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Abstract—The regularity of devastating cyber-attacks has
made cybersecurity a grand societal challenge. Many
cybersecurity professionals are closely examining the
international Dark Web to proactively pinpoint potential cyber
threats. Despite its potential, the Dark Web contains hundreds of
thousands of non-English posts. While machine translation is the
prevailing approach to process non-English text, applying MT on
hacker forum text results in mistranslations. In this study, we
draw upon Long-Short Term Memory (LSTM), Cross-Lingual
Knowledge Transfer (CLKT), and Generative Adversarial
Networks (GANs) principles to design a novel Adversarial CLKT
(A-CLKT) approach. A-CLKT operates on untranslated text to
retain the original semantics of the language and leverages the
collective knowledge about cyber threats across languages to
create a language invariant representation without any manual
feature engineering or external resources. Three experiments
demonstrate how A-CLKT outperforms state-of-the-art machine
learning, deep learning, and CLKT algorithms in identifying
cyber-threats in French and Russian forums.

Keywords—  adversarial learning, generative adversarial
networks, hacker forums, cross-lingual knowledge transfer, long
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1. INTRODUCTION

The regularity and disturbing frequency of devastating
cyber-attacks has made cybersecurity a grand societal challenge.
Cyber-analysts in numerous public, private, and academic
organizations are increasingly relying on methods to
automatically sift through large quantities of cybersecurity
relevant data (e.g., log files) to detect potential cyber threats.
However, the continuing growth of cyber-attacks indicates that
analyzing attacks after they occur cannot keep up with the ever-
growing threat landscape. Consequently, innovative approaches
to proactively identifying cyber threats are critically needed.

Numerous cybersecurity professionals are turning to the
Dark Web to proactively identify cyber threats. The Dark Web
is a dark covert side of the web that allows hackers to share, sell,
and discuss hacking tools, knowledge, and other cyber threats
across multiple geopolitical regions such as the US, Russia,
France, and others [1]. The Dark Web comprises four major
platforms: hacker forums, DarkNet Marketplaces (DNMs),
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carding shops, and internet-relay chat (IRC) [2]. Among the
four, hacker forums are the largest, often containing hundreds of
thousands to millions of cyber threats. While English forums are
the most prevalent, Russian and French forums contain a
significant quantity of cyber threats such as credit card stealing
tools (e.g., skimmers), stolen goods, and others. Fig. 1 illustrates
an example of a hacker providing a tool to hack CAPTCHAs in
a Russian hacker forum.

Fig. 1. CAPTCHA Hacking Instructions in a Russian hacker forum

" Russian instructions for executing attack
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Despite their value, the multi-lingual and large volume of
non-English forum content poses a significant challenge to
cybersecurity analysts and researchers aiming to identify cyber
threats. Machine translation (MT) (e.g., Google Translate) is the
prevailing approach to process non-English text for subsequent
input into a machine learning algorithm. However, applying MT
on jargon-laden hacker forum text results in numerous
mistranslations that affect cyber threat detection performance.
Additionally, past studies process each language separately,
rather than leveraging knowledge across the community to
detect cyber threats. These limitations require a novel approach
that operates on untranslated text and holistically leverages
knowledge across languages to detect cyber threats.

In this study, we draw upon Long-Short Term Memory
(LSTM), Cross-Lingual Knowledge Transfer (CLKT), and
Generative Adversarial Networks (GANS) principles to design a
novel Adversarial CLKT (A-CLKT) approach. A-CLKT
operates on untranslated text to retain the original semantics of
the language. Through an innovative GAN architecture, A-
CLKT leverages the collective knowledge about cyber threats
across languages to create a language invariant representation
(i.e., embedding, feature vector) without any manual feature
engineering or external resources. Three experiments
demonstrate how A-CLKT outperforms common machine
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learning, deep learning, and CLKT algorithms in identifying
cyber-threats in French and Russian forums. To facilitate
scientific reproducibility, we release our code and data through
a public GitHub repository.

The remainder of this paper is organized as follows. First,
we review related research in hacker forum analysis, CLKT,
LSTMs, and GANSs. Second, we summarize key research gaps
and pose several research questions. Third, we present our
proposed research framework and detail its constituent
components. Subsequently, we present key experiment results
and discuss their implications. Finally, we conclude this
research and identify promising future research directions.

II. LITERATURE REVIEW

Four areas of literature are examined to ground this
research. First, we review studies on hacker forums to identify
their content, data characteristics, and prevailing analytics.
Second, we review CLKT to identify the principles of
knowledge transfer across languages. Third, we review LSTMs
to identify how the state-of-the-art deep learning approach for
text operates. Finally, we review GANs as a mechanism for
using LSTM’s learned representations for CLKT.

A. Hacker Forum Analysis

As indicated in the introduction, hacker forums play a
valuable role in the international Dark Web ecosystem by
providing millions of hackers the ability to share and discuss
cyber threat information and content. Over the past decade,
numerous practitioners and scholars have found significant
cyber threat content [2]-[7]. Examples include:

e Hacking tools: software designed to circumvent
security controls and illicitly manipulate technologies
(e.g., ransomware, spyware, etc.)

e  Malicious tutorials: guides instructing hackers on
selected tasks (e.g., how to steal cryptocurrency, etc.)

e Stolen digital goods: accounts, credentials, and other
content attained from hacking targeted victims

e Credit card fraud: content to conduct credit card
crimes (e.g., skimming, cloning, etc.)

The complexity of this content has resulted in significant
natural, non-natural, and jargon-laden text. The prevailing
approach to processing non-English forum content is MT to
convert all content to English. Translated content has served as
input to machine learning algorithms such as recurrent neural
networks (RNN) to identify mobile malware [8], maximum
entropy and recursive neural networks to detect and rate carding
threats [9], and support vector machine (SVM) to categorize
hacking tools into their programming languages [10][11].

Despite their convenience, MT-based approaches have three
key drawbacks. First, they omit the original, language-specific
semantics. Second, MT services are trained on general corpora.
Therefore, they often miss hacker specific jargon. Finally, past
studies use monolingual models (i.e., separate models) for each
language. This does not leverage the language-specific
knowledge in each language. Taken together, these issues result
in mistranslations and incomplete language representations that
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deteriorate model performance. In light of these drawbacks, we
review CLKT as a possible approach to transfer language-
specific knowledge across languages without MT.

B. Cross-Lingual Knowledge Transfer (CLKT)

CLKT is a form of transfer learning that aims to learn and
transfer the knowledge within a high-resource, source language
with significant training data to a low-resource (i.e., limited
training data), target language [12]. CLKT is facilitated by
learning a representation from the high resource source language
and transferring it to the low-resource target language. Three
approaches exist to learn and transfer representations: parallel
corpora, MT, and pre-trained embeddings. Parallel corpora rely
on the alignment of words and sentences across language
resources to facilitate knowledge transfer. MT converts the
source language to the target. Finally, pre-trained embeddings
(i.e., feature vectors) are created by training deep learning
algorithms on general-purpose corpora.

Despite their widespread use across critical natural language
processing (NLP) tasks, the uniqueness and lack of accessible
ground truth hacker forum datasets hinders the direct use of
these approaches to facilitating CLKT. Building parallel corpora
requires significant manual effort, domain expertise, and manual
feature engineering to carefully align words and sentences [13].
MT suffers from the same limitations as discussed earlier.
Finally, pre-trained embeddings are developed from general-
purpose corpora that do not contain hacker specific semantics
and jargon [14]. As a result, conducting CLKT across hacker
forum languages requires generating domain-specific
embeddings. The prevailing deep learning architecture for this
task is LSTM.

C. Long Short-Term Memory (LSTM)

LSTM belongs to an emerging class of deep learning
architectures known as recurrent neural networks (RNN), which
are designed to analyze sequential data by considering long term
dependencies in the input sequence. Such models exhibit strong
performance in automatically learning an embedding from a
sequence (e.g., words in written language). As a result, LSTM
has been widely adopted for language modeling tasks. At a high
level, an LSTM cell encompasses non-linear activation
functions along with input, output, and forget gates. Fig. 2
illustrates how LSTM uses these components.

Fig. 2. Conceptual Illustration of an LSTM Unit
Input Gate

QOutput Gate

Cell Input Cell State Cell Output

J

Forget Gate

The input gate controls how often a new input token would
affect the current cell state. The forget gate determines for how
long the cell maintains the current cell state. Finally, the output
gate adjusts the effect of the current cell state on the final output
of the LSTM cell. The current state of the LSTM cell is obtained
as a function of the cell input, input gate, and forget gate. The
cell output is attained as a function of the cell state and the output
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gate. LSTM offers a viable approach to automatically extract
high-quality language-specific representations. However, these
representations are not language-invariant, and thus, are less
transferable [15]. Therefore, an additional mechanism to transfer
the learned representation to other languages is required. One
such approach is GAN.

D. Generative Adversarial Networks (GANs)

GAN is a deep learning-based approach that employs an
adversarial learning procedure [16]. Adversarial learning is a
paradigm within machine learning that has two algorithms
compete in a zero-sum game. Within a GAN (Fig. 3), a
generator (G) network uses input noise to create synthesized
data. A discriminator (D) aims to distinguish between G’s
synthesized data from the real data.

Fig. 3. Tllustration of a GAN’s Adversarial Learning Procedure
Step 4
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GAN’s adversarial learning procedure has four steps:

e Step 1: Input noise (usually drawn from a uniform
distribution) is used by G to generate synthesized data.

e Step 2: D receives the real data and synthesized data
from G as input and aims to discern between the two.

e Step 3: D’s prediction is compared with the ground
truth with a loss function (e.g., logistic). The errors are
backpropagated through G to update weights.

e Step 4: Steps 1-3 repeat until generator creates data D
cannot distinguish from the original (i.e., equilibrium)

GAN’s adversarial learning strategy is a promising
mechanism for transferring an LSTM’s learned representation
to another language without using external resources. However,
how to configure the generator and discriminator such that it can
support CLKT is unknown.

III. RESEARCH GAPS AND QUESTIONS

Several research gaps were identified. First, prior hacker
forum research uses MT to convert language into English.
However, doing so can omit valuable semantics from the
original language and result in a deterioration in model
performance. Second, while CLKT can transfer knowledge
across languages, they often require external resources that are
unavailable. Finally, while GAN can potentially transfer an
LSTM’s learned representations of hacker forum text across
languages to enhance cyber detection, how to configure the
adversarial learning process accordingly is unclear. Based on
these gaps, we propose the following research questions for
study:

e How can the adversarial learning procedure within a
GAN be extended to account for multiple languages to
create a language invariant representation?
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e  How can an adversarial learning-based CLKT approach
that does not require external resources be developed?

e How does an adversarial learning-based CLKT
approach perform against prevailing machine learning,
deep learning, and CLKT approaches?

IV. RESEARCH DESIGN AND TESTBED

To address the proposed research questions, we designed a
novel research framework (Fig. 4) with three major components:
(1) Data Collection and Pre-Processing, (2) the proposed A-
CLKT, and (3) Benchmark Experiments. Details of each
component are presented in the following sub-sections.

Fig. 4. Proposed Research Framework
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A. Data Collection and Pre-Processing

Four large-scale and long-running international hacker
forums were identified and collected for this study. These
forums were identified through three mechanisms. First, we
consulted with cybersecurity experts and researchers well-
versed in Dark Web analytics and the underground economy.
Second, these platforms are well-known within the Dark Web
ecosystem as containing a significant quantity of malicious
cyber-threats. Third, these forums are highly-ranked in well-
known online Dark Web directories, such as Dark Web News.

Following identification, we designed a custom web crawler
to collect all forum content. The web crawler was routed through
the TOR network to obfuscate our identity. The crawler employs
a breadth-first search (BFS) strategy to automatically traverse
the forum and parse posts into a database. Table I summarizes
each forum’s number of posts, authors, and date range. To
protect ourselves from hackers within these communities, we
denote each forum with a unique identification number.

TABLE L. SUMMARY OF COLLECTED HACKER FORUMS
Language l;):::: Poi t(i)lflgs # of Authors Date Range
English b¥**y 183,354 22,928 2002 —2018
Russian atE 91,667 29,247 2002 -2018
French b***k 64,800 9,672 2008 —2019

h***s 7,284 1,080 20102019
Total: - 339,821 62,927 2002 - 2019

The collection has one English forum, one Russian forum,
and two French forums. The posts within these forums were
made by 62,927 authors over a 17-year time frame. Forum
names are anonymized by asterisks.

Since data pre-processing is critical for algorithm
performance, we execute a series of data cleansing tasks. We
follow the steps proposed by past multi-lingual CLKT studies
[17]. First, we lower-case text to ensure that different cases of
the same word are processed identically. Second, we tokenize
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the content to split the text into individual units and remove the
stop-words. Finally, we unify all tokens to UTF-8 across training
and evaluation datasets before constructing trainable word
embeddings for each token.

B. Adversarial Cross-Lingual Knowledge Transfer (A-CLKT)

English is considered in our design as the high-resource,
source language. The non-English A-CLKT has three major
phases: (1) automated text representation, (2) learning a
language invariant representation, and (3) cyber threat
detection. Each is summarized below.

1) Automated Text Representation: Phase 1 allocates an
LSTM for each language to automatically create an embedding
of hacker forum text. LSTM is a suitable choice as it was
designed for text, performs well on multi-lingual text, and can
automatically learn embeddings.

2) Learning a Language Invariant Representation

We devise a novel adversarial learning strategy to operate on
the English and non-English representations. Specifically, we
formulate the GAN to have two generators and one
discriminator. Each generator is assigned to either the English
or non-English representation and generate a representation in
the opposite language. The discriminator aims to distinguish
between the generated English and non-English representations.
The error between the discriminator’s prediction and ground
truth is backpropagated to the generators to update weights. This
process continues until the discriminator minimizes the error.
Fig. 5 illustrates the proposed procedure.

Fig. 5. Tllustration of A-CLKT’s Adversarial Learning Procedure
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e  Step 1: Each generator is assigned either the English or
non-English representation generated from the LSTMs.

e  Step 2: Each generator generates a representation in the
opposite language.

e Step 3: D aims to discern between the generated and
true English and non-English text.

e Step 4: D’s prediction is compared with the ground
truth with a logistic loss function. The errors are
backpropagated to the generators to update weights.

e Step 5: Steps 1-4 are repeated until the generators and
discriminator reach equilibrium (i.e., generators create
English and non-English data that D cannot distinguish)

The process described above has several key benefits. First,
it operates upon the untranslated hacker forum text. Therefore,
it retains the original semantics of the language. Second, it does
not require any external resources (e.g., parallel corpora) that are
often unavailable for the Dark Web. Finally, the entire process
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does not require any manual feature engineering. Consequently,
it is ideal for rapidly evolving multilingual Dark Web text.

3) Cyber Threat Detection

Phase 3 receives the language invariant representation from
the GAN and classifies it as a threat or non-threat. While any
classifier can be adopted for this task, the A-CLKT relies on a
BiLSTM to conduct the classification. BILSTM is an extension
of the standard LSTM that uses both backward and forward
procedures to more comprehensively capture the long and short
term dependencies that may occur within a text input.

C. Benchmark Experiments

This section presents the datasets, experiments, benchmark
algorithms, and metrics used to evaluate the proposed A-CLKT.

1) Gold-Standard Dataset

Conducting benchmark experiments requires training and
evaluating all proposed algorithms on a labeled set of ground-
truth (i.e., gold-standard) data. Given the lack of such publicly
accessible datasets, we used stratified sampling to extract posts
from our collection (Table I). We then assembled a panel of two
Russian, two French, and two English cybersecurity experts.
Each panelist was assigned to the language of their knowledge
and instructed to label individually if a post was threat or non-
threat based on its content and their expertise.

After all posts were annotated, we computed the Cohen’s
kappa coefficient to identify the level of agreement between
panelists. For the first round of annotation, the kappa values
were 94.48% for English posts, 98.11% for Russian, and 97.01%
for French. Additional meetings were held between annotators
to resolve differences. After the second round of annotation, the
panelists agreed on more than 99% of posts. The unresolved
posts were omitted. Table II summarizes the number of labeled
cyber-threats and non-cyber threats in each language.

TABLE IL SUMMARY OF GOLD-STANDARD DATASETS USED FOR
BENCHMARK EXPERIMENTS
Language #;fn(‘:e):t):r # of Non-cyber Threats Total
English 326 1,124 1,450
Russian 83 922 1,005
French 38 464 502
Total: 447 2,510 2,957

Overall, the gold-standard dataset included 1,450 English
posts (326 threats, 1,124 non-threats), 1,005 Russian posts (83
threats, 922 non-threats), and 502 French posts (38 threats, 464
non-threats). Since the total number of English posts exceeds the
quantity of either the Russian or French, we denote English as
the high-resource source language for A-CLKT. Russian or
French serve as the low-resource target languages.

2) Experiment 1: A-CLKT vs Machine Translation-based
Approaches

Our literature review indicated that the conventional
approach to processing non-English hacker forum content is
using MT. Therefore, experiment 1 benchmarks A-CLKT’s
performance against algorithms that use machine-translated
content as input. We selected two categories of baseline
methods: classical machine learning and deep learning. The
former includes naive Bayes (NB), SVM, random forest (RF),
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and k-nearest neighbor (k-NN). This selection represents the
prevailing algorithms including decision tree-based (RF),
probabilistic (NB), geometric (SVM), and distance-based (k-
NN) operations. For the deep learning methods, we select the
approaches designed to operate on text. These include gated
recurrent unit (GRU), bidirectional gated recurrent unit
(BiGRU), LSTM, BiLSTM, and convolutional neural network
(CNN) [18][19].

To execute this experiment, we use the Google Translate
API to translate all hacker forum post content into English for
input into the selected benchmark algorithms. Performances
were measured and evaluated against the proposed set of
benchmarks in both settings. Both the Russian and French
datasets remained untranslated for A-CLKT.

3) Experiment 2: A-CLKT vs Monolingual Models

Experiment 2 examines the performance of benchmark
algorithms when the input text is not translated. Theoretically,
this should retain the original semantics of the languages and
enhance overall performance. To execute this experiment, we
use the untranslated text as input for the same set of classical
machine learning and deep learning algorithms. Like
Experiment 1, we examined A-CLKT performances with
English as the high-resource source language and either French
or Russian as the low-resource target language.

4) Experiment 3: A-CLKT vs CLKT Alternatives

Experiment 3 compares the proposed A-CLKT against
prevailing deep learning-based CLKT approaches. The first
relies on a fully multi-lingual (FML) learning strategy. This
approach trains a two-layer deep learning architecture without
differentiating between languages. The second CLKT category
employs a multi-task learning (MTL) strategy on multiple deep
learning architectures with shared layers. Variations of this
strategy included MTL-BIiLSTM, MTL-LSTM, MTL-GRU,
and MTL-BiGRU. Like Experiments 1 and 2, we examined A-
CLKT performances with English as the high-resource source
language and either French or Russian as low-resource
language.

5) Performance Metrics

The imbalanced nature of our gold-standard datasets
requires a careful training strategy with well-established
performance metrics. Therefore, each algorithm is trained and
tested using S5-fold cross-validation. We evaluate algorithm
performances using accuracy, precision, recall, and F;-Score
[20]. Each uses a count of true positive (TP), false positive (FP),
true negative (TN), and false negative (FN). In this context, TP
is the quantity of correctly classified cyber threats, TN is the
number of correctly classified non-cyber threats, FN is the
number of cyber threats incorrectly classified as non-cyber
threats, and FP is the number of non-cyber threats incorrectly
classified as cyber threats. Each metric is computed as follows:

TP+ TN TP

Accuracy = p N rp+ FN O = ThEp
Recall = F1 _ 2 - Precision - Recall
= TP Y FN’ SCOT€ = precision + Recall "

We also measured performance using a receiver operating
characteristics (ROC) curve. ROC plots the true positive rate (y-
axis) versus the false positive rate (x-axis). The area under the

ROC curve determines the AUC score, which is a scalar metric
ranging from 0.5 (random guess) and 1.0 (perfect performance).
AUC quantifies the trade-offs between type I and type II errors.
It is often a preferred metric when measuring the performance
of algorithms operating on class-imbalanced datasets [21].

For each metric, we performed paired f-tests to evaluate
statistical significance. Results were considered statistically
significant for p-value thresholds of p<0.001, p<0.01, and
p<0.05. Algorithms were implemented in Python with the Keras
and Scikit-Learn packages on a single Ubuntu workstation with
an Intel 3.30 GHz CPU, and a GeForce GTX Graphical
Processing Unit (GPU) with 1,280 Cuda cores and six GB of
GPU memory. Full model specifications are available in our
publicly accessible GitHub repository at
https://github.com/mohammadrezaebrahimi/A-CLKT .

V. RESULTS AND DISCUSSION

A. Experiment 1 Results: A-CLKT vs Machine Translation-
based Approaches
Table III summarizes A-CLKT’s performance for each
language against benchmark methods that rely on machine

translation as input. The top-performing algorithm is highlighted
in boldface.

TABLE III. SUMMARY OF A-CLKT PERFORMANCE AGAINST MACHINE
TRANSLATION-BASED MODELS (NOTE: *** p<0.001, ** p<0.01, * P<0.05)

Russian Dataset
Category Method Ace. Prec. Recall F1 AUC
1(\:/[122;1;11 NN 043*5119 0.607 035*57 O<3*5*26 o.ff*w
Leaming | (o 04521*37 0.648 Of;tfo 04*53’?5 0.53*32
NB 022*82 0.5*934 0.66 0.6331 0.*6337
RF 04(;165 0.6993 0‘1126 023*62 02*79
E::rl;ing LSTM oggo 03*737 0.7461 02148 Offj6
Methods | o s 04*5*930 0.3337 0.7277 ogy 0.3:1;14
T
moru_ | 000 [ O [ oases | 081 02T
CNN 0‘6*2*91 0.5887 | 0.5738 0‘5*703 0’?:3*87
Proposed A-CLKT 0.7562 | 0.6832 | 0.7125 | 0.6910 | 0.7999
French Dataset
Category Method Ace. Prec. Recall Fi AUC
ﬁ:z;ml NN 043:*91 0.8072 o.ﬁn o.ffzo 0.33:4
Leaming | 04*6*238 0.6461 oi?*ss 04*5*555 0.*6*1*98
NB Of:fz 0.5:126 0.7586 046357 0.*63*64
RF 02102 0.6973 045;171 0464(‘)82 0.?367
E:;g}ing LST™ og}fs O‘ffio 0.72%3 02129 0:;551)1
Methods | Lo o Ofi)fg 0.3539 0.7024 043114 0.53*73
GRU 045356 0.6*225 0.7818 046307 o.ff*zs
BIGRU o.ﬁ:z 0.33*77 0.7077 0.6;1*66 0.3*152
CNN 0433*16 0.3(173 0.7144 046;145 Off*ll
Proposed A-CLKT 0.7452 | 0.6836 | 0.7634 | 0.7032 | 0.7720
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The table indicates that the proposed A-CLKT approach
outperformed classical machine learning and deep learning-
based methods operating on translated hacker forum text.
Performances were statistically significant on the most
comprehensive metrics of Fi-score and AUC. The consistency
of these results for both the Russian and French datasets
indicates that translating hacker forum text to English loses
semantics within the language. Ultimately, this loss of
information affects the ability of the output classifier to delineate
between cyber threats and benign postings within hacker
forums.

B. Experiment 2 Results: A-CLKT vs Monolingual Models

Table IV summarizes A-CLKT’s performance for each
language against methods that use untranslated text as input. The
top-performing algorithm is highlighted in boldface.

TABLE IV. SUMMARY OF A-CLKT PERFORMANCE AGAINST
MONOLINGUAL MODELS (NOTE: *** p<(0.001, ** P<0.01, * p<0.05)

Russian Dataset
Category Method Acc. Prec. Recall Fi AUC
Classical 0.2000 | 0.0105 | 0.0200 | 0.5032
MaChine k_NN 07627 * Fokk koK skokok
Learning SVM 0.78 0.5745 03*759 03*6*16 Of’?*83
0.6229 | 0.2981 0.4487 | 0.3542 | 0.5632
NB sk sk ok sk sk sk ok
RE | o | oss | O | 0211 [0S
Deep LSTM 0.8000 | 0.6791 0.6028 | 0.6324 | 0.7627
Learning ** * *
Methods BILSTM 0.7:192 045§50 0.6691 0.2169 047354
GRU 0'6583 0.5444 | 0.7289 0'6,956 O‘ng
CONN 0.7029 0.11*53 0.6;&33 0.33*74 0.7321
. 0.7308 | 0.5343 | 0.5695 | 0.5492 | 0.6940
BiGRU * Hkk w5k Hkk *k
Proposed A-CLKT 0.7562 | 0.6832 | 0.7125 | 0.6910 | 0.7999
French Dataset
Category Method Acc. Prec. Recall F1 AUC
Classical 0.0486 | 0.0864 | 0.5208
Machine k-NN 0.7882 0.4 s s P
Learning SVM 0.8117 07 0.*1555 0.1(107 0.3*7*90
0.6647 | 0.3211 0.4864 | 0.3768 | 0.6038
NB % ks * sk Aok
R |omwy | o7 | 0122 | 0206 [ 05T
Deep LSTM 0.8000 | 0.6791 0.6028 | 0.6324 | 0.7627
Learning ** * *
Methods BILSTM 0.7:192 0.5*850 0.6691 0.2169 07354
GRU 0'6583 0.5444 | 0.7289 0'6256 0'74}28
CNN 0.7029 OZLS3 0.6?33 0:3*74 0.7321
. 0.7308 | 0.5343 | 0.5695 | 0.5492 | 0.6940
BiGRU * Sk - sk Hok
Proposed A-CLKT 0.7452 | 0.6836 | 0.7634 | 0.7032 | 0.7720

Similar to Experiment 1, the A-CLKT outperformed
benchmark methods operating on untranslated hacker forum text
for both the Russian and French datasets. These differences were
statistically significant for recall, F;, and AUC. These results
indicate that leveraging the untranslated knowledge across
languages helps improve overall cyber threat detection.
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C. Experiment 3 Results: A-CLKT vs. CLKT Alternatives

Table V summarizes A-CLKT’s performance for each
language against prevailing CLKT methods. The top-
performing algorithm is highlighted in boldface.

TABLE V. SUMMARY OF A-CLKT PERFORMANCE AGAINST CLKT
ALTERNATIVES (NOTE: *** p<0.001, ** p<0.01, * p<0.05)

Dataset Method Acc. Prec. Recall F1 AUC
Russian | gy oo 0.651 1 0.1195 0.7650 0.12197 0.1(1 18
MTL-LSTM 0.6981 0'5,‘:93 0.6782 | 0.6030 O'i‘iz“
MTL.GRU 0.5385 O'fffs 0.6898 0.53:3* 0.5335
MTL-BiLSTM 0.6868 | 0.5541 | 0.6091 | 0.5477* 0‘6,?34
MTL.BIGRU 02153 O.ii36 0.6391 04535‘)5* 0.5333
Proposed A-CLKT | 07562 | 0.6832 | 0.7125 | 0.6910 | 0.7999
French | ey o 07520 | 07143 | 03429 | 0-5682% 1 06127
MTL-LSTM 0.6231 0‘43 31 07250 0‘5133 * O‘fffz
MTL-GRU 0.7231 0.5:100 0.7195 0‘6250* O'ii%
MTL-BiLSTM 0.7231 02145 0.6333 0‘5118* 0‘2‘176
MTL-BiGRU 0.7077 0'5*1*65 0.7444 | O3 254* o'fﬁg“
Proposed A-CLKT 0.7452 | 0.6836 | 0.7634 0.7032 0.7720

Experiment 3 results suggest that A-CLKT’s adversarial
learning approach creates a more robust and comprehensive
representation of English and non-English hacker forum text
than its FML and MTL counterparts in detecting cyber threat in
both Russian and French hacker forums based on F;-score and
AUC. Similar to the first two experiments, these differences
were statistically significant. This indicates that the adversarial
learning procedure systematically removes features that are less
relevant to creating a language invariant representation. In
contrast, the benchmark approaches may include them, thus
causing a decrease in overall performance.

VI. CONCLUSION AND FUTURE DIRECTIONS

Despite cybersecurity’s importance, the quantity and
severity of cyber-attacks are on an unfortunate uptick. Many
cybersecurity professionals are closely examining the
international Dark Web to proactively pinpoint potential cyber
threats. Despite its potential, the Dark Web contains hundreds of
thousands of non-English posts. This limits an analyst’s ability
to pinpoint cyber threats in a scalable and automated fashion.

In this work, we aimed to take an important step in
advancing multi-lingual cyber threat detection capabilities.
Specifically, we designed a novel A-CLKT approach. A-CLKT
formulates an innovative adversarial learning procedure to
automatically learn language invariant representations across
two languages. A series of benchmark experiments illustrated
how A-CLKT outperformed classical machine learning, deep
learning, and CLKT algorithms in detecting cyber threats in
Russian and French hacker forums.
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There are several promising directions for future research.
First, while we formulated our task as binary classification,
future studies can aim group the posts into finer-grained output
labels (e.g., type of hacking tool). Second, future studies can
explore if including additional generators to represent multiple
languages improves overall performance. Finally, future work
can explore how the proposed approach operates on other Dark
Web platforms. Each direction can help cyber-analysts
proactively identify cyber-threats in the international Dark Web.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation (NSF) under Grants SES-1314631 (SaTC
SBE), ACI-1443019 (DIBBs), CNS-1936370 (SaTC CORE),
and CNS-1850362 (CRII SaTC).

REFERENCES

(1]
(2]

H. Chen, Dark web: Exploring and data mining the
dark side of the web. New York: Springer, 2012.

P.-Y. Du et al., “Identifying, Collecting, and Presenting
Hacker Community Data: Forums, IRC, Carding Shops,
and DNMs,” in IEEE International Conference on
Intelligence and Security Informatics (ISI), Miami, FL,
2018.

E. Nunes et al., “Darknet and deepnet mining for
proactive cybersecurity threat intelligence,” in /EEE
Conference on Intelligence and Security Informatics
(1S1), Tucson, AZ, 2016, pp. 7-12.

N. Arnold et al., “Dark-Net Ecosystem Cyber-Threat
Intelligence (CTI) Tool,” in [EEE International
Conference on Intelligence and Security Informatics
(1S1), 2019, pp. 92-97, doi: 10.1109/1S1.2019.8823501.
W. Li, H. Chen, and J. F. Nunamaker Jr, “Identifying
and Profiling Key Sellers in Cyber Carding Community:
AZSecure Text Mining System,” Journal of
Management Information Systems, vol. 33, no. 4, pp.
1059-1086, 2016, doi:
10.1080/07421222.2016.1267528.

N. Tavabi, P. Goyal, M. Almukaynizi, P. Shakarian, and
K. Lerman, “Darkembed: Exploit prediction with neural
language models,” in Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

M. Schéfer, M. Fuchs, M. Strohmeier, M. Engel, M.
Liechti, and V. Lenders, “BlackWidow: Monitoring the
Dark Web for Cyber Security Information,” in
International Conference on Cyber Conflict (CyCon),
2019, vol. 900, pp. 1-21.

J. Grisham, S. Samtani, M. Patton, and H. Chen,
“Identifying mobile malware and key threat actors in
online hacker forums for proactive cyber threat
intelligence,” in IEEE International Conference on
Intelligence and Security Informatics (ISI), Beijing,
China, 2017, pp. 13-18.

(3]

(4]

(3]

(6]

(8]

[11]

[14]

[21]

26

W. Li and H. Chen, “Identifying top sellers in
underground economy using deep learning-based
sentiment analysis,” in Intelligence and Security
Informatics Conference (JISIC), 2014 IEEE Joint, 2014,
pp. 64-67.

S. Samtani, R. Chinn, H. Chen, and J. F. Nunamaker Jr,
“Exploring Emerging Hacker Assets and Key Hackers
for Proactive Cyber Threat Intelligence,” Journal of
Management Information Systems, vol. 34, no. 4, pp.
1023-1053, 2017.

S. Samtani, R. Chinn, and H. Chen, “Exploring hacker
assets in underground forums,” in /EEE International
Conference on Intelligence and Security Informatics
(ISD), Baltimore, MD, 2015, pp. 31-36.

K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey
of transfer learning,” Journal of Big Data, vol. 3, no. 1,
p. 9,2016, doi: 10.1186/s40537-016-0043-6.

M. Abdalla and G. Hirst, “Cross-Lingual Sentiment
Analysis Without (Good) Translation,” in The 8th
International Joint Conference on Natural Language
Processing (IJCNLP), Taiwan, 2017, pp. 506-515.

N. Li, S. Zhai, Z. Zhang, and B. Liu, “Structural
Correspondence Learning for Cross-Lingual Sentiment
Classification with One-to-Many Mappings,” in A4AI
Conference on Artificial Intelligence, San Francisco,
2017, pp. 3490-3496.

M. Wang and W. Deng, “Deep Visual Domain
Adaptation: A Survey,” Neurocomputing, 2018.

1. Goodfellow et al., “Generative Adversarial Nets,” in
Advances in Neural Information Processing Systems
(NeurIPS), Z. Ghahramani, M. Welling, C. Cortes, N.
D. Lawrence, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2014, pp. 2672-2680.

R. Johnson and T. Zhang, “Supervised and Semi-
supervised Text Categorization Using LSTM for Region
Embeddings,” in International Conference on Machine
Learning (ICML), New York, NY, 2016, vol. 48, pp.
526-534.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio,
Deep learning, vol. 1. MIT Press Cambridge, 2016.

Y. Goldberg, “Neural Network Methods for Natural
Language Processing,” Synthesis Lectures on Human
Language Technologies, vol. 10, no. 1, pp. 1-309, 2017.
M. Ebrahimi, M. Surdeanu, S. Samtani, and H. Chen,
“Detecting Cyber Threats in Non-English Dark Net
Markets: A Cross-Lingual Transfer Learning
Approach,” in IEEE International Conference on
Intelligence and Security Informatics (1SI), 2018, pp.
85-90.

T. Hastie, R. Tibshirani, and J. Friedman, The elements
of statistical learning. Springer series in statistics New
York, 2017.

Authorized licensed use limited to: Indiana University. Downloaded on May 25,2021 at 18:40:44 UTC from IEEE Xplore. Restrictions apply.



