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Abstract—Granger causality is an increasingly prevalent tool in
extracting the functional networks that underlie neural processes.
While its time domain formulation yields useful insights into these
functional networks, the inferred Granger causal influences leave
the spectral properties of said functional networks ambiguous:
this is a question of particular interest when neural processes
exhibit oscillatory behavior. The frequency-domain formulation
of Granger causality proposed by Geweke has addressed the spec-
tral properties of functional links between stationary processes.
Based on Geweke’s method of conditional Granger causality,
we introduce a framework to derive direct spectro-temporal
causal interactions in a population of neurons from multivariate
ensemble spiking observations, using point process modeling,
state space estimation and multitaper spectral analysis. Further,
we propose statistical tests that characterize the significance of
these functional links. The utility of our methods is demonstrated
through application to simulated and real data.

I. INTRODUCTION

The advent of neural data acquisition techniques such as
two photon calcium imaging and multielectrode array record-
ing has enabled the observation of brain oscillations at the
neuronal scale, manifest in ensemble spiking activity. Cross
spectral and coherence analyses of such neural data provide in-
sights into the spectro-temporal coupling between neurons, and
have been the focus of active research [1]–[3]. However, such
analyses do not capture directionality of neuronal interactions,
an essential component of understanding the roles of different
neurons within a population. Granger-Geweke causality [4]–
[13] is a widely used statistical method of characterizing
such frequency domain directional interactions in continuous
processes.

In time domain analysis, if the prediction of one time series
is improved by incorporating the past samples of a second
one, the second process is said to have a Granger Causal
(GC) influence on the first one. Geweke [4], [5] extended
this notion to frequency domain analysis, further introducing
a statistical characterization of conditional GC links [5]. The
conditional measure quantifies the fraction of total power of
the first process at a given frequency that is directly contributed
by the second process [5]. Even though various applications
and extensions of this method have been introduced in the
literature [6], [7], [10], [11], [13], they are tailored for the
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analysis of continuous observations, and hence are not directly
applicable to binary spiking observations.

Point processes and Generalized Linear Models are widely-
applied methods for modeling the underlying non-linear map-
pings between binary spiking observations and latent intrin-
sic/extrinsic oscillatory neural covariates [1], [3], [14], [15].
Existing work [8], [9], [12] on conditional GC analysis of
spiking observations applies methods developed for continu-
ous processes to spike trains, undermining the aforementioned
non-linearities and thus leading to biased estimates that cannot
be guaranteed to identify the true directional interactions
underlying neuronal oscillations. Further, existing methods
analyze spectro-temporal coupling using sliding windows,
independently estimating GC links at each time window. Brain
oscillations underlying neuronal spiking are in general non-
stationary and may exhibit dynamics corresponding to brain
state or behavior [2], [16]. These dynamics may not be
accounted for if the selected window length is too large; at
the same time, smaller window lengths can adversely affect
the accuracy of spectral estimation.

To address the aforementioned challenges, we introduce
a unified method to estimate spectro-temporal conditional
GC links from binary spiking observations in a Generalized
Linear Model framework. We employ state space modeling
techniques to characterize the latent process driving ensem-
ble spiking activity, and use the multitaper method [17]–
[19] for spectral estimation to subsequently infer conditional
Geweke-Granger causal interactions non-parametrically [10].
Furthermore, we introduce two tests to quantify the statistical
significance of the inferred links. Finally, we demonstrate the
utility of the proposed methods in a simulation study and
through application to multi-unit recordings from rat cortical
neurons during sleep [16], [20].

II. METHODS

In this section, we summarize the proposed methods for
frequency domain conditional GC analysis. We denote the
ith element of vector v by v(i) and the (i, j)th element
of matrix M by M (i,j) in subsequent expositions. Suppose
that the spiking activity of N neurons is observed over L
independent trials. Let n(i)

t,l denote the spiking activity of the
ith neuron at discrete time frame t in the lth trial. Further,
suppose that spiking events n(i)

t,l for l = 1, · · · , L, are driven
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by an underlying latent process x(i)
t corresponding to latent

intrinsic/extrinsic oscillatory covariates. Given the ensemble
spiking observations {n(i)

t,l }
N,T,L
i,t,l=1, we seek to identify the

direct causal interactions in the latent oscillations at differ-
ent frequencies and time windows. To this end, we employ
conditional Granger-Geweke Causality (GC) [5].

A. Geweke’s Conditional Granger Causality framework
First, we briefly review the non-parametric formula-

tion of conditional Granger-Geweke causality [10]. Let
GCj→i|w (f,m) denote the conditional GC from the jth

neuron to the ith neuron, at frequency f and time window
m. Here w represents the N − 2 neurons in the popula-
tion excluding i and j. To compute the conditional link
GCj→i|w (f,m), we first derive the Power Spectral Density
(PSD) matrix [21] within the mth time window of the process
xt := [x

(1)
t , · · · , x(N)

t ]>, denoted by Sm (f). Re-arranging the
entries of Sm (f), the full

(
Sfull
m (f)

)
and reduced

(
Sred
m (f)

)
PSD matrices can be formed as:

Sfull
m (f) =

S
(i,i)
m (f) S

(i,j)
m (f) S

(i,w)
m (f)

S
(j,i)
m (f) S

(j,j)
m (f) S

(j,w)
m (f)

S
(w,i)
m (f) S

(w,j)
m (f) S

(w,w)
m (f)

 , Sred
m (f) =

[
S

(i,i)
m (f) S

(i,w)
m (f)

S
(w,i)
m (f) S

(w,w)
m (f)

]
.

Next, the symmetric minimum phase factorizations of these
matrices, defined as:

Sfull
m (f) = Hm (f) ΣmH∗m (f) , Sred

m (f) = Gm (f) ΩmG∗m (f),

are obtained using Wilson’s algorithm for factorization of
matrix spectral densities [22]. This method has been used
extensively in previous work [10], [11], [13], but, importantly,
requires a high spectral sampling frequency and smooth PSD
estimates to ensure stability and convergence. Finally, the
conditional Granger causal influence of the jth neuron on the
ith neuron is defined as:

GCj→i|w (f,m) = log

(
Ω(i,i)
m(

Q
(i,i)
m (f)

)
Σ

(i,i)
m

(
Q

(i,i)
m (f)

)∗
)
, (1)

where the matrix Qm (f) is a function of the spectral factors
Hm (f) and Gm (f) whose explicit form is given in [10].

B. Proposed forward model
Note that the oscillatory process xt is latent, indirectly

observed through spiking processes n
(i)
t,l ; hence, recovering

the PSD matrix is the key challenge in computing conditional
GC links as described previously. Though a method for direct
spectral estimation from spiking observations without requir-
ing estimation of xt is introduced in [3], the computational
complexity of this method increases considerably with the in-
crease of frequency bins, and consequently is not well-suited to
the conditional GC estimation framework. Alternatively, PSD
estimates with minimum bias and variance can be obtained
with considerably lower computational complexity and higher
sampling frequency using direct multitaper spectral estimation
[17]–[19], if accurate estimates of xt are available. Hence, we
propose the use of Generalized Linear Models for point pro-
cesses [2], [3], [14], [15] to estimate the latent oscillations xt
from the spiking observations n(i)

t,l , and subsequently estimate
the PSD matrix using multitaper spectral estimation as in [2].

We model the binary spiking process n(i)
t,l as a Bernoulli

process with a logistic link to the latent oscillatory continuous
process xt:

n
(i)
t,l ∼ Bernoulli

(
exp

(
x
(i)
t +µ(i)

)
1+exp

(
x
(i)
t +µ(i)

)),
where µ(i), for i = 1, · · · , N are the baseline firing rate
parameters; these are taken to be hyper-parameters in the
proposed model, but in practice may be separately estimated
based on the average firing rates of neurons. The latent process
xt is assumed to be jointly stationary within windows of length
W . The oscillatory process is explicitly modeled at the mth

time window as a multivariate autoregressive (AR) process:

xt =
P∑
p=1

Am,pxt−p + εt, εt ∼ N (0,Σm) , (2)

for (m − 1)W + 1 ≤ t < mW . Stochastic continuity across
time windows is imposed by a first order state space model
on the AR coefficients across time windows:

A(i,j)
m,p = βA

(i,j)
m−1,p + v(i,j)

m,p , v(i,j)
m,p ∼ N

(
0, σ2

)
,

where β ∈ [0, 1] is the state transition parameter. Finally, to
compensate for potential overfitting arising from the sparsity
of typical spiking observations, we impose a conjugate prior
over the noise covariance:

Σm ∼ InverseWishartN (ψ, γ) ,

where ψ and γ are hyper-parameters.

C. MAP estimation via Expectation-Maximization

Integrating the various facets of the forward model, the joint
log-likelihood of the spiking observations n := {n(i)

t,l }
N,T,L
i,t,l=1,

the latent variables x := {x(i)
t }

N,T
i,t=1 and the parameters A :=

{Am,p}M,P
m,p=1 and Σ := {Σm}Mm=1 takes the form:

log p(n,x,A,Σ|β, σ2) = − 1
2

M∑
m=1

(
(W + γ +N + 1) log|Σm|

+ Tr(ψΣ−1
m )
)

+
N,T∑
i,t=1

(
L∑
l=1

n
(i)
t,l

(
x

(i)
t + µ(i)

)
− L log

(
1 + exp

(
x

(i)
t + µ(i)

)))
− 1

2

M∑
m=1

mW∑
t=(m−1)W+1

(
xt −

P∑
p=1

Am,pxt−p

)>
Σ−1
m

(
xt −

P∑
p=1

Am,pxt−p

)
− 1

2

(
N2PM log σ2 + 1

σ2

N,N,M,P∑
i,j,m,p=1

(
A

(i,j)
m,p − βA(i,j)

m−1,p

)2
)

+ ∆, (3)

where ∆ cumulatively represents terms independent of
n,x,A,Σ, β or σ2. We fix the hyper-parameters µ, ψ, γ and
P , and derive the maximum a posteriori (MAP) estimates of
the latent variables x and the parameters A, Σ, β and σ2

using Expectation-Maximization (EM) [23].
1) E-step: The autocovariance function of xt up to lag

P will be required for subsequent computations, so we first
perform a state augmentation x̃t := [x>t ,x

>
t−1, · · · ,x>t−P+1]>,

to derive the first order formulation equivalent to Eq. (2):
x̃t = Ãmx̃t−1 + ε̃t. The first two conditional moments of
the augmented state variable x̃t, i.e. E[x̃t|x1:T , Â, Σ̂, β̂, σ̂

2]
and E[x̃tx̃

>
t |x1:T , Â, Σ̂, β̂, σ̂

2], are obtained by point process
smoothing [15] and covariance smoothing [24]. The condi-
tional mean and autocovariance of xt can subsequently be
recovered using the first two conditional moments of x̃t.
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2) M-step: The parameter updates for A, Σ, β and
σ2 are derived by maximizing the expected log-likelihood
Ex[log p(n,x,A,Σ|β, σ2)]. First, we address the updates for
Am,p, for m = 1, · · · ,M and p = 1, · · · , P . Note that the
joint log-likelihood in Eq. (3) is quadratic in Am,p, and hence
the posterior distribution p(A|n,x1:T , Σ̂, β̂, σ̂

2) is in fact
Gaussian. Thus, the maximization of Am,p can be obtained
by computing the conditional mean, for which we use fixed
interval smoothing [25]. The updated Â is then used to derive
closed form expressions for the updates of Σ, σ2, and β by
maximizing Ex[log p(n,x, Â,Σ|β, σ2)].

We iterate between the aforementioned expectation and
maximization steps until convergence. The resulting estimates
are used to obtain the MAP estimate of the latent oscillatory
process (x̂t)MAP := E[xt|x1:T , Â, Σ̂, β̂, σ̂

2]. Then, the PSD
matrix (Sm(f))proposed is estimated non-parametrically by
performing sliding window multitaper spectral estimation [19]
on (x̂t)MAP. Notably, the proposed model enables the full PSD
matrix to alternatively be parametrically obtained using the
estimated AR coefficients Âm,p and the estimated noise co-
variance Σ̂m [6]. However, (Sm(f))proposed is in fact the better
PSD estimate, since (x̂t)MAP for t = 1, · · · , T capture the
underling dynamics with a much larger number of parameters
than Â and Σ̂ combined. Thus, the presented results focus
on non-parametric spectral estimation using (x̂t)MAP, which
we denote by (Sm(f))proposed. Finally, employing Wilson’s
factorization method and conditional Granger-Geweke analysis
as described in Eq. (1), we derive the proposed estimates of
the GC links GCproposed

j→i|w (f,m).

D. Testing statistical significance

Estimated GC links with non-zero values do not necessarily
indicate a meaningful effect; this necessitates statistical in-
ference to identify the salience of estimated influences. The
significance of estimated links, GCproposed

j→i|w (f,m), may be
tested using either of two proposed approaches.

The first approach is to empirically obtain the distribution of
GC links under the null hypothesis that there is no contribution
from process j at frequency f to the power spectrum of i
over time window m. Time indices were shuffled for each
neuron individually in order to decorrelate neuronal activity
and spectral GC analysis was applied to shuffled data. The
distribution of the resulting links are used as the empirical null
distribution against which estimated links GCproposed

j→i|w (f,m)
are tested.

The second approach is based on an analytically derived
distribution of the spectral power under the previously stated
null hypothesis. For a window length W = fs ·K, an integer
multiple of the sampling frequency, let {εt}t=1:W be a noise
process given by a sequence of independent Gaussian random
variables εt ∼ N (0, σ2

ε), for t = 1, . . . ,W . The DTFT of
εt is E(f) =

∑W
t=1 εte

−j′ 2πffs t, where j′ represents the unit
imaginary number: (j′)2 = −1. The DTFT is written in terms
of f rather than normalized frequency 2πf/fs, for clarity in
the following arguments.

Each term in the summation is complex Gaussian with zero-
mean, covariance Γt = E

[(
εte
−j′ 2πffs t

)(
εte

j′ 2πffs t
)]

= σ2
ε ,

and relation Ct = E
[(
εte
−j′ 2πffs t

)2
]

= σ2
ε

(
e−j

′ 2πf
fs

t
)2

. It

follows that E(f) is also complex normal; specifically,

E(f) ∼ NC
(

0,Γ = Wσ2
ε , C = σ2

ε

∑W
t=1

(
e−j

′ 2πf
fs

t
)2
)
.

The power of the spectrum is denoted by Z := E(f)E∗(f)
W .

In general, when E(f) is complex normal, Z follows a Hoyt
distribution [26], [27]. However, recalling that W = fs ·K,

C

σ2
=
(

1− e−j
′ 4πf
fs

W
)/(

1− e−j
′ 4πf
fs

)
= 0.

Thus, E(f) is specifically a circularly symmetric complex nor-
mal random variable, in which case, Z ∼ Exponential

(
σ2
ε

)
.

This result is used to derive the null distribution of the
spectral power. Following standard procedures for conditional
GC analysis [5], [10], it can be derived that if there is no link,
the spectrum of the ith process at the mth window is given
by X

(i)
m (f) = Q

(i,i)
m (f)E(i)

m (f), where E(i)
m (f) is the DTFT

of the Gaussian noise process driving {x(i)
t }

mW
t=(m−1)W+1.

Invoking the previous result, E(i)
m (f) ∼ NC(0,WΣ

(i,i)
m , 0);

consequentially,

X(i)
m (f) ∼ NC

(
0,W

(
Q(i,i)
m (f)

)
Σ(i,i)
m

(
Q(i,i)
m (f)

)∗
, 0
)
.

Thus, the spectral power of ith process, denoted by the random

variable Z(i)
m :=

(X(i)
m (f))(X(i)

m (f))
∗

W has distribution

Z(i)
m ∼ Exponential

((
Q(i,i)
m

)
Σ(i,i)
m

(
Q(i,i)
m

)∗)
,

where
(
Q

(i,i)
m (f)

)
Σ

(i,i)
m

(
Q

(i,i)
m (f)

)∗
= S

(i,i)
m (f) under the

null hypothesis.
The significance of the link is determined by testing the

full model estimate, Ω
(i,i)
m , against the distribution of Z(i)

m .
Since the full model is tested against multiple null hypotheses
(testing multiple candidate links), the Benjamini-Hochberg
procedure [28] for controlling false discovery rate is employed.

III. RESULTS

In this section, we present a simulation and a real data
study demonstrating the utility of the proposed method. In
both studies, we compare the performance to an existing,
widely used method [8], [9], [12] whose results are based on
the peristimulus time histogram (PSTH) of spiking activity,
which we refer to as PSTH estimates, GCPSTH

j→i|w (f,m). The
PSTH is given by the ensemble average of spiking activity
(x̂

(j)
t )PSTH = 1

L

∑
l n

(j)
t,l , which is used to estimate the latent

oscillatory process, followed by sliding window multitaper
spectral estimation. We additionally benchmark the perfor-
mance of the estimators with respect to the oracle estimator,
GCoracle

j→i|w (f,m), in the simulation study. The oracle estimator,
which uses the true latent process as an observable, is derived
using the multitaper estimates of xt in simulations.

A. Simulation study

We simulated the activity of three neurons as a tri-variate
(N = 3) AR process, with L = 30 independent trials per
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Fig. 1: (A) Magnitude spectrograms of the ground truth PSD matrix
Sm (f) in dB scale and (B) the ground truth conditional GC links
GCj→i|w (f,m) between each pair of neurons, in the simulation
study.

each latent process. Spikes were sampled at fs = 30 Hz
for a total duration of 70 minutes. The ground truth PSD
matrix and conditional GC links in Fig. 1 respectively show
the true dynamics in spectral coupling and GC connectivity
across frequencies. Assuming stationarity within windows of
length W = 2100, direct causal links are estimated between
each pair of processes using the oracle, proposed and PSTH
methods.

The conditional GC links inferred by each of the three
methods and determined statistically significant by either of

the proposed criteria are illustrated in Fig. 2. The proposed
estimates closely follow the oracle estimates and the ground
truth, recovering most of the spectro-temporal dynamics of
ground truth conditional GC links, independently of the sta-
tistical test used. However, the PSTH-based approach fails to
identify links that are significant according to either statistical
test. In fact, PSTH spectral estimates generally capture spuri-
ous harmonics masking the true spectral content [3], which
in turn adversely affects the corresponding conditional GC
estimates, as seen in Fig. 2.

B. Application to experimentally recorded data

Finally, our method is applied to multi-unit recordings of
rat cortical neurons during sleep (data from [16], publicly
available in the Collaborative Research in Computational
Neuroscience data sharing website [20]). The data set includes
the spiking activity of putative pyramidal cells (pE) and
putative interneurons (pI) recorded during three main brain
states: waking (WAKE), rapid eye movement (REM) sleep,
and non-rapid eye movement (nonREM) (See [16] for details).
We consider a bivariate setting (N = 2), denoting spiking
observations of pE and pI cells by n(1)

k,l and n(2)
k,l , respectively.

We choose 10 spike trains (L = 10) from each cell type for
the analysis, and consider an observation period of 35 minutes.

Fig. 3 shows the cross power spectral density estimates and
the conditional GC estimates from the proposed and PSTH
methods during different brain states. The GC link estimates in
Fig. 3 are statistically significant with respect to the empirical
test at level α = 0.01. Similar to the results in [3], the cross
PSD estimated from the proposed method (Fig. 3-A left) has
greater cross power in low frequencies during nonREM sleep
episodes. The GC links estimated with the proposed method,
shown in Fig. 3-B (left) and Fig. 3-C (left), indicate steady low
frequency links from interneurons to pyramidal cells during
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Fig. 2: Statistically significant conditional GC links according to (A) the analytical test with significance level α = 0.1 and (B) the empirical
test with significance level α = 0.01, in the simulation study. Columns from left to right: the Oracle estimates, Proposed estimates and
PSTH estimates.
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Fig. 3: Spectral GC analysis of rat cortical spiking during sleep.
(A) The magnitude spectrogram of estimated cross PSD

(
S

(1,2)
m (f)

)
in dB scale, (B) the estimated GC links from pE cells to pI cells(
GC1→2|w (f,m)

)
and (C) the estimated GC links from pI cells to

pE cells
(
GC2→1|w (f,m)

)
. The Proposed (resp., PSTH) estimates

are shown in the left (right) column. State labels of WAKE (cyan),
nonREM (blue) and REM (red) are indicated at the bottom of each
column. All GC links shown were statistically significant with respect
to the empirical test for α = 0.01.

nonREM sleep episodes. In contrast, PSTH estimates (Fig. 3
right) of cross spectra and GC links are unable to characterize
these spectro-temporal dynamics.

IV. CONCLUSION

In this work, we introduce a framework that combines point
processes, state space modeling, multitaper spectral estimation,
and conditional Granger-Geweke Causality analysis to infer
spectro-temporal causal interactions from ensemble neuronal
spiking activity, addressing shortcomings in existing methods.
We also introduce two methods to test the statistical signifi-
cance of inferred functional links. The utility of the proposed
methods is demonstrated through a simulation study. In an
application to cortical neuronal data acquired during sleep,
the proposed method identified dynamics in functional con-
nectivity under different brain states. These studies highlight
the ability of the proposed method to accurately infer the un-
derlying spectro-temporal interactions in a network of neurons,
outperforming existing methods for spiking observations.
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