
1

P

P∑
p=1

|y(p)(ω)|2 (5)

with y(p)(ω) =
∑K
k=1 ν

(p)
k xk e

−iωk, where ν(p)
k is the kth

time sample of the pth discrete prolate spheroidal sequence
(dpss) [33], for 1 ≤ p ≤ P . The dpss tapers are a set of
orthogonal tapers that maximally concentrate their spectral
power within a resolution bandwidth of [− ξfsK , ξfsK ], for some
positive constant ξ. Tapering with the dpss sequences results
in approximately unbiased spectral estimates with minimal
spectral leakage [34]–[36], and averaging the eigen-spectra
|y(p)(ω)|2, significantly reduces the variance of the estimated
PSD [32], [34], [35].

While originally designed for univariate time series, mul-
titapering has been likewise extended to multivariate time
series [41]. Given a second order jointly stationary J-
dimensional random process x1,x2, · · · ,xK , where, xk =
[xk,1, xk,2, · · · , xk,J ], the multitaper cross-spectral estimate
between the rth process and the tth process (r, t ∈
{1, 2, · · · , J}) has been defined as,

Smt
r,t(ω) =

1

P

P∑
p=1

y(p)
r (ω)(y

(p)
t (ω))∗ (6)

where y(p)
r (ω) :=

∑K
k=1 ν

(p)
k xk,r e

−iωk.
These classical estimators are not directly applicable in our

framework, since the latent processes xk,j are not directly
observable. Our objective is to estimate the semi-stationary
spectra Ψm(ωn) directly from the spiking observations, avoid-
ing intermediate time-domain estimation of the latent pro-
cesses. Thus, we need to develop an alternative approach that
incorporates the effect of indirect observation of xk,j through
spiking activity. The data log-likelihood in our model,

log f(D|{xk,j}K,Jk,j=1) =
∑K,J
k,j=1 L

{
nk,jxk,j−log(1+exp(xk,j)

}
, (7)

depends on the observations only through the ensemble av-
erage, nk,j := 1

L

∑L
l=1 n

(l)
k,j . Hence, nk,j is a sufficient

statistic. Thus, we need to characterize the effect of tapering
the latent time series xk,j on the observed ensemble average
spiking nk,j . Note that tapering the observed process nk,j , i.e.,
ν

(p)
k,jnk,j , is not admissible as the dpss tapers take negative

values for p > 1, whereas spiking observations are non-
negative. In addition, ν(p)

k,jnk,j does not relate to the desired
tapered latent process ν(p)

k,jxk,j in a straightforward fashion.
Consider the log-likelihood log f({n(l)

k,j}Ll=1|xk,j) =

L
{
nk,jxk,j − log (1 + exp(xk,j)

}
, in Eq. (7). Noting that

∂ log f({n(l)
k,j}Ll=1|xk,j)
∂xk,j

∣∣∣∣
xk,j=`−1(nk,j)

= 0,

the logit of nk,j defined by `−1(nk,j) := log(nk,j/(1− nk,j)
is the maximum likelihood estimator of xk,j . Accordingly,
we use `−1(nk,j) as the estimator of xk,j . Furthermore, nk,j
convergences almost surely to `(xk,j), by the strong law of
large numbers. To address the foregoing challenge, we propose

(nk,j)
(p) := ` ( ν

(p)
kmodW+1 `

−1(nk,j) ), (8)

to be the estimator of the ensemble average, had the latent
process been tapered by the pth dpss taper, i.e., had the spiking
activity been governed by ν

(p)
kmodW+1xk,j . Note that when

nk,j = 0 or nk,j = 1, the function `−1(nk,j) is not defined.
In such cases, we directly estimate (nk,j)

(p) by nk,j . The dpss
tapers are sandwiched between `(·) and `−1(·) in Eq. (8),
which makes it an admissible non-negative ensemble average
and is key to developing the multitaper estimator of the spectra
of xk,j . If one would switch the order of evaluating `(·) and
tapering in Eq. (8), the process (nk,j)

(p) would reduce to
ν

(p)
kmodW+1nk,j , which is inadmissible for p > 1.

The problem is now reduced to computing the semi-
stationary spectra of {xk,j} corresponding to each dpss taper,
Ψ

(p)
m (ωn), from (nk,j)

(p), for p = 1, 2, · · · , P . Then, the
multitaper SSD estimate can be formed by averaging the P
eigen-spectral estimates, Ψmt

m (ωn) = 1
P

∑P
p=1 Ψ̂

(p)
m (ωn). In

the next subsection, we first develop a method for estimating
the SSD matrix of the untapered latent process {xk,j} from
{nk,j}, and then extend it to the case of P tapers by replacing
{nk,j} with {(nk,j)(p)}, which gives the eigen-spectral SSD
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estimate Ψ̂
(p)
m (ωn), for p = 1, 2, · · · , P .

B. MAP Estimation of the Parameters via the EM Algorithm
In order to capture the evolution of the SSD Ψm(ωn),

we impose a stochastic continuity constraint on the random
variables wm using the following state-space model:

wm = Φwm−1 + ηm, (9)
where the state transition matrix Φ is a constant matrix
and ηm ∼ N (0,Qm). We consider the special case where
Φ takes the form αI, for simplicity. Nevertheless, Φ can
also be estimated from data within the same Expectation-
Maximization [42] framework that follows next.

The parameters θ := {Qm, 1 ≤ m ≤ M} need to be
estimated from the observations D = {n(l)

k,j}
K,J,L
k,j,l=1. Con-

sidering w = {wm, 1 ≤ m ≤ M} to be the hidden
variable, we aim at recovering θ via MAP estimation. We
consider a diagonal covariance matrix Qm, whose ith diagonal
entry is denoted by Qm,i. This assumption is due to the
orthogonality of the increment process dZj(ω) in Eq. (3) and
eliminates undesired spectral coupling. In addition, it reduces
the number of parameters to be estimated, thereby improving
the convergence of the estimator. Given the typical sparsity
of neuronal spiking in time and low number of observed
realizations (L), an appropriate prior distribution on Qm helps
in reducing the estimation variance. Thus, we assume Qm to
be independent and identically distributed for 1 ≤ m ≤ M ,
with a density:

f(Qm) ∝ exp

−ρ 2J∑
j=1

N−2∑
n=1

(
log(Qm,J(2n−1)+j)−log(Qm,J(2n+1)+j)

)2

.
This prior distribution encourages continuity in log scale

of the spectral estimates corresponding to adjacent frequency
bins, and can be controlled by appropriately selecting the
hyper-parameter ρ. MAP estimation corresponds to maximiz-
ing the log-likelihood of the complete data (D,w), given by:

logf(D,w,θ) = log fw|θ(w|θ) + log f(θ) + C1

= −1

2

M∑
m=1

{
log|Qm|+(wm−Φwm−1)>Q−1

m (wm−Φwm−1)
}

−ρ
M∑
m=1

2J∑
j=1

N−2∑
n=1

(
log(Qm,J(2n−1)+j)− log(Qm,J(2n+1)+j)

)2

+ C2,

where C1 and C2 represent terms that do not depend on θ.
We next construct the EM algorithm for solving this MAP
estimation problem:

1) E Step: Suppose that the current estimate of θ at the rth

iteration is given by θ̂(r). Then, the Q-function

Q(r) := E[log f(D,w,θ)|D, θ̂(r)] (10)

can be evaluated if the conditional expectations

wm|M := E[wm|D, θ̂(r)],

Σm|M := E[(wm−wm|M )(wm−wm|M )>|D, θ̂(r)],

Σm,m−1|M := E[(wm−wm|M )(wm−1−wm−1|M )>|D, θ̂(r)],

are known. To compute these conditional expectations we
utilize the Fixed Interval Smoothing [43] and the Covariance
Smoothing [44] algorithms. However, considering that the

forward model is not Gaussian in our formulation, we cannot
directly use these algorithms to estimate wm|m and Σm|m.

The density f({ws}ms=1|Dm1 , θ̂(r)), with Dm1 =

{n(l)
k,j}

mW,J,L
k,j,l=1 , is proportional to the product of the two

densities f(Dm1 |{ws}ms=1, θ̂
(r)) and f({ws}ms=1|θ̂(r)), which

are Binomial and Gaussian distributed, respectively. Utilizing
the unimodality of the density of {ws}ms=1|Dm1 , θ̂(r), we
approximate it by a multivariate Gaussian, and derive
the mean of the distribution, w

(r)
m|m by the mode of

log f({ws}ms=1|Dm1 , θ̂(r)):

argmax
wm

J,m,W∑
j,s,w=1

L
{
n(s−1)W+w,j(Asvs,j)w − log (1 + exp(Asvs,j)w))}

−1

2

m∑
s=1

{
log|Q(r)

s |+(ws−Φws−1)>(Q(r)
s )−1(ws−Φws−1)

}
, (11)

and its covariance, Σ
(r)
m|m by the negative of the inverse

Hessian of log f({Vs}ms=1|Dm1 , θ̂(r)). Observing that the ob-
jective function is a combination of convex functions and is
differentiable, we perform the above optimization for w

(r)
m|m

using the Newton-Raphson method. Concurrently, we estimate
Σ

(r)
m|m using the Hessian matrix of the objective.
2) M Step: Due to the separability of the Q-function Q(r)

in terms of Qm’s, we can update Qm’s independently as:

Q(r+1)
m = argmax

Qm

Q(r), 1 ≤ m ≤M. (12)

Observing that Q(r) is differentiable in Qm, we employ
the multivariate Newton-Raphson algorithm to perform this
maximization and derive the updates for Qm, 1 ≤ m ≤M .

An implementation of this EM procedure is outlined in
Algorithm 1. Following convergence, we use the final esti-
mates wm|M and Σm|M to evaluate the SSD matrix Ψ̂m(ωn).
As mentioned in Section III-A, the same EM procedure can
be carried out for {n(p)

k,j}, for p = 1, 2, · · · , P in order to
estimate the multivariate eigen-spectra Ψ̂

(p)
m (ωn). Finally, the

multitaper spectral density matrix is formed by averaging the
eigen-spectral estimates as outlined in Algorithm 2. We refer to
our proposed algorithm as the Point Process Multitaper Semi-
stationary Spectral Density (PPMT-SSD) estimator.

IV. THEORETICAL ANALYSIS

In this section we derive bounds on the bias and vari-
ance of the proposed estimator. We first briefly review the
corresponding bounds for the classical multitaper estimator
(Eq. (5)). As proven in [45], the bias and variance of the
multitaper estimate of a stationary process x1, x2, · · · , xK with
a uniformly continuous PSD S(ω) are bounded as follows:

|bias(Smt(ω))| ≤ (sup
ω
S(ω))

{
1− 1

P

P∑
p=1

cp

}
+ o(1), (13)

Var(Smt(ω)) = (1+β(ω))
1

P 2

P∑
p=1

c2p S(ω)2 +O

(
1

P

P∑
p=1

(1−cp)

)
+ o(1), (14)

as K → ∞. Here cp is the eigenvalue corresponding to the
taper ν(p) and β(ω) = 0 if ω

2π 6= 0, 1/2 mod 1 and is equal to
1 otherwise. It is evident that the multitaper estimator Ŝmt(ω)
is asymptotically unbiased.
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Algorithm 1 Estimation of the Semi-stationary Spectral Den-
sity Matrix via the EM Algorithm

Inputs: Ensemble averages of the spiking observations {nk,j}K,Jk,j=1,
hyper-parameters ρ, ζ and α, max. number of EM iterations Rmax.
Outputs: Estimates of the SSD matrices Ψ̂m(ωn) for 1 ≤ m ≤M ,
1 ≤ j ≤ N − 1

Initialization: Initial choice of Q
(0)
m = ζI, w0|0 = 0, Σ0|0 = 0,

r = 1.

1: for r ≤ Rmax do
2: Forward filter, for m = 1, 2, . . . ,M

wm|m−1 = Φwm−1|m−1

Σm|m−1 = ΦΣm−1|m−1Φ
> + Q

(r)
m

Compute wm|m and Σm|m using the Newton’s method
as described in Eq. (11).

3: Backward smoother, for m =M − 1,M − 2, . . . , 1
Bm = Σm|mΦ>Σ−1

m+1|m
wm|M = wm|m + Bm(wm+1|M −wm+1|m)
Σm|M = Σm|m + Bm(Σm+1|M −Σm+1|m)B>m

4: Covariance smoother, for m =M − 1,M − 2, . . . , 1
Σm,m−1|M = Σ>m|MB>m−1

5: Update the Qm’s independently, for m = 1, 2, . . . ,M using
the multivariate Newton-Raphson method to solve

Q
(r+1)
m = argmax

Qm

Q(r).

6: Set r ← r + 1
7: end for
8: for 1 ≤ m ≤M do
9: Rm = Σm|M + wm|Mw>m|M

10: for 1 ≤ n ≤ N − 1 do
11: Rn

m = (Rm)(J(2n−1)+1:J(2n+1),J(2n−1)+1:J(2n+1)).
12: Ψ̂m(ωn) =

π
N

{
Rn
m(1:J,1:J) + Rn

m(J+1:2J,J+1:2J)

+ i
(
Rn
m(J+1:2J,1:J) −Rn

m(1:J,J+1:2J)

)}
.

13: end for
14: end for
15: Return Ψ̂m(ωn) for 1 ≤ m ≤M , 1 ≤ n ≤ N − 1

Algorithm 2 Estimation of the Multitaper Semi-stationary
Spectral Density Matrix (PPMT-SSD)
Inputs: Collection of ensemble averages of the observations
{nk,j}K,Jk,j=1, the set of P dpss tapers of length W {ν(p)w }W,Pw,p=1

Outputs: The multitaper estimates of the SSD matrices Ψ̂mt
m (ωn) for

1 ≤ m ≤M , 1 ≤ n ≤ N − 1

1: for p = 1, 2, · · · , P do
2: for 1 ≤ w ≤W, 1 ≤ m ≤M, 1 ≤ j ≤ J do
3: k = ((m− 1)W + w)
4: if nk,j 6= 0 and nk,j 6= 1 then
5: (nk,j)

(p) = ` ( `−1(nk,j) ν
(p)
w )

6: else
7: (nk,j)

(p) = nk,j
8: end if
9: end for

10: Compute the pth tapered spectral density matrix estimate,
Ψ̂

(p)
m (ωn) for 1 ≤ m ≤ M , 1 ≤ n ≤ N − 1, using

Algorithm 1, with {n(p)
k,j}

K,J
k,j=1 as the input collection of

ensemble averages.
11: end for
12: for 1 ≤ m ≤M, 1 ≤ n ≤ N − 1 do
13: Ψ̂mt

m (ωn) =
1
P

∑P
p=1 Ψ̂

(p)
m (ωn)

14: end for
15: return Ψ̂mt

m (ωn) for 1 ≤ m ≤M , 1 ≤ n ≤ N − 1

We state our main theorem for a univariate second-order
stationary process x1, x2, · · · , xK , corresponding to the special
case of J = 1, for the clarity of exposition. We later on provide

extensions to the multivariate and semi-stationary cases. In
order to proceed with our theoretical analysis, we need to make
two extra technical assumptions.

Assumption (1). From Eq. (7), the data likelihood for the
univariate case can be expressed as

f(D) :=

∫
exp

(
K∑
k=1

L
{
nkxk − log (1 + exp(xk)

}) K∏
k=1

dxk,

where nk := 1
L

∑L
l=1 n

(l)
k . Given the nonlinear functional

form of the integrand, we consider the saddle point approxima-
tion [46] of the integral, and take `−1(nk) as an estimator of
xk. Under this approximation, the proposed multitaper spectral
estimator takes the simpler form:

Ŝmt(ω) =
1

P

P∑
p=1

|ŷ(p)(ω)|2, (15)

where ŷ(p)(ω) :=
∑K
k=1 ν

(p)
k `−1(nk) e−iωk.

Assumption (2). We assume that |xk| ≤ B for all k =
1, 2, · · · ,K, for some fixed upper bound B. In defining the
bias and variance, we condition the expectations on the event
A := {nk | nk 6= 0, nk 6= 1, 1 ≤ k ≤ K}, which is
highly probable due to the absolute boundedness of xk, for
L > 2(1 + exp(B)) (See Appendix A for details). We denote
the conditional bias and variance by biasA(·) and VarA(·),
respectively. Note that for the multivariate case, we naturally
extend this assumption to |xk,j |≤ B for all k, j, and define the
set A as A := {nk,j | nk,j 6= 0, nk,j 6= 1, 1 ≤ k ≤ K, 1 ≤
j ≤ J}.
Theorem 1 (Univariate Case). Under the Assumptions (1) and
(2) and for L > max{2(1 + exp(B)), 2B/log(1 + exp(B))},
the conditional bias and variance of Ŝmt(ω) in Eq. (15) is
bounded with respect to those of the direct multitaper estimate
Smt(ω) given in Eqs. (13) and (14) as:

|biasA(Ŝmt(ω))|≤ g1K
logL√
L

+ |bias(Smt(ω))|, (16)

VarA(Ŝmt(ω)) ≤

{
g2K

logL√
L

+
√

Var(Smt(ω))

}2

(17)

where g1 and g2 are bounded constants depending on B, K
and L, explicitly given in Appendix A.

Proof of Theorem 1. The proof of Theorem 1 is given in
Appendix A.

Remark. Theorem 1 states that the cost of the indirect access
to the process {xk}Kk=1 through spiking observations with L
trials appears as excess terms in both the bias and variance,
which would go to zero as L

K2 log2 L
→ ∞. Hence, for large

enough number of realizations L, one can expect a perfor-
mance close to the direct multitaper estimate of {xk}Kk=1.
While Assumption (2) on the boundedness of the time-series
is natural in practical scenarios, as long as |xk|≤ ε logL, for
some ε < 1/2, the excess bias and variance terms will be
bounded by O(log2 L/L1/2−ε), which implies that the bias
and variance of the estimator Ŝmt(ω) will converge to those
of Smt(ω) even under milder conditions.
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The following corollary extends Theorem 1 to the multi-
variate case:

Corollary 1 (Stationary Multivariate Case). Consider a sec-
ond order jointly stationary J-variate process {xk}Kk=1, where,
xk = [xk,1, xk,2, · · · , xk,J ]>. Suppose that the observa-
tions are binary spiking data, {n(l)

k,j}
K,J,L
k,j,l=1 with n

(l)
k,j ∼

Bernoulli(` (xk,j)) and nk,j := 1
L

∑L
l=1 n

(l)
k,j . Then, under

Assumptions (1) and (2), the bias and variance of the multita-
per cross-spectral estimate between the rth and tth processes,
given by

Ŝmt
r,t(ω) =

1

P

P∑
p=1

ŷ(p)
r (ω)(ŷ

(p)
t (ω))∗

with ŷ
(p)
r (ω) =

∑K
k=1 ν

(p)
k `−1(nk,r) e

−iωk, are bounded as
follows:

|biasA(Ŝmt
r,t(ω))| ≤ g′1K

logL√
L

+ |bias(Smt
r,t(ω))|,

VarA(Ŝmt
r,t(ω)) ≤

{
g′2K

logL√
L

+
√

Var(Smt
r,t(ω))

}2

,

where g′1 and g′2 are bounded constants that depend only on
B, K, and L, explicitly given in Appendix B.

Proof. The proof is outlined in Appendix B.

It is not difficult to verify that bias(Smt
r,t(ω)) and

Var(Smt
r,t(ω)) can be upper bounded in a similar fashion to Eqs.

(13) and (14), with the true cross-spectra Sr,t(ω) replacing
S(ω). Before extending the result of Corollary 1 to the semi-
stationary case, we need an additional assumption:

Assumption (3). Given that Corollary 1 holds for large L,
in this regime we relax the prior distribution on Qm to be
flat, i.e., f(Qm) ∝ 1. Recall that the rationale for using a
prior on Qm in Section III-B was to reduce the variance of
the estimates in the low spiking regime, i.e., small L.

Finally, combining Corollary 1 and the treatment of [27],
we have the following corollary on the bias and variance of
the PPMT-SSD estimator:

Corollary 2 (Semi-stationary Multivariate Case). Suppose
that the J-variate process in Corollary 1 is semi-stationary
(jointly stationary within consecutive windows of length W ).
Let Ψm,r,t(ωn) be the cross-spectra between the rth and tth

processes over window m, 1 ≤ m ≤ K/W , and Ψ̂mt
m,r,t(ωn)

be the corresponding multitaper estimate obtained from spik-
ing observations. Then, under Assumptions (1)–(3), the bias
and variance of the proposed PPMT-SSD estimator at window
m can be bounded as,

|biasA(Ψ̂mt
m,r,t(ωn))|≤ g′′1 (ωn)W

logL√
L

+ |Ψm,r,t(ωn)||1−κm(ωn)|

+ κm(ωn)

{
sup
ω
{|Ψm,r,t(ω)|}

(
1− 1

P

P∑
p=1

cp

)
+ o(1)

}
,

VarA(Ψ̂mt
m,r,t(ωn))≤

{
g′′2 (ωn)W

logL√
L

+

√
2

P
sup
ω
{κm(ω)|Ψm,r,t(ω)|}

}2

,

where g′′1 (ω), g′′2 (ω) are bounded functions of B, L, W and
κm(·) is a function of ω, explicitly given in Appendix B.

Proof. The proof is mainly based on Theorem 1 of [27]. The
proof sketch is given Appendix B for brevity.

V. SIMULATION STUDIES

In this section, we present two simulation studies based on
non-statioray AR processes, and compare the performance of
the proposed PPMT-SSD estimator with respect to those of
two existing methods and benchmarks.
A. Existing Methods and Benchmarks for Comparison

State-Space SSD (SS-SSD) Estimator: This estimator is
based on [15], where the latent process xk is modeled as
a first-order autoregressive process, xk = xk−1 + εk, with
εk

i.i.d.∼ N (0, σ2
ε ) for 1 ≤ k ≤ K. Following an EM

algorithm developed in [15], the MAP estimate of xk given the
observed data is obtained and its multitaper PSD is computed.
For the multivariate non-stationary case, for each process
xk,j , 1 ≤ j ≤ J , we assume joint stationarity within non-
overlapping consecutive windows of length W . The MAP
estimates of all processes are obtained and an estimate of the
SSD matrix is derived using their PSDs within each window.

Peristimulus Time Histogram SSD (PSTH-SSD) Estimator:
This estimator is derived by directly considering the ensemble
mean of the spiking observations nk,j , referred to as the
peristimulus time histogram (PSTH), as an estimate of the
random signal xk,j , for 1 ≤ k ≤ K and 1 ≤ j ≤ J [14]. With
a similar joint stationarity assumption in windows of length
W , the non-overlapping sliding window multitaper spectral
estimate of the PSTH forms the PSTH-SSD estimator.

Benchmarks (True SSD & Oracle SSD): In order to bench-
mark our comparison, we consider the theoretical spectra of
the AR processes derived using closed-form expressions (True
SSD) as well as the non-overlapping sliding window direct
multitaper estimates of the processes xk,j that have been used
to generate the spikes. We refer to the latter benchmark as the
Oracle SSD, as if an oracle could directly observe the latent
processes and estimate their SSD.

B. Study 1: Estimating the SSD of a Latent Trivariate Process

In this study, we model the latent stimuli by AR processes,
so that the ground truth is known for performance comparison.
We generate three processes (J = 3) with spectral couplings,
by considering different linear combinations of a set of AR(6)
processes, {{y(i)

k }Kk=1, 1 ≤ i ≤ 6}, where y(i)
k is tuned around

the frequency fi, with f0 = 0.0008 Hz, f1 = 1.15 Hz, f2 =
0.95 Hz, f3 = 1.3 Hz, f4 = 1.5 Hz, f5 = 0.65 Hz and
f6 = 1.85 Hz. These linear combinations are given as:

xk,1 = y
(1)
k cos

(
2π f0fs k

)
+ 1.2y

(4)
k + 1.2y

(5)
k uk−0.4K + σx1 ν1,k + x1,dc

xk,2 = 0.83 y
(2)
k + 0.83 y

(4)
k−6 + 0.83 y

(5)
k + 0.83 y

(6)
k + σx2 ν2,k + x2,dc

xk,3 = y
(3)
k + y

(5)
k + y

(6)
k−10 u 0.5K−1−k + y

(6)
k uk−0.5K + σx3 ν3,k + x3,dc

where xi,dc are the DC components, uk is the unit step
function, νi,k is a zero mean white Gaussian noise with unit
variance, and σi is a scaling standard deviation to set the
SNR of all signals at 20 dB, for i = 1, 2 and 3. To induce
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Fig. 1: Samples of the signal xk,1 (top) and the raster plot of the
corresponding spikes (bottom) from t = 1600 s to t = 1630 s.

non-stationarity, we have included an amplitude modulated
component based on y

(1)
k and an abruptly appearing version

of y(5)
k in xk,1. Likewise, we incorporated non-stationarity

and coupling among the processes {xk,i}3i=1, by adding time-
varying weights to the different y(i)

k s using step functions.

All signals have been sampled at fs = 32 Hz, for a total
duration of 2000 seconds (K = 64000). We take the window
length of stationary to be 100 seconds (W = 3200), resulting
in a total number of M = 20 windows. We assume that
L = 20 spike train realizations are observed from each latent
process. All DC components have been set to −5.5, so that the
average spiking rate of the ensemble, denoted by fr, is ≈ 0.28
spikes/s, consistent with the low spiking rate of experimentally
recorded data. A 30 s sample window of the process xk,1 and
the corresponding spiking raster plot are shown in Fig. 1.

Fig. 2 shows the main results of this study, and is formatted
as a grid with columns representing (from left to right) the
True EDS, Oracle SSD, PPMT-SSD, SS-SSD, and PSTH SSD
estimates, and rows representing (Ψm)i,j(ω), i.e., the magni-
tude of the (i, j)th block of the SSD matrix for i, j = 1, 3.
Furthermore, for a closer inspection, the magnitude of the
spectra corresponding to a window of t = 700 s to t = 800 s
for (Ψm)i,j(ω), for i, j = 1, 2 are shown in Fig. 3. It can
be observed that the proposed PPMT-SSD estimator (Fig. 2C)
results in much less background noise compared to all the
others, while precisely capturing the evolution of the spectra
and properly resolving the various spectral components. The
latter is more evident from Fig. 3, where the PPMT-SSD (black
trace) closely matches the true SSD (blue trace) on par with the
Oracle SSD (red trace), while the SS-SSD (green trace) and
PSTH-SSD (orange trace) show significant bias and variability.

0
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)
(d

B
)

(d
B

)

True SSD Oracle SSD PPMT-SSD SS-SSD PSTH-SSD

Fig. 3: A snapshot of the spectrograms of Fig. 2 at the 8th

window (t = 700 s–800 s). Rows from top to bottom: (Ψm)1,1(ω),
(Ψm)2,2(ω), and (Ψm)1,2(ω).

It is worth mentioning that the erroneous spectral peak near the
DC component in Fig. 3 (black trace) is due to the estimation
error of the DC component in the low spiking regime of our
setting, and is mitigated as the spiking rate increases.

Due to time-domain smoothing carried out by the SS-
SSD estimator, the SSD rapidly decays with frequency (Fig.
3, green trace). As such, the SS-SSD estimate (Fig. 2D)
heavily amplifies non-existing low frequency components that
arise from the intrinsic noise in spiking observations, while
suppressing the higher frequency components that exist in the
true SSD (Fig. 2A). Similarly, the PSTH-SSD estimate shown
in Fig. 2E fails to capture most of the spectrotemporal features
of the SSD, since it does not account for the binary nature of
the observations.

To quantify the performance of these estimators, we re-
peated this numerical experiment for a total of 50 trials,
generating independent realizations of the AR processes and
spiking observations in each trial. The average Mean Squared
Error (MSE) with respect to the True SSD (in dB scale)
and the average spectral leakage across trials are presented in
Table I. To compute the spectral leakage, we first define the
in-band spectra by the components of the True SSD above
−10 dB, and then take the relative power of each estimate
outside the in-band spectra as the spectral leakage. The MSE

0

2

(H
z
)

0 2000Time (s)

(A) True SSD (B) Oracle SSD (C) PPMT-SSD (D) SS-SSD (E) PSTH-SSD
0

-60

0

-60

0

-60

Fig. 2: Estimation results for Study 1. Each panel shows the magnitude spectra in dB scale. Columns from left to right: (A) True SSD, (B)
Oracle SSD, (C) PPMT-SSD, (D) SS-SSD, and (E) PSTH-SSD. Rows from top to bottom: (Ψm)1,1(ω), (Ψm)3,3(ω) and (Ψm)1,3(ω).
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values are normalized with respect to the total power of the
True SSD (in dB scale). The proposed PPMT-SSD estimator
achieves the lowest MSE, followed by the SS-SSD estimator
with a significant gap. The PSTH-SSD estimator exhibits
the poorest performance, in terms of both average MSE and
variance, which is also visually evident in Fig. 3. The spectral
leakage of the SS-SSD and PSTH-SSD estimates are an order
of magnitude higher than that of the PPMT-SSD, which is
comparable to that of the Oracle SSD.

Table I: Comparison of MSE and Spectral Leakage in Study 1

Estimation method MSE Spectral Leakage
Oracle SSD 0.0490± 0.0028 6.79%± 0.36%
PPMT-SSD 0.1868± 0.0075 7.69%± 0.89%

SS-SSD 0.3906± 0.0036 67.06%± 1.78%
PSTH-SSD 1.4777± 0.0315 46.59%± 0.89%

It is noteworthy that the superior performance of PPMT-
SSD comes at the cost of higher computational com-
plexity: Algorithm 2 has a computational complexity of
O(JPMWN2), whereas the complexity of SS-SSD and
PSTH-SSD are considerably lower at O(JPMW logW ).
As such, the performance gain achieved by the PPMT-SSD
estimator comes at the cost of a factor of O( N2

logW ) increase
in computational complexity. In the spirit of easing repro-
ducibility, a MATLAB implementation that regenerates the
data, results and figures outlined in this section has been made
publicly available on the open source repository GitHub [47].

C. Robustness to the Number of Realizations and Spiking Rate
Here, we evaluate the robustness of the various algorithms

with respect to two main data attributes: average spiking rate
(fr) and number of realizations (L). For the same latent
processes considered in Study 1, we first vary L, while fixing
the average spiking rate at fr = 0.28 spikes/s. Next, we fix
L = 10, and vary fr by changing the DC components of the
latent processes. Finally, we consider L = 1 and vary fr. The
corresponding MSE and spectral leakage performance curves
are shown in Fig. 4A, B, and C, respectively.

The PPMT-SSD estimates uniformly outperform the PSTH-
SSD estimates in terms of both MSE and spectral leakage.
They similarly outperform the SS-SSD estimates, except in
terms of the MSE for the case of L = 1 and fr ≤ 1
spikes/s (Fig. 4A and C). The spectrograms shown in Fig.
2 correspond to the case (a) marked in Fig. 4A (L = 20,
fr = 0.28 spikes/s). For visual comparison, in Fig. 5 we

Oracle SSD PPMT-SSD SS-SSD PSTH-SSD

L L

MSE

(A
) 

   
 =

 0
.2

8
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) 
L

 =
 1

0 
(C

) 
L

 =
 1

 

Spectral Leakage
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Fig. 4: Analysis of the robustness of the estimates in Study 1 to L
(number of realizations) and fr (average spiking rate). MSE (left)
and Spectral Leakage (right) performance curves are computed by
varying: (A) L, for fr = 0.28 spikes/s, (B) fr , for L = 10, and (C)
fr , for L = 1.

also depict the spectrograms of two other cases from Fig. 4:
(L = 10, fr = 0.28 spikes/s), marked as case (b) in Fig. 4B,
and (L = 1, fr = 5.5 spikes/s) marked as case (c) in Fig.
4C. Overall, all estimates improve by increasing L and/or the
spiking rate, as expected. It is noteworthy that all estimators,
including PPMT-SSD, perform poorly when both fr and L are
small (Fig. 4C). However, even in this regime, the PPMT-SSD
estimator exhibits significantly lower spectral leakage, even for
L = 1. In conclusion, maintaining a trade-off between L and
the spiking rate results in substantially improved performance.

D. Choice of Design Parameters and Hyper-parameters
We have chosen N = 800 bins in order to have a densely

sampled spectral representation. Note that the choice of N di-
rectly affects the computational complexity of the estimator. In
cases where the spectral range is known a priori (e.g., [0, 2] Hz
in our simulation setting), the computational complexity can
be significantly reduced by using only the frequency bins in
the relevant range when constructing the matrix A [13].

The time-bandwidth product of the multitaper framework
has been chosen as 2 (ξ = 2), and we have used the first
three tapers. Note that the design bandwidth of the multitaper
framework ξfs

W must be chosen to match the spectral spacing
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Fig. 5: Estimated (Ψm)1,1(ω) for two selected cases from Fig. 4. Each panel shows the magnitude spectra in dB scale. Top: Case (b) in
Fig. 4B, L = 10 and fr = 0.28 spikes/s. Bottom: Case (c) in Fig. 4C, L = 1 and fr = 5.5 spikes/s. Columns, left to right: (A) True SSD,
(B) Oracle SSD, (C) PPMT-SSD, (D) SS-SSD, and (E) PSTH-SSD.



9

fs
2N . Thus, ξ could be determined based on W and N . For
any given ξ, the number of tapers (P ) with high spectral
concentration within the main lobe is bounded by 2ξ−1 [34].

The hyper-parameters in Algorithm 1 are ρ, ζ and α. By
appropriately adjusting the magnitude of the state transition
parameter α ∈ [0, 1], using cross-validation or data-driven
tuning within the EM framework, the degree of temporal
dependency between adjacent time windows can be controlled.
Thus, α was chosen as 0.4. The optimal choices of ρ and
ζ depend on the average spiking rate and the number of
realizations (L). Accordingly, we have set ρ = 0.2 and
ζ = 0.02 in Study 1. In general, the parameter ζ affects
the average noise floor of the resulting spectral estimates
and ρ controls the degree of fluctuations. When the spiking
data are highly sparse (i.e., average spiking rate and L are
small), choosing higher values of ζ and lower values of ρ
results in more robust estimates. These parameters can also be
systematically tuned through cross-validation via Monte Carlo
methods as shown in [13].

E. Study 2: Estimating the SSD of a Bivariate Process, with
Only One Directly Observable Component

While the previous study was a natural choice for perfor-
mance comparison, this study is of particular interest in the
joint analysis of neural spiking and continuous signals, such
as the local field potential (LFP). The LFP signal corresponds
to the electrical field potential measured at the cortical surface,
and mesoscale dynamics of cortical activity. We consider
a bivariate random process, whose first component xk,1 is
observed through spiking activity {n(l)

k,1}
K,L
k,l=1, while its second

component xk,2 is directly observable in i.i.d. zero-mean
Gaussian noise, i.e., x̃k,2 := xk,2 + νk, with νk ∼ N (0, σ2

ν).
Explicitly, the two processes are given by,

xk,1 = y
(1)
k cos

(
2π f0fs k

)
+ y

(4)
k + y

(7)
k + σx1ν1,k + x1,dc

xk,2 = 0.83 y
(2)
k + 0.83 y

(4)
k−6 + 0.83 y

(5)
k + 0.83y

(6)
k + σx2ν2,k + x2,dc.

The process xk,2 here is exactly the same as that in Section
V-B. To induce additional non-stationarity, we slightly mod-
ified the process xk,1 by including an additional frequency
modulated component. The AR component y(7)

k , has been
tuned around the frequency f7, which changes by decrements
of 0.06 Hz every 200 seconds, starting at 0.9 Hz at t = 0 s.

The SSD matrix can be estimated by Algorithm 2 with a
minor modification in the forward filtering step (step 2) of
Algorithm 1: Given that the second process is directly observ-
able, the distribution f(Dm1 |{w}m1 , θ̂(r)) needs to be modified,
and accordingly, the log-posterior in Eq. (11) changes to:
m,W∑
s,w=1

L
{
n(s−1)W+w,1(Asvs,1)w − log (1 + exp(Asvs,1)w))

}
−

m,W∑
s,w=1

1

2σ2
ν

(
x̃(s−1)W+w,2−(Asvs,2)w

)2

− 1

2

m∑
s=1

(ws−Φws−1)T (Q(r)
s )−1(ws−Φws−1).

Fig. 6 shows the corresponding estimation results, similarly
formatted as in Fig. 3. Note that in this case, we take the
SS-SSD and PSTH-SSD estimates of (Ψm)2,2(ω) to be the
same as its Oracle SSD estimate, given that these methods
are based on estimating the process xk,2 in time domain
(which is directly observable here). Similar to previous study,
the proposed PPMT-SSD estimator (Fig. 6C) captures the
dynamics of the spectra (Ψm)1,1(ω) and (Ψm)1,2(ω) accu-
rately, closely matching the True SSD (Fig. 6A). As before,
the SS-SSD estimator (Fig. 6D) is not able to capture the
SSD dynamics, especially at high frequencies. Though some
frequency components at certain time windows are detected
by the PSTH-SSD estimates (Fig. 6E), most of the frequency
content is concealed by background noise.

VI. APPLICATION TO EXPERIMENTALLY-RECORDED DATA
FROM THE RAT CORTICAL NEURONS DURING SLEEP

Finally, we apply our proposed PPMT-SSD estimator to
multi-unit recordings from the rat cortical neurons during
sleep (data from [37], publicly available in the Collaborative
Research in Computational Neuroscience data sharing website
[38]). The data set includes spiking activities of putative
pyramidal cells (pE) and putative interneurons (pI), as well
as LFP signals recorded from deep layers of frontal cortical
areas [38]. In order to examine the homeostatic effects of
sleep on cortical activity, three main brain states of waking
(WAKE), rapid eye movement (REM) sleep, and non-rapid eye
movement (nonREM) sleep have been identified and labeled
throughout the recordings (See [37] for details). Analyzing the
dynamics of neuronal activity during REM and nonREM sleep
provides insights into how these brain states differentially
contribute to homeostasis. For instance, it has been shown

2

0

(H
z
)

0 2000
Time (s)

(A) True SSD (B) Oracle SSD (C) PPMT-SSD (D) SS-SSD (E) PSTH-SSD
0

-60

0

-60

0

-60

Fig. 6: Estimation results for Study 2. Each panel shows the magnitude spectra in dB scale. Columns, left to right: (A) True SSD, (B)
Oracle SSD, (C) PPMT-SSD, (D) SS-SSD, and (E) PSTH-SSD. Rows, top to bottom: (Ψm)1,1(ω), (Ψm)2,2(ω), and (Ψm)1,2(ω).
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in [37] that the LFP signals exhibit increased delta activity
(0.5–4 Hz) during nonREM sleep, as compared to WAKE and
REM sleep episodes.

While the results of [37] based on spectrotemporal analyses
of the LFPs give significant insights into the cortical dynamics
during sleep at the mesoscale, our proposed methodology
could be utilized to capture the spectrotemporal dynamics of
neuronal activity at the neuronal scale and across the pE and pI
cell populations. To this end, we consider a bivariate setting
(J = 2), where spiking observations of pE and pI cells are
represented by n(l)

k,1 and n(l)
k,2, respectively. We choose 10 spike

trains (L = 10) from each cell type for the analysis, for a
total observation duration of 35 minutes (data from animal
BWRat19, premotor cortex/M2 area [38]). Note that we have
assumed the activity of the L neurons to constitute independent
realizations of a process governed by the same underlying
intensity. This assumption is motivated by the fact that cortical
neurons are known to phase-lock to global oscillatory signals
(governed by subcortical processes) under brain states such as
anesthesia and sleep [17], [37], [48], and exhibit the so-called
UP-DOWN state dynamics [49], [50].

The average spiking rates of the pE and pI populations
amount to fr = 2.92 spikes/s and fr = 7.86 spikes/s,
respectively. The spike trains are sampled at fs = 64 Hz. The
first 7.5 minutes of the observation duration pertain to the
WAKE state, followed by a sleep episode consisting of REM
and nonREM epochs. Fig. 7 shows a zoomed-in view of the
raster plots of the two neuronal ensembles corresponding to a
30 s window starting at t = 11 min.

We assume stationarity within windows of length 30 s,
resulting in total M = 70 non-overlapping time windows.
Focusing our analysis to the delta band (0.5–4 Hz) [37], we
estimate the SSDs up to 4 Hz while N = 512. Further, we
choose ξ = 2, and use the first three tapers in the analysis.
We set α = 0.1, ζ = 0.02 and ρ = 0.2. Fig. 8 shows the
results of our analysis. The first three columns (from left
to right) represent the PSTH-SSD, SS-SSD and PPMT-SSD

11                 11.1                 11.2                11.3                11.4               11.5

Time (minutes)

1

10

1

10

Fig. 7: Spike raster plots of pE cells (top: n(l)
k,1) and pI cells (bottom:

n
(l)
k,2) within the time window of 11–11.5 min, from the data used in

the spectrotemporal analysis of Section VI.

estimates. The fourth column illustrates the magnitude spectra
corresponding to the time window of 11–11.5 min shown in
Fig. 7. Rows from top to bottom correspond to the estimates
of (Ψm)1,1(ω), (Ψm)2,2(ω), and (Ψm)1,2(ω), respectively.

The PSTH-SSD estimate (Fig. 8A) is heavily attenuated
and concealed by background noise (first column, top panel,
and orange traces in the fourth column) and does not capture
the spectral variations across REM-nonREM transitions. On
the other hand, the SS-SSD estimate (Fig. 8B) captures these
variations at the expense of significantly amplifying a wide
band of low frequencies and introducing spurious background
noise (green traces in the fourth column). The PPMT-SSD
estimates (Fig. 8C), however, provide a denoised and well-
delineated spectrotemporal representation within and across
the brain states. Both pE and pI cells (Fig. 8C, first and second
row, respectively), exhibit increased power in the delta band
over the nonREM epochs. This is consistently observed in the
three main nonREM epochs of 7.5–14 min, 14.5–18 min, and
19–29 min, manifestly within the 0.5–2 Hz frequency band.
The cross-spectral coupling between the two cell groups (Fig.
8C, third row) similarly increases within the 0.5–2 Hz band
during nonREM epochs, as compared to the REM and WAKE

PPMT-SSD SS-SSD PSTH-SSD(C) PPMT-SSD(B) SS-SSD(A) PSTH-SSD
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Fig. 8: SSD analysis of rat cortical activity during sleep. Each panel shows the magnitude spectra in dB scale. The first three columns from
left to right: (A) PSTH-SSD, (B) SS-SSD, and (C) PPMT-SSD. State labels of WAKE (cyan), nonREM (blue) and REM (red) are indicated
at the bottom of each column. The fourth column shows a snapshot of the spectrograms at the 23rd window (11–11.5 min), whose endpoint
is marked by dashed vertical lines in the first three columns. Rows from top to bottom: (Ψm)1,1(ω), (Ψm)2,2(ω), and (Ψm)1,2(ω).
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states. These observations are consistent with the changes in
the LFP spectra across REM/nonREM transitions reported in
[37], which indicate steady increase of delta power during
nonREM episodes. Note that the spectral power in the 2–
4 Hz band exhibits fluctuation during the nonREM epochs,
with increased power in only some of the time windows. This
variability is likely due to the non-rhythmic and burst-like
spiking activity of the ensemble, perhaps modulated by finer
state dynamics endogenous to the nonREM episodes.

The spectral snapshots shown in the fourth column of
Fig. 8 show a consistent performance pattern as in Fig. 3
from our simulation studies: the spectral peaks are clearly
distinguishable in the PPMT-SSD estimates, whereas the SS-
SSD and PSTH-SSD estimates flatten the peaks across a wide
band of frequencies, with the former undergoing significant
attenuation. It is noteworthy that the attenuation of the PPMT-
SSD estimates (Ψm)1,1(ω) and (Ψm)1,2(ω) (Fig. 8, fourth
column, first and third rows) around 0.5 Hz is likely due to
the increase of burst-like activity of the pE neurons in the
particular window chosen for generating the snapshots. This
attenuation is not consistent across windows, as evident in the
spectrogram plots (Fig. 8C, first and third rows), whereas the
increased activity of the pI neurons in the 0.5–2 Hz band is
persistent during the nonREM episodes (Fig. 8C, second row).
Our analysis validates the utility of PPMT-SSD estimation as
an alternative to existing methods, which excels in providing
spectrotemporal characterizations of multivariate spiking data
with high resolution and favorable denoising performance.

VII. CONCLUDING REMARKS

In this work, we proposed a methodology for estimating
the SSD matrix of a multivariate non-stationary latent process
directly from binary spiking observations, thus obviating the
need for intermediate time-domain smoothing procedures used
by existing techniques, which in turn result in biased estimates
of the spectra. To this end, we integrated techniques from
state-space modeling, multitaper analysis and point processes.
We established theoretical bounds on the bias and variance
performance of the proposed estimator, and compared its per-
formance with the existing techniques through application to
simulated and experimentally-recorded neural data. Our simu-
lation studies confirmed our theoretical analysis and revealed
the favorable performance of our proposed method over exist-
ing approaches. Our application to real data provided a highly-
resolved characterization of the spectrotemporal dynamics of
cortical activity during sleep at the neuronal scale. It is worth
noting that in the emerging neural recording technologies, such
as two-photon calcium and voltage imaging, the LFP signals
are not recorded. Spiking activity, however, can be recovered
from these recordings using signal deconvolution techniques,
which renders our proposed methodology highly desirable
in analyzing these data. A key limitation of our proposed
method is the assumption of semi-stationarity, which limits
its applicability to more general classes of non-stationary
processes. Nevertheless, this assumption seems to be plausible
for neuronal spiking data under anesthesia or sleep, where the
underlying cortical activity pertains to slowly-varying states,

as well as other types of slowly-varying binary oscillatory
processes such as heart beat data [51]. Our methodology
can also be extended to infer non-stationary network-level
properties such as the frequency domain Granger-Geweke
causality [52], [53].

APPENDIX A
PROOF OF THEOREM 1

Proof. Let S(ω) be the PSD of the process {xk}Kk=1. Then,

|bias(Ŝmt(ω))| := |E[Ŝmt(ω)]− S(ω)|
(a)

≤ |E[Ŝmt(ω) − Smt(ω)]|+ |bias(Smt(ω))|,
(18)

where (a) follows from the triangle inequality. Further,

Var(Ŝmt(ω)) := E[|Ŝmt(ω)− E[Ŝmt(ω)]|2]

≤ E[|Ŝmt(ω) − Smt(ω)|2] + Var(Smt(ω))

+ 2E[(Ŝmt(ω) − Smt(ω))(Smt(ω) − E[Smt(ω)])]

(b)

≤
{√

E[|Ŝmt(ω) − Smt(ω)|2] +
√

Var(Smt(ω))

}2

,

(19)

where (b) follows from the Cauchy-Schwarz inequality. Thus,
the desired bounds on the bias and variance can be established
through bounding the first and second moments of (Ŝmt(ω) −
Smt(ω)). The first moment can be bounded by∣∣∣E[Ŝmt(ω)− Smt(ω)]

∣∣∣ (c)

≤ 1

P

P∑
p=1

∣∣∣E [|ŷ(p)(ω)|2−|y(p)(ω)|2
]∣∣∣

(d)

≤ 1

P

P∑
p=1

K∑
k=1

K∑
m=1

∣∣∣E[`−1(nk)`−1(nm)−xkxm]ν
(p)
k ν(p)

m e−iω(m−k)
∣∣∣

(e)

≤ 1

P

P∑
p=1

K∑
k=1

∣∣E [(`−1(nk))2 − x2
k

]∣∣ (ν(p)
k )2

+
1

P

P∑
p=1

∑
k 6=m

∣∣E [`−1(nk)`−1(nm)−xkxm
]∣∣∣∣∣ν(p)

k ν(p)
m

∣∣∣, (20)

where (c) and (d) follow from the triangle inequality and
(e) follows by bounding the complex sinusoid. The main
technical difficulty in further development of the bounds is due
to the fact that `−1(z) does not have a Taylor series expansion
for z ∈ (0, 1). We thus have to find other algebraically
useful bounds. To this end, we need to establish the following
technical lemma.

Lemma 1. Consider the event A = {nk | nk 6= 0, nk 6=
1, 1 ≤ k ≤ K}. The following inequality holds true for all
nk ∈ A:

ε(nk) :=
∣∣`−1(nk)− xk

∣∣ ≤ g(xk, L) |nk − λk| ,
where
g(xk, L) = max

{
1

λk(1− λk)
,
|log(L− 1) + xk|
|λk − 1/L|

,
|log(L− 1)− xk|
|1− 1/L− λk|

}
.

Proof of Lemma 1. First, consider the case λk ≤ 0.5. We
bound the function ε(nk) in a piece-wise fashion as follows.
Note that `−1(nk) is convex for nk ≥ 0.5 and concave for
nk ≤ 0.5. Thus, it immediately follows that for nk ≤ λk,
ε(nk) is convex and hence,

ε(nk) ≤ |log(L− 1) + xk|
|λk − 1/L|

(λk − nk) . (21)
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Furthermore, for λk ≤ nk ≤ 0.5, ε(nk) is concave, and
hence is bounded by the tangent at λk as follows.

ε(nk) ≤ 1

λk(1− λk)
(nk − λk) (22)

Finally, for the case of nk ≥ 0.5, consider the line

h(nk) :=
|log(L− 1)− xk|
|1− 1/L− λk|

(nk − λk). (23)

From the convexity of ε(nk), h(nk) upper bounds ε(nk) for
nk ≥ 0.5, since h(0.5) ≥ ε(0.5) for λk ≤ 0.5. Combining the
piece-wise bounds in Eqs. (21), (22) and (23), we conclude
the claim in Lemma 1 for λk ≤ 0.5. Due to the symmetry
of ε(nk), through a similar argument, the bound can be
established for λk > 0.5, which concludes the proof.

Given that |xk| ≤ B and assuming that L is large enough
so that L ≥ 2(1+exp(B)), we can further simplify the bound
of Lemma 1. We have:

g(xk, L) ≤ max
{

exp(B) (1 + exp(−B))2,
|log(L− 1) +B|

(1/(1 + exp(B))− 1/L)

}
≤ max

{
exp(B) (1 + exp(−B))2, 4(1 + exp(B)) logL

}
.

Thus, for sufficiently large L, we conclude that,

ε(nk) ≤ 4(1 + exp(B)) logL |nk − λk| . (24)

Now, consider the expectations in the bounds of Eq. (20).
Using iterated conditioning,∣∣E[(`−1(nk))2 − x2

k]
∣∣ =

∣∣E[E[(`−1(nk))2|xk] − x2
k]
∣∣

=
∣∣E[2xkE[(`−1(nk)− xk)|xk] + E[(`−1(nk)−xk)2|xk]]

∣∣
(f)

≤E[2|xk|E[|`−1(nk)−xk||xk]]+E[E[(`−1(nk)−xk)2|xk]], (25)

where (f) follows from triangle and Jensen’s inequalities.
In order further simplify these bounds, we invoke the result
of Lemma 1. First, note that `−1(nk) is unbounded in the
complement of event A. Provided |xk| ≤ B, P(nk 6= 0) and
P(nk 6= 1) can be lower bounded by 1 − exp(−L log(1 +
exp(−B))), which implies that

P(A) ≥ 1− 2 exp(−L log(1 + exp(−B))).

Therefore, for sufficiently large L, we see that P(A) is
exponentially close to 1. Thus, hereafter we condition the
expectations on the highly probable event A. From Eq. (24),
we get

E[ |`−1(nk)− xk| |xk, A] ≤ 4(1 + exp(B)) logL

E[ |nk − λk| |xk, A].

Note that the random variable nk = Lnk is the sum of L
independent Bernoulli random variables given xk. Thus, given
xk, nk ∼ Binomial(L, λk). Accordingly,

E[ |nk − λk| |xk, A] = E[ |nk − λk|1A |xk]/P(A)

(g)

≤
√

E[ (nk − λk)21A |xk] /P(A)

(h)

≤
√
λk(1− λk)/(

√
LP(A)), (26)

where (g) follows from the Jensen’s inequality and (h) follows
from substituting expression for the variance of a binomial

random variable. Further, note that λk(1 − λk) ≤ 1/4, for
λk ∈ [0, 1] and P(A) ≥ 1/2, if L ≥ 2B/log(1 + exp(B)),
which is satisfied for large enough L. Thus, combining the
bounds in Eqs. (26) and (24), we get,

E[ |`−1(nk)− xk| |xk, A] ≤ 4(1 + exp(B))
logL√
L
. (27)

By a similar argument we can show that,

E[ (`−1(nk)− xk)2 |xk, A] ≤ 8(1 + exp(B))2

(
logL√
L

)2

.

Thus, the expectation in Eq. (25) is bounded as:∣∣E[(`−1(nk))2 − x2
k |A]

∣∣ ≤ 8(1 + exp(B))
logL√
L

×
(
B + (1 + exp(B))

logL√
L

)
. (28)

Following a similar argument, one can show for n 6= m,

|E[`−1(nk)`−1(nm) − xkxm |A ]| ≤ 8(1 + exp(B))

× logL√
L

(
B + 2(1 + exp(B))

logL√
L

)
. (29)

Finally, using the bounds of Eqs. (28) and (29) and noting that∑K−1
k=0 (ν

(p)
k )2 = 1, for all 0 ≤ p ≤ P , we can upper bound

the expectation in Eq. (20) as,

|E[Ŝmt(ω) − Smt(ω) |A]| ≤ g1K
logL√
L
, (30)

where

g1 := 8(1 + exp(B))

{(
1

K
+ 1

)
B +

(
1

K
+ 2

)
(1 + exp(B))

logL√
L

}
.

This concludes the proof of the bound on bias. Following
similar bounding techniques, the second moment in Eq. (19)
can be bounded by:√

E[|Ŝmt(ω) − Smt(ω)|2 |A] ≤ g2K
logL√
L
, (31)

where
g2 := 4(1 + exp(B))

{√
2

K

[√
13

3

logL√
L

(1 + exp(B)) +B

]

+

[
4

(
logL√
L

(1 + exp(B)) +B

)2

−B2

]1/2}
.

This concludes the proof of Theorem 1.

APPENDIX B
PROOF OF COROLLARIES 1 AND 2

Proof of Corollary 1. Proof of Corollary 1 follows the proof
of Theorem 1 closely, with the natural extension to the
multivariate case. Following the proof of Theorem 1, the
constants g′1 and g′2 in this case are given by:

g′1 := 8 (1 + exp(B))×
(
B + 2(1 + exp(B))

logL√
L

)

g′2 := 4(1 + exp(B))

√
4

(
logL√
L

(1 + exp(B)) +B

)2

−B2

Proof of Corollary 2. As for Corollary 2, we work under the
technical assumptions of Theorems 1 and 2 in [27]. Following
[27], we assume that in Eq. (9), Qm = Q for all m in
this proof, and that the EM algorithm finds estimates of Q
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and α close to their true value (for large enough K). Then,
under Assumptions (1) and (2), we identify the effective
observation ỹ

(p)
m corresponding to the pth taper at window

m in [27] by the concatenation of ν(p)
w logit (n̄(m−1)W+w,j)

for w = 1, 2, · · · ,W and j = 1, 2, · · · , J in a vector of
length WJ . We also assume, without loss of generality that
W = uN , for some integer u. Then, we denote by Σ∞ the
steady state covariance of the backward smoother, and Λ :=
αΣ∞(α2Σ∞+Q)−1 and Γ = (α2Σ∞+Q)[I−uW ((α2Σ∞+
Q)−1 + uW I)−1], as in [27]. Note that these matrices are
NJ ×NJ in our case. Under the same assumptions [27], we
consider them to be diagonal with the ith diagonal element
being γi and ηi respectively. Then, following the proof of
Theorem 1, Corollary 1 and those of Theorems 1 and 2 in
[27], it can be shown that the statement of the corollary holds
with the constants:

g′′1 (ωn) := 8(1 + exp(B))

(
B + 2(1 + exp(B))

logL√
L

)

× η(n−1)J+r η(n−1)J+t

M∑
s,s′=1

γ
|s−m|
(n−1)J+rγ

|s′−m|
(n−1)J+t,

g′′2 (ωn) := 4(1 + exp(B))

√
4

(
logL√
L

(1 + exp(B)) +B

)2

−B2

× η(n−1)J+r η(n−1)J+t

M∑
s,s′=1

γ
|s−m|
(n−1)J+rγ

|s′−m|
(n−1)J+t,

and

κm(ωn) := η(n−1)J+r η(n−1)J+t

M∑
s,s′=1

γ
|s−m|
(n−1)J+r γ

|s′−m|
(n−1)J+t α

|s−s′|.

We refer the interested readers to [27] for detailed derivations.
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