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a b s t r a c t 

In this tutorial, we provide a didactic treatment of the emerging topic of signal processing on higher- 

order networks. Drawing analogies from discrete and graph signal processing, we introduce the building 

blocks for processing data on simplicial complexes and hypergraphs, two common higher-order network 

abstractions that can incorporate polyadic relationships. We provide brief introductions to simplicial com- 

plexes and hypergraphs, with a special emphasis on the concepts needed for the processing of signals 

supported on these structures. Specifically, we discuss Fourier analysis, signal denoising, signal interpola- 

tion, node embeddings, and nonlinear processing through neural networks, using these two higher-order 

network models. In the context of simplicial complexes, we specifically focus on signal processing using 

the Hodge Laplacian matrix, a multi-relational operator that leverages the special structure of simplicial 

complexes and generalizes desirable properties of the Laplacian matrix in graph signal processing. For hy- 

pergraphs, we present both matrix and tensor representations, and discuss the trade-offs in adopting one 

or the other. We also highlight limitations and potential research avenues, both to inform practitioners 

and to motivate the contribution of new researchers to the area. 

© 2021 The Authors. Published by Elsevier B.V. 
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. Introduction 

Graphs provide a powerful abstraction for systems consisting 

f (dynamically) interacting entities. By encoding these entities 

s nodes and the interaction between them as edges in a graph, 

e can model a large range of systems in an elegant, concep- 

ually simple framework. Accordingly, graphs have been used as 

odels in a broad range of application areas [1,2] , including neu- 

oscience [3,4] , urban transportation [5] , and social sciences [6] . 

any of these applications may be understood in terms of graph 

ignal processing (GSP), which provides a unifying framework for 

rocessing data supported on graphs. In GSP, we model complex 

ata dependencies as the edges of graphs that relate signals on 

he nodes. In this way GSP extends and subsumes classical signal 

rocessing concepts and tools such as the Fourier transforms, filter- 

ng, sampling and reconstruction of signals, and others, to a graph- 

ased setting [7–9] . 
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To enable computations with graph-based data, we typically en- 

ode the graph structure in an adjacency matrix or its associated 

normalized or combinatorial) Laplacian matrix. Rather than con- 

idering these matrices as a simple table that records pairwise cou- 

ling between nodes, it is fruitful to think of these matrices as lin- 

ar operators that map data from the node space to itself. By ana- 

yzing the properties of these maps – e.g., their spectral properties 

we can reveal important aspects both about the graphs them- 

elves as well as signals defined on the nodes. Choosing an appro- 

riate matrix operator associated with the graph structure is thus 

 key factor in gaining deeper insights about graphs and graph sig- 

als. In GSP, we call such maps that relate data associated with dif- 

erent nodes graph shift operators . Graph shift operators are natural 

eneralizations of the classical time delay, and constitute the fun- 

amental building blocks of graph filters and other more sophisti- 

ated processing architectures [10] . The rapid advancement of GSP 

as benefited significantly from spectral and algebraic graph the- 

ry [11] , in which the properties of matrices such as the adjacency 

atrix and the Laplacian have been extensively studied. 

By construction, graph-based representations do not account 

or interactions between more than two nodes, even though such 
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ulti-way interactions are widespread in complex systems: multi- 

le neurons can fire at the same time [12] , biochemical reactions 

sually include more than two proteins [13] , and people interact 

n small groups [14] . To account for such polyadic interactions, a 

umber of modeling frameworks have been proposed in the liter- 

ture to represent higher-order relations, including simplicial com- 

lexes [15] , hypergraphs [16] , and others [17] . However, in compar- 

son to this line of work on representing the structure of complex 

ulti-relational systems, the literature on the data processing for 

ignals defined on higher-order networks is comparatively sparse. 

n this tutorial paper, we focus on the topic of signal processing on 

implicial complexes and hypergraphs . Following a high-level didac- 

ic style, we concentrate on the algebraic representations of these 

bjects, and discuss how the choice of this algebraic representa- 

ion can influence the way in which we analyze and model signals 

ssociated with higher-order networks. 

Similarly to graphs, higher-order interactions can be encoded 

n terms of matrices or, more generally, tensors. Two of the most 

rominent abstractions for such polyadic data are simplicial com- 

lexes [15] and hypergraphs [16] . As we will see in the follow- 

ng, both of these abstractions have certain advantages and dis- 

dvantages: Hypergraphs are somewhat more flexible in terms 

f the relationships they can represent, which can be desirable 

n terms of modeling. Indeed a simplicial complex may be in- 

erpreted as a specific hypergraph for which only certain sets of 

yperedges are allowed. The advantage of simplicial complexes, 

owever, is that this additional structure provides deep links to 

omputational geometry and algebraic topology, which can facil- 

tate both the computation and interpretation of the processed 

ignals [18] . 

Analogously to the graph case, we encode higher-order relations 

n terms of incidence matrices or tensors that provide an alge- 

raic description of these two data models. Clearly, the choice of 

he linear (or multilinear) operator representing higher-order inter- 

ctions will matter for revealing interesting properties about the 

ata, leading to the key question of how to choose an appropri- 

te abstraction for this kind of data. In comparison to graphs, the 

nalysis of higher-order interaction data is more challenging due to 

everal factors: (i) There exists a combinatorially large number of 

ossible interactions: two-way, three-way, and so on. Hence, very 

arge matrices and tensors are needed to capture all these rela- 

ions; (ii) The large dimensionality of these representations gives 

ise to computational and statistical issues on how to efficiently 

xtract information from higher-order data; and (iii) The theory on 

he structure of higher-order networks is largely unexplored rel- 

tive to that of graphs. In the following, we will primarily focus 

n the question of choosing an appropriate algebraic descriptor 

o implement various signal processing tasks on simplicial com- 

lexes and hypergraphs. Specifically, we will consider the mod- 

ling assumptions inherent to an abstraction based on simplicial 

omplexes versus hypergraphs, and discuss the relative advantages 

nd disadvantages of a number of associated matrix and tensor de- 

criptions that have been proposed. To make our discussions more 

oncrete we provide a number of illustrative examples to demon- 

trate how the choice of an algebraic description can directly effect 

he type of results we can obtain. 

Outline. We first briefly recap selected concepts from signal 

rocessing and GSP in Section 2 . In Section 3 , we present tools

rom algebraic topology and their use in representing higher-order 

nteractions with simplicial complexes. In Section 4 , we describe 

ethods to analyze signals defined on simplicial complexes. We 

hen turn our attention to hypergraphs in Section 5 , and fo- 

us on the modeling of higher-order interactions via hypergraphs. 

ection 6 then builds on these models and outlines some of the ex- 

sting methods for signal processing and learning on hypergraphs. 
v

2 
inally, in Section 7 , we close with a brief discussion summarizing 

he main takeaways and laying out directions for future research. 

. Signal processing on graphs: a selective overview 

Before discussing signal processing on higher-order networks, 

e revisit principles from signal processing and GSP [7–9] and 

ecall some important problem setups, which will later guide 

ur discussion on higher-order signal processing. In this tutorial, 

e focus on undirected graphs (and higher-order networks), al- 

hough signal processing on directed graphs has been studied as 

ell [19,20] . 

.1. Central tenets of discrete signal processing 

In discrete signal processing (DSP), signals are processed by fil- 

ers. A linear filter H is an operator that takes a signal as input and

roduces a transformed signal as output. This linear filtering oper- 

tion is represented by a matrix-vector multiplication s out = Hs in 
nd defines a linear system. A special role is played by the circular 

ime shift filter S , a linear operator that delays the signal by one 

ample. This so-called shift operator underpins the class of time 

hift-invariant filters, which is arguably the most important class 

f linear filters in practice. Specifically, in classical DSP, every lin- 

ar time shift-invariant filter can be built based on a matrix poly- 

omial of the time-shift S [21] . 

A filter represented by the matrix H is shift-invariant if it com- 

utes with the shift operator, i.e., SH = HS . This implies that H and

 preserve each others eigenspaces. Since the cyclic shift S is a cir- 

ulant matrix that is diagonalizable by discrete Fourier modes, this 

mplies that the action of any shift-invariant linear filter in DSP can 

e understood by means of a Fourier transform. Specifically, the 

igenvectors of the cyclic time-shift operator provide an orthogo- 

al basis for linear time shift-invariant processing of discrete-time 

ignals. Thus time-shift invariant filters are naturally interpretable 

y Fourier analysis [21] . 

.2. Graphs, incidence matrices, and the graph Laplacian 

An undirected graph G is defined by a set of nodes V = 

 v 1 , · · · , v N } with cardinality N and a set of edges E with cardi-

ality E composed of unordered pairs of nodes in V . Edges can 
e stored in the symmetric adjacency matrix A whose entries are 

iven by A i j = A ji = 1 if { i, j} ∈ E and 0 otherwise. Given the de-

ree matrix D = diag (A 1 ) , the graph Laplacian associated with G
s given by L = D − A . Alternatively to the adjacency matrix A , we

an collect interactions between the nodes in the graph via the 

ncidence matrix B ∈ R 
N×E . For each edge e we define an arbi-

rary orientation, which we denote by e = (i, j) . We think of such

n edge e as being oriented from tail node i to its head node j.

ased on this orientation, the incidence matrix B is defined such 

hat B ie = −B je = −1 and B ke = 0 otherwise. Using this definition

e can provide an equivalent expression for the graph Laplacian 

s L = BB � . In the remainder of this paper, we choose an edge-

rientation induced by the lexicographic ordering of the nodes, i.e., 

dges will always be oriented such that they point from a node 

ith lower index to a node with higher index. However, we em- 

hasize that this orientation is arbitrary and is distinct from the 

otion of a directed edge. 

.3. Graph signal processing 

GSP generalizes the concepts and tools from DSP to signals de- 

ned on the nodes of graphs. A graph signal s : V → R is a map

rom the set of nodes V to the set of real numbers R . This de-

nes an isomorphism between the set of nodes and the set of real- 

alued vectors of length N, so any graph signal may be represented 
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Fig. 1. Graph signal and its Fourier decomposition. A Graph signal defined on the nodes of the graph. B Eigenvector and eigenvalue pairs of the graph Laplacian L . 

We visualize each of the eigenvectors in terms of a graph signal and order them from low to high graph frequencies, corresponding to a decrease in “smoothness”. The 

decomposition of the node signal s into this basis provides the Fourier coefficients in ̃  s as indicated at the bottom of each eigenvector representation. 
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s a vector s = [ s 1 , s 2 , . . . , s N ] 
� ∈ R 

N . An example of a graph signal

an be seen in Fig. 1 A, where the signal values at each node are in-

icated by the node color. Similarly to DSP, filtering in GSP can be 

epresented by a matrix-vector multiplication operation s out = Hs in . 

he analog of the shift operator S in the GSP setting is any operator

hat captures the relational dependencies between nodes, includ- 

ng the adjacency matrix A , the Laplacian matrix L , or variations of 

hese operators [8,9] . 

As we are considering undirected graphs here, the choice of a 

hift operator imparts a natural orthogonal basis U in which to 

epresent the signal. Given the eigenvalue decomposition of the 

hift operator S = U �U 
� and a filtering weight function h : R → R ,

e can express any shift-invariant filter in this basis as: 

 = 

N ∑ 

k =1 

h (λk ) u k u 
� 
k = U h ( �) U 

� , (1) 

here we have used the shorthand notation h ( �) = 

iag (h (λ1 ) , · · · , h (λN )) . By analogy to the Fourier basis in DSP,

he eigenvectors U of the shift operator are said to define a graph 

ourier transform (GFT), and h ( �) is called the frequency response 

f the filter H . Specifically, the GFT of a graph signal s is given by

  = U 
� s , while the inverse GFT is given by s = U ̃ s [7,9] . 

As our discussion emphasizes, any filtered signal s out = Hs in on 

n undirected graph can be understood in terms of three steps: (i) 

roject the signal into the graph Fourier domain, i.e., express it in 

he orthogonal basis U (via multiplication with U 
� ); (ii) amplify 

ertain modes and attenuate others (via multiplication with h ( �) ), 

nd (iii) push back the signal to the original node domain (via 

ultiplication with U ). The choice of an appropriate shift operator 

s thus crucial, as its eigenvectors define the basis for any shift- 

nvariant graph filter for undirected graphs. We will encounter this 

spect again when considering signal processing on higher-order 

etworks. 

In the context of GSP, we focus on the graph Laplacian as a shift

perator. This choice has the following advantages. First, L is pos- 

tive semidefinite, so that all the graph frequencies (eigenvalues) 

re real and non-negative. This enables us to order the GFT ba- 

is vectors (eigenvectors) in a natural way. Second, by considering 

he variational characterization of the eigenvalues of the Laplacian 

n terms of the Rayleigh quotient r(s ) = s � Ls / s � s = 

∑ 

i j A i j (s i −
3 
 j ) 
2 / (2 ‖ s ‖ 2 ) , it can be shown that eigenvectors associated with

mall eigenvalues have small variation along the edges of the graph 

low frequency) and eigenvectors associated with large eigenval- 

es have large variation along edges (high frequency). In particular, 

igenvectors associated with eigenvalue 0 are constant over con- 

ected components. An illustration of this is given in Figure 1 B, 

hich displays the individual basis vectors of the graph Laplacian, 

nd the coefficients with which these basis vectors would have to 

e weighted to obtain the previously considered graph signal in 

igure 1 A. 

.4. Graph signal processing: illustrative problems and applications 

Over the last few years, several relevant problems have been 

ddressed using GSP tools including sampling and reconstruction 

f graph signals [22–24] , (blind) deconvolution [25,26] , and net- 

ork topology inference [27–30] , to name a few. We now intro- 

uce a subset of illustrative problems and application scenarios 

hat we will revisit in the context of higher-order signal process- 

ng. 

.4.1. Fourier analysis: node embeddings and Laplacian eigenmaps 

As discussed above, the GFT of a graph signal provides a fun- 

amental tool of GSP. While we are often interested in filtering a 

ignal and representing it in the vertex space, the Fourier represen- 

ation can also be used to gain insight about specific graph com- 

onents by considering a frequency domain representation of the 

ndicator vector associated with the vertices of interest. In partic- 

lar, by considering a truncated Fourier domain representation of 

he indicator vectors of individual nodes, we can recover a num- 

er of spectral node embeddings that have found a broad range 

f applications (see also [31] for a related discussion). Specifically, 

y considering a truncated Fourier domain representation based on 

he normalized Laplacian as a shift operator, we recover a variant 

f the so-called Laplacian eigenmaps [32] , and by additionally in- 

orporating a scaling associated with the eigenvalues, we can re- 

over the diffusion map embedding [31,33] . 

We remark that while most of these spectral node embeddings 

ocus on low frequency eigenvectors, high frequency components 

an also be of interest for embeddings. For instance, if the graph 

o be analyzed is almost bipartite, then the eigenvectors associated 
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w  
ith the highest frequencies of the graph Laplacian will reveal the 

wo (almost) independent node sets in the graph. Other types of 

nonlinear) node embeddings may also be viewed through a GSP 

ens, e.g., certain node embeddings derived from graph neural net- 

orks (cf. Section 2.4.4 ). We refer to [34] for an extensive discus- 

ion on the highly active area of node representation learning on 

raphs. 

.4.2. Signal smoothing and denoising 

A canonical task in GSP is to denoise (smooth out) a noisy sig- 

al y = y 0 + ε ∈ R 
N , where y 0 is the true signal we aim to recover

nd ε is a vector of zero-mean white Gaussian noise [35] . A natural 

ssumption is that the signal should be smooth on nearby nodes 

n terms of the underlying graph, so that neighboring nodes will 

end to take on similar values. Following our above discussion, this 

mounts to assuming that the signal has a low-pass characteristic, 

.e., can be well-represented by the low frequency eigenvectors of 

he Laplacian. Indeed, the eigenvectors of the Laplacian associated 

ith low eigenvalues are smooth on clusters, i.e. their total varia- 

ion is low within clusters and high over edges between clusters. 

We formalize the above problem in terms of the following op- 

imization problem [27,36] 

in 
ˆ y 

{ ∥∥ˆ y − y 
∥∥2 

2 
+ α ˆ y � L ̂ y } , (2) 

here ˆ y is the estimate of the true signal y 0 . The coefficient α > 0

an be interpreted as a regularization parameter that trades-off the 

moothness promoted by minimizing the quadratic form ˆ y � L ̂ y = 

 

i j A i j ( ̂  y i − ˆ y j ) 
2 / 2 and the fit to the observed signal in terms of 

he squared 2-norm. The optimal solution for (2) is given by [27] 

ˆ  = (I + αL ) −1 y . (3) 

 different procedure to obtain a signal estimate is the iterative 

moothing operation 

ˆ  = (I − μL ) k y , (4) 

or a certain fixed number of iterations k and a suitably chosen up- 

ate parameter μ. This may be interpreted in terms of k gradient 

escent steps of the cost function ˆ y � L ̂ y . 
Matching the signal modeling assumption of a smooth signal, 

he denoising and smoothing operators defined in (3) and (4) are 

nstances of low-pass filters , i.e., filters whose frequency responses 

 ( λ) = diag (U 
� HU ) are vectors of non-increasing (decreasing) val- 

es. In the GSP context, the low-pass filtering operation guarantees 

hat variations over neighboring nodes are smoothed out, in line 

ith the intuition of the optimization problem defined in (2) . 

.4.3. Graph signal interpolation 

Another common task in GSP is signal interpolation, which 

an alternatively be interpreted in terms of graph-based semi- 

upervised learning [23,37] . Suppose that we are given signal values 

labels) for a subset of the nodes V L ⊂ V of a graph. Our goal is to

nterpolate these assignments and to provide a label to all unla- 

eled nodes V U = V \ V L . 
As in the signal denoising case, it is natural to adopt a smooth- 

ess assumption that posits that well-connected nodes have simi- 

ar labels [38] . This motivates the following constrained optimiza- 

ion problem [39] 

min 
ˆ y 

∥∥B 
� ˆ y 

∥∥2 

2 
, (5) 

s.t. ˆ y i = y i , for all v i ∈ V L , 

hich aims to minimize the sum-of-squares label difference be- 

ween connected nodes under the constraint that the observed 

ode labels y i should be accounted for in the optimal solution. 

otice that the objective function in (5) can again be written 
4 
n terms of the quadratic form of the graph Laplacian 
∥∥B � ˆ y ∥∥2 

2 
= 

 

(i, j) ∈E ( ̂  y i − ˆ y j ) 
2 = ˆ y � L ̂ y , highlighting the low-pass modeling as- 

umption inherent in the optimization problem (5) . 

.4.4. Graph neural networks 

Motivated by spectral interpretations of filters and shift oper- 

tors in the domain of graph signal processing, graph neural net- 

orks [40,41] have emerged as a popular approach to incorpo- 

ate nonlinearities in the graph signal processing pipeline for pur- 

oses of node embedding [42–44] , node classification [45,46] , and 

raph classification [46] . Graph neural network architectures com- 

ine notions of graph filtering, permutation invariance, and graph 

ourier analysis with nonlinear models from the design of neural 

etworks. 

One such architecture is the well-known graph convolutional 

etwork [45] , which resembles the functional form of (4) with 

nterleaved nonlinear, elementwise activation functions, i.e., for a 

et of F 0 input features gathered in the columns of a matrix Y 0 ∈
 
N×F 0 , 

 k = σ (HY k −1 W k ) , (6) 

here we take Y K for some integer K as the output, { W k ∈ 

 
F k −1 ×F k } K 

k =1 
are learnable weight matrices that perform linear 

ransformations in the feature space, H is a certain graph filter, 

nd σ (·) is a generally nonlinear activation function applied ele- 
entwise. Specifically, [45] uses a normalized version of the graph 

aplacian as a first-order filter H , and the ReLU activation function 

or σ (·) . 
A closer look at (6) reveals a connection with the iterative 

moothing method of (4) . Taking σ (·) to be the identity mapping, 

e see that (6) can be expressed as a linear graph filter indepen- 

ently applied to each of the F 0 features, with output defined as 

inear combinations of these filtered features at each node via the 

atrices { W k } . That is, 
 K = (H 

K Y 0 )(W 1 W 2 . . . W K ) , (7) 

here H 
K itself represents a shift-invariant graph filter, due to the 

ssumed shift-invariance of H . Taking F 0 = F K = 1 and H = (I − μL )

ecovers the iterative smoothing procedure of (4) . However, by in- 

erleaving nonlinear functions as in (6) and taking linear combina- 

ions of features via { W k } , we allow the architecture to learn more

ophisticated, nonlinear relationships between the nodes and node 

eatures by finding optimal weights { W k } for a suitable loss func- 
ion. 

There are many variants of the graph neural network archi- 

ecture, designed for tasks ranging from semi-supervised learn- 

ng [45] to graph classification [46] . We refer the reader to the sur- 

ey paper [41] for further details, as well as [47] for a view focused 

n graph signal processing in particular. 

. Modeling higher-order interactions with simplicial 

omplexes 

In this section, we recap some of the mathematical underpin- 

ings of simplicial complexes. We focus in particular on the Hodge 

aplacian [15,4 8,4 9] , which extends the graph Laplacian as a nat- 

ral shift operator for simplicial complexes. Specifically, we dis- 

uss how the eigenvectors of the Hodge Laplacian provide an in- 

erpretable orthogonal basis for signals defined on simplicial com- 

lexes by means of the Hodge decomposition. 

.1. Background on simplicial complexes 

Given a finite set of vertices V , a k -simplex S k is a subset of V
ith cardinality k + 1 . A simplicial complex X is a set of simplices
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uch that for any k -simplex S k in X , any subset of S k must also be

n X . A face of a simplex S k is a subset of S k with cardinality k . A

o-face S k +1 of a simplex S k is a (k + 1) -simplex such that S k is a
ubset of S k +1 . More detailed discussions and definitions can, e.g., 

e found in [48,50,51] . 

xample 1. Figure 2 A provides an example of a simplicial complex. 

ere, simplices of order 0 are depicted as nodes, simplices of order 

 as edges, and simplices of order 2 are displayed as gray, filled 

riangles. Note how the edges { 1 , 3 } , { 1 , 4 } and { 3 , 4 } are faces of
he 2-simplex { 1 , 3 , 4 } . The 2-simplex { 5 , 6 , 7 } is a co-face of the
dges { 5 , 6 } , { 5 , 7 } and { 6 , 7 } . 
For computational purposes, we define an orientation for each 

implex by fixing an ordering of its vertices. This ordering induces 

 reference orientation by increasing vertex label. Based on the ref- 

rence orientation for each simplex, we introduce a book-keeping 

f the relationships between (k − 1) -simplices and k -simplices via 

inear maps called boundary operators that record higher-order in- 

eractions in networks. As the simplicial complexes we consider 

re all of finite order, these boundary operators can be represented 

y matrices B k . The rows of B k are indexed by (k − 1) -simplices

nd the columns of B k are indexed by k -simplices. For instance, 

 1 is nothing but the node-to-edge incidence matrix denoted B in 

ection 2 , while B 2 is the edge-to-triangle incidence matrix. 

xample 2. We adopt the lexicographic order to define the refer- 

nce orientation of simplices in Fig. 2 . The corresponding boundary 

aps B 1 and B 2 are then given by 

We may consider signals defined on any k -simplices (nodes, 

dges, triangles, etc.) of a simplicial complex as illustrated in Fig- 

re 2 B-D. Just like for graph signals, we need to establish an ap-

ropriate shift operator to process such signals. While there are 

any possibilities, we will show in the next section that a natural 

hoice for the shift operator is the Hodge Laplacian, a generaliza- 

ion of the graph Laplacian rooted in algebraic topology. 

.2. The Hodge Laplacian as a shift operator for simplicial complexes 

Based on the incidence matrices defined above, we can define 

 sequence of so-called Hodge Laplacians [48] . Specifically, the k - 

h combinatorial Hodge Laplacian , originally introduced in [52] , is 

iven by [48,52] : 

 k = B 
� 
k B k + B k +1 B 

� 
k +1 . (8) 

otice that, according to this definition, the graph Laplacian cor- 

esponds to L 0 = B 1 B 
� 
1 

with B 0 = 0 . More generally, by equipping

ll spaces with an inner product induced by positive diagonal ma- 

rices, we can define a weighted version of the Hodge Laplacian 

see, e.g., [48–50,53] ). This weighted Hodge Laplacian encapsulates 

perators such as the random walk graph Laplacian or the normal- 

zed graph Laplacian as special cases. For simplicity, in this paper 

e concentrate on the unweighted case. 

Just like the graph Laplacian provides a useful choice for a shift 

perator for node signals defined on a graph due to its (spectral) 

roperties, the Hodge Laplacian and its weighted variants provide a 
5 
atural shift operator for signals defined on the edges of a simpli- 

ial complex (or graph). As the edges in our simplicial complexes 

re equipped with a chosen reference orientation, the Hodge Lapla- 

ian is in particular relevant as shift operator if the signals consid- 

red are indeed oriented, e.g., correspond to some kind of edge- 

ow in case of a signal on edges. 

Similar to the graph Laplacian, the Hodge Laplacian is positive 

emi-definite, which ensures that we can interpret its eigenvalues 

n terms of non-negative frequencies. Moreover, these frequencies 

re again aligned with a specific type of signal-smoothness dis- 

layed by the eigenvectors of the Hodge Laplacian. For signals on 

eneral k -simplices, this notion of smoothness can be understood 

y means of the so called Hodge decomposition [48–50] , which 

tates that the space of k -simplex signals can be decomposed into 

hree orthogonal subspaces 

 
N k = im (B k +1 ) � im (B 

� 
k ) � ker (L k ) , (9) 

here im (·) and ker (·) are shorthand for the image and kernel 

paces of the respective matrices, � represents the union of or- 

hogonal subspaces, and N k is the cardinality of the space of sig- 

als on k -simplices (i.e., N 0 = N for the node signals, and N 1 = E

or edge signals). Here we have (i) made use of the fact that a 

ignal on a finite dimensional set of N k simplices is isomorphic 

o R 
N k ; and (ii) implicitly assumed that we are only interested in 

eal-valued signals and thus a Hodge decomposition for a real val- 

ed vector space (see [48] for a more detailed discussion). 

To facilitate the discussion on how the Hodge decomposi- 

ion (9) can be related to a notion of smooth signals let us consider 

he concrete case k = 1 with Hodge Laplacian L 1 = B � 1 B 1 + B 2 B 
� 
2 

or illustration [49,54,55] . In this case, we can provide the follow- 

ng meaning to the three subspaces considered in (9) . First, the 

pace im (B � 
1 
) can be considered as the space of gradient flows (or 

otential flows). Specifically, since im (B � 1 ) = { f = B � 1 v , for some v ∈
 
N } we may create any such flow according to the following 

ecipe: (i) assign a scalar potential to all the nodes; (ii) induce 

 flow along the edges by considering the difference of the po- 

entials on the respective endpoints. Clearly, we cannot create a 

ositive net-flow along any closed path within a complex if the 

ow at every edge is computed according to the gradient (dif- 

erence) of the node potentials in the chosen reference orienta- 

ion: the difference between the potentials along any closed path 

as to sum to zero, by construction. orientation. Accordingly, the 

pace ker (B 1 ) = im (B 2 ) � ker (L 1 ) that is orthogonal to im (B � 1 ) is

he so-called cycle space. As indicated, the cycle space is spanned 

y two types of cyclic flows. The space im (B 2 ) consists of curl 

ows and its elements are flows that can be composed of com- 

inations of local circulations along any 2-simplex. Specifically, we 

ay assign a scalar potential to each 2-simplex and consider the 

nduced flows f = B 2 t , where t is the vector of 2-simplex poten-

ials. Note that every column of B 2 creates a triangular circulation 

round the respective 2-simplex along its chosen reference orienta- 

ion. Hence, these flows correspond to local cycles associated with 

he 2-simplices present in the simplicial complex. Finally ker (L ) 
1 
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Fig. 2. Signals on simplicial complexes of different order. A : Structure of the simplicial complexes used as a running example in the text. Arrows represent the chosen 

reference orientation. Shaded areas correspond to the 2-simplices { 1 , 3 , 4 } and { 5 , 6 , 7 } . B : Signal on 0-simplices (nodes). C : Signal on 1-simplices (edges). D : Signal on 

2-simplices (triangles). 

Fig. 3. Hodge decomposition of the edge flow in the example from Fig. 2 . Any edge flow (left) can be decomposed into a harmonic flow, a gradient flow and a curl flow. 
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s the harmonic space, whose elements correspond to (global) cir- 

ulations that are not representable as a linear combination of curl 

ows. 

xample 3. In Fig. 3 , we consider the edge flow c = 

 −4 , −2 , 4 , −2 , 3 , −7 , 7 , 3 , 4 , −4] � . The Hodge decomposition

 = h � g � r enables us to decompose the edge flow c into a

armonic, gradient and curl part, respectively denoted by h , g and 

 . Components g and r are given by 

 = B 
� 
1 p , r = B 2 w . (10) 

ince the Hodge decomposition is orthogonal, p and w are the so- 

utions of the following least squares problems 

in 
p 

∥∥B 
� 
1 p − c 

∥∥
2 
, min 

w 

‖ B 2 w − c ‖ 2 . (11) 

he harmonic component satisfies L 1 h = 0 , and by the orthog- 

nality of the Hodge decomposition, it can be obtained by h = 

 − g − r . As explained in the text, g is an element of the space

m (B � 
1 
) , i.e., the gradient space or space of cycle-free flows. Com- 

onents h ∈ ker (L 1 ) and r ∈ im (B 2 ) are elements of the cycle space

er (B 1 ) = im (B 2 ) � ker (L 1 ) . As can be seen in Fig. 3 , the curl com-

onent r can be decomposed into two local circulations, of abso- 

ute magnitude 1 and 1.7, respectively. 

Importantly the gradient, curl and harmonic subspaces are 

panned by certain subsets of eigenvectors of L 1 as the follow- 

ng lemma, which can be verified by direct computation [49,56] , 

hows. 

emma 4. Let L 1 = B � 
1 
B 1 + B 2 B 

� 
2 
be the Hodge 1-Laplacian of a sim-

licial complex. Then the eigenvectors associated with nonzero eigen- 

alues of L 1 comprise two groups that span the gradient space and 

he curl space respectively. 

• Consider any eigenvector v i of the graph Laplacian L 0 associated 

with a nonzero eigenvalue λi . Then u 
(i ) 
grad 

= B � 
1 
v i is an eigen- 

vector of L 1 with the same eigenvalue λi . Moreover U grad = 

[ u (1) 
grad 

, u (2) 
grad 

, . . . ] spans the space of all gradient flows. 

• Consider any eigenvector t i of the “2-simplex coupling matrix” T = 

B � 
2 
B 2 associated with a nonzero eigenvalue θi . Then u 

(i ) 
curl 

= B 2 t i is

an eigenvector of L 1 with the same eigenvalue θi . Moreover U curl = 

(1) (2) 
[ u 
curl 

, u 
curl 

, . . . ] spans the space of all curl flows. e

6 
The above result shows that, unlike for node signals, edge-flow 

ignals can have a high frequency contribution, reflected by a high 

omponent in the corresponding projected space, due to two dif- 

erent types of (orthogonal) basis components being present in the 

ignal: a high frequency may arise both due to a curl component 

s well as a strong gradient component present in the edge-flow. 

his has certain consequences for the filtering of edge signals that 

e will discuss in more detail in the following section. 

. Signal processing and learning on simplicial complexes 

Using the algebraic framework of simplicial complexes as dis- 

ussed in Section 3 , in this section we revisit the four signal pro-

essing setups considered in Section 2.4 —Fourier analysis and em- 

eddings, smoothing and denoising, signal interpolation, and non- 

inear (graph) neural networks—and discuss how these can be ex- 

ended to simplicial complexes by means of the Hodge Laplacian 

nd associated boundary maps. For concreteness, we concentrate 

rimarily on edge signals, though the results presented here can 

e extended to signals on any type of simplices. 

.1. Fourier analysis: edge-flow and trajectory embeddings 

In the same way that the (normalized) graph Laplacian provides 

 node embedding of the graph, the eigenvectors of the Hodge 

aplacian L 1 can be used to induce a low-frequency edge embed- 

ing. As a concrete example, let us consider the harmonic embed- 

ing, i.e., the projection of an edge signal f into the harmonic sub- 

pace, corresponding to signal with zero frequency 

 emb = U 
� 
harm 

f , (12) 

here U harm 
= [ u (1) 

harm 
, u (2) 

harm 
, . . . ] corresponds to eigenvectors of 

he Hodge Laplacian L 1 associated with zero eigenvalues. As ex- 

lained in Section 3 , the harmonic space spanned by the vectors 

 harm 
corresponds to (globally) cyclic flows that cannot be com- 

osed from locally cyclic flows (curl flows). Analogously to the em- 

edding of nodes via indicator signals projected onto the low fre- 

uency eigenvectors (i.e., eigenvectors associated with low eigen- 

alues) of the graph Laplacian, we can construct embeddings of 

ndividual edges using (12) . Unlike for graphs where such node 

mbeddings can indicate a clustering of the nodes [57] , an edge 

mbedding into the harmonic subspace characterizes the position 
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Fig. 4. Embedding of trajectories defined on a simplicial complex. A Five trajectories defined on a simplicial complex containing two obstacles, indicated by orange color. 

The simplicial complex is constructed by creating a triangular lattice from a random set of points and then introducing two “holes” in this lattice. All triangles in the lattices 

are assumed to correspond to 2-simplices. B The projection of the trajectories displayed in A into the two dimensional harmonic space of the simplicial complex. Notice that 

the trajectories that move around the obstacles in a topologically similar way have a similar embedding [49] . 
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f an edge relative to the harmonic flows. Since the harmonic 

ows are in one-to-one correspondence with the 1-homology of 

he simplicial complex, i.e., the “holes” in the complex that are 

ot filled with faces, such an embedding may be used to identify 

dges whose location is in accordance with particular harmonic cy- 

les [49,58] . However, as the edges are equipped with an arbitrary 

eference orientation, the sign of the projection into the harmonic 

pace is arbitrary. This is a consequence of the fact that, unlike the 

raph Laplacian, the Hodge Laplacian is in general not invariant, 

ut equivariant under a change of the reference orientation of the 

dges (cf. section 4.4 ). To account for this fact, one may use a clus-

ering approach that is invariant to this arbitrary choice of sign. For 

nstance, we can use subspace clustering as in [58] , or consider the 

bsolute value of the projection as discussed in [49] . 

Rather than aiming at grouping edges together into clus- 

ers according to their relative position with respect to the 1- 

omology [58] , we may be interested in grouping sequences of 

dges corresponding to trajectories on a simplicial complex by pro- 

ecting appropriate signal indicator vectors of such trajectories into 

he harmonic space [49] . Here we represent a trajectory by a vec- 

or f with entries f (i, j) = 1 if the edge (i, j) is part of the trajectory

nd traversed along the chosen reference orientation, f (i, j) = −1 if 

he edge (i, j) is part of the trajectory and traversed opposite to 

he chosen reference orientation, and f (i, j) = 0 otherwise. 

xample 5. In Fig. 4 A, we construct a simplicial complex by draw- 

ng 400 random points in the unit square and generating a trian- 

ular lattice by Delaunay triangulation. We eliminate two points 

nd all their adjacent edges in order to create two “holes” in the 

implicial complex, which are not covered by a 2-simplex. These 

wo holes are represented by orange shaded areas and can be in- 

erpreted as obstacles through which trajectories cannot pass. All 

other) triangles are considered as 2-simplices. Accordingly, the 

odge Laplacian has two zero eigenvalues associated to two har- 

onic functions u (1) 
harm 

and u (2) 
harm 

. 

On the edges of the simplicial complex, we define five trajecto- 

ies as displayed in Fig. 4 A. Fig. 4 B shows the corresponding em-

eddings of the flow vectors of each trajectory and their evolution 

n the embedding space. More explicitly, for a given trajectory we 

uild the embedding sequentially as follows. The embedding starts 

t zero. We then iteratively project the next edge in the trajectory 

accounting for the chosen reference direction) into the harmonic 

pace. In our case each edge is described by a position (u 1 , u 2 )

n the harmonic space: one component along u (1) 
harm 

and the other 
7 
long u (2) 
harm 

. The embedding of the trajectory is then obtained from 

dding these position vectors of the individual edges. Note that 

ue to the linearity of the projection operation, this leads to the 

ame final embedding (marked by a red dot) as if we had directly 

rojected the full trajectory vector. 

Importantly, the embedding differentiates the topological prop- 

rties of the trajectories. The magenta and olive green trajectories 

ave a similar embedding since they both pass above the top left 

bstacle. The maroon and green trajectories pass between the two 

bstacle and have a similar embedding (negative coordinate along 

 
(1) 
harm 

and zero component along u (2) 
harm 

). The orange trajectory is 

he only one that goes through the right of the bottom right ob- 

tacle. Hence, its embedding stands out from the other four trajec- 

ories in the embedding space. For a more extensive discussion of 

hese aspects see [49] . 

As we have seen in the above example, trajectories that behave 

imilarly with respect to the 1-homology (“holes”) of a simplicial 

omplex will have a similar embedding [49] . One may thus, for 

nstance, also identify topologically similar trajectories on the sim- 

licial complex by clustering the resulting points in the harmonic 

mbedding. Such an approach is of interest for a number of ap- 

lications: One can construct simplicial complexes and appropriate 

rajectory embedding from a variety of flow data, including physi- 

al flows such as buoys drifting in the ocean [49] , or “virtual” flows 

uch as click streams or flows of goods and money. Related ideas 

or analyzing trajectories have also been considered in the context 

f traffic prediction [59] . 

While we have considered here only harmonic embeddings cor- 

esponding to signals with zero frequency, other type of embed- 

ings may be of interest as well. We may, for instance, be inter- 

sted in gradient-flow-based embeddings, which can be used to 

efine a form of ranking of the nodes in terms of the associated 

otentials [60] , or be interested in other forms of flows, which are 

nly approximately harmonic [55] . 

.2. Flow smoothing and denoising 

We now revisit the question of smoothing and denoising from 

he perspective of signals defined in the edge space of a simpli- 

ial complex X . In parallel, we provide a more in-depth discussion 

n the basis vectors and notion of a smooth signal encapsulated in 

he Hodge 1-Laplacian L 1 and how it differs from the graph Lapla- 

ian [9,48,61] . 
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Fig. 5. Flow smoothing on a graph. A An undirected graph with a pre-defined and oriented flow f 0 . B The observed flow is a noisy version of the flow f 0 , i.e., f 0 is distorted 

by a Gaussian white noise vector ε. C We denoise the flow by applying a Laplacian filter based on the line-graph. This filter performs worse compared to the edge space 

filters in D and E that account for flow conservation. D Denoised flow obtained after applying the filter based on the edge Laplacian. E Denoised flow obtained after applying 

the filter based on the Hodge Laplacian. The estimation error is lower than in the edge Laplacian case as the filter accounts for filled faces in the graph. 

o

s

s  

ε
a

s  

t

a

f

m

w  

i

m

h

r

e  

d

g

o  

L

B  

a

d

m

E

p

t

t

o

a

L

t

p  

t

T

c

h

o

v

f

t

t

v

fl

t

S

o

i

e

c

p

h

c

d

t

e

a

s

t

q  

t

t

t

(

w  

e

s

f  

c

d

b

o

c  

s

c

L  

w

M

f  

p

s  

c

u

p

a

E

i

s

i

s

Let us assume that the simplicial complex X is associated with 

riented flows f 0 ∈ R 
E defined on edges. Like in the node-based 

etup discussed in Section 2.4.2 , we assume that we can only ob- 

erve a noisy version f = f 0 + ε of the true underlying signal, where

is again a zero-mean white Gaussian noise vector of appropri- 

te dimension. By analogy with the graph case, in order to get a 

mooth estimate ̂  f of the true signal f 0 from the noisy signal f , it is

empting to adopt the successful procedures from GSP (cf. Eq. (2) ) 

nd solve the following optimization program for the edge-flows 

 

in 
ˆ f 

{∥∥∥ˆ f − f 

∥∥∥2 

2 
+ αˆ f � Q ̂

 f 

}
, (13) 

ith optimal solution ˆ f = H Q f := (I + αQ ) −1 f , where the matrix Q

s a regularizer that needs to be chosen to ensure a smooth esti- 

ate. Following our discussion above, since the filter H Q will in- 

erit the eigenvectors of the regularizer Q , a natural choice for a 

egularizer is an appropriate (simplicial) shift operator. 

We discuss three possible choices for the regularizer (shift op- 

rator) Q : (i) the graph Laplacian L LG of the line-graph of the un-

erlying graph skeleton of the complex X , i.e., the line-graph of the 

raph induced by the 0-simplices (nodes) and 1-simplices (edges) 

f X ; (ii) the edge Laplacian L e = B � 
1 
B 1 , i.e., a form of the Hodge

aplacian that ignores all 2-simplices in the complex X such that 

 2 = 0 ; (iii) the Hodge Laplacian L 1 = B � 1 B 1 + B 2 B 
� 
2 that takes into

ccount all the triangles of X as well. Before embarking on this 

iscussion, however, let us illustrate the effects of these choices by 

eans of the following concrete example. 

xample 6. Fig. 5 A displays a conservative (cyclic) flow on a sim- 

licial complex, i.e., all of the flow entering a particular node exits 

he node again. This flow is then distorted by a Gaussian noise vec- 

or ε in Fig. 5 B. The estimation error produced by the filter based 

n the line-graph ( Fig. 5 C) is comparatively worse (9.45 vs. 1.94 

nd 0.99 respectively) than the estimation performance of the edge 

aplacian ( Fig. 5 D) and the Hodge Laplacian ( Fig. 5 E) filters. 

Let us explain the results obtained from the individual filters in 

he above example in more detail, starting with the line-graph ap- 

roach. As can be seen from Fig. 5 C, in this case the filtering opera-

ion leads to an increased error compared to the noisy input signal. 

his ineffective filtering result by means of the line-graph Lapla- 

ian has been observed in [54] . The reason for this unintended be- 

avior is that the line-graph Laplacian is not well-suited as a shift 

perator for flow signals. The basis functions given by the eigen- 

ectors of the line-graph Laplacians induce a notion of smooth, low 

requency signals that supposes that signals on adjacent edges in 

he simplicial complex have a small difference. This is equivalent 

o the fact that low-frequency modes in the node space do not 

ary a lot on tightly connected nodes on a graph. However, for 

ow signals this type of smoothness induced by eigenvectors of 
8 
he line-graph Laplacian as shift operator is often not appropriate. 

pecifically, real-world flow signals typically display a large degree 

f flow conservation: most of the flow signal entering a node ex- 

ts the node again, but the relative allocation of the flow to the 

dges does not have to be similar. Moreover, the line-graph Lapla- 

ian does not reflect the arbitrary orientation of the edges, so that 

erformance is dependent on the chosen sign of the flow. Notice, 

owever, that the line-graph can be a valid representation to pro- 

ess signals on edges that are not encoding flows and, as such, 

o not have a natural orientation. For example, one might expect 

he level of congestion on different roads to vary smoothly across 

dges, thus, justifying the use of a line-graph in such a case. 

Unlike the line-graph Laplacian, the Edge Laplacian captures 

 notion of flow conservation, which implies that smooth flows 

hould by cyclic [54] . To see this, it is insightful to inspect 

he quadratic regularizer induced by L e = B � 
1 
B 1 . Note that this 

uadratic form can be written as f � L e f = ‖ B 1 f ‖ 2 2 . This is precisely
he (summed) squared divergence of the flow signal f , as each en- 

ry (B 1 f ) i corresponds to the difference of the inflow and outflow 

o node i 

B 1 f ) i = 

∑ 

r∈{ ( j,i ) |{ i, j }∈E, j <i } 
f r −

∑ 

r∈{ (i, j ) |{ i, j }∈E,i< j } 
f r , (14) 

here f r is the flow on edge r = (i, j) , and we have used a ref-

rence orientation induced by the lexicographic order. As a con- 

equence, all cyclic flows will induce zero cost for the regularizer 

 
� L e f , which may also be seen from the fact that ker (B 1 ) is pre-

isely the cycle space of a graph with incidence matrix B 1 . Stated 

ifferently, any flow that is not divergence free, i.e., not cyclic, will 

e penalized by the quadratic form. Since by the fundamental the- 

rem of linear algebra ker (B 1 ) ⊥ im (B � 1 ) , any such non-cyclic flows 

an be written as a gradient flow f grad = B � 
1 
v for some vector v of

calar node potentials — in line with the Hodge decomposition dis- 

ussed in (9) . 

In contrast to the Edge Laplacian, the full Hodge Laplacian 

 1 includes the additional regularization term f � B 2 B � 2 
f = ‖ B � 

2 
f ‖ 2 

2 
,

hich may induce a non-zero cost even for certain cyclic flows. 

ore precisely, any cyclic flow that can be written as a curl flow 

 curl = B 2 t , for some vector t will have a non-zero penalty. This

enalty is incurred despite the fact that f curl is a cyclic flow by con- 

truction (since B 1 f curl = B 1 B 2 c = 0 , the vector f curl is clearly in the

ycle space; see also discussion in Section 3.2 ). The additional reg- 

larization term ‖ B � 
2 
f ‖ 2 

2 
may thus be interpreted as squared curl 

enalty. 

From a signal processing perspective, the L 1 based filter thus 

llows for a more refined notion of a smooth signal. Unlike in the 

dge Laplacian filter, we do not declare all cyclic flows to be max- 

mally smooth and consist only of frequency (eigenvalue) 0 ba- 

is signals. Instead a signal can have a high-frequency even if it 

s cyclic, if it has a high curl component. Hence, by constructing 

implicial complexes with appropriate (triangular) 2-simplices, we 
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ave additional modeling flexibility for shaping the frequency re- 

ponse of an edge-flow filter [62] . 

In our example above, this more refined notion of a smooth 

ignal is precisely what leads to an improvement in the filtering 

erformance, since the ground truth signal is a harmonic function 

ith respect to the simplicial complex and thus does not contain 

ny curl components. We remark that the eigenvector basis of L e 
an always be chosen to be identical to the eigenvectors of L 1 ; 

hus, we may represent any signal in exactly the same way in a ba-

is of L e or L 1 ; however, the frequencies associated with all cyclic 

ectors will be 0 for the Edge Laplacian, while there will be cyclic 

ows with nonzero frequencies for L 1 , in general. This emphasizes 

hat the construction of faces is an important modeling choice for 

he selection of an appropriate notion of a smooth signal. 

.3. Interpolation and semi-supervised learning 

Let us now focus on the interpolation problem for edge-data 

n a simplicial complex [55] . Analogously to node signals, we are 

iven a simplicial complex (or its graph skeleton) and a set of “la- 

eled” oriented edges E L ⊂ E , i.e., we assume that we have mea- 

ured the edge-signals on some edges but not on all. Our goal is 

ow to predict the signals on the unlabeled or unmeasured edges 

n the set E U ≡ E \E L , whose cardinality we will denote by E U . Fol-

owing [55] , we will again start by considering the problem setup 

ith no 2-simplices first ( B 2 = 0 ), before we consider the general

ase in which 2-simplices are present. 

To arrive at a well-defined problem for imputing the remaining 

dge-flows, we need to make an assumption about the structure of 

he true signal. Following our above discussions, we will again as- 

ume that the true signal has a low-pass characteristic in the sense 

f the Hodge 1-Laplacian, i.e., that the edge flows are mostly con- 

erved. Let ̂  f denote the vector of the true (partly measured) edge- 

ow. As discussed in the context of flow smoothing, a convenient 

oss function to promote flow conservation is the sum-of-squares 

ertex divergence 

B 1 ̂
 f 

∥∥∥2 

2 
= ̂

 f � B 
� 
1 B 1 ̂

 f = ̂
 f � L e ̂ f . (15) 

e can then formalize the flow interpolation problem via the fol- 

owing optimization program 

min 
ˆ f 

∥∥∥B 1 ̂
 f 

∥∥∥2 

2 
+ α2 ·

∥∥∥ˆ f ∥∥∥2 

2 

s.t. ˆ f r = f r , for all measured edges r ∈ E L , (16) 

ote that, in contrast to the node signal interpolation problem, 

e have to add an additional regularization term ‖ ̂ f ‖ 2 
2 

to guar- 

ntee the uniqueness of the optimal solution. The reason is that, 

f there is more than one independent cycle in the network for 

hich we have no measurement available, we may add any cyclic 

ow on such a cycle while not changing the cost function. To rem- 

dy this aspect, we simply add a 2-norm regularization which pro- 

otes small edge-flow magnitudes by default. Other regularization 

erms are possible as well, however this formulation enables us to 

ewrite the above problem in a least squares form as described be- 

ow. 

To arrive at a least-squares formulation, we consider a triv- 

al feasible solution ˆ f 0 for (16) that satisfies ˆ f 0 r = f r if r ∈ E L and
ˆ f 0 r = 0 otherwise. Let us now define the expansion operator � as 

he linear map from R 
E U to R 

E such that the true flow f can be

ritten as f = ̂
 f 0 + �f U , where f U ∈ R 

E U is the vector of the un-

easured true edge-flows. Reducing the number of variables con- 

idered in this way, we can convert the constrained optimization 

roblem (16) into the following equivalent unconstrained least- 

quares estimation problem for the unmeasured edges ̂  f U : 
9 
ˆ f U∗ = arg mi n U 
ˆ f 
‖ 

[
B 1 �
αI 

]
ˆ f U −

[
−B 1 f 

0 

0 

]
‖ 
2 
2 . (17) 

e illustrate the above procedure by the following example. 

xample 7. We consider the network structure in Fig. 2 A. The 

round truth signal is f = (−2 , −2 , 4 , −2 , 3 , −7 , 7 , 3 , 4 , −4) � . We

ick five labeled edges at random (colored in Fig. 6 A). The goal 

s to predict the labels of the unlabeled edges (in grey with 

 question mark in Fig. 6 A). The set of labeled edges is E L =
 (1 , 3) , (1 , 4) , (3 , 6) , (4 , 5) , (5 , 6) } . The set of unlabeled edges is
 
U = { (1 , 2) , (2 , 3) , (3 , 4) , (5 , 7) , (6 , 7) } . Solving the optimization

rogram (17) , we obtain the predicted signal f ∗
SSL 

in Fig. 6 B. Numer- 

cal values are given in Fig. 6 C. The Pearson correlation coefficient 

etween f and f ∗
SSL 

is 0.99. The 2-norm of the error is 0.064. 

Analogously to our discussion above, it may be relevant to in- 

lude 2-simplices for the signal interpolation problem. We inter- 

ret such an inclusion of 2-simplices in two ways. From the point 

f view of the cost function, it implies that instead of penalizing 

rimarily gradient flows (which have nonzero divergence), we in 

ddition penalize certain cyclic flows, namely those that have a 

onzero curl component. From a signal processing point of view, 

t means that we are changing what we consider a smooth (low- 

ass) signal, by adjusting the frequency representation of certain 

ows. Accordingly, one possible formulation of the signal interpo- 

ation problem, including information about 2 simplices is 

 
 
� = arg min ˆ f 

∥∥∥B 1 ̂
 f 

∥∥∥2 

2 
+ 

∥∥∥B 
� 
2 
ˆ f 

∥∥∥2 

2 
+ α2 

∥∥∥ˆ f ∥∥∥2 

2 
, (18) 

ubject to the constraint that the components of ˆ f corresponding 

o measured flows are identical to those measurements. As in (17) , 

e can convert this program into the following least-squares prob- 

em 

 
 
U� = arg min ˆ f U 

∥∥∥∥∥
[ 

B 1 �
αI 

B 
� 
2 �

] 

ˆ f U −
[ −B 1 f 

0 

0 

−B 
� 
2 f 

0 

] ∥∥∥∥∥
2 

2 

. (19) 

emark 8. Note that the problem of flow interpolation is tightly 

oupled to the issue of signal reconstruction from sampled mea- 

urements. Indeed, if we knew that the edge signal to be recov- 

red was exactly bandlimited [56] , then we could reconstruct the 

dge-signal if we had chosen the edges to be sampled appropri- 

tely. Just like the interpolation problem considered here may be 

een as a semi-supervised learning problem for edge labels, finding 

nd choosing such optimal edges to be sampled may be seen as an 

ctive learning problem in the context of machine learning. While 

e do not expand further in this tutorial on the choice of edges to 

e sampled, we point the interested reader to two heuristic active 

earning algorithms for edge flows presented in [55] . We also refer 

he reader to [56,61] for a theory of sampling and reconstruction 

f bandlimited signals on simplicial complexes, and to [63] for a 

imilar overview that includes an approach for topology inference 

ased on signals supported on simplicial complexes. 

.4. Beyond linear filters: simplicial neural networks and Hodge 

heory 

As discussed in Section 2.4.4 , graph neural networks incorpo- 

ate nonlinear activation functions in the graph signal processing 

ipeline in order to learn rich representations for graphs. In or- 

er to generalize these architectures to operate on simplicial com- 

lexes, we discuss central concepts underpinning graph neural net- 

ork architectures in order to understand desirable properties of 

eural networks for higher-order data. Graph neural networks in 

he nodal domain typically have two important features in com- 

on: 
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Fig. 6. Semi-supervised learning for edge flow. A Synthetic flow. 50% of the edges are labeled. Labeled edges are colored based on the value of their flow. The remaining 

edges in grey are inferred from the procedure explained in the text. B Edge flow obtained after applying the semi-supervised algorithm in (17) . C Numerical value of the 

inferred signal. 
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Permutation equivariance . Although the nodes are given labels 

and an ordering for notational convenience, graph neural 

networks are not dependent on the chosen labeling of the 

nodes. That is, if the node and corresponding input labels 

were permuted in some way, the output of the graph neural 

network, modulo said permutation, will not change. 

Locality . Graph neural networks in their most basic form oper- 

ate locally in the graph structure. Typically, at each layer a 

node’s representation is affected only by its own state and 

the state of its immediate neighbors. Forcing operations to 

occur locally is how the underlying graph structure is used 

to regularize the functional form of the graph neural net- 

work. 

Based on these two principles, many architectures have been 

roposed, such as the popular graph convolutional network [45] , 

hich mixes one-step graph filters and nodewise nonlinearities for 

emi-supervised learning on the nodes of a graph. Indeed, there 

as been significant study in understanding the nature of graph 

onvolutional architectures in terms of the spectral properties of 

he chosen shift or filter operation [64] . 

.4.1. Simplicial graph neural networks 

Motivated by work on graph neural networks in the node 

pace, and the effectiveness of the Hodge Laplacian for represent- 

ng certain types of data supported on simplicial complexes as in 

ection 3 , we now discuss considerations and limitations for build- 

ng graph neural network architectures based on representations 

rounded in combinatorial Hodge theory. This approach to process- 

ng data on simplicial complexes generated a flurry of interest re- 

ently, with convolutional architectures based on the Hodge Lapla- 

ians and boundary maps being proposed in [65–68] . As before, 

et X be a simplicial complex over a finite set of vertices V , with

oundary operators { B k } K k =1 
, where K is the order of X . 

We consider architectures built on the composition of matrix 

ultiplication with boundary operators and/or Hodge Laplacians of 

arying order, aggregation functions, and nonlinear activation func- 

ions that obey permutation invariance, locality , and the additional 

roperties of orientation invariance and simplicial locality . 

We begin by defining orientation equivariance, which describes 

 similar property to permutation invariance for graph neural net- 

orks [69] . 

Orientation equivariance. If the chosen arbitrary reference orien- 

tation of the simplices in X is changed, the output of the 

neural network architecture remains the same, modulo said 

change in orientation. 

Due to the arbitrary nature of the simplex orientations, orienta- 

ion invariance is clearly a desirable property for a neural network 
10 
rchitecture to have. For a simple class of convolutional neural net- 

orks for flows, we must choose the nonlinear activation function 

arefully in order to satisfy this property. If one were to construct 

 simple architecture with weight matrices W 1 , W 2 for flows on a 

implicial complex based on L 1 of the form 

 L 1 , W (f ) = σ ( L 1 σ ( L 1 fW 1 ) W 2 ) , (20) 

e want g to not change when a different orientation is chosen. 

et � ∈ R 
E×E be a matrix taking values ±1 on the diagonal and ze- 

os elsewhere, representing a change in orientation for each edge. 

hen, for a flow f and Hodge Laplacian L 1 , this change in orienta-

ion is realized by �f and �L 1 �. Therefore, for orientation equiv- 

riance to hold, we need 

 �L 1 �, W 
( �f ) = �g L 1 , W (f ) (21) 

o hold for all flows f . For this to be true, σ must be an odd func-

ion so that it commutes with �. A natural extension to the notion 

f orientation equivariance is orientation invariance , which rewrites 

21) as 

 �L 1 �, W 
( �f ) = g L 1 , W (f ) . (22) 

his property has greater utility for tasks such as graph classifica- 

ion, where a global descriptor is desired, rather than output on 

ach simplex. 

Another consideration that does not typically arise in the de- 

ign of graph neural networks is data supported on different levels 

f the graph. Data on a simplicial complex can lie on, e.g., nodes, 

dges, and faces simultaneously , motivating the need for architec- 

ures that pass data along the many levels of a simplicial complex. 

nalogous to the property of locality for graph neural networks, 

e consider a notion of locality for different levels of a simplicial 

omplex. 

Simplicial locality. At each layer of an architecture with simpli- 

cial locality, information exchange only occurs between adja- 

cent levels of the underlying simplicial complex, i.e., the out- 

put of a layer restricted to k −simplices is dependent only on 

the input of that layer restricted to k − 1 , k, k + 1 −simplices. 

As an illustrative example, loosely based on the architecture 

roposed in [66] , consider a small two-layer neural network simul- 

aneously operating over a simplicial complex of nodes, edges, and 

riangles. That is, the input to the neural network is a tuple of sig- 

als (v 0 , f 0 , t 0 ) on the vertices (graph signals), edges (flows), and

riangles, respectively, and each layer performs the following com- 

utation: 

 k = σ (L 0 v k −1 + B 1 f k −1 ) (23) 

 k = σ (L 1 f k −1 + B 2 t k −1 + B 
� 
1 v k −1 ) (24) 
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 k = σ (L 2 t k −1 + B 
� 
2 f k −1 ) , (25) 

or some odd elementwise activation function σ . That is, at each 

ayer, signals on each level of the simplicial complex are either 

ifted to the next highest level via the coboundary operator, pro- 

ected to its boundary using the boundary operator, or diffused via 

he Hodge Laplacian. This “lifting” and “projecting” can only occur 

etween adjacent levels of the simplicial complex, due to the fact 

hat the composition of boundary operators is null, thereby satisfy- 

ng simplicial locality. 

We now examine the tuple of signals (v 2 , f 2 , t 2 ) . First, suppose

is the identity mapping, so that each signal in (v 2 , f 2 , t 2 ) is a 

inear function of (v 0 , f 0 , t 0 ) . Then, one can check that 

 2 = 2 L 0 B 1 f 0 + L 0 (L 0 + I ) v 0 (26) 

 2 = (L 2 1 B 2 + B 2 L 2 ) t 0 + L 1 (L 1 + I ) f 0 + (L 2 1 + B 
� 
1 B 1 ) B 

� 
1 v 0 (27) 

 2 = L 2 (L 2 + I ) t 0 + (L 2 B 
� 
2 + B 

� 
2 L 1 ) f 0 . (28) 

otice that each signal is strictly a function of the signals above 

nd below it, even after multiple layers of the architecture are 

valuated. This indicates that our architecture is incapable of in- 

orporating information from nonadjacent levels of the simplicial 

omplex, due to the composition of boundary operators being null: 

ote that similar properties hold for linear variants of this example 

aking use of boundary operators in this way. 

This is not the case, though, when σ is nonlinear. While 

 1 B 2 t = 0 may hold for all signals t on the faces, B 1 σ (B 2 t ) 
 = 0 ,

n general. By incorporating nonlinear activation functions, we fa- 

ilitate full incorporation of signals from all levels of the simplicial 

omplex in the output at each level. We call this property extended 

implicial locality . 

Extended simplicial locality. For an architecture with extended 

simplicial locality, the output restricted to k −simplices is de- 

pendent on the input restricted to simplices at all levels, not 

just those of order k − 1 , k, k + 1 . 

Notice that while simplicial locality is defined for each layer 

f an architecture, extended simplicial locality is a global prop- 

rty, so that both are simultaneously attainable. There is a trade- 

ff in achieving extended simplicial locality by interleaving non- 

inearities: although there is full influence of the entire simplicial 

tructure on all levels of the output, the structure endowed by the 

oundary operators (namely, the composition of boundary oper- 

tors being null) is no longer in effect. Although the Hodge de- 

omposition (9) can still be applied to the output signals of such 

n architecture, the expression of the space of k -simplex signals 

trictly in terms of upper and lower incidence through k − 1 and 

 + 1 simplices ceases to hold when considering the input and out- 

ut jointly, as opposed to linear filters of the Hodge Laplacian. 

his motivates further considerations of how nonlinearities may 

e necessary in modeling higher-order data, such as in the work 

f [70,71] , where it is shown that higher-order opinion dynamics 

ust be nonlinear, lest they be equivalently modeled by a purely 

airwise system. That is, we must relax the structure of simpli- 

ial complexes in order to represent more general high-order in- 

eractions. In doing this, we exchange the connection to algebraic 

opology for greater flexibility in modeling. This naturally leads to 

he consideration of hypergraphs and associated signal processing 

deas, as discussed in the next section. 

. Modeling higher-order interactions via hypergraphs 

In this section, we discuss hypergraphs as an alternative to sim- 

licial complexes to model higher-order analogs of graphs, and 
11 
hen discuss how we can construct appropriate matrix-based and 

ensor-based shift operators for such hypergraphs to enable the de- 

elopment of signal processing tools. 

An important feature of simplicial complexes is that for every 

implex present all of its faces are also included in the complex 

and recursively the corresponding faces, and so on). This inclu- 

ion property gives rise to the hierarchy of boundary operators, 

hich anchor simplicial complexes to algebraic topology. However, 

his subset inclusion property may be an undesirable restriction, 

f we want to represent interactions that are exclusive to multi- 

le nodes and do not imply the interaction between all the sub- 

ets of nodes. A related problem is the issue of (extended) sim- 

licial locality as discussed in the previous section, which arises 

rom the restrictions imposed on the boundary operators of sim- 

licial complexes. Finally, while simplices are endowed with a ref- 

rence orientation and may be weighted, we might be interested 

n encoding other types of directionality or heterogeneous weight- 

ng schemes of group interactions, which are not easily compatible 

ith the mathematical structure of simplicial complexes. 

To illustrate the utility of hypergraphs as modelling tools, let 

s consider a number of concrete examples in which a hypergraph 

odel may be preferred over a simplicial complex, before provid- 

ng a more mathematical definition. 

xample 9. In a co-authorship network [72] , having a paper with 

hree or more authors does not imply that these people have writ- 

en papers in pairs. Hypergraphs can distinguish these two cases 

hile graphs and simplicial complexes cannot, in general. More- 

ver, the relative contribution of the authors to a paper may be 

ifferent and we thus may want to have a representation that en- 

bles us to assign heterogeneous weights within group interac- 

ions. This again can be done using hypergraphs [73] . An email 

etwork may be described using a directed hypergraph [74] , when- 

ver there exist emails containing multiple senders or multiple 

eceivers. This kind of directional information will be difficult to 

ncode in a simplicial complex (while graphs can encode the di- 

ectionality here, they lose the higher-order information). Further 

xamples in which hypergraphs appear naturally include word- 

ocument networks in text mining [75,76] , gene-disease networks 

n bioinformatics [77,78] , and consumer-product networks in e- 

ommerce [79] . 

Mathematically, a typical hypergraph H = (V, E, ω) consists of a 

et of vertices V , a set of hyperedges E , and a function ω : E → R + 
hat assigns positive weights to hyperedges. Hyperedges general- 

ze edges in the sense that each hyperedge can connect more than 

wo vertices. In the most common case, where there is one type 

f node and one type of hyperedge (namely all hyperedges repre- 

enting the same type of relationship such as co-authorship), a hy- 

ergraph is called homogeneous. A hypergraph is called k -uniform 

f all of its hyperedges have the same cardinality k . Notice, in par- 

icular, that a hypergraph is a bona fide generalization of a graph, 

ince a 2-uniform hypergraph reduces to a graph. More interest- 

ngly, a simplicial complex may be seen as a hypergraph satisfy- 

ng the property that every subset of a hyperedge is also a hyper- 

dge. Similar to a standard graph, a hypergraph can also be di- 

ected in which case each (directed) hyperedge e is an ordered pair 

T (e ) , H(e )) where T (e ) and H(e ) are two disjoint subsets of ver-

ices respectively called the tail and the head of e [80] . This flexi- 

ility is of interest, e.g., when modelling multiway communication 

atterns as illustrated in the example of email networks above. 

While the standard framework of hypergraphs is already very 

exible, in recent years several more elaborate hypergraph models 

ave been proposed to better represent real-world datasets: 

(1) Heterogeneous hypergraphs refer to hypergraphs containing 

different types of vertices and/or different types of hyper- 
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edges [81–84] and may thus be seen as a generalization of 

multilayer and multiplex networks. For example, in a GPS 

network [85] , a hyperedge can have three types of vertices 

(user, location, activity). Another example is online social 

networks such as Twitter, in which we can have different 

types of vertices including users, tweets, usertags, hashtags 

and groups as well as multiple types of hyperedges such as 

‘users release tweets containing hashtags or not’, ‘users join 

groups’, and ‘users assign usertags to themselves’ [86] . 

(2) Edge-dependent vertex weights are introduced into hyper- 

graphs in [73,75,76] to reflect the different contribution (e.g., 

importance or influence) of vertices in the same hyperedge. 

More precisely, for each hyperedge e ∈ E , a function γe : e → 

R + is defined to assign positive weights to vertices in this 

hyperedge. For instance, in the co-authorship network in 

Example 9 , the different levels of contribution of the au- 

thors of a paper can be encoded as edge-dependent vertex 

weights. If γe (v ) = γe ′ (v ) for every vertex v and every pair
of hyperedges e and e ′ containing v , then we say that the 

vertex weights are edge-independent. Such hypergraphs are 

also called vertex-weighted hypergraphs [87] . Moreover, if 

γe (v ) = 1 for all vertices v and incident hyperedges e , the 
vertex weights are trivial and we recover the homogeneous 

hypergraph model. 

(3) In order to leverage the fact that different subsets of vertices 

in one hyperedge may have different structural importance, 

the concept of an inhomogeneous hyperedge is proposed in 

[88] . Each inhomogeneous hyperedge e is associated with 

a function w e : 2 
e → R ≥0 that assigns non-negative costs to 

different cuts of the hyperedge, where 2 e denotes the power 

set of e . The weight w e (S) indicates the cost of partitioning 

the hyperedge e into two subsets S and e \ S . This is called 
a submodular hypergraph when w e satisfies submodularity 

constraints [89] . 

Similar to graphs and simplicial complexes, a key factor for de- 

eloping signal processing tools for hypergraphs is the definition of 

n appropriate shift operator. For simplicial complexes, we argued 

hat the Hodge Laplacian is a natural and principled operator for 

his purpose. For hypergraphs there are two major approaches to 

heir mathematical representation, which induce different kinds of 

hift operators. 

The first option is to use a matrix-based representation and 

erive a shift operator from it, akin to the approach of GSP. As 

ny matrix may be interpreted as an adjacency matrix of a graph 

nd thus induces a weighted, directed graph, this procedure may 

e understood as first deriving a graph-based representation of 

he hypergraph and then using an algebraic representation of this 

raph (e.g., adjacency or Laplacian matrices) as the algebraic shift 

perator of the hypergraph. 

The second option is to represent the hypergraph using a ten- 

or, i.e., a multi-dimensional array representation instead of the 2- 

imensional array representation provided by matrices (we refer 

o [90–92] for a general introduction to tensors and tensor decom- 

ositions). While this provides, in principle, a richer set of possi- 

le representations of the shift operator, there are also challenges 

ssociated with this procedure as the definition of a hypergraph 

ignal and its processing is less grounded in GSP and related tech- 

iques. In the following subsections, we respectively discuss these 

wo choices of representations, starting with matrix-based repre- 

entations. 

.1. Matrix-based hypergraph representations 

The most common approach to deal with hypergraph- 

tructured data is to encode the hypergraph as a matrix. When 
12 
nterpreting the corresponding matrices as graphs, many of these 

atrix-based approaches can thus, alternatively, be viewed as 

eriving a graph representation for the hypergraph. Accordingly, 

hese approaches are often described in terms of graph expansions. 

e prefer the term matrix representation here, as the fact that 

e encode a particular data structure via a matrix does not im- 

ly that the data structure is itself a graph (possibly with weights 

nd signed edges). For instance, we studied matrix-based represen- 

ations of simplicial complexes in the previous sections, but this 

ould typically not be considered a graph expansion of a simpli- 

ial complex. 

Let us now discuss some of the most common matrix-based 

ypergraph representations and transformations (see Fig. 7 for a 

isual overview of the discussed variants), including the so-called 

lique and star expansions as the most popular variants [93] . To 

his end, consider a homogeneous hypergraph H = (V, E, ω) and 

efine the vertex-to-hyperedge incidence matrix as Z ∈ R 
|V|×|E| 

ith entries Z v e = 1 if vertex v belongs to hyperedge e . In addition,
e will represent the weights of the hyperedges by the diagonal 

atrix W ∈ R 
|E |×|E | , whose diagonal corresponds to the hyperedge 

eights. 

Let us first consider the so called star-graph expansion 

 Fig. 7 D) [94,95] . Using the above defined matrices, the star-graph 

xpansion can be explained by constructing the following adja- 

ency matrix A ∗ of a bipartite graph 

 ∗ = 

[
0 ZW 

WZ � 0 

]
∈ R 

(|V| + |E| ) ×(|V| + |E| ) . (29) 

hen interpreted in terms of a graph, this construction may be 

xplained as follows: We introduce a new vertex for each hyper- 

dge and each of these vertices is then connected with a weight 

orresponding to the weight of the hyperedge to all the (origi- 

al) vertices in this hyperedge. The constructed weighted graph 

 ∗ = (V ∗, E ∗, ω ∗) , thus has a vertex set V ∗ = V ∪ E , an edge set
 ∗ = { (v , e ) : v ∈ e, e ∈ E} , and an edge weight function ω ∗(v , e ) =
(e ) . Many other weight functions are possible here as well, e.g., 

e may normalize by the cardinality of the hyperedges. By con- 

tructing appropriate Laplacian operators (combinatorial or nor- 

alized) of such a star expansion matrix, we can thus obtain a 

hift-operator for the hypergraph in a straightforward fashion. 

An alternative matrix-based representation that can be derived 

rom the same matrices defined above is the clique expansion 

 Fig. 7 C) [96–99] . In matrix terms, this corresponds to projecting 

ut the hyperedge dimension of the incidence matrix Z . Specif- 

cally, if we assume unit hyperedge weights for simplicity, the 

lique expansion may be computed by forming the product ZZ � . 
s this matrix has a nonzero diagonal, we can simply set the di- 

gonal of this matrix to zero to obtain a basic clique expansion 

atrix A c = ZZ � − Diag ( diag ( ZZ � )) . By including various weight- 

ng factors, alternative variants of this matrix can be derived. The 

ame clique expansion becomes intuitive if we again interpret A c 

s the adjacency matrix of a graph: The above construction cor- 

esponds to replacing every hyperedge with a clique subgraph. 

ore precisely, the clique expansion leads to the adjacency ma- 

rix of a graph G c = (V c , E c , ω c ) in which V c = V , E c = { (u, v ) : u, v ∈
, e ∈ E, u 
 = v } . One of the most common definitions for the edge

eighting function in this context is ω c (u, v ) = 

∑ 

e ∈E: u, v ∈ e ω(e ) , i.e.,

he edge weight in the graph is simply given by the sum of the 

eights of hyperedges that contain the two endpoints. However, 

any other weighting schemes are conceivable. 

As has been shown in [93] , many hypergraph learning algo- 

ithms [94–99] correspond to either the clique or star expansions 

ith an appropriate weighting function. However, apart from these 

ommon expansions, there also exist other methods for project- 

ng hypergraphs to graphs such as constructing a line graph [100] . 

his line-graph expansion for hypergraphs (see Fig. 7 E for an illus- 
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Fig. 7. Different transformations on an example hypergraph. A The original hypergraph. B The dual hypergraph. C The clique expansion. D The star expansion. E The line 

graph. F The line expansion. 
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ration) may be computed in terms of (weighted variants of) the 

econd possible projection of the incidence matrix Z , namely Z � Z . 
part from these three canonical types of graph representations 

star, clique, and line graph) that can be derived from the incidence 

atrix Z and additional (weighting) transformations, a few other 

atrix-based schemes have been proposed for representing hyper- 

raphs. For instance, the recent paper [101] proposes the so-called 

ine expansion of a hypergraph (different from the line graph; see 

ig. 7 F), which is isomorphic to the line graph of its star expan- 

ion and aims to unify the clique and star expansions. In the line 

xpansion, each incident vertex-hyperedge pair is considered as a 

line node” and two “line nodes” are connected if they share either 

he vertex or the hyperedge. We would like to remark that in some 

ases we might be more interested in the dual of one hypergraph 

n which the roles of vertices and hyperedges are interchanged and 

he incidence matrix is Z � [78] ; see Fig. 7 B. 
While we have so far considered only homogeneous hyper- 

raphs, Laplacian matrices have also been proposed for more gen- 

ral hypergraph models. For instance, [73,75,88] use variants of 

he clique expansion to derive matrix representations of hyper- 

raphs with edge-dependent vertex weights or inhomogeneous hy- 

eredges. Specifically, in [73,75] hypergraphs with edge-dependent 

ertex weights are projected onto asymmetric matrices, corre- 

ponding to induced directed graphs with self-loops. The authors 

hen use established combinatorial and normalized Laplacians for 

igraphs [102] applied to these matrices to derive a Laplacian ma- 

rix for hypergraphs. Finally, in [88] , a novel algorithm for assign- 

ng edge weights to the graph representation is proposed, allowing 

or non-uniform expansions of hyperedges. 

As the above discussion shows, there is an enormous variety of 

atrix-based representations for hypergraphs, and the relative ad- 

antages and disadvantages of these constructions are still sparsely 

nderstood. Ultimately, the choice of a particular matrix repre- 

entation corresponds to a specific model for what constitutes a 

mooth signal on a hypergraph. We believe that a better under- 

tanding of the spectral properties of the individual constructions 

ill thus be an important step for choosing good matrix represen- 

ations for different application scenarios. 

.2. Tensor-based hypergraph representations 

Instead of working with matrix-based representations, hyper- 

raphs can alternatively be represented by tensors. A tensor is sim- 

ly a multi-dimensional array, whose order is the number of in- 

ices needed to label an element in the tensor [90] . For instance, 

 vector and a matrix are a first-order and a second-order tensor, 
13 
espectively. Several different versions of a hypergraph adjacency 

ensor have been proposed in existing work [103–112] . In this sec- 

ion, we focus on unweighted hypergraphs to keep our exposition 

ccessible and to remain consistent with the majority of the exist- 

ng work in this domain. 

Due to their relative simplicity, k -uniform hypergraphs have 

een first studied in the literature. As every hyperedge is of the 

ame order, a k -uniform hypergraph with N nodes can be naturally 

epresented by a k th-order adjacency tensor A ∈ R 
N ×N ×···×N , where 

ach index ranges from 1 to N, and the entries of A are defined as

ollows [103,104] 

 i 1 ···i k = 1 , if { v i 1 , · · · , v i k } ∈ E . (30) 

very other entry in A is set to zero. Similarly to how it can be

eaningful to normalize the adjacency matrix, normalized ver- 

ions of this adjacency tensor have been proposed as well. In 

105] , the tensor in (30) is normalized by 1 / (k − 1)! . This normal-

zation guarantees that the degree of a vertex v i , i.e., the num- 

er of hyperedges that it belongs to, can be retrieved by sum- 

ing the entries in the tensor whose first mode index is i , namely 

eg (v i ) = 

∑ N 
i 2 , ··· ,i k =1 A ii 2 ···i k ; see [108] . This is desirable because it 

esembles the way of obtaining the degree of a vertex in a graph 

rom its adjacency matrix. Another normalized adjacency is pro- 

osed in [106] where 

 i 1 ···i k = 

1 

(k − 1)! 

k ∏ 

j=1 

1 

k 
√ 

deg (v i j ) 
, if { v i 1 , · · · , v i k } ∈ E, (31) 

nd the rest of the entries are equal to zero. Its associated nor- 

alized Laplacian tensor is defined as L = J − A where J is a 

ensor of the same size as A , and its entry J ii ···i = 1 if deg (v i ) > 0

nd 0 otherwise. This normalization ensures that L has certain 

esirable spectral properties that mimic those of the normalized 

raph Laplacian [106] . For example, the eigenvalues of L as defined 

n [113] are guaranteed to be contained in [0,2]. Having a bounded 

pectrum has shown to be useful in GSP for the stability analysis 

f graph filters [114] . 

For hypergraphs with non-uniform hyperedges, i.e., hyperedges 

f different sizes, the above construction does not extend easily. 

ince some edges will have smaller cardinality than others, some 

ndices in the adjacency tensor would simply be undefined. A naive 

pproach would be to keep an adjacency tensor for each observed 

ardinality of hyperedges, but this approach is computationally im- 

ractical. An alternative is to augment the above construction of 

n adjacency tensor for general homogeneous hypergraphs as fol- 

ows. Denote by m the cardinality of the largest hyperedge across 
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Fig. 8. Tensor based shift operator on a hypergraph. The output of y out 3 at vertex 

v 3 is determined by a weighted sum over the hyperedges incident to v 3 , where the 

summands correspond to the products of the vertex signals within the respective 

hyperedges excluding v 3 . [Figure adapted from Fig. 10(a) in [112] ]. 

5

r

w

H

i

e

m

t

t

g

a

t

t

t

t

g

c

o

l

t

p

R

o

s

c

g

i

a

S  

I  

r  

t  

n

n

i

f  

a

a

ll hyperedges e ∈ E . Then, we construct an adjacency tensor of or- 

er m according to the following rules [107] . For every hyperedge 

 = { v i 1 , · · · , v i s } ∈ E of cardinality s ≤ m , we assign the following

onzero entries to A 

 p 1 p 2 ···p m = s ·

⎛ 

⎝ 

∑ 

l 1 , ··· ,l s ≥1 , 
∑ s 

j=1 l j = m 

m ! 

l 1 ! l 2 ! · · · l s ! 

⎞ 

⎠ 

−1 

, (32) 

here the indices p 1 , p 2 , · · · , p m are chosen in all possible ways

rom { i 1 , i 2 , · · · , i s } such that every element of this latter set is rep-

esented at least once. The rest of the entries of A are set to zero.

he Laplacian tensor is then defined as L = D − A where D is a 

uper-diagonal tensor of the same size as A and with entries D ii ···i 
qual to the degree of vertex v i . To illustrate definition (32) , con-
ider the following example. 

xample 10. Consider a hypergraph composed of four nodes 

 1 , v 2 , v 3 , v 4 and two hyperedges e 1 = { v 1 , v 2 , v 3 } and e 2 = { v 3 , v 4 } .
e have that m = max {| e 1 | , | e 2 |} = 3 and the adjacency tensor is

f size 4 × 4 × 4 . For e 1 , the corresponding s = | e 1 | = 3 and l 1 =
 2 = l 3 = 1 , thus the corresponding entries in the tensor are de-

ned as A 123 = A 132 = A 213 = A 231 = A 312 = A 321 = 3 / 3! = 1 / 2 . For

 2 , the corresponding s = | e 2 | = 2 and there are two choices for

 1 and l 2 , i.e., l 1 = 1 , l 2 = 2 or l 1 = 2 , l 2 = 1 . Thus we have A 344 =
 434 = A 443 = A 334 = A 343 = A 433 = 2 · (3! / 2! + 3! / 2!) −1 = 1 / 3 . The

emaining entries are set to zero. 

Having defined adjacency and Laplacian tensors, we can now 

onstruct appropriate shift operators based on these tensors. In 

he context in which we are interested in processing signals y = 

 y 1 , y 2 , · · · , y N ] 
� defined on the nodes, the following approach has 

een proposed [112] . First, given the signal vector y construct the 

ollowing (m − 1) th-order outer product tensor Y ∈ R 
N×···×N as 

 = y ◦ · · · ◦ y ︸ ︷︷ ︸ 
m −1 times 

, with entries Y i 1 i 2 ···i m −1 
= y i 1 y i 2 · · · y i m −1 

, (33) 

here ◦ denotes the tensor outer product and m is the order of 

he adjacency or Laplacian (shift) tensor of interest. Then, the hy- 

ergraph shift operation leading to the output signal y out ∈ R 
N is 

efined elementwise as 

 
out 
i = 

N ∑ 

j 1 , ··· , j m −1 =1 

S i j 1 ··· j m −1 
y j 1 y j 2 · · · y j m −1 

, (34) 

here S i j 1 ... j m −1 
correspond to the entries of the chosen shift ten- 

or. Equivalently, we may express the above in terms of tensor 

roducts as 

 
out = SY. (35) 

ote that, due to the symmetry of the tensor S , it does not matter 

hich mode we leave out in the tensor multiplication, i.e., which 

f the indices is kept fixed to i in (34) . Furthermore, for the specific

ase where m = 2 , we have that Y = y in (33) and the shift opera-

ion in (34) boils down to a standard matrix-vector multiplication 

s in GSP. 

xample 11. Consider the hypergraph in Fig. 8 : vertex v 3 is con- 
ained in two hyperedges e 1 = { v 1 , v 2 , v 3 } and e 2 = { v 3 , v 4 , v 5 } . We

efine the adjacency tensor as the shift tensor S . According to (34) , 
he output signal at vertex v 3 after one hypergraph shift is com- 

uted as 

 
out 
3 = S 321 × y 2 y 1 + S 312 × y 1 y 2 + S 354 × y 5 y 4 + S 345 × y 4 y 5 . (36) 

s in the graph case where the entry S i j of the shift operator indi-

ates the shift from vertex v j to vertex v i , the entry S i j 1 ··· j m −1 
of the

ypergraph shift operator indicates the shift in one hyperedge fol- 

owing the order v j m −1 
→ v j m −2 

→ · · · → v j 1 → v i . Fig. 8 illustrates

he process defined by (36) . l

14 
.3. Comparison between matrix-based and tensor-based hypergraph 

epresentations 

The major advantage of matrix-based methods is that a lot of 

ell-developed graph-related algorithms can be directly utilized. 

owever, if the resulting matrix representation is akin to a graph 

n that it only encodes pairwise relations between vertices (clique 

xpansion), or hyperedges (line graphs), there will be some infor- 

ation loss, in general, compared to the original hypergraph struc- 

ure. In contrast, for the star-expansion, all the incidence informa- 

ion is kept in the matrix representation. However, the resulting 

raph is bipartite. The bipartite graph structure might be undesir- 

ble for some applications since there are no explicit links between 

he same types of vertices and there are much fewer algorithms 

ailored for bipartite graphs than those for simple graphs [101] . 

Compared with matrix representations, tensors can better re- 

ain the set-level information contained in hypergraphs. However, 

ensor computations are more complicated and lack algorithmic 

uarantees [110] . For example, determining the rank of a spe- 

ific tensor is NP-hard [115] . Most existing papers have focused 

n super-symmetric tensors [113] , while more general tensors are 

ess explored. Indeed, how to best leverage tensor-based represen- 

ations to study hypergraphs that are not homogeneous is an open 

roblem. 

emark 12. There is a rich and complementary line of research 

n nonlinear Laplacian operators. In [116,117] , a continuous diffu- 

ion process on the hypergraph is considered to define a Lapla- 

ian operator that enables a Cheeger-type inequality for hyper- 

raphs. To understand this diffusion process, suppose that, at some 

nstant, there is some signal y ∈ R 
|V| defined on the vertices of 

 hypergraph. Each hyperedge e ∈ E directs flow from vertices 

 e (y ) = arg max v i ∈ e y i having the maximum signal value to vertices

 e (y ) = arg min v i ∈ e y i having the minimum signal value, at a total

ate of c e = ω(e ) · max v i , v j ∈ e | y i − y j | . As the diffusion progresses,
he cardinality of S e (y ) and I e (y ) increases, conferring a nonlinear

ature to the diffusion process, which can be modeled through a 

onlinear Laplacian. A generalization of this process was proposed 

n [118] , where hyperedges can act as mediators to receive flow 

rom vertices in S e (y ) and deliver flow to those in I e (y ) . Moreover,

 unifying framework was recently presented in [119] by proposing 

 Cheeger inequality for submodular transformations. In particu- 

ar, the Laplacian operators as well as the Cheeger inequalities for 
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ndirected graphs, directed graphs and hypergraphs can be recov- 

red by defining proper submodular transformations; see [119] for 

ore details. In [89] , similar results have been independently ob- 

ained for symmetric submodular transformations. 

. Signal processing and learning on hypergraphs 

Mimicking the respective developments in Section 2.4 for 

raphs and Section 4 for simplicial complexes, in this sec- 

ion we consider the four signal processing setups for hyper- 

raphs equipped with the algebraic representations developed in 

ection 5 . 

.1. Fourier analysis, node and hyperedge embeddings 

As stated in Section 5.1 , shift operators for hypergraphs can 

e represented via matrices. The corresponding eigenvectors may 

hen be used as Fourier modes and, thus, most GSP tools discussed 

n Section 2 can be directly translated to hypergraphs for matrix- 

ased hypergraph shift operators. However, unlike for graphs, even 

n undirected hypergraph may result in an asymmetric matrix, e.g., 

f hyperedge weightings are considered. Hence, one may have to 

dopt tools from GSP for directed graphs in this case; see [19] for 

 more detailed exposition of these issues. 

In contrast to matrix-based shift operators, the notion of 

ourier analysis for hypergraphs represented via tensors is far less 

eveloped. Nonetheless, we may proceed analogously to the ma- 

rix case and define Fourier modes via a tensor decomposition, in 

ieu of the eigenvector decomposition. Specifically, we can consider 

he orthogonal canonical polyadic (CP) decomposition [120] of the 

djacency tensor A (other representative tensors can also be con- 

idered) given by 

 = 

R ∑ 

r=1 

λr · v r ◦ · · · ◦ v r ︸ ︷︷ ︸ 
m times 

, (37) 

here λr are scalars, and R is the so-called rank of the tensor 

i.e., R is the smallest number such that A can be represented as 

 weighted sum of rank-1 outer-product tensors). Using this de- 

omposition, the hypergraph Fourier basis can then be defined as 

 = [ v 1 , · · · , v N ] . When R < N, the first R vectors are determined

ia the CP decomposition and N − R additional vectors satisfying 

pecific conditions are selected to complete the basis (see Section 

II-F in [112] for details). Similar to the matrix case, the hyper- 

raph Fourier frequencies are defined as the coefficients λr asso- 

iated with the rank-1 terms in the decomposition. 

Extending the arguments from the matrix case to the tensor 

ase, the hypergraph Fourier transform (HGFT) and inverse HGFT 

iHGFT) [112] are then defined as 

˜  = (V 
� y ) m −1 , y = V ̃ y 

1 
m −1 , (38) 

here y m = [ y m 

1 
, · · · , y m 

N 
] � denotes the m -th power of each entry

f y . By introducing such definitions, an application of the tensor 

hift can be equivalently interpreted as a HGFT followed by a com- 

ined operation consisting of filtering in the Fourier domain plus 

HGFT (cf. Equation (25) in [112] ). Observe that, when m = 2 , the

ypergraph shift defined in (34) , and the HGFT and iHGFT defined 

n (38) have the same form as the corresponding concepts in GSP 

cf. Section 2.3 ). 

Similar to how graph Fourier modes can be used to derive 

ode embeddings, the same can be done for hypergraphs using ei- 

her matrix or tensor representations. For matrix representations, 

he procedure is entirely analogous. For tensor representations, we 

ave to use a tensor decomposition but can proceed in a similar 

ashion once the (tensor-based) Fourier modes are derived. While 

ensor-based embeddings have only been scarcely considered in 
15 
he literature so far, e.g., [121] represents the dual hypergraph (see 

ig. 7 B) using tensors and learns hyperedge embeddings by per- 

orming a symmetric tensor decomposition [122,123] . Finally, the 

mbedding of heterogeneous hypergraphs entails additional chal- 

enges that can be (partially) addressed through nonlinear neural 

etwork based approaches; see [82] for more details. 

.2. Signal smoothing and denoising 

As was the case for graphs and simplicial complexes, one can 

everage the structure of hypergraphs to solve inverse problems 

ssociated with signals defined on them. For the specific problem 

f denoising, the assumption is that the signal to be recovered is 

mooth in the hypergraph, where smoothness typically encodes 

he fact that tightly connected nodes should have similar signal 

alues. For instance, in the co-authorship network in Example 9 , if 

wo authors share many papers (hyperedges) either written solely 

y them or in collaboration with others, one would expect a signal 

hat represents research interests to take similar values for the two 

entioned authors. This notion of homophily is well established 

or graphs and naturally extends to hypergraphs. 

Mathematically, in line with the graph case in Section 2.4.2 , we 

ssume that we observe a noisy version y = y 0 + ε of the true un-

erlying signal defined on the node set of our hypergraph H. Then, 

e can try to estimate y 0 by solving the optimization problem 

in 
ˆ y 

‖ ̂ y − y ‖ 
2 
2 + α	H ( ̂ y ) , (39) 

here the first term is to constrain the denoised signal ˆ y to be 

lose to the observation y and the second term is a regularizer 

haped by the structure of H. 

A possible choice for 	H ( ̂ y ) is to select a Laplacian matrix rep- 

esentation of H (cf. Section 5.1 ) and set the regularizer to the 

uadratic form as in the graph case [93,94] . From the discussion 

fter (2) it follows that the optimal solution ˆ y will then be a low- 

ass version of y where the bases for low and high frequencies de- 

end on the specific graph expansion selected. The most common 

ne is to consider the clique expansion, in which we have 

H ( ̂ y ) = 

∑ 

(u, v ) ∈E c 
ω c (u, v )( ̂  y u − ˆ y v ) 

2 = ˆ y � L c ̂  y , (40) 

here L c corresponds to the graph Laplacian obtained via clique 

xpansion of the hypergraph. Alternatively, one can rely on tensor- 

ased representations for hypergraphs in the definition of 	H ( ̂ y ) . 

n particular, we can set the regularizer to be equal to the tensor- 

ased total variation in [112] . In this case, smooth signals would 

lso be promoted but the meaning of a smooth signal will cor- 

espond to one that suffers little change under a tensor shift as 

efined in (34) . 

An alternative regularizer based on the Lovász extension of the 

ypergraph cut has also been proposed [124] . More specifically, a 

arametric family of regularizers was considered 

H,p ( ̂ y ) = 

∑ 

e ∈E 
ω(e ) 

(
max 
u ∈ e 

ˆ y u − min 
v ∈ e 

ˆ y v 

)p 

, (41) 

hich can be shown to be convex for p ≥ 1 . Consequently, the 

ptimization problem (39) remains convex and, in particular, tai- 

ored efficient algorithms have been proposed for p = 1 and p = 2 ;

ee [124] . In interpreting (41) we can see that 	H,p ( ̂ y ) induces yet 

nother related notion of smoothness. For every hyperedge e ∈ E
e look at the difference between the extreme values of the sig- 

al attained at the nodes contained in e , we scale this penaliza- 

ion by the weight of the hyperedge, and we sum over all hyper- 

dges. Intuitively, this regularizer promotes signals that are con- 

tant within the hyperedges. Moreover, the power p controls the 

orm of the deviations from these piecewise constant signals. For 
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xample, the sparsity promoting p = 1 would encourage the sig- 

al variation to be zero within some hyperedges and possibly high 

n others, whereas p = 2 would promote a low (possibly non-zero) 

ariation across all hyperedges. 

If we consider a general submodular function F e instead of the 

ypergraph cut, then (41) can be generalized as 

H,p ( ̂ y ) = 

∑ 

e ∈E 
[ f e ( ̂ y )] 

p , (42) 

here f e is the Lovász extension of F e (cf. Remark 12 ). The opti-

ization problem (39) equipped with (42) are respectively referred 

o as decomposable submodular function minimization (DSFM) for 

p = 1 [125–130] and quadratic DSFM (QDSFM) for p = 2 [131] . Sim-

lar to (40) which can also be written as 〈 ̂ y , L c ̂  y 〉 , (42) can be
iewed as 〈 ̂ y , L ( ̂ y ) 〉 for some Laplacian operator L depending on

 e . 

.3. Signal interpolation on hypergraphs 

As discussed in the previous sections, signal interpolation and 

moothing are closely related problems. Successful signal interpo- 

ation from an observed subset V L hinges to a large extent on the 
election of a sensible model for a (smooth) ground truth signal 

hat is compatible with the observed (desired) signal characteris- 

ics. For a chosen signal model, we may then again set up an opti-

ization problem for interpolating hypergraph signals as 

in 
ˆ y 

	H ( ̂ y ) , s.t. ˆ y v = y v for all v ∈ V L , (43) 

here 	H is a regularizer chosen to promote the desired signal 

haracteristics, e.g., a low-pass signal. Like for graphs and simpli- 

ial complexes, many choices for the regularization term are pos- 

ible here and the optimal choice of a regularizer will generally 

e dependent on the considered application scenario. For instance, 

e may choose to use a regularizer based on the clique expansion 

r some of the other strategies discussed in Section 6.2 . Unlike 

n the graph and simplicial complex setting, however, for hyper- 

raphs we may also consider tensor-based regularizers, which can 

ffer smoothing and interpolation strategies that are not accessi- 

le via matrix-based approaches. Developing and analyzing such 

pproaches for hypergraphs appears to be an interesting avenue 

or future research. Problem (43) can also be converted to an- 

ther class of optimization problem called submodular Laplacian 

ystem [132] which is a generalization of the Laplacian system on 

raphs [39] . 

.4. Hypergraph neural networks 

The design of neural network architectures to process and 

earn from data on hypergraphs is a nascent area of research. 

iven the developments in graph neural networks mentioned in 

ection 2.4.4 and the graph expansions for hypergraphs introduced 

n Section 5.1 , an avenue to derive hypergraph neural networks 

s to compute the graph shifts based on the (clique, star, or line 

raph) expansions of the hypergraph and then apply a (classical) 

raph neural network as the one in (6) or any of the variants sur-

eyed in [41] . 

In this direction, one of the earliest hypergraph neural net- 

orks [133] adopts the hypergraph Laplacian matrix associated 

ith a weighted clique expansion in [94] as a graph shift and 

hen implements a graph convolutional network [45,46] where 

hift-invariant filters are intertwined with pointwise nonlinearities. 

ne drawback of the clique expansion is that the resulting graph 

ends to be dense since a hyperedge is replaced by a number of 

dges that is quadratic in the size of the hyperedge. A similar 

dea is proposed in [134] , but this convolutional neural network is 

ased on a different hypergraph Laplacian shift (proposed in [118] ), 
16 
hich only requires a linear number of edges for each hyperedge. 

his provides a more efficient training when compared with that 

f [133] . Under this same methodological umbrella, a line hyper- 

raph convolution network is proposed in [100] , which expands 

he hypergraph into a weighted and attributed line graph and then 

mplements a graph convolutional network using the correspond- 

ng shift operator. 

Architectures grounded on the message-passing variants of 

raph neural networks (cf. Section 2.4.4 ) have also been proposed 

or hypergraphs. For instance, in [101] the line expansion of the 

ypergraph is used to define a message passing process where po- 

entially different aggregation functions can be used when pass- 

ng messages between nodes in the expansion that have either one 

ertex or one hyperedge in common; see Fig. 7 -F. Also, [135] pro- 

oses a generalization of GraphSAGE [136] to hypergraphs, a well- 

stablished message passing architecture for graphs. Recent devel- 

pments that further extend the state of the art include archi- 

ectures that tackle the issue that the initially constructed hyper- 

raphs may not be a suitable representation for data [137] as well 

s the formulation of attention [138] and self-attention [83] mech- 

nisms for hypergraphs. 

As a closing note, a different perspective is put forth in [139] , 

here a convolutional neural network architecture for powerset 

ata is introduced. These architectures are designed to learn from 

et functions, which are signals on the powerset of a given set. By 

oticing that cuts in hypergraphs can be interpreted as set func- 

ions, these convolutional architectures can be used to solve prob- 

ems in hypergraphs; see [139] for more details. 

. Discussion 

Graph signal processing tools have been highly successful in a 

ide range of applications, ranging from biological to social do- 

ains. This success hinges to a large extent on providing sensible 

otions for filtering graph signals, such that the relevant depen- 

encies in the signal are kept intact, while undesirable noise com- 

onents are filtered out. However, as graphs are only concerned 

ith pairwise relationships, their capabilities for modeling higher- 

rder dependencies are too limited for certain application scenar- 

os in which polyadic relationships are essential. In such scenar- 

os, simplicial complexes and hypergraphs have recently emerged 

s two promising conceptual frameworks to address the specific 

hortcomings of graph-based representations. 

Unlike for GSP that can benefit from a rich set of results in 

pectral graph theory, e.g., to derive appropriate notions of shift 

perators and signal smoothness, the theory of signal processing 

n higher-order networks is far less developed. In this tutorial pa- 

er, we provided an introduction to this emerging area, focusing on 

he choice of appropriate shift operators and associated frequency 

omain representations, as well as a set of important application 

cenarios comprising signal smoothing and denoising, signal inter- 

olation, and the construction of nonlinear neural network archi- 

ectures that can leverage the structure of such higher-order net- 

orks. 

We believe that this area holds an enormous potential for fu- 

ure developments. A few relevant future direction include the fol- 

owing. 

In the context of simplicial complexes, the investigation of how 

hese should be constructed from data to capture desirable fea- 

ures is certainly one aspect that deserves further research. As dis- 

ussed in Sections 3 and 4 , the choice of appropriate faces has di- 

ect consequences on the frequency representation of any signal 

nd is thus highly relevant for applications [63] . Similarly, while 

e discussed only unweighted simplicial complexes for simplicity, 

he appropriate introduction of weights to emphasize certain fea- 

ures in the data to be investigated is a pertinent issue that should 
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e addressed in future research. Finally, while we concentrated on 

implicial complexes as the most common complexes considered, 

he restriction to simplicial instead of other type of cell complexes 

uch as cubical complexes is essentially artificial. From a modeling 

erspective, simplices may not always capture the appropriate no- 

ion of a “cell” in a higher-order interaction network. For instance, 

n traffic and street networks it may be beneficial to consider cu- 

ical complexes or other types of models that can better represent 

he grid-like structure of many of these networks [59] . 

In the context of hypergraphs, we provide several potential di- 

ections for future work. As the first step, constructing a suitable 

ypergraph is key to the final performance. Hence, it is important 

o develop effective and efficient methods for the construction of 

ypergraphs from real-world datasets that are usually large-scale. 

o better characterize a wider range of datasets, it is necessary to 

evelop more general hypergraph models, such as those consider- 

ng different types of vertices or having different levels of relations 

cf. Section 5 ). A variety of problems that have been well studied 

n graphs or homogeneous hypergraphs are valuable to be recon- 

idered and extended to those less explored but more expressive 

odels. These problems include, but are not limited to, develop- 

ng spectral hypergraph theory, node clustering, classification and 

anking, link prediction, hypergraph representation learning (espe- 

ially for heterogeneous hypergraphs in which hyperedges are gen- 

rally indecomposable [82] ), the modeling and analysis of diffu- 

ion processes on hypergraphs, tensor-based representations and 

perations (especially for hypergraphs with edge-dependent ver- 

ex weights which are hard to be modeled using super-symmetric 

ensors), hypergraph kernels, hypergraph classification, and hyper- 

raph alignment. Although one framework for hypergraph signal 

rocessing has already been proposed in [112] , there are still many 

pen questions. In GSP, graph shift and filters can be understood 

s some network diffusion processes, while it is not clear if and 

ow the hypergraph shift can be connected with a physical pro- 

ess. Other problems such as hypergraph filter design, active sam- 

ling for reconstruction, and fast hypergraph Fourier transforms 

re also worth investigating. Finally, most existing hypergraph neu- 

al networks are matrix-based like those introduced in Section 6.4 . 

 natural extension in this context would be to derive the theory 

f tensor-based neural networks for hypergraphs. 
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