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Abstract—The scientific cyberinfrastructure community 

heavily relies on public internet-based systems (e.g., GitHub) to 
share resources and collaborate.  GitHub is one of the most 
powerful and popular systems for open source collaboration that 
allows users to share and work on projects in a public space for 
accelerated development and deployment. Monitoring GitHub for 
exposed vulnerabilities can save financial cost and prevent misuse 
and attacks of cyberinfrastructure.  Vulnerability scanners that 
can interface with GitHub directly can be leveraged to conduct 
such monitoring. This research aims to proactively identify 
vulnerable communities within scientific cyberinfrastructure. We 
use social network analysis to construct graphs representing the 
relationships amongst users and repositories. We leverage 
prevailing unsupervised graph embedding algorithms to generate 
graph embeddings that capture the network attributes and nodal 
features of our repository and user graphs. This enables the 
clustering of public cyberinfrastructure repositories and users 
that have similar network attributes and vulnerabilities.  Results 
of this research find that major scientific cyberinfrastructures 
have vulnerabilities pertaining to secret leakage and insecure 
coding practices for high-impact genomics research. These results 
can help organizations address their vulnerable repositories and 
users in a targeted manner.    

Keywords—GitHub; vulnerability scanning; scientific 
cyberinfrastructure; graph embedding 

I. INTRODUCTION 
Scientific cyberinfrastructure (CI) has become highly 

collaborative, with organizations exchanging over 100 
gigabytes of data per second and hosting their code bases on 
social coding repositories (e.g., GitHub, Stack Overflow, etc.) to 
accelerate collaboration [1]. Well-known NSF-funded projects 
that host their code bases on GitHub include the National Center 

for Atmospheric Research, the Vera C. Rubin Observatory, the 
National Ecological Observatory Network, and others. GitHub 
has also been heavily used by a growing number of software 
developers to share and collaborate on code [2]. It currently has 
36 million users that have generated 100 million repositories in 
49 million projects [3].  A sample screenshot of a GitHub 
repository is shown in Figure 1.  

 
Fig. 1. GitHub Repository Example. Each repository has a (1) username, (2) 
repository name, (3) number of times it has been forked, and (4) commits. 

GitHub data can be categorized as relevant to a repository or 
to a user. Repository metadata includes the owner, forks, and 
commits. A fork is created when a user “forks” a repository, 
copying the contents of the repository into a repository in their 
own account. This enables users to modify the contents of the 
repository without affecting the original forked repository. A 
commit indicates a deletion, modification, or addition to a 
repository made by a user.  User metadata can also be queried, 
including their public repositories, e-mail, name, organization, 
and account age. With social coding repositories, the pace of 



 
 

software development in CI continues to accelerate. However, 
this rapid growth has also led to CI users inadvertently engaging 
in insecure coding practices, accidentally posting confidential 
secrets (e.g., passwords), and exposing numerous other 
vulnerabilities. Each of these issues can enable a malicious 
hacker to execute cyber-attacks that result in significant and 
often irreversible scientific CI information and financial losses.   

In light of these potentially significant ramifications, we 
propose a novel research framework to identify vulnerable 
groups of repositories and users within a major scientific CI 
community. This framework draws upon state-of-the-art 
techniques in vulnerability assessment, social network analysis, 
graph embedding, and clustering. Our research provides a 
principled approach for CI security administrators to proactively 
identify groups of repositories and users with related types of 
vulnerabilities for targeted remediation and mitigation. 

The remainder of this paper is organized as follows. First, 
we review literature on social coding repositories, social 
network analysis, graph embedding techniques, and 
vulnerability scanning approaches. Second, we present our 
research design. Third, we summarize our experimental results. 
Finally, we discuss future directions and conclude this research. 

II. LITERATURE REVIEW 
We review three key areas of literature to guide this research. 

First, we review social coding repository research to identify 
past efforts on detecting vulnerabilities in social coding 
platforms. Second, we review social network analysis, focusing 
on bipartite networks, and graph embedding research. Finally, 
we review vulnerability scanning methods to identify past 
methods used to scan social coding platforms for vulnerabilities.  

A. Social Coding Repository Research 
Past social coding research has focused primarily on high-

level user analysis and low-level code snippet analysis. Most 
work has utilized GitHub and Stack Overflow data to conduct 
cross platform analysis, detect insecure code snippets, examine 
secret leakage, and identify key users [2], [4-8]. Past research 
that has used GitHub focused on users or repositories, but not 
both. Limited research utilizes social network analysis and 
vulnerability scanning concurrently to identify key groups of 
repositories and/or users possessing similar vulnerabilities. Past 
research that focused on user identification did not conduct any 
vulnerability assessment. The relationship between repositories 
and users on GitHub is conducive to a social network analysis 
approach to identify influential repositories and users to enhance 
the results of vulnerability scans. 

B. Social Network Analysis and Graph Embedding 
Techniques 
Social network analysis is used to study relationships 

between connected entities.  A social network is comprised of 
nodes and edges. Nodes are entities and edges are their 
relationships. Nodes can be labeled with features. If a network 
contains two clearly defined node types (e.g., repositories and 
users), a bipartite network configuration can be used to present 
it. A bipartite network is comprised of two sets of nodes having 
no edges connecting any two nodes in the same set. The value 
of a bipartite network representation is that it can project into 

two monopartite networks. Each projected network shows 
relationships between nodes of the same type. For example, if 
two repositories, A and B, both have a connection to the same 
user, C, then the repository monopartite graph projection will 
have an edge connecting A and B. Generating monopartite 
graphs enables calculation of key nodal and topological level 
attributes (e.g., degree, betweenness, graph density, etc.).   

Constructing a network allows for clear identification of key 
users and repositories. However, identifying groups of 
vulnerable users and repositories requires embedding nodes 
based on their relationships and the vulnerabilities they possess. 
Graph embedding techniques utilize these network attributes to 
generate graph embeddings that represent the network in a low-
dimensional space [9]. Graph embedding methods typically 
operate in a supervised or unsupervised fashion. The selection 
of graph embedding methods is contingent upon the graph 
formulation (e.g., directed or undirected), available data (e.g., 
nodal features), and whether a priori knowledge (i.e., labels) is 
available. Since our proposed application has limited label data, 
grouping repositories and users based on their vulnerabilities 
requires an unsupervised approach.  

 Unsupervised graph embedding methods typically operate 
on one of four functions to create embeddings: matrix 
factorization (e.g., DeepWalk) [9], random walk (e.g., 
Node2vec) [10], deep representation learning (e.g., Graph 
Convolutional Autoencoder (GCAE)) [11], or edge 
reconstruction (e.g., Large-scale Information Network 
Embedding (LINE)) [12]. Matrix factorization is preferable for 
the proposed research as it can account for graph and nodal 
features when generating its embeddings. This supports analysis 
of vulnerabilities associated with the repositories and users in 
our graph. Other approaches do not provide this capability. 
Additionally, embeddings generated by matrix factorization are 
suitable for downstream tasks including classification and 
clustering. As a result, they can facilitate the proposed analysis 
of identifying groups of vulnerable users and repositories.  

C. Vulnerability Scanning  
Traditional vulnerability scanning for IT environments 

consist of scanners (e.g., Nessus, Burp Suite) that monitor 
network traffic and examine IoT device characteristics [13-14]. 
Vulnerability scanning also includes scanning software for 
vulnerabilities [15]. Software vulnerability scanning research 
focuses on two major areas: scanning software as it is being 
developed and scanning published (static) software.  

 Social coding repositories consist of published software. 
Static vulnerability scanners have been developed to scan 
popular coding languages (e.g., Python, C, etc.) for insecure 
coding practices [16-17] as well as scanning multiple file types 
for secrets [4]. Scanning tools are selected based on the 
programming language, coverage, and goal of the vulnerability 
scan. However, there is limited research that scans social coding 
repositories for insecure coding practices using static 
vulnerability scanners. Moreover, how these vulnerabilities can 
be included as features in networks representing repositories and 
users to create fine-grained groups has not yet been studied.  

D. Research Gaps and Questions 
 We  identified   two  key  research  gaps  from  our  literature 



 
 

Fig. 2. Proposed Research Framework. 

review. First, research identifying insecure code present in 
social coding platforms has been conducted. However, we found 
no large-scale vulnerability assessment study of a large 
scientific cyberinfrastructure user community. Second, limited 
research has combined social network analysis and vulnerability 
assessment to identify groups of users and repositories based on 
their relationships and vulnerabilities. Based on these research 
gaps we propose the following questions: 

• How can we identify vulnerabilities within GitHub 
repositories in scientific cyberinfrastructure? 

• How can we pinpoint key repositories and users 
based on their vulnerabilities and relationships? 

• How can we group repositories and users based on 
their vulnerabilities and relationships in scientific 
cyberinfrastructure?  

III. RESEARCH DESIGN  
 We present our proposed research framework in Figure 2. 
The framework has four major components: Research Testbed, 
Graph Representation and Projection, Graph Embedding, and 
Evaluation. We describe each in the following sub-sections.  

A. Research Testbed: GitHub Collection and Vulnerability 
Assessment 
We identified a large-scale and long-standing scientific CI 

for collection and analysis. We anonymized their name to 
protect their privacy. This NSF-funded CI provides 
computational resources to an international user-base of over 
75,000 life science researchers working with large datasets and 
conducting high-impact scientific analysis (e.g., genomics, 
black hole imaging). The CI has 258 repositories on GitHub 
relevant to their codebase, environment, and documentation that 
are used by 2,549 users across 424 organizations.  

Our research testbed for the targeted scientific CI is 
comprised of a GitHub collection and vulnerability assessment. 
For the former, we used GitHub’s API to collect all GitHub data 
relevant to the community, including repositories, their users, 
and their full history of development. Our GitHub collection 
consists of four groups of repositories: repositories created by 
the main GitHub account (root repositories), forks of root 
repositories, repositories returned by querying GitHub’s search 
API with the name of the organization as a keyword (searched 
repositories), and forks of searched repositories. We also 

identified 2,401 accounts interacting with the host 
organization’s GitHub ecosystem by making a change (commit) 
to any repository in our collection.  A breakdown of the four 
repository types is shown in Table I.  

TABLE I.  SUMMARY OF SELECTED GITHUB REPOSITORIES 
 

Root 
Repositories 

Forks of 
Root 

Searched 
Repositories 

Forks of 
Searched 

Total 

Repositories 84 244 174 121 623 
Forks 244 8 121 0 373 
Contributors 226 93 152 92 563 
Issues 132 39 44 37 252 
Languages 45 25 42 25 54 (distinct) 
Top 3 
Languages 

C++, 
Python, C 

Python, 
JavaScript, 
Shell 

Python, 
HTML, C 

Python, 
Java, 
Clojure 

Python, 
JavaScript, Java 

 

Python and C/C++ are the most common languages used in 
this CI (accounting for 56% of all code). Therefore, we identify 
software vulnerability scanners developed for those languages. 
We reviewed 14 vulnerability scanners and selected four: 
Bandit, Flawfinder, Gitrob, and Trufflehog. These were selected 
based on their coverage, usability, age, and GitHub usage 
[4][16-17]. Bandit scans Python files with 70 vulnerability tests, 
Flawfinder scans C/C++ files for 18 different common weakness 
enumerations (CWEs) outlined by MITRE, Gitrob scans GitHub 
for secrets and log files, and Trufflehog scans GitHub for 
secrets. Gitrob and Trufflehog are designed specifically to for 
GitHub. Therefore, they can scan repository histories and link 
detected vulnerabilities to the users who posted them. 

The four identified scanners return 13 major types of 
vulnerabilities. These can be broadly categorized into three 
groups: secrets, insecure coding, and attack susceptibilities. 
Secret vulnerabilities include potential password/key leakage, 
an occurrence of the string “password” in a file, weak 
cryptography, and filetypes known to contain secrets (i.e. 
configuration files). Insecure coding vulnerabilities include bad 
file permissions, insecure functions, insecure modules, 
deprecated libraries, and insecure internet connections. Finally, 
attack susceptibilities include insecure user inputs, SQL 
injections, XML attacks, and XSS attacks. 

Overall, Bandit returned 31,375 vulnerabilities across 188 
repositories. Key vulnerabilities returned by Bandit included 
25,678 insecure functions, 1,579 insecure modules, 1,352 
secrets, and 1,089 insecure inputs. Flawfinder identified 27,200 



 
 

vulnerabilities across 71 repositories. These included 23,935 
insecure inputs, 2,055 insecure functions, 972 insecure 
permissions, and 170 weak cryptographic instances.  Gitrob and 
identified 121 secret instances and 80 configuration/log files 
across 13 repositories. Trufflehog identified 7,381 secret 
instances across 623 repositories.  

B. Graph Representation and Projection 
The relationship between users and repositories is suitable 

for bipartite network analysis. The value of representing this 
relationship in a bipartite network is that it can be projected into 
two monopartite networks to identify key users and repositories. 
We formally denote our bipartite graph as G=(U, R, E, F) where 
G is a directed graph, U is the node set, {u1, u2, u3, … un}, of all 
users that have contributed to a repository, R is the node set, {r1, 
r2, r3, … rn}, of all repositories, E is the edge set, {e1, e2, e3, … 
en}, of directed edges from a user contributing to a repository, 
and F is the feature matrix of each node representing the number 
of vulnerabilities each user or repository possesses.  

We defined two feature sets: one for users and one for 
repositories. The user feature set includes potential 
passwords/keys, occurrences of the string “password” in a file, 
and sensitive filetypes. Labeling users with these features 
supports clustering analysis of users with similar secret leakage 
behavior. The repository feature set included all 13 identified 
vulnerabilities. The defined repository feature set supports 
clustering analysis of repositories with similar vulnerabilities 
across all three types of vulnerabilities identified in our scan. We 
projected the bipartite network into repository and user 
monopartite graphs. Monopartite graphs support analysis of key 
topological and node level metrics. We summarize each metric 
and their corresponding security implications in Table II.   

TABLE II.  SUMMARY OF SELECTED TOPOLOGICAL AND NODE LEVEL 
METRICS AND THEIR SECURITY IMPLICATIONS 

Category Metric Definition Security Implications 
Network Graph 

Density 
Sum of edges divided 
by total possible edges 

Inter-dependence of 
repositories/users 

Diameter Maximum geodesic 
distance from a node 
to all other nodes  

Indicates the breadth and 
diversity of a repository/user 

Average path 
length 

Average distance 
between two nodes 

Average dependencies 
between repositories/users 

Node 

 

Number # of network nodes Number of repositories/users 

Overall 
Degree 

Sum of a node’s in 
and out degree 

Overall importance of the 
repository/user 

Betweenness Proportion of shortest 
paths passing through 
a node. 

Repository that has many 
shared contributors/User that 
commits to many repositories 

C. Graph Embedding and Evaluation 
 Grouping users and repositories based on their relationships 
and vulnerabilities without a priori knowledge requires an 
unsupervised graph embedding method that accounts for textual 
nodal features and operates on undirected graphs. Therefore, we 
select text associated Deep Walk (TADW) [9] to generate graph 
embeddings for the repository and user graphs. The TADW 
embedding process is as follows: 

• Step 1: Matrix factorization is used to learn vertex 
representation according to network structure. 

• Step 2: Node feature matrix is obtained from the 
dataset. 

• Step 3: The vertex matrix and feature matrix are 
concatenated to build a unified 2k-dimensional vertex 
embedding matrix for network representation. 

• Step 4: Steps 1-3 repeat for all graphs in a set. 

 Evaluating embedding quality is essential for ensuring that 
the downstream task (in this study, clustering) performs well. 
Therefore, we evaluate the quality of the graph embeddings with 
Mean Average Precision (MAP). MAP evaluates how well a 
graph embedding model reconstructs the original graph by 
calculating the average precision of each node [18]. MAP 
returns a scalar value from zero to one. Higher quality 
embeddings have a MAP close to one. Scores 0.70 and higher 
are commonly accepted as high-quality. Second, we evaluate the 
quality of graph embedding clusters generated with k-means 
clustering. Cluster quality is evaluated based on three well-
known clustering measures: silhouette, Calinski-Harabasz (CH), 
and Davies Bouldin (DB) [19]. Silhouette represents the 
possible data clusters using average dissimilarity [20]. CH 
examines inter-cluster separation and intra-cluster compactness 
as a ratio [21]. DB calculates the ratio of intra-cluster to inter-
cluster distances [22]. High quality clusters have a silhouette 
close to one, a high CH, and a DB close to zero. 

IV. RESULTS AND DISCUSSION 
We present our results below. First, we discuss our GitHub 

graph representation and projection findings. Second, we 
discuss our graph embedding evaluation results for both our user 
and repository networks. Finally, we present our clustering 
images and interpret selected key clusters.  

A. Graph Representation and Projection 
 Topological and node level summary statistics for the overall 
bipartite graph and each monopartite graph projection are 
presented in Table III. 

TABLE III.  SUMMARY STATISTICS FOR BIPARTITE GRAPH AND 
MONOPARTITE GRAPH PROJECTIONS 

Category Metric Bipartite 
(Repository and 
User) Graph 

Monopartite 
Repository 
Graph 

Monopartite 
User Graph 

Network Number of Nodes 3,019 618 2,401 
Number of Edges 8,606 35,703 1,065,599 
Graph Density 0.002 0.19 0.37 
Network Diameter 13 6 6 
Average Path Length 4.43 2.07 1.81 

Node Max Degree 1,342 294 1,942 
Min Degree 0 0 0 
Average Degree 5.7 115.54 887.63 
Average Betweenness 4,511.94 203.63 52.41 

 
 We make several key observations from these results. First, 
both repository and user networks have relatively high average 
degrees of 115 and 887, respectively. This indicates that the 
majority of nodes in both graphs have importance to the 



 
 

network. Second, the user graph has a higher density than the 
repository graph. This suggests that users have varying interests 
across all repositories, but within groups of repositories, users 
have a high interdependence. Finally, we observe that the user 
graph has a low average path length, meaning that all users can 
be connected via a short path (1.81). This indicates an active user 
base across our CI’s repositories. 

B. Graph Embedding Evaluation 
MAP was calculated for TADW-generated repository and 

user graph embeddings. Each graph’s full feature set was used 
when generating the embeddings. The user and repository 
embeddings achieved strong MAP scores of 0.94 and 0.74, 
respectively. As such, we cluster the TADW-generated 
embeddings and evaluate for both repositories and users. 

C.  Clustering Results 
 We evaluated k-means clustering for cluster sizes four to 
nine and compared the quality of the clusters in terms of 
silhouette, CH, and DB. As cluster size increases, the quality of 
the clusters improves; silhouette increases, CH remains high and 
DB decreases. Performance peaked at k=9 for both repositories 
and users with a silhouette of 0.27 and 0.79, CH of 66 and 1,479, 
and DB of 1.58 and 1.28, respectively. Therefore, we use k=9 to 
generate clustering results for both repositories and users. 
Clustering results are presented in Figure 3. Each cluster is 
color-coded, circled, and labeled. 

 
Fig. 3. Repository Clusters. 

Overall, the maximum repository cluster size was 177, the 
average was 76, and the minimum was 20. Figure 3 illustrates 
that the repository clusters are well separated and have relatively 
small intra-cluster distances. Cluster A is 87% searched 
repositories. Cluster B is 83% root forks. Clusters C, E, and I are 
primarily fork repositories (91, 68, and 69%, respectively). All 
repository types are represented in clusters D and G. Cluster F 
is 79% root and searched repositories. Cluster H is 97% searched 
fork repositories. We summarize the number of each 
vulnerability in each cluster in Figure 4 to further understand 
their composition.  

 
Fig. 4. Number of Vulnerabilities in Repository Clusters. 

Clusters A, G, H and I have less than 1,000 vulnerabilities. 
Clusters B and D have a high number of insecure input 
vulnerabilities with over 7,000 occurrences each. Clusters C and 
E have a high number of insecure function vulnerabilities with 
3,031 and 17,898, respectively. Lastly, secret related 
vulnerabilities are primarily present in cluster F, with 5,415 
instances of the string “password” and 3,586 potential 
secrets/keys. Since the prevailing vulnerabilities are insecure 
functions, insecure input, and secret leakage, we examine these 
closer to examine the potential threat they pose to CI.   

 High severity insecure function vulnerabilities include the 
use of ‘mktemp’ in Python to create temporary files and ‘printf’ 
in C which accepts a format string from an external source.  High 
severity insecure input vulnerabilities include ‘yaml load’ in 
Python and ‘strcopy’ in C. ‘Mktemp’ allows an attacker to 
modify a file before it is opened. Similarly, ‘yaml load’ can 
allow remote code execution to cause research data loss. 
Repositories with this vulnerability are commonly used for 
genome sequencing. Breaching such research can result in years 
of research assets being irrevocably lost. High severity secret 
vulnerabilities include SSH and API key leakages. ‘Printf’ and 
‘strcopy’ can lead to buffer overflow and data representation 
issues. Both could result in CI downtime, hindering research 
speed. High severity secret vulnerabilities include SSH and API 
key leakages.  SSH keys are used to access a private machine 
with the full administrator permissions. Leaked API keys (e.g., 
AWS keys) enable hackers’ access to APIs with CI resources.  
A hacker successfully accessing a CI VM or having 
unauthorized API usage could lead to significant abuse of the 
resources. A common example is running heavy Bitcoin mining 
computations. These processes are a common concern for the CI 
community due to their significant financial ramifications [1].  

  Due to the five identified vulnerable clusters having 
different types of repositories, different mitigation strategies can 
be taken for each cluster. Insecure function and insecure input 
vulnerabilities primarily being in fork repositories suggests that 
when users generate forks, they preserve the vulnerabilities 
present in the repository at that time. Thus, while the 
vulnerabilities in the root repository have been addressed, they 
still exist across the forks. These vulnerabilities across clusters 
B, C, and E can be addressed by submitting downstream pull 
requests to the fork repositories on GitHub. This issues a request 
to forks to pull updates that have been made to the root 
repository. For root repositories in cluster F that have secret 
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vulnerabilities, secrets committed to GitHub remain in 
repository history. Therefore, addressing secret leakage requires 
identifying and replacing compromised secrets.  

 Selected user clustering results are presented in Figure 5. 
There are 2,401 users in nine clusters with a maximum size of 
1,413 users , average of 262, and minimum of 15. The clusters 
are color-coded, circled, and labeled. 

 
Fig. 5. Illustration of User Clustering Results (k=9). 

Due to the nature of our vulnerability scan, only secret 
leakage could be directly linked to users. Clusters A, E, F, G, H 
and I all have less than 25 secrets present. Clusters B, C, and D 
are comprised of 226 users linked to 2,470 SSH private key 
instances. Additionally, cluster D contains 72 API key instances 
and 85 configuration files. These vulnerabilities pose the same 
threat to CI as the repository secret vulnerabilities. However, 
because they are linked to users, the mitigation strategy can be 
enhanced. In addition to identifying and replacing these secrets, 
CI communities can provide targeted security awareness 
trainings to educate their user groups that are linked to secret 
leakages. This can prevent users from posting secrets to GitHub. 

V. CONCLUSION AND FUTURE DIRECTIONS 
 In this research, we present a novel graph embedding 
framework to automatically identify groups of vulnerable CI 
repositories and users for subsequent targeted mitigation. We 
showed that CI organizations present vulnerabilities in their 
collaboration spaces and vulnerable communities can be 
detected. Future research can analyze multiple organizations of 
different sizes and scopes. Developing an interactive portal for 
organizations to automatically explore their vulnerabilities is 
also a promising research direction. Each direction can help 
facilitate enhanced scientific CI cybersecurity.  
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