

Identifying Vulnerable GitHub Repositories and
Users in Scientific Cyberinfrastructure: An
Unsupervised Graph Embedding Approach

Ben Lazarine
Management Information

Systems
University of Arizona

Tucson, AZ, United States
benlazarine@email.arizona.edu

Sagar Samtani
Operations and Decision

Technologies
Indiana University

Bloomington, IN, United States
ssamtani@iu.edu

Mark Patton
Management Information

Systems
University of Arizona

Tucson, AZ, United States
mpatton@email.arizona.edu

Hongyi Zhu
Information Systems and Cyber

Security
University of Texas at San

Antonio
San Antonio, TX, United States

hongyi.zhu@utsa.edu

Steven Ullman
Management Information Systems

University of Arizona
Tucson, AZ, United States

stevenullman@email.arizona.edu

Benjamin Ampel
Management Information Systems

University of Arizona
Tucson, AZ, United States
bampel@email.arizona.edu

Hsinchun Chen
Management Information Systems

University of Arizona
Tucson, AZ, United States
hchen@eller.arizona.edu

Abstract—The scientific cyberinfrastructure community

heavily relies on public internet-based systems (e.g., GitHub) to
share resources and collaborate. GitHub is one of the most
powerful and popular systems for open source collaboration that
allows users to share and work on projects in a public space for
accelerated development and deployment. Monitoring GitHub for
exposed vulnerabilities can save financial cost and prevent misuse
and attacks of cyberinfrastructure. Vulnerability scanners that
can interface with GitHub directly can be leveraged to conduct
such monitoring. This research aims to proactively identify
vulnerable communities within scientific cyberinfrastructure. We
use social network analysis to construct graphs representing the
relationships amongst users and repositories. We leverage
prevailing unsupervised graph embedding algorithms to generate
graph embeddings that capture the network attributes and nodal
features of our repository and user graphs. This enables the
clustering of public cyberinfrastructure repositories and users
that have similar network attributes and vulnerabilities. Results
of this research find that major scientific cyberinfrastructures
have vulnerabilities pertaining to secret leakage and insecure
coding practices for high-impact genomics research. These results
can help organizations address their vulnerable repositories and
users in a targeted manner.

Keywords—GitHub; vulnerability scanning; scientific
cyberinfrastructure; graph embedding

I. INTRODUCTION
Scientific cyberinfrastructure (CI) has become highly

collaborative, with organizations exchanging over 100
gigabytes of data per second and hosting their code bases on
social coding repositories (e.g., GitHub, Stack Overflow, etc.) to
accelerate collaboration [1]. Well-known NSF-funded projects
that host their code bases on GitHub include the National Center

for Atmospheric Research, the Vera C. Rubin Observatory, the
National Ecological Observatory Network, and others. GitHub
has also been heavily used by a growing number of software
developers to share and collaborate on code [2]. It currently has
36 million users that have generated 100 million repositories in
49 million projects [3]. A sample screenshot of a GitHub
repository is shown in Figure 1.

Fig. 1. GitHub Repository Example. Each repository has a (1) username, (2)
repository name, (3) number of times it has been forked, and (4) commits.

GitHub data can be categorized as relevant to a repository or
to a user. Repository metadata includes the owner, forks, and
commits. A fork is created when a user “forks” a repository,
copying the contents of the repository into a repository in their
own account. This enables users to modify the contents of the
repository without affecting the original forked repository. A
commit indicates a deletion, modification, or addition to a
repository made by a user. User metadata can also be queried,
including their public repositories, e-mail, name, organization,
and account age. With social coding repositories, the pace of

software development in CI continues to accelerate. However,
this rapid growth has also led to CI users inadvertently engaging
in insecure coding practices, accidentally posting confidential
secrets (e.g., passwords), and exposing numerous other
vulnerabilities. Each of these issues can enable a malicious
hacker to execute cyber-attacks that result in significant and
often irreversible scientific CI information and financial losses.

In light of these potentially significant ramifications, we
propose a novel research framework to identify vulnerable
groups of repositories and users within a major scientific CI
community. This framework draws upon state-of-the-art
techniques in vulnerability assessment, social network analysis,
graph embedding, and clustering. Our research provides a
principled approach for CI security administrators to proactively
identify groups of repositories and users with related types of
vulnerabilities for targeted remediation and mitigation.

The remainder of this paper is organized as follows. First,
we review literature on social coding repositories, social
network analysis, graph embedding techniques, and
vulnerability scanning approaches. Second, we present our
research design. Third, we summarize our experimental results.
Finally, we discuss future directions and conclude this research.

II. LITERATURE REVIEW
We review three key areas of literature to guide this research.

First, we review social coding repository research to identify
past efforts on detecting vulnerabilities in social coding
platforms. Second, we review social network analysis, focusing
on bipartite networks, and graph embedding research. Finally,
we review vulnerability scanning methods to identify past
methods used to scan social coding platforms for vulnerabilities.

A. Social Coding Repository Research
Past social coding research has focused primarily on high-

level user analysis and low-level code snippet analysis. Most
work has utilized GitHub and Stack Overflow data to conduct
cross platform analysis, detect insecure code snippets, examine
secret leakage, and identify key users [2], [4-8]. Past research
that has used GitHub focused on users or repositories, but not
both. Limited research utilizes social network analysis and
vulnerability scanning concurrently to identify key groups of
repositories and/or users possessing similar vulnerabilities. Past
research that focused on user identification did not conduct any
vulnerability assessment. The relationship between repositories
and users on GitHub is conducive to a social network analysis
approach to identify influential repositories and users to enhance
the results of vulnerability scans.

B. Social Network Analysis and Graph Embedding
Techniques
Social network analysis is used to study relationships

between connected entities. A social network is comprised of
nodes and edges. Nodes are entities and edges are their
relationships. Nodes can be labeled with features. If a network
contains two clearly defined node types (e.g., repositories and
users), a bipartite network configuration can be used to present
it. A bipartite network is comprised of two sets of nodes having
no edges connecting any two nodes in the same set. The value
of a bipartite network representation is that it can project into

two monopartite networks. Each projected network shows
relationships between nodes of the same type. For example, if
two repositories, A and B, both have a connection to the same
user, C, then the repository monopartite graph projection will
have an edge connecting A and B. Generating monopartite
graphs enables calculation of key nodal and topological level
attributes (e.g., degree, betweenness, graph density, etc.).

Constructing a network allows for clear identification of key
users and repositories. However, identifying groups of
vulnerable users and repositories requires embedding nodes
based on their relationships and the vulnerabilities they possess.
Graph embedding techniques utilize these network attributes to
generate graph embeddings that represent the network in a low-
dimensional space [9]. Graph embedding methods typically
operate in a supervised or unsupervised fashion. The selection
of graph embedding methods is contingent upon the graph
formulation (e.g., directed or undirected), available data (e.g.,
nodal features), and whether a priori knowledge (i.e., labels) is
available. Since our proposed application has limited label data,
grouping repositories and users based on their vulnerabilities
requires an unsupervised approach.

 Unsupervised graph embedding methods typically operate
on one of four functions to create embeddings: matrix
factorization (e.g., DeepWalk) [9], random walk (e.g.,
Node2vec) [10], deep representation learning (e.g., Graph
Convolutional Autoencoder (GCAE)) [11], or edge
reconstruction (e.g., Large-scale Information Network
Embedding (LINE)) [12]. Matrix factorization is preferable for
the proposed research as it can account for graph and nodal
features when generating its embeddings. This supports analysis
of vulnerabilities associated with the repositories and users in
our graph. Other approaches do not provide this capability.
Additionally, embeddings generated by matrix factorization are
suitable for downstream tasks including classification and
clustering. As a result, they can facilitate the proposed analysis
of identifying groups of vulnerable users and repositories.

C. Vulnerability Scanning
Traditional vulnerability scanning for IT environments

consist of scanners (e.g., Nessus, Burp Suite) that monitor
network traffic and examine IoT device characteristics [13-14].
Vulnerability scanning also includes scanning software for
vulnerabilities [15]. Software vulnerability scanning research
focuses on two major areas: scanning software as it is being
developed and scanning published (static) software.

 Social coding repositories consist of published software.
Static vulnerability scanners have been developed to scan
popular coding languages (e.g., Python, C, etc.) for insecure
coding practices [16-17] as well as scanning multiple file types
for secrets [4]. Scanning tools are selected based on the
programming language, coverage, and goal of the vulnerability
scan. However, there is limited research that scans social coding
repositories for insecure coding practices using static
vulnerability scanners. Moreover, how these vulnerabilities can
be included as features in networks representing repositories and
users to create fine-grained groups has not yet been studied.

D. Research Gaps and Questions
 We identified two key research gaps from our literature

Fig. 2. Proposed Research Framework.

review. First, research identifying insecure code present in
social coding platforms has been conducted. However, we found
no large-scale vulnerability assessment study of a large
scientific cyberinfrastructure user community. Second, limited
research has combined social network analysis and vulnerability
assessment to identify groups of users and repositories based on
their relationships and vulnerabilities. Based on these research
gaps we propose the following questions:

• How can we identify vulnerabilities within GitHub
repositories in scientific cyberinfrastructure?

• How can we pinpoint key repositories and users
based on their vulnerabilities and relationships?

• How can we group repositories and users based on
their vulnerabilities and relationships in scientific
cyberinfrastructure?

III. RESEARCH DESIGN
 We present our proposed research framework in Figure 2.
The framework has four major components: Research Testbed,
Graph Representation and Projection, Graph Embedding, and
Evaluation. We describe each in the following sub-sections.

A. Research Testbed: GitHub Collection and Vulnerability
Assessment
We identified a large-scale and long-standing scientific CI

for collection and analysis. We anonymized their name to
protect their privacy. This NSF-funded CI provides
computational resources to an international user-base of over
75,000 life science researchers working with large datasets and
conducting high-impact scientific analysis (e.g., genomics,
black hole imaging). The CI has 258 repositories on GitHub
relevant to their codebase, environment, and documentation that
are used by 2,549 users across 424 organizations.

Our research testbed for the targeted scientific CI is
comprised of a GitHub collection and vulnerability assessment.
For the former, we used GitHub’s API to collect all GitHub data
relevant to the community, including repositories, their users,
and their full history of development. Our GitHub collection
consists of four groups of repositories: repositories created by
the main GitHub account (root repositories), forks of root
repositories, repositories returned by querying GitHub’s search
API with the name of the organization as a keyword (searched
repositories), and forks of searched repositories. We also

identified 2,401 accounts interacting with the host
organization’s GitHub ecosystem by making a change (commit)
to any repository in our collection. A breakdown of the four
repository types is shown in Table I.

TABLE I. SUMMARY OF SELECTED GITHUB REPOSITORIES

Root
Repositories

Forks of
Root

Searched
Repositories

Forks of
Searched

Total

Repositories 84 244 174 121 623
Forks 244 8 121 0 373
Contributors 226 93 152 92 563
Issues 132 39 44 37 252
Languages 45 25 42 25 54 (distinct)
Top 3
Languages

C++,
Python, C

Python,
JavaScript,
Shell

Python,
HTML, C

Python,
Java,
Clojure

Python,
JavaScript, Java

Python and C/C++ are the most common languages used in
this CI (accounting for 56% of all code). Therefore, we identify
software vulnerability scanners developed for those languages.
We reviewed 14 vulnerability scanners and selected four:
Bandit, Flawfinder, Gitrob, and Trufflehog. These were selected
based on their coverage, usability, age, and GitHub usage
[4][16-17]. Bandit scans Python files with 70 vulnerability tests,
Flawfinder scans C/C++ files for 18 different common weakness
enumerations (CWEs) outlined by MITRE, Gitrob scans GitHub
for secrets and log files, and Trufflehog scans GitHub for
secrets. Gitrob and Trufflehog are designed specifically to for
GitHub. Therefore, they can scan repository histories and link
detected vulnerabilities to the users who posted them.

The four identified scanners return 13 major types of
vulnerabilities. These can be broadly categorized into three
groups: secrets, insecure coding, and attack susceptibilities.
Secret vulnerabilities include potential password/key leakage,
an occurrence of the string “password” in a file, weak
cryptography, and filetypes known to contain secrets (i.e.
configuration files). Insecure coding vulnerabilities include bad
file permissions, insecure functions, insecure modules,
deprecated libraries, and insecure internet connections. Finally,
attack susceptibilities include insecure user inputs, SQL
injections, XML attacks, and XSS attacks.

Overall, Bandit returned 31,375 vulnerabilities across 188
repositories. Key vulnerabilities returned by Bandit included
25,678 insecure functions, 1,579 insecure modules, 1,352
secrets, and 1,089 insecure inputs. Flawfinder identified 27,200

vulnerabilities across 71 repositories. These included 23,935
insecure inputs, 2,055 insecure functions, 972 insecure
permissions, and 170 weak cryptographic instances. Gitrob and
identified 121 secret instances and 80 configuration/log files
across 13 repositories. Trufflehog identified 7,381 secret
instances across 623 repositories.

B. Graph Representation and Projection
The relationship between users and repositories is suitable

for bipartite network analysis. The value of representing this
relationship in a bipartite network is that it can be projected into
two monopartite networks to identify key users and repositories.
We formally denote our bipartite graph as G=(U, R, E, F) where
G is a directed graph, U is the node set, {u1, u2, u3, … un}, of all
users that have contributed to a repository, R is the node set, {r1,
r2, r3, … rn}, of all repositories, E is the edge set, {e1, e2, e3, …
en}, of directed edges from a user contributing to a repository,
and F is the feature matrix of each node representing the number
of vulnerabilities each user or repository possesses.

We defined two feature sets: one for users and one for
repositories. The user feature set includes potential
passwords/keys, occurrences of the string “password” in a file,
and sensitive filetypes. Labeling users with these features
supports clustering analysis of users with similar secret leakage
behavior. The repository feature set included all 13 identified
vulnerabilities. The defined repository feature set supports
clustering analysis of repositories with similar vulnerabilities
across all three types of vulnerabilities identified in our scan. We
projected the bipartite network into repository and user
monopartite graphs. Monopartite graphs support analysis of key
topological and node level metrics. We summarize each metric
and their corresponding security implications in Table II.

TABLE II. SUMMARY OF SELECTED TOPOLOGICAL AND NODE LEVEL
METRICS AND THEIR SECURITY IMPLICATIONS

Category Metric Definition Security Implications
Network Graph

Density
Sum of edges divided
by total possible edges

Inter-dependence of
repositories/users

Diameter Maximum geodesic
distance from a node
to all other nodes

Indicates the breadth and
diversity of a repository/user

Average path
length

Average distance
between two nodes

Average dependencies
between repositories/users

Node

Number # of network nodes Number of repositories/users

Overall
Degree

Sum of a node’s in
and out degree

Overall importance of the
repository/user

Betweenness Proportion of shortest
paths passing through
a node.

Repository that has many
shared contributors/User that
commits to many repositories

C. Graph Embedding and Evaluation
 Grouping users and repositories based on their relationships
and vulnerabilities without a priori knowledge requires an
unsupervised graph embedding method that accounts for textual
nodal features and operates on undirected graphs. Therefore, we
select text associated Deep Walk (TADW) [9] to generate graph
embeddings for the repository and user graphs. The TADW
embedding process is as follows:

• Step 1: Matrix factorization is used to learn vertex
representation according to network structure.

• Step 2: Node feature matrix is obtained from the
dataset.

• Step 3: The vertex matrix and feature matrix are
concatenated to build a unified 2k-dimensional vertex
embedding matrix for network representation.

• Step 4: Steps 1-3 repeat for all graphs in a set.

 Evaluating embedding quality is essential for ensuring that
the downstream task (in this study, clustering) performs well.
Therefore, we evaluate the quality of the graph embeddings with
Mean Average Precision (MAP). MAP evaluates how well a
graph embedding model reconstructs the original graph by
calculating the average precision of each node [18]. MAP
returns a scalar value from zero to one. Higher quality
embeddings have a MAP close to one. Scores 0.70 and higher
are commonly accepted as high-quality. Second, we evaluate the
quality of graph embedding clusters generated with k-means
clustering. Cluster quality is evaluated based on three well-
known clustering measures: silhouette, Calinski-Harabasz (CH),
and Davies Bouldin (DB) [19]. Silhouette represents the
possible data clusters using average dissimilarity [20]. CH
examines inter-cluster separation and intra-cluster compactness
as a ratio [21]. DB calculates the ratio of intra-cluster to inter-
cluster distances [22]. High quality clusters have a silhouette
close to one, a high CH, and a DB close to zero.

IV. RESULTS AND DISCUSSION
We present our results below. First, we discuss our GitHub

graph representation and projection findings. Second, we
discuss our graph embedding evaluation results for both our user
and repository networks. Finally, we present our clustering
images and interpret selected key clusters.

A. Graph Representation and Projection
 Topological and node level summary statistics for the overall
bipartite graph and each monopartite graph projection are
presented in Table III.

TABLE III. SUMMARY STATISTICS FOR BIPARTITE GRAPH AND
MONOPARTITE GRAPH PROJECTIONS

Category Metric Bipartite
(Repository and
User) Graph

Monopartite
Repository
Graph

Monopartite
User Graph

Network Number of Nodes 3,019 618 2,401
Number of Edges 8,606 35,703 1,065,599
Graph Density 0.002 0.19 0.37
Network Diameter 13 6 6
Average Path Length 4.43 2.07 1.81

Node Max Degree 1,342 294 1,942
Min Degree 0 0 0
Average Degree 5.7 115.54 887.63
Average Betweenness 4,511.94 203.63 52.41

 We make several key observations from these results. First,
both repository and user networks have relatively high average
degrees of 115 and 887, respectively. This indicates that the
majority of nodes in both graphs have importance to the

network. Second, the user graph has a higher density than the
repository graph. This suggests that users have varying interests
across all repositories, but within groups of repositories, users
have a high interdependence. Finally, we observe that the user
graph has a low average path length, meaning that all users can
be connected via a short path (1.81). This indicates an active user
base across our CI’s repositories.

B. Graph Embedding Evaluation
MAP was calculated for TADW-generated repository and

user graph embeddings. Each graph’s full feature set was used
when generating the embeddings. The user and repository
embeddings achieved strong MAP scores of 0.94 and 0.74,
respectively. As such, we cluster the TADW-generated
embeddings and evaluate for both repositories and users.

C. Clustering Results
 We evaluated k-means clustering for cluster sizes four to
nine and compared the quality of the clusters in terms of
silhouette, CH, and DB. As cluster size increases, the quality of
the clusters improves; silhouette increases, CH remains high and
DB decreases. Performance peaked at k=9 for both repositories
and users with a silhouette of 0.27 and 0.79, CH of 66 and 1,479,
and DB of 1.58 and 1.28, respectively. Therefore, we use k=9 to
generate clustering results for both repositories and users.
Clustering results are presented in Figure 3. Each cluster is
color-coded, circled, and labeled.

Fig. 3. Repository Clusters.

Overall, the maximum repository cluster size was 177, the
average was 76, and the minimum was 20. Figure 3 illustrates
that the repository clusters are well separated and have relatively
small intra-cluster distances. Cluster A is 87% searched
repositories. Cluster B is 83% root forks. Clusters C, E, and I are
primarily fork repositories (91, 68, and 69%, respectively). All
repository types are represented in clusters D and G. Cluster F
is 79% root and searched repositories. Cluster H is 97% searched
fork repositories. We summarize the number of each
vulnerability in each cluster in Figure 4 to further understand
their composition.

Fig. 4. Number of Vulnerabilities in Repository Clusters.

Clusters A, G, H and I have less than 1,000 vulnerabilities.
Clusters B and D have a high number of insecure input
vulnerabilities with over 7,000 occurrences each. Clusters C and
E have a high number of insecure function vulnerabilities with
3,031 and 17,898, respectively. Lastly, secret related
vulnerabilities are primarily present in cluster F, with 5,415
instances of the string “password” and 3,586 potential
secrets/keys. Since the prevailing vulnerabilities are insecure
functions, insecure input, and secret leakage, we examine these
closer to examine the potential threat they pose to CI.

 High severity insecure function vulnerabilities include the
use of ‘mktemp’ in Python to create temporary files and ‘printf’
in C which accepts a format string from an external source. High
severity insecure input vulnerabilities include ‘yaml load’ in
Python and ‘strcopy’ in C. ‘Mktemp’ allows an attacker to
modify a file before it is opened. Similarly, ‘yaml load’ can
allow remote code execution to cause research data loss.
Repositories with this vulnerability are commonly used for
genome sequencing. Breaching such research can result in years
of research assets being irrevocably lost. High severity secret
vulnerabilities include SSH and API key leakages. ‘Printf’ and
‘strcopy’ can lead to buffer overflow and data representation
issues. Both could result in CI downtime, hindering research
speed. High severity secret vulnerabilities include SSH and API
key leakages. SSH keys are used to access a private machine
with the full administrator permissions. Leaked API keys (e.g.,
AWS keys) enable hackers’ access to APIs with CI resources.
A hacker successfully accessing a CI VM or having
unauthorized API usage could lead to significant abuse of the
resources. A common example is running heavy Bitcoin mining
computations. These processes are a common concern for the CI
community due to their significant financial ramifications [1].

 Due to the five identified vulnerable clusters having
different types of repositories, different mitigation strategies can
be taken for each cluster. Insecure function and insecure input
vulnerabilities primarily being in fork repositories suggests that
when users generate forks, they preserve the vulnerabilities
present in the repository at that time. Thus, while the
vulnerabilities in the root repository have been addressed, they
still exist across the forks. These vulnerabilities across clusters
B, C, and E can be addressed by submitting downstream pull
requests to the fork repositories on GitHub. This issues a request
to forks to pull updates that have been made to the root
repository. For root repositories in cluster F that have secret

B

D

E

F

A
H

G
I

C

vulnerabilities, secrets committed to GitHub remain in
repository history. Therefore, addressing secret leakage requires
identifying and replacing compromised secrets.

 Selected user clustering results are presented in Figure 5.
There are 2,401 users in nine clusters with a maximum size of
1,413 users , average of 262, and minimum of 15. The clusters
are color-coded, circled, and labeled.

Fig. 5. Illustration of User Clustering Results (k=9).

Due to the nature of our vulnerability scan, only secret
leakage could be directly linked to users. Clusters A, E, F, G, H
and I all have less than 25 secrets present. Clusters B, C, and D
are comprised of 226 users linked to 2,470 SSH private key
instances. Additionally, cluster D contains 72 API key instances
and 85 configuration files. These vulnerabilities pose the same
threat to CI as the repository secret vulnerabilities. However,
because they are linked to users, the mitigation strategy can be
enhanced. In addition to identifying and replacing these secrets,
CI communities can provide targeted security awareness
trainings to educate their user groups that are linked to secret
leakages. This can prevent users from posting secrets to GitHub.

V. CONCLUSION AND FUTURE DIRECTIONS
 In this research, we present a novel graph embedding
framework to automatically identify groups of vulnerable CI
repositories and users for subsequent targeted mitigation. We
showed that CI organizations present vulnerabilities in their
collaboration spaces and vulnerable communities can be
detected. Future research can analyze multiple organizations of
different sizes and scopes. Developing an interactive portal for
organizations to automatically explore their vulnerabilities is
also a promising research direction. Each direction can help
facilitate enhanced scientific CI cybersecurity.

ACKNOWLEDGMENT
This material is based upon work supported by the NSF

under Grant Numbers DGE-1921485 (SFS), OAC-1917117
(CICI), and CNS-1850362 (CRII and SaTC).

REFERENCES
[1] V. Welch, S. Sons, J. Marsteller, R. Biever, I. Kouper, and M. Corn,

“Trusted CI webinar: Securing Scientific Cyberinfrastructure: The
ResearchSOC,” 2019.

[2] Y. Fan, Y. Zhang , S. Hou, L. Chen, Y. Ye, C. Shi, L. Zhao, and S. Xu,
“idev: Enhancing social coding security by cross-platform user

identification between GitHub and stack overflow,” in IJCAI 2019, pages
2272–2278, 2019.

[3] GitHub.com
[4] M. Meli, M.R. McNiece, and B. Reaves, “How bad can it git?

Characterizing secret leakage in public GitHub repositories,” in 26th
Annual Network and Distributed System Security Symposium, NDSS
2019.

[5] Y. Ye, S. Hou, L. Chen, X. Li, L. Zhao, S. Xu, and Q. Xiong, “ICSD: An
Automatic System for Insecure Code Snippet Detection in Stack
Overflow over Heterogeneous Information Network,” in ACSAC, pages
542–552. ACM, 2018.

[6] R. Bana and A. Arora, “Influence Indexing of Developers, Repositories,
Technologies and Programming languages on Social Coding Community
GitHub,” in Eleventh International Conference on Contemporary
Computing (IC3), pages 1–6, 2018.

[7] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. A. Argoty, “Secure coding
practices in Java: Challenges and vulnerabilities,” in ICSE, 2018.

[8] D. Yang, P. Martins, V. Saini, and C.V. Lopes, “Stack Overflow in
GitHub: Any Snippets There?” in 14th International Conference on
Mining Software Repositories (MSR 2017), pages 280–290, 2017.

[9] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang, “Network
Representation Learning with Rich Text Information” In Proceedings of
the 24th International Joint Conference on Artificial Intelligence, 2015.

[10] A. Grover and J. Leskovec “node2vec: Scalable Feature Learning for
Networks.” In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining – KDD ’16, pages
855–864, 2016.

[11] T. Kipf and M. Welling “Semi-Supervised Classification with Graph
Convolutional Networks.” The International Conference on Learning
Representations, 2017.

[12] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: Large-
scale Information Network Embedding.” In Proceedings of the 24th
International Conference on World Wide Web – WWW ’15, pages 1067–
1077, 2015.

[13] S. Samtani, S. Yu, H. Zhu, M. Patton, and H. Chen, “Identifying SCADA
vulnerabilities using passive and active vulnerability assessment
techniques,” in 2016 IEEE International Conference on Intelligence
and Security Informatics (ISI), pages 25-30, 2016.

[14] E. McMahon, M. Patton, H. Chen, and S. Samtani, “Benchmarking
Vulnerability Assessment Tools for Enhanced Cyber-Physical System
(CPS) Resiliency,” in 2018 IEEE International Conference on
Intelligence and Security Informatics (ISI),pages 100-105, 2018.

[15] L. Neil, S. Mittal, and A. Joshi, “Mining Threat Intelligence about Open-
Source Projects and Libraries from Code Repository Issues and Bug
Reports,” in 2018 IEEE International Conference on Intelligence
and Security Informatics (ISI),pages 7-12, 2018.

[16] A. Kaur and R. Nayyar, “A Comparative Study of Static Code Analysis
tools for Vulnerability Detection in C/C++ and JAVA Source Code.” 3rd
International Conference on Computing and Network Communications,
pages 2023-2029, 2020.

[17] K. A. Torkura and C. Meinel, “Towards Vulnerability Assessment as a
Service in OpenStack Clouds,” IEEE 41st Conference on Local Computer
Networks Workshops (LCN Workshops), Dubai, pages 1-8, 2016.

[18] P. Ciu, X. Wang, J. Pei, and W. Zhu, “A Survey on Network Embedding,”
IEEE TKDE, 2018.

[19] V. M. Vergara, M. Salman, A. Abrol, F. A. Espinoza, and V. D. Calhoun,
“Determining the number of states in dynamic functional connectivity
using cluster validity indexes,” Journal of Neuroscience Methods, vol.
337, page 108651, May 2020.

[20] P. J. Rousseeuw, “Finding Groups in Data: An Introduction to Cluster
Analysis (Wiley Series in Probability and Statistics).” 1990.

[21] T. Caliński, J. Harabasz, and T. Caliliski, “A dendrite method for cluster
analysis,” COMMUNICATIONS IN STATISTICS, vol. 3, no. 1, pages.
1–27, 1974.

[22] D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-
1, no. 2, pp. 224–227, 1979.

B
D

E
F A

H

G

I

C

