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In this tutorial, we provide a didactic treatment of the emerging topic of signal processing on higher-
order networks. Drawing analogies from discrete and graph signal processing, we introduce the building
blocks for processing data on simplicial complexes and hypergraphs, two common higher-order network
abstractions that can incorporate polyadic relationships. We provide brief introductions to simplicial com-
plexes and hypergraphs, with a special emphasis on the concepts needed for the processing of signals

Keywords: supported on these structures. Specifically, we discuss Fourier analysis, signal denoising, signal interpola-
Simplicial complex tion, node embeddings, and nonlinear processing through neural networks, using these two higher-order
Hypergraph network models. In the context of simplicial complexes, we specifically focus on signal processing using
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the Hodge Laplacian matrix, a multi-relational operator that leverages the special structure of simplicial
complexes and generalizes desirable properties of the Laplacian matrix in graph signal processing. For hy-
pergraphs, we present both matrix and tensor representations, and discuss the trade-offs in adopting one
or the other. We also highlight limitations and potential research avenues, both to inform practitioners

and to motivate the contribution of new researchers to the area.
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1. Introduction

Graphs provide a powerful abstraction for systems consisting
of (dynamically) interacting entities. By encoding these entities
as nodes and the interaction between them as edges in a graph,
we can model a large range of systems in an elegant, concep-
tually simple framework. Accordingly, graphs have been used as
models in a broad range of application areas [1,2], including neu-
roscience [3,4], urban transportation [5], and social sciences [6].
Many of these applications may be understood in terms of graph
signal processing (GSP), which provides a unifying framework for
processing data supported on graphs. In GSP, we model complex
data dependencies as the edges of graphs that relate signals on
the nodes. In this way GSP extends and subsumes classical signal
processing concepts and tools such as the Fourier transforms, filter-
ing, sampling and reconstruction of signals, and others, to a graph-
based setting [7-9].
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To enable computations with graph-based data, we typically en-
code the graph structure in an adjacency matrix or its associated
(normalized or combinatorial) Laplacian matrix. Rather than con-
sidering these matrices as a simple table that records pairwise cou-
pling between nodes, it is fruitful to think of these matrices as lin-
ear operators that map data from the node space to itself. By ana-
lyzing the properties of these maps - e.g., their spectral properties
- we can reveal important aspects both about the graphs them-
selves as well as signals defined on the nodes. Choosing an appro-
priate matrix operator associated with the graph structure is thus
a key factor in gaining deeper insights about graphs and graph sig-
nals. In GSP, we call such maps that relate data associated with dif-
ferent nodes graph shift operators. Graph shift operators are natural
generalizations of the classical time delay, and constitute the fun-
damental building blocks of graph filters and other more sophisti-
cated processing architectures [10]. The rapid advancement of GSP
has benefited significantly from spectral and algebraic graph the-
ory [11], in which the properties of matrices such as the adjacency
matrix and the Laplacian have been extensively studied.

By construction, graph-based representations do not account
for interactions between more than two nodes, even though such
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multi-way interactions are widespread in complex systems: multi-
ple neurons can fire at the same time [12], biochemical reactions
usually include more than two proteins [13], and people interact
in small groups [14]. To account for such polyadic interactions, a
number of modeling frameworks have been proposed in the liter-
ature to represent higher-order relations, including simplicial com-
plexes [15], hypergraphs [16], and others [17]. However, in compar-
ison to this line of work on representing the structure of complex
multi-relational systems, the literature on the data processing for
signals defined on higher-order networks is comparatively sparse.
In this tutorial paper, we focus on the topic of signal processing on
simplicial complexes and hypergraphs. Following a high-level didac-
tic style, we concentrate on the algebraic representations of these
objects, and discuss how the choice of this algebraic representa-
tion can influence the way in which we analyze and model signals
associated with higher-order networks.

Similarly to graphs, higher-order interactions can be encoded
in terms of matrices or, more generally, tensors. Two of the most
prominent abstractions for such polyadic data are simplicial com-
plexes [15] and hypergraphs [16]. As we will see in the follow-
ing, both of these abstractions have certain advantages and dis-
advantages: Hypergraphs are somewhat more flexible in terms
of the relationships they can represent, which can be desirable
in terms of modeling. Indeed a simplicial complex may be in-
terpreted as a specific hypergraph for which only certain sets of
hyperedges are allowed. The advantage of simplicial complexes,
however, is that this additional structure provides deep links to
computational geometry and algebraic topology, which can facil-
itate both the computation and interpretation of the processed
signals [18].

Analogously to the graph case, we encode higher-order relations
in terms of incidence matrices or tensors that provide an alge-
braic description of these two data models. Clearly, the choice of
the linear (or multilinear) operator representing higher-order inter-
actions will matter for revealing interesting properties about the
data, leading to the key question of how to choose an appropri-
ate abstraction for this kind of data. In comparison to graphs, the
analysis of higher-order interaction data is more challenging due to
several factors: (i) There exists a combinatorially large number of
possible interactions: two-way, three-way, and so on. Hence, very
large matrices and tensors are needed to capture all these rela-
tions; (ii) The large dimensionality of these representations gives
rise to computational and statistical issues on how to efficiently
extract information from higher-order data; and (iii) The theory on
the structure of higher-order networks is largely unexplored rel-
ative to that of graphs. In the following, we will primarily focus
on the question of choosing an appropriate algebraic descriptor
to implement various signal processing tasks on simplicial com-
plexes and hypergraphs. Specifically, we will consider the mod-
eling assumptions inherent to an abstraction based on simplicial
complexes versus hypergraphs, and discuss the relative advantages
and disadvantages of a number of associated matrix and tensor de-
scriptions that have been proposed. To make our discussions more
concrete we provide a number of illustrative examples to demon-
strate how the choice of an algebraic description can directly effect
the type of results we can obtain.

Outline. We first briefly recap selected concepts from signal
processing and GSP in Section 2. In Section 3, we present tools
from algebraic topology and their use in representing higher-order
interactions with simplicial complexes. In Section 4, we describe
methods to analyze signals defined on simplicial complexes. We
then turn our attention to hypergraphs in Section 5, and fo-
cus on the modeling of higher-order interactions via hypergraphs.
Section 6 then builds on these models and outlines some of the ex-
isting methods for signal processing and learning on hypergraphs.
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Finally, in Section 7, we close with a brief discussion summarizing
the main takeaways and laying out directions for future research.

2. Signal processing on graphs: a selective overview

Before discussing signal processing on higher-order networks,
we revisit principles from signal processing and GSP [7-9] and
recall some important problem setups, which will later guide
our discussion on higher-order signal processing. In this tutorial,
we focus on undirected graphs (and higher-order networks), al-
though signal processing on directed graphs has been studied as
well [19,20].

2.1. Central tenets of discrete signal processing

In discrete signal processing (DSP), signals are processed by fil-
ters. A linear filter H is an operator that takes a signal as input and
produces a transformed signal as output. This linear filtering oper-
ation is represented by a matrix-vector multiplication sy, = Hs;,
and defines a linear system. A special role is played by the circular
time shift filter S, a linear operator that delays the signal by one
sample. This so-called shift operator underpins the class of time
shift-invariant filters, which is arguably the most important class
of linear filters in practice. Specifically, in classical DSP, every lin-
ear time shift-invariant filter can be built based on a matrix poly-
nomial of the time-shift S [21].

A filter represented by the matrix H is shift-invariant if it com-
mutes with the shift operator, i.e., SH = HS. This implies that H and
S preserve each others eigenspaces. Since the cyclic shift S is a cir-
culant matrix that is diagonalizable by discrete Fourier modes, this
implies that the action of any shift-invariant linear filter in DSP can
be understood by means of a Fourier transform. Specifically, the
eigenvectors of the cyclic time-shift operator provide an orthogo-
nal basis for linear time shift-invariant processing of discrete-time
signals. Thus time-shift invariant filters are naturally interpretable
by Fourier analysis [21].

2.2. Graphs, incidence matrices, and the graph Laplacian

An undirected graph G is defined by a set of nodes V=
{vy,---, vy} with cardinality N and a set of edges £ with cardi-
nality E composed of unordered pairs of nodes in V. Edges can
be stored in the symmetric adjacency matrix A whose entries are
given by A;j =Aj; =1 if {i, j} € £ and 0 otherwise. Given the de-
gree matrix D = diag(A1), the graph Laplacian associated with G
is given by L = D — A. Alternatively to the adjacency matrix A, we
can collect interactions between the nodes in the graph via the
incidence matrix B € RN*E, For each edge e we define an arbi-
trary orientation, which we denote by e = (i, j). We think of such
an edge e as being oriented from tail node i to its head node j.
Based on this orientation, the incidence matrix B is defined such
that Bj, = —Bje = —1 and By, = 0 otherwise. Using this definition
we can provide an equivalent expression for the graph Laplacian
as L=BB". In the remainder of this paper, we choose an edge-
orientation induced by the lexicographic ordering of the nodes, i.e.,
edges will always be oriented such that they point from a node
with lower index to a node with higher index. However, we em-
phasize that this orientation is arbitrary and is distinct from the
notion of a directed edge.

2.3. Graph signal processing

GSP generalizes the concepts and tools from DSP to signals de-
fined on the nodes of graphs. A graph signal s:V — R is a map
from the set of nodes V to the set of real numbers R. This de-
fines an isomorphism between the set of nodes and the set of real-
valued vectors of length N, so any graph signal may be represented
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Fig. 1. Graph signal and its Fourier decomposition. A Graph signal defined on the nodes of the graph. B Eigenvector and eigenvalue pairs of the graph Laplacian L.
We visualize each of the eigenvectors in terms of a graph signal and order them from low to high graph frequencies, corresponding to a decrease in “smoothness”. The
decomposition of the node signal s into this basis provides the Fourier coefficients in § as indicated at the bottom of each eigenvector representation.

as a vector s = [s1,53,...,5y]T € RN. An example of a graph signal
can be seen in Fig. 1A, where the signal values at each node are in-
dicated by the node color. Similarly to DSP, filtering in GSP can be
represented by a matrix-vector multiplication operation sy, = Hs;j,.
The analog of the shift operator S in the GSP setting is any operator
that captures the relational dependencies between nodes, includ-
ing the adjacency matrix A, the Laplacian matrix L, or variations of
these operators [8,9].

As we are considering undirected graphs here, the choice of a
shift operator imparts a natural orthogonal basis U in which to
represent the signal. Given the eigenvalue decomposition of the
shift operator S = UAUT and a filtering weight function h: R — R,
we can express any shift-invariant filter in this basis as:

N
H=) h(yuu; =Uh(A)U, (1)
k=1

where we have used the shorthand notation h(A) =
diag(h(Aq),---,h(AyN)). By analogy to the Fourier basis in DSP,
the eigenvectors U of the shift operator are said to define a graph
Fourier transform (GFT), and h(A) is called the frequency response
of the filter H. Specifically, the GFT of a graph signal s is given by
§ = UTs, while the inverse GFT is given by s = US§ [7,9].

As our discussion emphasizes, any filtered signal sy, = Hs;, on
an undirected graph can be understood in terms of three steps: (i)
project the signal into the graph Fourier domain, i.e., express it in
the orthogonal basis U (via multiplication with UT); (ii) amplify
certain modes and attenuate others (via multiplication with h(A)),
and (iii) push back the signal to the original node domain (via
multiplication with U). The choice of an appropriate shift operator
is thus crucial, as its eigenvectors define the basis for any shift-
invariant graph filter for undirected graphs. We will encounter this
aspect again when considering signal processing on higher-order
networks.

In the context of GSP, we focus on the graph Laplacian as a shift
operator. This choice has the following advantages. First, L is pos-
itive semidefinite, so that all the graph frequencies (eigenvalues)
are real and non-negative. This enables us to order the GFT ba-
sis vectors (eigenvectors) in a natural way. Second, by considering
the variational characterization of the eigenvalues of the Laplacian
in terms of the Rayleigh quotient r(s) =sTLs/s's =Y";; A;;(si —

s]-)z/(2||s||2), it can be shown that eigenvectors associated with
small eigenvalues have small variation along the edges of the graph
(low frequency) and eigenvectors associated with large eigenval-
ues have large variation along edges (high frequency). In particular,
eigenvectors associated with eigenvalue O are constant over con-
nected components. An illustration of this is given in Figure 1B,
which displays the individual basis vectors of the graph Laplacian,
and the coefficients with which these basis vectors would have to
be weighted to obtain the previously considered graph signal in
Figure 1A.

2.4. Graph signal processing: illustrative problems and applications

Over the last few years, several relevant problems have been
addressed using GSP tools including sampling and reconstruction
of graph signals [22-24], (blind) deconvolution [25,26], and net-
work topology inference [27-30], to name a few. We now intro-
duce a subset of illustrative problems and application scenarios
that we will revisit in the context of higher-order signal process-
ing.

2.4.1. Fourier analysis: node embeddings and Laplacian eigenmaps

As discussed above, the GFT of a graph signal provides a fun-
damental tool of GSP. While we are often interested in filtering a
signal and representing it in the vertex space, the Fourier represen-
tation can also be used to gain insight about specific graph com-
ponents by considering a frequency domain representation of the
indicator vector associated with the vertices of interest. In partic-
ular, by considering a truncated Fourier domain representation of
the indicator vectors of individual nodes, we can recover a num-
ber of spectral node embeddings that have found a broad range
of applications (see also [31] for a related discussion). Specifically,
by considering a truncated Fourier domain representation based on
the normalized Laplacian as a shift operator, we recover a variant
of the so-called Laplacian eigenmaps [32], and by additionally in-
corporating a scaling associated with the eigenvalues, we can re-
cover the diffusion map embedding [31,33].

We remark that while most of these spectral node embeddings
focus on low frequency eigenvectors, high frequency components
can also be of interest for embeddings. For instance, if the graph
to be analyzed is almost bipartite, then the eigenvectors associated
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with the highest frequencies of the graph Laplacian will reveal the
two (almost) independent node sets in the graph. Other types of
(nonlinear) node embeddings may also be viewed through a GSP
lens, e.g., certain node embeddings derived from graph neural net-
works (cf. Section 2.4.4). We refer to [34] for an extensive discus-
sion on the highly active area of node representation learning on
graphs.

2.4.2. Signal smoothing and denoising

A canonical task in GSP is to denoise (smooth out) a noisy sig-
nal y =y, + € € RN, where yj is the true signal we aim to recover
and € is a vector of zero-mean white Gaussian noise [35]. A natural
assumption is that the signal should be smooth on nearby nodes
in terms of the underlying graph, so that neighboring nodes will
tend to take on similar values. Following our above discussion, this
amounts to assuming that the signal has a low-pass characteristic,
i.e.,, can be well-represented by the low frequency eigenvectors of
the Laplacian. Indeed, the eigenvectors of the Laplacian associated
with low eigenvalues are smooth on clusters, i.e. their total varia-
tion is low within clusters and high over edges between clusters.

We formalize the above problem in terms of the following op-
timization problem [27,36]

min{[§ -] + o3 "15). (2)

where ¥ is the estimate of the true signal yo. The coefficient « > 0
can be interpreted as a regularization parameter that trades-off the
smoothness promoted by minimizing the quadratic form §'Ly =
i Ai Ui —¥7)?/2 and the fit to the observed signal in terms of
the squared 2-norm. The optimal solution for (2) is given by [27]

y==u+al)ly. 3)

A different procedure to obtain a signal estimate is the iterative
smoothing operation

y==a-publy. (4)

for a certain fixed number of iterations k and a suitably chosen up-
date parameter . This may be interpreted in terms of k gradient
descent steps of the cost function §TL§.

Matching the signal modeling assumption of a smooth signal,
the denoising and smoothing operators defined in (3) and (4) are
instances of low-pass filters, i.e., filters whose frequency responses
h(LA) = diag(UTHU) are vectors of non-increasing (decreasing) val-
ues. In the GSP context, the low-pass filtering operation guarantees
that variations over neighboring nodes are smoothed out, in line
with the intuition of the optimization problem defined in (2).

2.4.3. Graph signal interpolation

Another common task in GSP is signal interpolation, which
can alternatively be interpreted in terms of graph-based semi-
supervised learning [23,37]. Suppose that we are given signal values
(Iabels) for a subset of the nodes VL c V of a graph. Our goal is to
interpolate these assignments and to provide a label to all unla-
beled nodes W =V \ VL.

As in the signal denoising case, it is natural to adopt a smooth-
ness assumption that posits that well-connected nodes have simi-
lar labels [38]. This motivates the following constrained optimiza-
tion problem [39]

i 078 ®
st. yi=y; forall v; e VE,

which aims to minimize the sum-of-squares label difference be-
tween connected nodes under the constraint that the observed
node labels y; should be accounted for in the optimal solution.
Notice that the objective function in (5) can again be written
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in terms of the quadratic form of the graph Laplacian | BTyui =
Yijee Ti 7)7]')2 = §'Ly, highlighting the low-pass modeling as-
sumption inherent in the optimization problem (5).

2.4.4. Graph neural networks

Motivated by spectral interpretations of filters and shift oper-
ators in the domain of graph signal processing, graph neural net-
works [40,41] have emerged as a popular approach to incorpo-
rate nonlinearities in the graph signal processing pipeline for pur-
poses of node embedding [42-44], node classification [45,46], and
graph classification [46]. Graph neural network architectures com-
bine notions of graph filtering, permutation invariance, and graph
Fourier analysis with nonlinear models from the design of neural
networks.

One such architecture is the well-known graph convolutional
network [45], which resembles the functional form of (4) with
interleaved nonlinear, elementwise activation functions, i.e., for a

set of Fy input features gathered in the columns of a matrix Yy €
RNXFO‘

Y = o (HY,_1W,), (6)

where we take Yg for some integer K as the output, {W; e
RFk—ﬂFk}fg:] are learnable weight matrices that perform linear
transformations in the feature space, H is a certain graph filter,
and o () is a generally nonlinear activation function applied ele-
mentwise. Specifically, [45] uses a normalized version of the graph
Laplacian as a first-order filter H, and the ReLU activation function
for o (.).

A closer look at (6) reveals a connection with the iterative
smoothing method of (4). Taking o (-) to be the identity mapping,
we see that (6) can be expressed as a linear graph filter indepen-
dently applied to each of the F, features, with output defined as
linear combinations of these filtered features at each node via the
matrices {W,}. That is,

Yi = (HYo) (Wi W, ... W), (7)

where HK itself represents a shift-invariant graph filter, due to the
assumed shift-invariance of H. Taking Fp = Fc =1 and H= (I — uL)
recovers the iterative smoothing procedure of (4). However, by in-
terleaving nonlinear functions as in (6) and taking linear combina-
tions of features via {W,}, we allow the architecture to learn more
sophisticated, nonlinear relationships between the nodes and node
features by finding optimal weights {W,} for a suitable loss func-
tion.

There are many variants of the graph neural network archi-
tecture, designed for tasks ranging from semi-supervised learn-
ing [45] to graph classification [46]. We refer the reader to the sur-
vey paper [41] for further details, as well as [47] for a view focused
on graph signal processing in particular.

3. Modeling higher-order interactions with simplicial
complexes

In this section, we recap some of the mathematical underpin-
nings of simplicial complexes. We focus in particular on the Hodge
Laplacian [15,48,49], which extends the graph Laplacian as a nat-
ural shift operator for simplicial complexes. Specifically, we dis-
cuss how the eigenvectors of the Hodge Laplacian provide an in-
terpretable orthogonal basis for signals defined on simplicial com-
plexes by means of the Hodge decomposition.

3.1. Background on simplicial complexes

Given a finite set of vertices V, a k-simplex S¥ is a subset of V
with cardinality k + 1. A simplicial complex X is a set of simplices
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such that for any k-simplex S¥ in X, any subset of S¥ must also be
in X. A face of a simplex S* is a subset of S* with cardinality k. A
co-face S¥*1 of a simplex S¥ is a (k + 1)-simplex such that S¥ is a
subset of Sk+1, More detailed discussions and definitions can, e.g.,
be found in [48,50,51].

Example 1. Figure 2A provides an example of a simplicial complex.
Here, simplices of order 0 are depicted as nodes, simplices of order
1 as edges, and simplices of order 2 are displayed as gray, filled
triangles. Note how the edges {1, 3}, {1,4} and {3, 4} are faces of
the 2-simplex {1, 3,4}. The 2-simplex {5, 6,7} is a co-face of the
edges {5, 6},{5.7} and {6, 7}.

For computational purposes, we define an orientation for each
simplex by fixing an ordering of its vertices. This ordering induces
a reference orientation by increasing vertex label. Based on the ref-
erence orientation for each simplex, we introduce a book-keeping
of the relationships between (k — 1)-simplices and k-simplices via
linear maps called boundary operators that record higher-order in-
teractions in networks. As the simplicial complexes we consider
are all of finite order, these boundary operators can be represented
by matrices B;. The rows of B, are indexed by (k — 1)-simplices
and the columns of B, are indexed by k-simplices. For instance,
B; is nothing but the node-to-edge incidence matrix denoted B in
Section 2, while B, is the edge-to-triangle incidence matrix.

Example 2. We adopt the lexicographic order to define the refer-
ence orientation of simplices in Fig. 2. The corresponding boundary
maps B; and B, are then given by

(1,2) (1,3) (1,4) (2,3) (3,4) (3,6) (4,5) (5,6) (5,7) (6, 7)

1,-1 -1 -1 0 0 0 0 0 0 0

2( 1 o 0o -1 0 0 0 0 0 ©

3 o010 1 -1 -1 0 0 0 o0
Bij=4 0 0o 1 o0 1 0 -1 0 0 0
51 o o o o o o 1 -1 -1 0

6( o o o o o 1 0o 1 0 -1
7\V0 0 0 O O 0 0O 0 1 1

We may consider signals defined on any k-simplices (nodes,
edges, triangles, etc.) of a simplicial complex as illustrated in Fig-
ure 2 B-D. Just like for graph signals, we need to establish an ap-
propriate shift operator to process such signals. While there are
many possibilities, we will show in the next section that a natural
choice for the shift operator is the Hodge Laplacian, a generaliza-
tion of the graph Laplacian rooted in algebraic topology.

3.2. The Hodge Laplacian as a shift operator for simplicial complexes

Based on the incidence matrices defined above, we can define
a sequence of so-called Hodge Laplacians [48]. Specifically, the k-
th combinatorial Hodge Laplacian, originally introduced in [52], is
given by [48,52]:

L, =B/B,+ By 1B ;. (8)

Notice that, according to this definition, the graph Laplacian cor-
responds to Ly = BlBlT with By = 0. More generally, by equipping
all spaces with an inner product induced by positive diagonal ma-
trices, we can define a weighted version of the Hodge Laplacian
(see, e.g., [48-50,53]). This weighted Hodge Laplacian encapsulates
operators such as the random walk graph Laplacian or the normal-
ized graph Laplacian as special cases. For simplicity, in this paper
we concentrate on the unweighted case.

Just like the graph Laplacian provides a useful choice for a shift
operator for node signals defined on a graph due to its (spectral)
properties, the Hodge Laplacian and its weighted variants provide a
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natural shift operator for signals defined on the edges of a simpli-
cial complex (or graph). As the edges in our simplicial complexes
are equipped with a chosen reference orientation, the Hodge Lapla-
cian is in particular relevant as shift operator if the signals consid-
ered are indeed oriented, e.g., correspond to some kind of edge-
flow in case of a signal on edges.

Similar to the graph Laplacian, the Hodge Laplacian is positive
semi-definite, which ensures that we can interpret its eigenvalues
in terms of non-negative frequencies. Moreover, these frequencies
are again aligned with a specific type of signal-smoothness dis-
played by the eigenvectors of the Hodge Laplacian. For signals on
general k-simplices, this notion of smoothness can be understood
by means of the so called Hodge decomposition [48-50], which
states that the space of k-simplex signals can be decomposed into
three orthogonal subspaces

RM = im(By,;) @ im(B} ) @ ker(Ly), (9)

where im(-) and ker(-) are shorthand for the image and kernel
spaces of the respective matrices, & represents the union of or-
thogonal subspaces, and N is the cardinality of the space of sig-
nals on k-simplices (i.e., Np = N for the node signals, and N; = E
for edge signals). Here we have (i) made use of the fact that a
signal on a finite dimensional set of N, simplices is isomorphic
to RM; and (ii) implicitly assumed that we are only interested in
real-valued signals and thus a Hodge decomposition for a real val-
ued vector space (see [48] for a more detailed discussion).
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To facilitate the discussion on how the Hodge decomposi-
tion (9) can be related to a notion of smooth signals let us consider
the concrete case k=1 with Hodge Laplacian L; = B{B; +B,B]
for illustration [49,54,55]. In this case, we can provide the follow-
ing meaning to the three subspaces considered in (9). First, the
space im(BlT) can be considered as the space of gradient flows (or
potential flows). Specifically, since im(B]) = {f = B]v, for some v e
RN} we may create any such flow according to the following
recipe: (i) assign a scalar potential to all the nodes; (ii) induce
a flow along the edges by considering the difference of the po-
tentials on the respective endpoints. Clearly, we cannot create a
positive net-flow along any closed path within a complex if the
flow at every edge is computed according to the gradient (dif-
ference) of the node potentials in the chosen reference orienta-
tion: the difference between the potentials along any closed path
has to sum to zero, by construction. orientation. Accordingly, the
space ker(B;) =im(B,) @ ker(L;) that is orthogonal to im(B]) is
the so-called cycle space. As indicated, the cycle space is spanned
by two types of cyclic flows. The space im(B,) consists of curl
flows and its elements are flows that can be composed of com-
binations of local circulations along any 2-simplex. Specifically, we
may assign a scalar potential to each 2-simplex and consider the
induced flows f = B,t, where t is the vector of 2-simplex poten-
tials. Note that every column of B, creates a triangular circulation
around the respective 2-simplex along its chosen reference orienta-
tion. Hence, these flows correspond to local cycles associated with
the 2-simplices present in the simplicial complex. Finally ker(L;)
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Fig. 2. Signals on simplicial complexes of different order. A: Structure of the simplicial complexes used as a running example in the text. Arrows represent the chosen
reference orientation. Shaded areas correspond to the 2-simplices {1, 3,4} and {5, 6, 7}. B: Signal on O-simplices (nodes). C: Signal on 1-simplices (edges). D: Signal on
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Fig. 3. Hodge decomposition of the edge flow in the example from Fig. 2. Any edge flow (left) can be decomposed into a harmonic flow, a gradient flow and a curl flow.

is the harmonic space, whose elements correspond to (global) cir-
culations that are not representable as a linear combination of curl
flows.

Example 3.In Fig. 3, we consider the edge flow c=
[-4,-2,4,-2,3,-7,7,3,4,-4]". The Hodge decomposition
c=hogaor enables us to decompose the edge flow ¢ into a
harmonic, gradient and curl part, respectively denoted by h, g and
r. Components g and r are given by

g=B/p. r=Bw. (10)
Since the Hodge decomposition is orthogonal, p and w are the so-
lutions of the following least squares problems

min IBip—c|,. min || B;w — c],. (11)
The harmonic component satisfies Lth =0, and by the orthog-
onality of the Hodge decomposition, it can be obtained by h =
c—g—r. As explained in the text, g is an element of the space
im(B]), i.e., the gradient space or space of cycle-free flows. Com-
ponents h € ker(L;) and r € im(B,) are elements of the cycle space
ker(B;) = im(B,) @ ker(L;). As can be seen in Fig. 3, the curl com-
ponent r can be decomposed into two local circulations, of abso-
lute magnitude 1 and 1.7, respectively.

Importantly the gradient, curl and harmonic subspaces are
spanned by certain subsets of eigenvectors of L; as the follow-
ing lemma, which can be verified by direct computation [49,56],
shows.

Lemma 4. Let L; = B[ B; + B,B] be the Hodge 1-Laplacian of a sim-
plicial complex. Then the eigenvectors associated with nonzero eigen-
values of L; comprise two groups that span the gradient space and
the curl space respectively.

- Consider any eigenvector v; of the graph Laplacian Ly associated
with a nonzero eigenvalue X;. Then ugr)a d =Bv; is an eigen-
vector of Ly with the same eigenvalue X; Moreover Ug,q =
[ug; 4 uga) 4 - -] spans the space of all gradient flows.

« Consider any eigenvector t; of the “2-simplex coupling matrix” T =
BJ B, associated with a nonzero eigenvalue 6. Then ugl) =Bt i
an eigenvector of L; with the same eigenvalue 6;. Moreover U

[uélgl, ugzl, ...] spans the space of all curl flows.

1%}

The above result shows that, unlike for node signals, edge-flow
signals can have a high frequency contribution, reflected by a high
component in the corresponding projected space, due to two dif-
ferent types of (orthogonal) basis components being present in the
signal: a high frequency may arise both due to a curl component
as well as a strong gradient component present in the edge-flow.
This has certain consequences for the filtering of edge signals that
we will discuss in more detail in the following section.

4. Signal processing and learning on simplicial complexes

Using the algebraic framework of simplicial complexes as dis-
cussed in Section 3, in this section we revisit the four signal pro-
cessing setups considered in Section 2.4—Fourier analysis and em-
beddings, smoothing and denoising, signal interpolation, and non-
linear (graph) neural networks—and discuss how these can be ex-
tended to simplicial complexes by means of the Hodge Laplacian
and associated boundary maps. For concreteness, we concentrate
primarily on edge signals, though the results presented here can
be extended to signals on any type of simplices.

4.1. Fourier analysis: edge-flow and trajectory embeddings

In the same way that the (normalized) graph Laplacian provides
a node embedding of the graph, the eigenvectors of the Hodge
Laplacian L; can be used to induce a low-frequency edge embed-
ding. As a concrete example, let us consider the harmonic embed-
ding, i.e., the projection of an edge signal f into the harmonic sub-
space, corresponding to signal with zero frequency
fermb = Ul mf. (12)
where Up,im :[uﬁgim,ug?rm,...] corresponds to eigenvectors of
the Hodge Laplacian L; associated with zero eigenvalues. As ex-
plained in Section 3, the harmonic space spanned by the vectors
Upam corresponds to (globally) cyclic flows that cannot be com-
posed from locally cyclic flows (curl flows). Analogously to the em-
bedding of nodes via indicator signals projected onto the low fre-
quency eigenvectors (i.e., eigenvectors associated with low eigen-
values) of the graph Laplacian, we can construct embeddings of
individual edges using (12). Unlike for graphs where such node
embeddings can indicate a clustering of the nodes [57], an edge
embedding into the harmonic subspace characterizes the position
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Fig. 4. Embedding of trajectories defined on a simplicial complex. A Five trajectories defined on a simplicial complex containing two obstacles, indicated by orange color.
The simplicial complex is constructed by creating a triangular lattice from a random set of points and then introducing two “holes” in this lattice. All triangles in the lattices
are assumed to correspond to 2-simplices. B The projection of the trajectories displayed in A into the two dimensional harmonic space of the simplicial complex. Notice that
the trajectories that move around the obstacles in a topologically similar way have a similar embedding [49)].

of an edge relative to the harmonic flows. Since the harmonic
flows are in one-to-one correspondence with the 1-homology of
the simplicial complex, i.e., the “holes” in the complex that are
not filled with faces, such an embedding may be used to identify
edges whose location is in accordance with particular harmonic cy-
cles [49,58]. However, as the edges are equipped with an arbitrary
reference orientation, the sign of the projection into the harmonic
space is arbitrary. This is a consequence of the fact that, unlike the
graph Laplacian, the Hodge Laplacian is in general not invariant,
but equivariant under a change of the reference orientation of the
edges (cf. section 4.4). To account for this fact, one may use a clus-
tering approach that is invariant to this arbitrary choice of sign. For
instance, we can use subspace clustering as in [58], or consider the
absolute value of the projection as discussed in [49].

Rather than aiming at grouping edges together into clus-
ters according to their relative position with respect to the 1-
homology [58], we may be interested in grouping sequences of
edges corresponding to trajectories on a simplicial complex by pro-
jecting appropriate signal indicator vectors of such trajectories into
the harmonic space [49]. Here we represent a trajectory by a vec-
tor f with entries f; ;) = 1 if the edge (i, j) is part of the trajectory
and traversed along the chosen reference orientation, f; jy = —1 if
the edge (i, j) is part of the trajectory and traversed opposite to
the chosen reference orientation, and f; j, = 0 otherwise.

Example 5. In Fig. 4A, we construct a simplicial complex by draw-
ing 400 random points in the unit square and generating a trian-
gular lattice by Delaunay triangulation. We eliminate two points
and all their adjacent edges in order to create two “holes” in the
simplicial complex, which are not covered by a 2-simplex. These
two holes are represented by orange shaded areas and can be in-
terpreted as obstacles through which trajectories cannot pass. All
(other) triangles are considered as 2-simplices. Accordingly, the
Hodge Laplacian has two zero eigenvalues associated to two har-
monic functions u'’_ and u®

On the edges of the simplicial complex, we define five trajecto-
ries as displayed in Fig. 4A. Fig. 4B shows the corresponding em-
beddings of the flow vectors of each trajectory and their evolution
in the embedding space. More explicitly, for a given trajectory we
build the embedding sequentially as follows. The embedding starts
at zero. We then iteratively project the next edge in the trajectory
(accounting for the chosen reference direction) into the harmonic
space. In our case each edge is described by a position (uq,uy)
in the harmonic space: one component along ug)rm and the other

along ug?rm. The embedding of the trajectory is then obtained from
adding these position vectors of the individual edges. Note that
due to the linearity of the projection operation, this leads to the
same final embedding (marked by a red dot) as if we had directly
projected the full trajectory vector.

Importantly, the embedding differentiates the topological prop-
erties of the trajectories. The magenta and olive green trajectories
have a similar embedding since they both pass above the top left
obstacle. The maroon and green trajectories pass between the two
obstacle and have a similar embedding (negative coordinate along
u, - and zero component along uﬁ)rm). The orange trajectory is
the only one that goes through the right of the bottom right ob-
stacle. Hence, its embedding stands out from the other four trajec-
tories in the embedding space. For a more extensive discussion of
these aspects see [49].

As we have seen in the above example, trajectories that behave
similarly with respect to the 1-homology (“holes”) of a simplicial
complex will have a similar embedding [49]. One may thus, for
instance, also identify topologically similar trajectories on the sim-
plicial complex by clustering the resulting points in the harmonic
embedding. Such an approach is of interest for a number of ap-
plications: One can construct simplicial complexes and appropriate
trajectory embedding from a variety of flow data, including physi-
cal flows such as buoys drifting in the ocean [49], or “virtual” flows
such as click streams or flows of goods and money. Related ideas
for analyzing trajectories have also been considered in the context
of traffic prediction [59].

While we have considered here only harmonic embeddings cor-
responding to signals with zero frequency, other type of embed-
dings may be of interest as well. We may, for instance, be inter-
ested in gradient-flow-based embeddings, which can be used to
define a form of ranking of the nodes in terms of the associated
potentials [60], or be interested in other forms of flows, which are
only approximately harmonic [55].

4.2. Flow smoothing and denoising

We now revisit the question of smoothing and denoising from
the perspective of signals defined in the edge space of a simpli-
cial complex X. In parallel, we provide a more in-depth discussion
on the basis vectors and notion of a smooth signal encapsulated in
the Hodge 1-Laplacian L; and how it differs from the graph Lapla-
cian [9,48,61].
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Fig. 5. Flow smoothing on a graph. A An undirected graph with a pre-defined and oriented flow f°. B The observed flow is a noisy version of the flow f°, i.e., f* is distorted
by a Gaussian white noise vector €. C We denoise the flow by applying a Laplacian filter based on the line-graph. This filter performs worse compared to the edge space
filters in D and E that account for flow conservation. D Denoised flow obtained after applying the filter based on the edge Laplacian. E Denoised flow obtained after applying
the filter based on the Hodge Laplacian. The estimation error is lower than in the edge Laplacian case as the filter accounts for filled faces in the graph.

Let us assume that the simplicial complex X is associated with
oriented flows f0 ¢ RE defined on edges. Like in the node-based
setup discussed in Section 2.4.2, we assume that we can only ob-
serve a noisy version f = f0 + € of the true underlying signal, where
€ is again a zero-mean white Gaussian noise vector of appropri-
ate dimension. By analogy with the graph case, in order to get a
smooth estimate f of the true signal 0 from the noisy signal f, it is
tempting to adopt the successful procedures from GSP (cf. Eq. (2))
and solve the following optimization program for the edge-flows
f

-~ 2 -~ -~
mjn{Hf—fH +afTQf}, (13)
f 2

with optimal solution f= Hof := (I+ aQ)~'f, where the matrix Q
is a regularizer that needs to be chosen to ensure a smooth esti-
mate. Following our discussion above, since the filter Hy will in-
herit the eigenvectors of the regularizer Q, a natural choice for a
regularizer is an appropriate (simplicial) shift operator.

We discuss three possible choices for the regularizer (shift op-
erator) Q; (i) the graph Laplacian L;g of the line-graph of the un-
derlying graph skeleton of the complex X, i.e., the line-graph of the
graph induced by the O-simplices (nodes) and 1-simplices (edges)
of Xx; (ii) the edge Laplacian L, = BlTBl, i.e,, a form of the Hodge
Laplacian that ignores all 2-simplices in the complex X such that
B, = 0; (iii) the Hodge Laplacian L; = BlTB] -4-B2B2T that takes into
account all the triangles of X as well. Before embarking on this
discussion, however, let us illustrate the effects of these choices by
means of the following concrete example.

Example 6. Fig. 5A displays a conservative (cyclic) flow on a sim-
plicial complex, i.e., all of the flow entering a particular node exits
the node again. This flow is then distorted by a Gaussian noise vec-
tor € in Fig. 5B. The estimation error produced by the filter based
on the line-graph (Fig. 5C) is comparatively worse (9.45 vs. 1.94
and 0.99 respectively) than the estimation performance of the edge
Laplacian (Fig. 5D) and the Hodge Laplacian (Fig. 5E) filters.

Let us explain the results obtained from the individual filters in
the above example in more detail, starting with the line-graph ap-
proach. As can be seen from Fig. 5C, in this case the filtering opera-
tion leads to an increased error compared to the noisy input signal.
This ineffective filtering result by means of the line-graph Lapla-
cian has been observed in [54]. The reason for this unintended be-
havior is that the line-graph Laplacian is not well-suited as a shift
operator for flow signals. The basis functions given by the eigen-
vectors of the line-graph Laplacians induce a notion of smooth, low
frequency signals that supposes that signals on adjacent edges in
the simplicial complex have a small difference. This is equivalent
to the fact that low-frequency modes in the node space do not
vary a lot on tightly connected nodes on a graph. However, for
flow signals this type of smoothness induced by eigenvectors of

the line-graph Laplacian as shift operator is often not appropriate.
Specifically, real-world flow signals typically display a large degree
of flow conservation: most of the flow signal entering a node ex-
its the node again, but the relative allocation of the flow to the
edges does not have to be similar. Moreover, the line-graph Lapla-
cian does not reflect the arbitrary orientation of the edges, so that
performance is dependent on the chosen sign of the flow. Notice,
however, that the line-graph can be a valid representation to pro-
cess signals on edges that are not encoding flows and, as such,
do not have a natural orientation. For example, one might expect
the level of congestion on different roads to vary smoothly across
edges, thus, justifying the use of a line-graph in such a case.
Unlike the line-graph Laplacian, the Edge Laplacian captures
a notion of flow conservation, which implies that smooth flows
should by cyclic [54]. To see this, it is insightful to inspect
the quadratic regularizer induced by L. =B[B;. Note that this
quadratic form can be written as fTLcf = ||Bf||2. This is precisely
the (summed) squared divergence of the flow signal f, as each en-
try (B¢f); corresponds to the difference of the inflow and outflow

to node i
> > fr.

(B:f); =
re{(j.D{i.j}e€, j<i} re{(i.j){i.j}e&.i<j}

where f; is the flow on edge r = (i, j), and we have used a ref-
erence orientation induced by the lexicographic order. As a con-
sequence, all cyclic flows will induce zero cost for the regularizer
fTL.f, which may also be seen from the fact that ker(B;) is pre-
cisely the cycle space of a graph with incidence matrix B. Stated
differently, any flow that is not divergence free, i.e., not cyclic, will
be penalized by the quadratic form. Since by the fundamental the-
orem of linear algebra ker(B;) L im(B]), any such non-cyclic flows
can be written as a gradient flow f,,q = B] v for some vector v of
scalar node potentials — in line with the Hodge decomposition dis-
cussed in (9).

In contrast to the Edge Laplacian, the full Hodge Laplacian
L, includes the additional regularization term f'B,B;f = ||B]f]2,
which may induce a non-zero cost even for certain cyclic flows.
More precisely, any cyclic flow that can be written as a curl flow
f.,1 = Byt, for some vector t will have a non-zero penalty. This
penalty is incurred despite the fact that f_,; is a cyclic flow by con-
struction (since B;f.,; = B;B,c = 0, the vector f_ is clearly in the
cycle space; see also discussion in Section 3.2). The additional reg-
ularization term ||Bsz||§ may thus be interpreted as squared curl
penalty.

From a signal processing perspective, the L; based filter thus
allows for a more refined notion of a smooth signal. Unlike in the
Edge Laplacian filter, we do not declare all cyclic flows to be max-
imally smooth and consist only of frequency (eigenvalue) O ba-
sis signals. Instead a signal can have a high-frequency even if it
is cyclic, if it has a high curl component. Hence, by constructing
simplicial complexes with appropriate (triangular) 2-simplices, we

fi - (14)
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have additional modeling flexibility for shaping the frequency re-
sponse of an edge-flow filter [62].

In our example above, this more refined notion of a smooth
signal is precisely what leads to an improvement in the filtering
performance, since the ground truth signal is a harmonic function
with respect to the simplicial complex and thus does not contain
any curl components. We remark that the eigenvector basis of L.
can always be chosen to be identical to the eigenvectors of L;;
thus, we may represent any signal in exactly the same way in a ba-
sis of L. or L;; however, the frequencies associated with all cyclic
vectors will be 0 for the Edge Laplacian, while there will be cyclic
flows with nonzero frequencies for Ly, in general. This emphasizes
that the construction of faces is an important modeling choice for
the selection of an appropriate notion of a smooth signal.

4.3. Interpolation and semi-supervised learning

Let us now focus on the interpolation problem for edge-data
on a simplicial complex [55]. Analogously to node signals, we are
given a simplicial complex (or its graph skeleton) and a set of “la-
beled” oriented edges - c &, ie., we assume that we have mea-
sured the edge-signals on some edges but not on all. Our goal is
now to predict the signals on the unlabeled or unmeasured edges
in the set £V = £\ &L, whose cardinality we will denote by Ej. Fol-
lowing [55], we will again start by considering the problem setup
with no 2-simplices first (B, = 0), before we consider the general
case in which 2-simplices are present.

To arrive at a well-defined problem for imputing the remaining
edge-flows, we need to make an assumption about the structure of
the true signal. Following our above discussions, we will again as-
sume that the true signal has a low-pass characteristic in the sense
of the Hodge 1-Laplacian, i.e., that the edge flows are mostly con-
served. Let f denote the vector of the true (partly measured) edge-
flow. As discussed in the context of flow smoothing, a convenient
loss function to promote flow conservation is the sum-of-squares
vertex divergence

Az -~ -~ . -~
%J‘:FH&LJEJ (15)
2

We can then formalize the flow interpolation problem via the fol-
lowing optimization program

12 112
mmH&f a2 ||t
f 2 2

s.t. fr = f;, for all measured edges r € £, (16)

Note that, in contrast to the node signal interpolation problem,
we have to add an additional regularization term ||f||% to guar-
antee the uniqueness of the optimal solution. The reason is that,
if there is more than one independent cycle in the network for
which we have no measurement available, we may add any cyclic
flow on such a cycle while not changing the cost function. To rem-
edy this aspect, we simply add a 2-norm regularization which pro-
motes small edge-flow magnitudes by default. Other regularization
terms are possible as well, however this formulation enables us to
rewrite the above problem in a least squares form as described be-
low.

To arrive at a least-squares formulation, we consider a triv-
ial feasible solution f0 for (16) that satisfies f0 = f, if r e £ and
fro = 0 otherwise. Let us now define the expansion operator ® as
the linear map from Rf to RE such that the true flow f can be
written as f= 0+ ®fV, where fV ¢ REv is the vector of the un-
measured true edge-flows. Reducing the number of variables con-
sidered in this way, we can convert the constrained optimization
problem (16) into the following equivalent unconstrained least-
squares estimation problem for the unmeasured edges [
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v = argmin |||: ol ] v |: 0 i|||2. (17)
We illustrate the above procedure by the following example.

Example 7. We consider the network structure in Fig. 2A. The
ground truth signal is f=(-2,-2,4,-2,3,-7,7,3,4,-4)7. We
pick five labeled edges at random (colored in Fig. 6A). The goal
is to predict the labels of the unlabeled edges (in grey with
a question mark in Fig. 6A). The set of labeled edges is &L =
{(1,3),(1,4), (3,6),(4,5), (5,6)}. The set of unlabeled edges is
&V =1{(1,2),(2,3),(3.4),(5,7),(6,7)}. Solving the optimization
program (17), we obtain the predicted signal f¢; in Fig. 6B. Numer-
ical values are given in Fig. 6C. The Pearson correlation coefficient
between f and £, is 0.99. The 2-norm of the error is 0.064.

Analogously to our discussion above, it may be relevant to in-
clude 2-simplices for the signal interpolation problem. We inter-
pret such an inclusion of 2-simplices in two ways. From the point
of view of the cost function, it implies that instead of penalizing
primarily gradient flows (which have nonzero divergence), we in
addition penalize certain cyclic flows, namely those that have a
nonzero curl component. From a signal processing point of view,
it means that we are changing what we consider a smooth (low-
pass) signal, by adjusting the frequency representation of certain
flows. Accordingly, one possible formulation of the signal interpo-
lation problem, including information about 2 simplices is

12 R 12
B, +H@T i (18)
2 2

2
rN — T 2
t* = argmin; , +o

subject to the constraint that the components of f corresponding
to measured flows are identical to those measurements. As in (17),
we can convert this program into the following least-squares prob-
lem

A B,®]  [-B.f°7|°
U = argming, ||| ol |- 0 ) (19)
B] ® -BJf ||,

Remark 8. Note that the problem of flow interpolation is tightly
coupled to the issue of signal reconstruction from sampled mea-
surements. Indeed, if we knew that the edge signal to be recov-
ered was exactly bandlimited [56], then we could reconstruct the
edge-signal if we had chosen the edges to be sampled appropri-
ately. Just like the interpolation problem considered here may be
seen as a semi-supervised learning problem for edge labels, finding
and choosing such optimal edges to be sampled may be seen as an
active learning problem in the context of machine learning. While
we do not expand further in this tutorial on the choice of edges to
be sampled, we point the interested reader to two heuristic active
learning algorithms for edge flows presented in [55]. We also refer
the reader to [56,61] for a theory of sampling and reconstruction
of bandlimited signals on simplicial complexes, and to [63] for a
similar overview that includes an approach for topology inference
based on signals supported on simplicial complexes.

4.4. Beyond linear filters: simplicial neural networks and Hodge
theory

As discussed in Section 2.4.4, graph neural networks incorpo-
rate nonlinear activation functions in the graph signal processing
pipeline in order to learn rich representations for graphs. In or-
der to generalize these architectures to operate on simplicial com-
plexes, we discuss central concepts underpinning graph neural net-
work architectures in order to understand desirable properties of
neural networks for higher-order data. Graph neural networks in
the nodal domain typically have two important features in com-
mon:



M.T. Schaub, Y. Zhu, J.-B. Seby et al.

I B

a N N
R
) B L |
@ If—e 5395())6 EEQ

Signal Processing 187 (2021) 108149

Fig. 6. Semi-supervised learning for edge flow. A Synthetic flow. 50% of the edges are labeled. Labeled edges are colored based on the value of their flow. The remaining
edges in grey are inferred from the procedure explained in the text. B Edge flow obtained after applying the semi-supervised algorithm in (17). C Numerical value of the

inferred signal.

Permutation equivariance. Although the nodes are given labels
and an ordering for notational convenience, graph neural
networks are not dependent on the chosen labeling of the
nodes. That is, if the node and corresponding input labels
were permuted in some way, the output of the graph neural
network, modulo said permutation, will not change.

Locality. Graph neural networks in their most basic form oper-
ate locally in the graph structure. Typically, at each layer a
node’s representation is affected only by its own state and
the state of its immediate neighbors. Forcing operations to
occur locally is how the underlying graph structure is used
to regularize the functional form of the graph neural net-
work.

Based on these two principles, many architectures have been
proposed, such as the popular graph convolutional network [45],
which mixes one-step graph filters and nodewise nonlinearities for
semi-supervised learning on the nodes of a graph. Indeed, there
has been significant study in understanding the nature of graph
convolutional architectures in terms of the spectral properties of
the chosen shift or filter operation [64].

4.4.1. Simplicial graph neural networks

Motivated by work on graph neural networks in the node
space, and the effectiveness of the Hodge Laplacian for represent-
ing certain types of data supported on simplicial complexes as in
Section 3, we now discuss considerations and limitations for build-
ing graph neural network architectures based on representations
grounded in combinatorial Hodge theory. This approach to process-
ing data on simplicial complexes generated a flurry of interest re-
cently, with convolutional architectures based on the Hodge Lapla-
cians and boundary maps being proposed in [65-68]. As before,
let X be a simplicial complex over a finite set of vertices V, with
boundary operators {By}K_,, where K is the order of X.

We consider architectures built on the composition of matrix
multiplication with boundary operators and/or Hodge Laplacians of
varying order, aggregation functions, and nonlinear activation func-
tions that obey permutation invariance, locality, and the additional
properties of orientation invariance and simplicial locality.

We begin by defining orientation equivariance, which describes
a similar property to permutation invariance for graph neural net-
works [69].

Orientation equivariance. If the chosen arbitrary reference orien-
tation of the simplices in X is changed, the output of the
neural network architecture remains the same, modulo said
change in orientation.

Due to the arbitrary nature of the simplex orientations, orienta-
tion invariance is clearly a desirable property for a neural network

10

architecture to have. For a simple class of convolutional neural net-
works for flows, we must choose the nonlinear activation function
carefully in order to satisfy this property. If one were to construct
a simple architecture with weight matrices Wy, W, for flows on a
simplicial complex based on L; of the form

g, w() = o (Lo (LifW,)Wy), (20)

we want g to not change when a different orientation is chosen.
Let ©® e REXE be a matrix taking values +1 on the diagonal and ze-
ros elsewhere, representing a change in orientation for each edge.
Then, for a flow f and Hodge Laplacian L, this change in orienta-
tion is realized by ®f and ®OL;®. Therefore, for orientation equiv-
ariance to hold, we need

goL,0.w(Of) = Ogy, w(f) (21)

to hold for all flows f. For this to be true, o must be an odd func-
tion so that it commutes with @. A natural extension to the notion
of orientation equivariance is orientation invariance, which rewrites
(21) as

goL,0w(Of) =g, w(f). (22)

This property has greater utility for tasks such as graph classifica-
tion, where a global descriptor is desired, rather than output on
each simplex.

Another consideration that does not typically arise in the de-
sign of graph neural networks is data supported on different levels
of the graph. Data on a simplicial complex can lie on, e.g., nodes,
edges, and faces simultaneously, motivating the need for architec-
tures that pass data along the many levels of a simplicial complex.
Analogous to the property of locality for graph neural networks,
we consider a notion of locality for different levels of a simplicial
complex.

Simplicial locality. At each layer of an architecture with simpli-
cial locality, information exchange only occurs between adja-
cent levels of the underlying simplicial complex, i.e., the out-
put of a layer restricted to k—simplices is dependent only on
the input of that layer restricted to k — 1, k, k + 1—simplices.

As an illustrative example, loosely based on the architecture
proposed in [66], consider a small two-layer neural network simul-
taneously operating over a simplicial complex of nodes, edges, and
triangles. That is, the input to the neural network is a tuple of sig-
nals (vg, fy, tg) on the vertices (graph signals), edges (flows), and
triangles, respectively, and each layer performs the following com-

putation:
Vi =0 (LoVy_q +Bify_q) (23)

fi = o (Lifi_1 +Baty 1 + B{v_1) (24)
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ty =0 (Loty_1 + By fi 1), (25)

for some odd elementwise activation function o. That is, at each
layer, signals on each level of the simplicial complex are either
lifted to the next highest level via the coboundary operator, pro-
jected to its boundary using the boundary operator, or diffused via
the Hodge Laplacian. This “lifting” and “projecting” can only occur
between adjacent levels of the simplicial complex, due to the fact
that the composition of boundary operators is null, thereby satisfy-
ing simplicial locality.

We now examine the tuple of signals (v, f, t;). First, suppose
o is the identity mapping, so that each signal in (v,,f),t;) is a
linear function of (v, fy, tp). Then, one can check that

vy = 2LgB1fy + Lo (Lo + Dvg (26)
f, = (L?B, + B,Ly)to + Ly (L; + Dfy + (L2 + B/B;)B] v, (27)
= L2 (Lz + I)to =+ (LzBér —+ B;Ll )fo (28)

Notice that each signal is strictly a function of the signals above
and below it, even after multiple layers of the architecture are
evaluated. This indicates that our architecture is incapable of in-
corporating information from nonadjacent levels of the simplicial
complex, due to the composition of boundary operators being null:
note that similar properties hold for linear variants of this example
making use of boundary operators in this way.

This is not the case, though, when o is nonlinear. While
B{B,t = 0 may hold for all signals t on the faces, B;o (B,t) # 0,
in general. By incorporating nonlinear activation functions, we fa-
cilitate full incorporation of signals from all levels of the simplicial
complex in the output at each level. We call this property extended
simplicial locality.

Extended simplicial locality. For an architecture with extended
simplicial locality, the output restricted to k—simplices is de-
pendent on the input restricted to simplices at all levels, not
just those of order k —1,k, k+ 1.

Notice that while simplicial locality is defined for each layer
of an architecture, extended simplicial locality is a global prop-
erty, so that both are simultaneously attainable. There is a trade-
off in achieving extended simplicial locality by interleaving non-
linearities: although there is full influence of the entire simplicial
structure on all levels of the output, the structure endowed by the
boundary operators (namely, the composition of boundary oper-
ators being null) is no longer in effect. Although the Hodge de-
composition (9) can still be applied to the output signals of such
an architecture, the expression of the space of k-simplex signals
strictly in terms of upper and lower incidence through k —1 and
k + 1 simplices ceases to hold when considering the input and out-
put jointly, as opposed to linear filters of the Hodge Laplacian.
This motivates further considerations of how nonlinearities may
be necessary in modeling higher-order data, such as in the work
of [70,71], where it is shown that higher-order opinion dynamics
must be nonlinear, lest they be equivalently modeled by a purely
pairwise system. That is, we must relax the structure of simpli-
cial complexes in order to represent more general high-order in-
teractions. In doing this, we exchange the connection to algebraic
topology for greater flexibility in modeling. This naturally leads to
the consideration of hypergraphs and associated signal processing
ideas, as discussed in the next section.

5. Modeling higher-order interactions via hypergraphs

In this section, we discuss hypergraphs as an alternative to sim-
plicial complexes to model higher-order analogs of graphs, and

1
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then discuss how we can construct appropriate matrix-based and
tensor-based shift operators for such hypergraphs to enable the de-
velopment of signal processing tools.

An important feature of simplicial complexes is that for every
simplex present all of its faces are also included in the complex
(and recursively the corresponding faces, and so on). This inclu-
sion property gives rise to the hierarchy of boundary operators,
which anchor simplicial complexes to algebraic topology. However,
this subset inclusion property may be an undesirable restriction,
if we want to represent interactions that are exclusive to multi-
ple nodes and do not imply the interaction between all the sub-
sets of nodes. A related problem is the issue of (extended) sim-
plicial locality as discussed in the previous section, which arises
from the restrictions imposed on the boundary operators of sim-
plicial complexes. Finally, while simplices are endowed with a ref-
erence orientation and may be weighted, we might be interested
in encoding other types of directionality or heterogeneous weight-
ing schemes of group interactions, which are not easily compatible
with the mathematical structure of simplicial complexes.

To illustrate the utility of hypergraphs as modelling tools, let
us consider a number of concrete examples in which a hypergraph
model may be preferred over a simplicial complex, before provid-
ing a more mathematical definition.

Example 9. In a co-authorship network [72], having a paper with
three or more authors does not imply that these people have writ-
ten papers in pairs. Hypergraphs can distinguish these two cases
while graphs and simplicial complexes cannot, in general. More-
over, the relative contribution of the authors to a paper may be
different and we thus may want to have a representation that en-
ables us to assign heterogeneous weights within group interac-
tions. This again can be done using hypergraphs [73]. An email
network may be described using a directed hypergraph [74], when-
ever there exist emails containing multiple senders or multiple
receivers. This kind of directional information will be difficult to
encode in a simplicial complex (while graphs can encode the di-
rectionality here, they lose the higher-order information). Further
examples in which hypergraphs appear naturally include word-
document networks in text mining [75,76], gene-disease networks
in bioinformatics [77,78], and consumer-product networks in e-
commerce [79].

Mathematically, a typical hypergraph # = (V, £, ) consists of a
set of vertices V, a set of hyperedges &, and a function w : £ — R4
that assigns positive weights to hyperedges. Hyperedges general-
ize edges in the sense that each hyperedge can connect more than
two vertices. In the most common case, where there is one type
of node and one type of hyperedge (namely all hyperedges repre-
senting the same type of relationship such as co-authorship), a hy-
pergraph is called homogeneous. A hypergraph is called k-uniform
if all of its hyperedges have the same cardinality k. Notice, in par-
ticular, that a hypergraph is a bona fide generalization of a graph,
since a 2-uniform hypergraph reduces to a graph. More interest-
ingly, a simplicial complex may be seen as a hypergraph satisfy-
ing the property that every subset of a hyperedge is also a hyper-
edge. Similar to a standard graph, a hypergraph can also be di-
rected in which case each (directed) hyperedge e is an ordered pair
(T(e),H(e)) where T(e) and H(e) are two disjoint subsets of ver-
tices respectively called the tail and the head of e [80]. This flexi-
bility is of interest, e.g., when modelling multiway communication
patterns as illustrated in the example of email networks above.

While the standard framework of hypergraphs is already very
flexible, in recent years several more elaborate hypergraph models
have been proposed to better represent real-world datasets:

(1) Heterogeneous hypergraphs refer to hypergraphs containing
different types of vertices and/or different types of hyper-
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edges [81-84] and may thus be seen as a generalization of
multilayer and multiplex networks. For example, in a GPS
network [85], a hyperedge can have three types of vertices
(user, location, activity). Another example is online social
networks such as Twitter, in which we can have different
types of vertices including users, tweets, usertags, hashtags
and groups as well as multiple types of hyperedges such as
‘users release tweets containing hashtags or not’, ‘users join
groups’, and ‘users assign usertags to themselves’ [86].
Edge-dependent vertex weights are introduced into hyper-
graphs in [73,75,76] to reflect the different contribution (e.g.,
importance or influence) of vertices in the same hyperedge.
More precisely, for each hyperedge e € &, a function y,. : e —
R, is defined to assign positive weights to vertices in this
hyperedge. For instance, in the co-authorship network in
Example 9, the different levels of contribution of the au-
thors of a paper can be encoded as edge-dependent vertex
weights. If ye(v) =y, (v) for every vertex v and every pair
of hyperedges e and e’ containing v, then we say that the
vertex weights are edge-independent. Such hypergraphs are
also called vertex-weighted hypergraphs [87]. Moreover, if
ve(v) =1 for all vertices v and incident hyperedges e, the
vertex weights are trivial and we recover the homogeneous
hypergraph model.

In order to leverage the fact that different subsets of vertices
in one hyperedge may have different structural importance,
the concept of an inhomogeneous hyperedge is proposed in
[88]. Each inhomogeneous hyperedge e is associated with
a function w, : 2¢ — R0 that assigns non-negative costs to
different cuts of the hyperedge, where 2¢ denotes the power
set of e. The weight w,(S) indicates the cost of partitioning
the hyperedge e into two subsets S and e\ S. This is called
a submodular hypergraph when w, satisfies submodularity
constraints [89].

(2

—

—
w

Similar to graphs and simplicial complexes, a key factor for de-
veloping signal processing tools for hypergraphs is the definition of
an appropriate shift operator. For simplicial complexes, we argued
that the Hodge Laplacian is a natural and principled operator for
this purpose. For hypergraphs there are two major approaches to
their mathematical representation, which induce different kinds of
shift operators.

The first option is to use a matrix-based representation and
derive a shift operator from it, akin to the approach of GSP. As
any matrix may be interpreted as an adjacency matrix of a graph
and thus induces a weighted, directed graph, this procedure may
be understood as first deriving a graph-based representation of
the hypergraph and then using an algebraic representation of this
graph (e.g., adjacency or Laplacian matrices) as the algebraic shift
operator of the hypergraph.

The second option is to represent the hypergraph using a ten-
sor, i.e., a multi-dimensional array representation instead of the 2-
dimensional array representation provided by matrices (we refer
to [90-92] for a general introduction to tensors and tensor decom-
positions). While this provides, in principle, a richer set of possi-
ble representations of the shift operator, there are also challenges
associated with this procedure as the definition of a hypergraph
signal and its processing is less grounded in GSP and related tech-
niques. In the following subsections, we respectively discuss these
two choices of representations, starting with matrix-based repre-
sentations.

5.1. Matrix-based hypergraph representations

The most common approach to deal with hypergraph-
structured data is to encode the hypergraph as a matrix. When
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interpreting the corresponding matrices as graphs, many of these
matrix-based approaches can thus, alternatively, be viewed as
deriving a graph representation for the hypergraph. Accordingly,
these approaches are often described in terms of graph expansions.
We prefer the term matrix representation here, as the fact that
we encode a particular data structure via a matrix does not im-
ply that the data structure is itself a graph (possibly with weights
and signed edges). For instance, we studied matrix-based represen-
tations of simplicial complexes in the previous sections, but this
would typically not be considered a graph expansion of a simpli-
cial complex.

Let us now discuss some of the most common matrix-based
hypergraph representations and transformations (see Fig. 7 for a
visual overview of the discussed variants), including the so-called
clique and star expansions as the most popular variants [93]. To
this end, consider a homogeneous hypergraph H = (V, £, w) and
define the vertex-to-hyperedge incidence matrix as Z € RIVIxI¢l
with entries Zye = 1 if vertex v belongs to hyperedge e. In addition,
we will represent the weights of the hyperedges by the diagonal
matrix W e RI€IxI€] whose diagonal corresponds to the hyperedge
weights.

Let us first consider the so called star-graph expansion
(Fig. 7D) [94,95]. Using the above defined matrices, the star-graph
expansion can be explained by constructing the following adja-
cency matrix A, of a bipartite graph

0
A. = [wzT

When interpreted in terms of a graph, this construction may be
explained as follows: We introduce a new vertex for each hyper-
edge and each of these vertices is then connected with a weight
corresponding to the weight of the hyperedge to all the (origi-
nal) vertices in this hyperedge. The constructed weighted graph
G« = (Vi, &, w4), thus has a vertex set V, =VUE, an edge set
S ={(v,e):veeeec&}, and an edge weight function w, (v, e)
w(e). Many other weight functions are possible here as well, e.g.,
we may normalize by the cardinality of the hyperedges. By con-
structing appropriate Laplacian operators (combinatorial or nor-
malized) of such a star expansion matrix, we can thus obtain a
shift-operator for the hypergraph in a straightforward fashion.

An alternative matrix-based representation that can be derived
from the same matrices defined above is the clique expansion
(Fig. 7C) [96-99]. In matrix terms, this corresponds to projecting
out the hyperedge dimension of the incidence matrix Z. Specif-
ically, if we assume unit hyperedge weights for simplicity, the
clique expansion may be computed by forming the product ZZ'.
As this matrix has a nonzero diagonal, we can simply set the di-
agonal of this matrix to zero to obtain a basic clique expansion
matrix Ac = ZZ" — Diag(diag(ZZ")). By including various weight-
ing factors, alternative variants of this matrix can be derived. The
name clique expansion becomes intuitive if we again interpret Ac
as the adjacency matrix of a graph: The above construction cor-
responds to replacing every hyperedge with a clique subgraph.
More precisely, the clique expansion leads to the adjacency ma-
trix of a graph Gc = (V., &, w¢) in which Ve =V, & ={(u,v) 1 u,v e
e,e e &, u+#v}. One of the most common definitions for the edge
weighting function in this context is w¢ (U, V) = Y ey yee @(0), i,
the edge weight in the graph is simply given by the sum of the
weights of hyperedges that contain the two endpoints. However,
many other weighting schemes are conceivable.

As has been shown in [93], many hypergraph learning algo-
rithms [94-99] correspond to either the clique or star expansions
with an appropriate weighting function. However, apart from these
common expansions, there also exist other methods for project-
ing hypergraphs to graphs such as constructing a line graph [100].
This line-graph expansion for hypergraphs (see Fig. 7E for an illus-

Z(‘)’V} e RIVIHED<(VIHED. (29)



M.T. Schaub, Y. Zhu, J.-B. Seby et al.

Signal Processing 187 (2021) 108149

A Cc
A V1 —— V3 —— Vs
NSNS
N L
Vg
D E U1, €t U3, €1 U3, € V5, €2
€1 () €3 e1 €9 N N
Vg, €1 Vg, €2
PN A | R S
V1 vy U3 U4 Vs Vg €3 NS
Vg, €3

Fig. 7. Different transformations on an example hypergraph. A The original hypergraph. B The dual hypergraph. C The clique expansion. D The star expansion. E The line

graph. F The line expansion.

tration) may be computed in terms of (weighted variants of) the
second possible projection of the incidence matrix Z, namely Z'Z.
Apart from these three canonical types of graph representations
(star, clique, and line graph) that can be derived from the incidence
matrix Z and additional (weighting) transformations, a few other
matrix-based schemes have been proposed for representing hyper-
graphs. For instance, the recent paper [101] proposes the so-called
line expansion of a hypergraph (different from the line graph; see
Fig. 7F), which is isomorphic to the line graph of its star expan-
sion and aims to unify the clique and star expansions. In the line
expansion, each incident vertex-hyperedge pair is considered as a
“line node” and two “line nodes” are connected if they share either
the vertex or the hyperedge. We would like to remark that in some
cases we might be more interested in the dual of one hypergraph
in which the roles of vertices and hyperedges are interchanged and
the incidence matrix is ZT [78]; see Fig. 7B.

While we have so far considered only homogeneous hyper-
graphs, Laplacian matrices have also been proposed for more gen-
eral hypergraph models. For instance, [73,75,88] use variants of
the clique expansion to derive matrix representations of hyper-
graphs with edge-dependent vertex weights or inhomogeneous hy-
peredges. Specifically, in [73,75] hypergraphs with edge-dependent
vertex weights are projected onto asymmetric matrices, corre-
sponding to induced directed graphs with self-loops. The authors
then use established combinatorial and normalized Laplacians for
digraphs [102] applied to these matrices to derive a Laplacian ma-
trix for hypergraphs. Finally, in [88], a novel algorithm for assign-
ing edge weights to the graph representation is proposed, allowing
for non-uniform expansions of hyperedges.

As the above discussion shows, there is an enormous variety of
matrix-based representations for hypergraphs, and the relative ad-
vantages and disadvantages of these constructions are still sparsely
understood. Ultimately, the choice of a particular matrix repre-
sentation corresponds to a specific model for what constitutes a
smooth signal on a hypergraph. We believe that a better under-
standing of the spectral properties of the individual constructions
will thus be an important step for choosing good matrix represen-
tations for different application scenarios.

5.2. Tensor-based hypergraph representations

Instead of working with matrix-based representations, hyper-
graphs can alternatively be represented by tensors. A tensor is sim-
ply a multi-dimensional array, whose order is the number of in-
dices needed to label an element in the tensor [90]. For instance,
a vector and a matrix are a first-order and a second-order tensor,
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respectively. Several different versions of a hypergraph adjacency
tensor have been proposed in existing work [103-112]. In this sec-
tion, we focus on unweighted hypergraphs to keep our exposition
accessible and to remain consistent with the majority of the exist-
ing work in this domain.

Due to their relative simplicity, k-uniform hypergraphs have
been first studied in the literature. As every hyperedge is of the
same order, a k-uniform hypergraph with N nodes can be naturally
represented by a kth-order adjacency tensor A € RNxNxxN yhere
each index ranges from 1 to N, and the entries of A are defined as
follows [103,104]

A =1, if{U,‘l,--

Every other entry in A is set to zero. Similarly to how it can be
meaningful to normalize the adjacency matrix, normalized ver-
sions of this adjacency tensor have been proposed as well. In
[105], the tensor in (30) is normalized by 1/(k — 1)!. This normal-
ization guarantees that the degree of a vertex v;, i.e., the num-
ber of hyperedges that it belongs to, can be retrieved by sum-
ming the entries in the tensor whose first mode index is i, namely
deg(v;) = Zf;mik:l Aii,...i,» see [108]. This is desirable because it
resembles the way of obtaining the degree of a vertex in a graph
from its adjacency matrix. Another normalized adjacency is pro-
posed in [106] where

[N U,‘k} ef. (30)

g g

A

if {v,-],m,v,-k}eg, (31)

1 £ 1

Ty (k — ])| E k/deg(vij)
and the rest of the entries are equal to zero. Its associated nor-
malized Laplacian tensor is defined as £ =7 — A where J is a
tensor of the same size as 4, and its entry J;.; = 1 if deg(v;) >0
and O otherwise. This normalization ensures that £ has certain
desirable spectral properties that mimic those of the normalized
graph Laplacian [106]. For example, the eigenvalues of £ as defined
in [113] are guaranteed to be contained in [0,2]. Having a bounded
spectrum has shown to be useful in GSP for the stability analysis
of graph filters [114].

For hypergraphs with non-uniform hyperedges, i.e., hyperedges
of different sizes, the above construction does not extend easily.
Since some edges will have smaller cardinality than others, some
indices in the adjacency tensor would simply be undefined. A naive
approach would be to keep an adjacency tensor for each observed
cardinality of hyperedges, but this approach is computationally im-
practical. An alternative is to augment the above construction of
an adjacency tensor for general homogeneous hypergraphs as fol-
lows. Denote by m the cardinality of the largest hyperedge across
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all hyperedges e € £. Then, we construct an adjacency tensor of or-
der m according to the following rules [107]. For every hyperedge
e={v;,--- .V} € £ of cardinality s <m, we assign the following
nonzero entries to A

-1
m!

Apiprpn =5 DO el B (32)
I 21,55 [=m

where the indices pq, p,---, pm are chosen in all possible ways

from {i;, i, --- ,is} such that every element of this latter set is rep-

resented at least once. The rest of the entries of A are set to zero.
The Laplacian tensor is then defined as £ =D — A where D is a
super-diagonal tensor of the same size as A and with entries Dj;..;
equal to the degree of vertex v;. To illustrate definition (32), con-
sider the following example.

Example 10. Consider a hypergraph composed of four nodes
V1, V2, U3, V4 and two hyperedges e, = {v1, vy, v3} and e; = {v3, v4}.
We have that m = max{|e;|, |ex|} =3 and the adjacency tensor is
of size 4 x 4 x 4. For ey, the corresponding s = |e;| =3 and [; =
I, = I3 =1, thus the corresponding entries in the tensor are de-
fined as A123 :A132 =A213 =A23] =A312 =A321 = 3/3' = 1/2 For
e;, the corresponding s = |e;| =2 and there are two choices for
Iy and L, ie., Iy =1,1 =2 or Iy = 2,1, = 1. Thus we have Asyy =
Aszg = Aggz = Aszq = Azgz = Agz3 = 2- (31/21 +31/21)"1 = 1/3. The
remaining entries are set to zero.

Having defined adjacency and Laplacian tensors, we can now
construct appropriate shift operators based on these tensors. In
the context in which we are interested in processing signals y =
[V1.¥2.--- . yn]T defined on the nodes, the following approach has
been proposed [112]. First, given the signal vector y construct the
following (m — 1)th-order outer product tensor Y € RN<*N as

Y=Yyo---oy, with entries Y, i, , =i, Vi, Vi, (33)

m—1 times
where o denotes the tensor outer product and m is the order of
the adjacency or Laplacian (shift) tensor of interest. Then, the hy-

pergraph shift operation leading to the output signal y°Ut € RN is
defined elementwise as

N
t
W= 3 Siiin YiYi Yine (34)
Jrodmea=1
where S;;, ;. correspond to the entries of the chosen shift ten-

sor. Equivalently, we may express the above in terms of tensor
products as

yout = SY. (35)

Note that, due to the symmetry of the tensor S, it does not matter
which mode we leave out in the tensor multiplication, i.e., which
of the indices is kept fixed to i in (34). Furthermore, for the specific
case where m = 2, we have that ) =y in (33) and the shift opera-
tion in (34) boils down to a standard matrix-vector multiplication
as in GSP.

Example 11. Consider the hypergraph in Fig. 8: vertex vs is con-
tained in two hyperedges e; = {vy, 1,3} and e; = {v3, V4, V5}. We
define the adjacency tensor as the shift tensor S. According to (34),
the output signal at vertex v3 after one hypergraph shift is com-
puted as

Y3 = S321 X Y2¥1 + S312 X Y1¥2 + S354 X Y5Ya + S3a5 x Yays5. (36)
As in the graph case where the entry S;; of the shift operator indi-
cates the shift from vertex v; to vertex v;, the entry S;; ..  of the
hypergraph shift operator indicates the shift in one hyperedge fol-
lowing the order v; . —v;  — ---—v; — v Fig. 8 illustrates
the process defined by (36).
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Fig. 8. Tensor based shift operator on a hypergraph. The output of y"* at vertex
v5 is determined by a weighted sum over the hyperedges incident to vs;, where the
summands correspond to the products of the vertex signals within the respective
hyperedges excluding vs. [Figure adapted from Fig. 10(a) in [112]].

5.3. Comparison between matrix-based and tensor-based hypergraph
representations

The major advantage of matrix-based methods is that a lot of
well-developed graph-related algorithms can be directly utilized.
However, if the resulting matrix representation is akin to a graph
in that it only encodes pairwise relations between vertices (clique
expansion), or hyperedges (line graphs), there will be some infor-
mation loss, in general, compared to the original hypergraph struc-
ture. In contrast, for the star-expansion, all the incidence informa-
tion is kept in the matrix representation. However, the resulting
graph is bipartite. The bipartite graph structure might be undesir-
able for some applications since there are no explicit links between
the same types of vertices and there are much fewer algorithms
tailored for bipartite graphs than those for simple graphs [101].

Compared with matrix representations, tensors can better re-
tain the set-level information contained in hypergraphs. However,
tensor computations are more complicated and lack algorithmic
guarantees [110]. For example, determining the rank of a spe-
cific tensor is NP-hard [115]. Most existing papers have focused
on super-symmetric tensors [113], while more general tensors are
less explored. Indeed, how to best leverage tensor-based represen-
tations to study hypergraphs that are not homogeneous is an open
problem.

Remark 12. There is a rich and complementary line of research
on nonlinear Laplacian operators. In [116,117], a continuous diffu-
sion process on the hypergraph is considered to define a Lapla-
cian operator that enables a Cheeger-type inequality for hyper-
graphs. To understand this diffusion process, suppose that, at some
instant, there is some signal y € RVl defined on the vertices of
a hypergraph. Each hyperedge e < £ directs flow from vertices
Se(y) = argmaxy,cey; having the maximum signal value to vertices
le(y) = argminy,c.y; having the minimum signal value, at a total
rate of c. = w(e) - MaXy,y;ce lyi —yjl. As the diffusion progresses,
the cardinality of Se(y) and I.(y) increases, conferring a nonlinear
nature to the diffusion process, which can be modeled through a
nonlinear Laplacian. A generalization of this process was proposed
in [118], where hyperedges can act as mediators to receive flow
from vertices in Se(y) and deliver flow to those in I.(y). Moreover,
a unifying framework was recently presented in [119] by proposing
a Cheeger inequality for submodular transformations. In particu-
lar, the Laplacian operators as well as the Cheeger inequalities for
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undirected graphs, directed graphs and hypergraphs can be recov-
ered by defining proper submodular transformations; see [119] for
more details. In [89], similar results have been independently ob-
tained for symmetric submodular transformations.

6. Signal processing and learning on hypergraphs

Mimicking the respective developments in Section 2.4 for
graphs and Section 4 for simplicial complexes, in this sec-
tion we consider the four signal processing setups for hyper-
graphs equipped with the algebraic representations developed in
Section 5.

6.1. Fourier analysis, node and hyperedge embeddings

As stated in Section 5.1, shift operators for hypergraphs can
be represented via matrices. The corresponding eigenvectors may
then be used as Fourier modes and, thus, most GSP tools discussed
in Section 2 can be directly translated to hypergraphs for matrix-
based hypergraph shift operators. However, unlike for graphs, even
an undirected hypergraph may result in an asymmetric matrix, e.g.,
if hyperedge weightings are considered. Hence, one may have to
adopt tools from GSP for directed graphs in this case; see [19] for
a more detailed exposition of these issues.

In contrast to matrix-based shift operators, the notion of
Fourier analysis for hypergraphs represented via tensors is far less
developed. Nonetheless, we may proceed analogously to the ma-
trix case and define Fourier modes via a tensor decomposition, in
lieu of the eigenvector decomposition. Specifically, we can consider
the orthogonal canonical polyadic (CP) decomposition [120] of the
adjacency tensor A (other representative tensors can also be con-
sidered) given by

R
A:Zkr~vr0~-ovr, (37)
_

m times

where A, are scalars, and R is the so-called rank of the tensor
(i.e., R is the smallest number such that A can be represented as
a weighted sum of rank-1 outer-product tensors). Using this de-
composition, the hypergraph Fourier basis can then be defined as
V =[vq,---,vy]. When R <N, the first R vectors are determined
via the CP decomposition and N — R additional vectors satisfying
specific conditions are selected to complete the basis (see Section
IlI-F in [112] for details). Similar to the matrix case, the hyper-
graph Fourier frequencies are defined as the coefficients A, asso-
ciated with the rank-1 terms in the decomposition.

Extending the arguments from the matrix case to the tensor
case, the hypergraph Fourier transform (HGFT) and inverse HGFT
(iHGFT) [112] are then defined as

y=NTy)™!, y=VymT, (38)

where y™ = [yT, - -- ,y,'Z}]T denotes the m-th power of each entry
of y. By introducing such definitions, an application of the tensor
shift can be equivalently interpreted as a HGFT followed by a com-
bined operation consisting of filtering in the Fourier domain plus
iHGFT (cf. Equation (25) in [112]). Observe that, when m = 2, the
hypergraph shift defined in (34), and the HGFT and iHGFT defined
in (38) have the same form as the corresponding concepts in GSP
(cf. Section 2.3).

Similar to how graph Fourier modes can be used to derive
node embeddings, the same can be done for hypergraphs using ei-
ther matrix or tensor representations. For matrix representations,
the procedure is entirely analogous. For tensor representations, we
have to use a tensor decomposition but can proceed in a similar
fashion once the (tensor-based) Fourier modes are derived. While
tensor-based embeddings have only been scarcely considered in
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the literature so far, e.g., [121] represents the dual hypergraph (see
Fig. 7B) using tensors and learns hyperedge embeddings by per-
forming a symmetric tensor decomposition [122,123]. Finally, the
embedding of heterogeneous hypergraphs entails additional chal-
lenges that can be (partially) addressed through nonlinear neural
network based approaches; see [82] for more details.

6.2. Signal smoothing and denoising

As was the case for graphs and simplicial complexes, one can
leverage the structure of hypergraphs to solve inverse problems
associated with signals defined on them. For the specific problem
of denoising, the assumption is that the signal to be recovered is
smooth in the hypergraph, where smoothness typically encodes
the fact that tightly connected nodes should have similar signal
values. For instance, in the co-authorship network in Example 9, if
two authors share many papers (hyperedges) either written solely
by them or in collaboration with others, one would expect a signal
that represents research interests to take similar values for the two
mentioned authors. This notion of homophily is well established
for graphs and naturally extends to hypergraphs.

Mathematically, in line with the graph case in Section 2.4.2, we
assume that we observe a noisy version y = y° + € of the true un-
derlying signal defined on the node set of our hypergraph #. Then,
we can try to estimate y° by solving the optimization problem

myin 19— ylI3 + o2 ). (39)

where the first term is to constrain the denoised signal § to be
close to the observation y and the second term is a regularizer
shaped by the structure of H.

A possible choice for 24 (¥) is to select a Laplacian matrix rep-
resentation of # (cf. Section 5.1) and set the regularizer to the
quadratic form as in the graph case [93,94]. From the discussion
after (2) it follows that the optimal solution § will then be a low-
pass version of y where the bases for low and high frequencies de-
pend on the specific graph expansion selected. The most common
one is to consider the clique expansion, in which we have

Q) = Z wc(u, v) Py _}71/)2 = f’Tchl,

(u,v)eé:

(40)

where L. corresponds to the graph Laplacian obtained via clique
expansion of the hypergraph. Alternatively, one can rely on tensor-
based representations for hypergraphs in the definition of Q4 (¥).
In particular, we can set the regularizer to be equal to the tensor-
based total variation in [112]. In this case, smooth signals would
also be promoted but the meaning of a smooth signal will cor-
respond to one that suffers little change under a tensor shift as
defined in (34).

An alternative regularizer based on the Lovasz extension of the
hypergraph cut has also been proposed [124]. More specifically, a
parametric family of regularizers was considered

A A~ . A p
Qup(¥) = Zw(e)(rgeaexyu - rglelenyu) :

ecé

(41)

which can be shown to be convex for p > 1. Consequently, the
optimization problem (39) remains convex and, in particular, tai-
lored efficient algorithms have been proposed for p=1 and p = 2;
see [124]. In interpreting (41) we can see that €y ,(¥) induces yet
another related notion of smoothness. For every hyperedge e € £
we look at the difference between the extreme values of the sig-
nal attained at the nodes contained in e, we scale this penaliza-
tion by the weight of the hyperedge, and we sum over all hyper-
edges. Intuitively, this regularizer promotes signals that are con-
stant within the hyperedges. Moreover, the power p controls the
form of the deviations from these piecewise constant signals. For
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example, the sparsity promoting p =1 would encourage the sig-
nal variation to be zero within some hyperedges and possibly high
in others, whereas p = 2 would promote a low (possibly non-zero)
variation across all hyperedges.

If we consider a general submodular function F, instead of the
hypergraph cut, then (41) can be generalized as

Qp @) =Y [fe @I,

ee&

(42)

where f, is the Lovasz extension of F. (cf. Remark 12). The opti-
mization problem (39) equipped with (42) are respectively referred
to as decomposable submodular function minimization (DSFM) for
p=1[125-130] and quadratic DSFM (QDSFM) for p = 2 [131]. Sim-
ilar to (40) which can also be written as (y,L:y), (42) can be
viewed as (¥, £(¥)) for some Laplacian operator £ depending on
Fe.

6.3. Signal interpolation on hypergraphs

As discussed in the previous sections, signal interpolation and
smoothing are closely related problems. Successful signal interpo-
lation from an observed subset V' hinges to a large extent on the
selection of a sensible model for a (smooth) ground truth signal
that is compatible with the observed (desired) signal characteris-
tics. For a chosen signal model, we may then again set up an opti-
mization problem for interpolating hypergraph signals as

min Q4 (¥), st Jy =y, for all ve VE, (43)

y
where 4 is a regularizer chosen to promote the desired signal
characteristics, e.g., a low-pass signal. Like for graphs and simpli-
cial complexes, many choices for the regularization term are pos-
sible here and the optimal choice of a regularizer will generally
be dependent on the considered application scenario. For instance,
we may choose to use a regularizer based on the clique expansion
or some of the other strategies discussed in Section 6.2. Unlike
in the graph and simplicial complex setting, however, for hyper-
graphs we may also consider tensor-based regularizers, which can
offer smoothing and interpolation strategies that are not accessi-
ble via matrix-based approaches. Developing and analyzing such
approaches for hypergraphs appears to be an interesting avenue
for future research. Problem (43) can also be converted to an-
other class of optimization problem called submodular Laplacian
system [132] which is a generalization of the Laplacian system on
graphs [39].

6.4. Hypergraph neural networks

The design of neural network architectures to process and
learn from data on hypergraphs is a nascent area of research.
Given the developments in graph neural networks mentioned in
Section 2.4.4 and the graph expansions for hypergraphs introduced
in Section 5.1, an avenue to derive hypergraph neural networks
is to compute the graph shifts based on the (clique, star, or line
graph) expansions of the hypergraph and then apply a (classical)
graph neural network as the one in (6) or any of the variants sur-
veyed in [41].

In this direction, one of the earliest hypergraph neural net-
works [133] adopts the hypergraph Laplacian matrix associated
with a weighted clique expansion in [94] as a graph shift and
then implements a graph convolutional network [45,46] where
shift-invariant filters are intertwined with pointwise nonlinearities.
One drawback of the clique expansion is that the resulting graph
tends to be dense since a hyperedge is replaced by a number of
edges that is quadratic in the size of the hyperedge. A similar
idea is proposed in [134], but this convolutional neural network is
based on a different hypergraph Laplacian shift (proposed in [118]),
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which only requires a linear number of edges for each hyperedge.
This provides a more efficient training when compared with that
of [133]. Under this same methodological umbrella, a line hyper-
graph convolution network is proposed in [100], which expands
the hypergraph into a weighted and attributed line graph and then
implements a graph convolutional network using the correspond-
ing shift operator.

Architectures grounded on the message-passing variants of
graph neural networks (cf. Section 2.4.4) have also been proposed
for hypergraphs. For instance, in [101] the line expansion of the
hypergraph is used to define a message passing process where po-
tentially different aggregation functions can be used when pass-
ing messages between nodes in the expansion that have either one
vertex or one hyperedge in common; see Fig. 7-F. Also, [135] pro-
poses a generalization of GraphSAGE [136] to hypergraphs, a well-
established message passing architecture for graphs. Recent devel-
opments that further extend the state of the art include archi-
tectures that tackle the issue that the initially constructed hyper-
graphs may not be a suitable representation for data [137] as well
as the formulation of attention [138] and self-attention [83] mech-
anisms for hypergraphs.

As a closing note, a different perspective is put forth in [139],
where a convolutional neural network architecture for powerset
data is introduced. These architectures are designed to learn from
set functions, which are signals on the powerset of a given set. By
noticing that cuts in hypergraphs can be interpreted as set func-
tions, these convolutional architectures can be used to solve prob-
lems in hypergraphs; see [139] for more details.

7. Discussion

Graph signal processing tools have been highly successful in a
wide range of applications, ranging from biological to social do-
mains. This success hinges to a large extent on providing sensible
notions for filtering graph signals, such that the relevant depen-
dencies in the signal are kept intact, while undesirable noise com-
ponents are filtered out. However, as graphs are only concerned
with pairwise relationships, their capabilities for modeling higher-
order dependencies are too limited for certain application scenar-
ios in which polyadic relationships are essential. In such scenar-
ios, simplicial complexes and hypergraphs have recently emerged
as two promising conceptual frameworks to address the specific
shortcomings of graph-based representations.

Unlike for GSP that can benefit from a rich set of results in
spectral graph theory, e.g., to derive appropriate notions of shift
operators and signal smoothness, the theory of signal processing
on higher-order networks is far less developed. In this tutorial pa-
per, we provided an introduction to this emerging area, focusing on
the choice of appropriate shift operators and associated frequency
domain representations, as well as a set of important application
scenarios comprising signal smoothing and denoising, signal inter-
polation, and the construction of nonlinear neural network archi-
tectures that can leverage the structure of such higher-order net-
works.

We believe that this area holds an enormous potential for fu-
ture developments. A few relevant future direction include the fol-
lowing.

In the context of simplicial complexes, the investigation of how
these should be constructed from data to capture desirable fea-
tures is certainly one aspect that deserves further research. As dis-
cussed in Sections 3 and 4, the choice of appropriate faces has di-
rect consequences on the frequency representation of any signal
and is thus highly relevant for applications [63]. Similarly, while
we discussed only unweighted simplicial complexes for simplicity,
the appropriate introduction of weights to emphasize certain fea-
tures in the data to be investigated is a pertinent issue that should
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be addressed in future research. Finally, while we concentrated on
simplicial complexes as the most common complexes considered,
the restriction to simplicial instead of other type of cell complexes
such as cubical complexes is essentially artificial. From a modeling
perspective, simplices may not always capture the appropriate no-
tion of a “cell” in a higher-order interaction network. For instance,
in traffic and street networks it may be beneficial to consider cu-
bical complexes or other types of models that can better represent
the grid-like structure of many of these networks [59].

In the context of hypergraphs, we provide several potential di-
rections for future work. As the first step, constructing a suitable
hypergraph is key to the final performance. Hence, it is important
to develop effective and efficient methods for the construction of
hypergraphs from real-world datasets that are usually large-scale.
To better characterize a wider range of datasets, it is necessary to
develop more general hypergraph models, such as those consider-
ing different types of vertices or having different levels of relations
(cf. Section 5). A variety of problems that have been well studied
in graphs or homogeneous hypergraphs are valuable to be recon-
sidered and extended to those less explored but more expressive
models. These problems include, but are not limited to, develop-
ing spectral hypergraph theory, node clustering, classification and
ranking, link prediction, hypergraph representation learning (espe-
cially for heterogeneous hypergraphs in which hyperedges are gen-
erally indecomposable [82]), the modeling and analysis of diffu-
sion processes on hypergraphs, tensor-based representations and
operations (especially for hypergraphs with edge-dependent ver-
tex weights which are hard to be modeled using super-symmetric
tensors), hypergraph kernels, hypergraph classification, and hyper-
graph alignment. Although one framework for hypergraph signal
processing has already been proposed in [112], there are still many
open questions. In GSP, graph shift and filters can be understood
as some network diffusion processes, while it is not clear if and
how the hypergraph shift can be connected with a physical pro-
cess. Other problems such as hypergraph filter design, active sam-
pling for reconstruction, and fast hypergraph Fourier transforms
are also worth investigating. Finally, most existing hypergraph neu-
ral networks are matrix-based like those introduced in Section 6.4.
A natural extension in this context would be to derive the theory
of tensor-based neural networks for hypergraphs.
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