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Torsion in thin regions of Khovanov
homology

Alex Chandler, Adam M. Lowrance, Radmila Sazdanovi¢, and Victor
Summers

Abstract. In the integral Khovanov homology of links, the presence of odd torsion is rare.
Homologically thin links, that is, links whose Khovanov homology is supported on two adjacent
diagonals, are known to contain only Z, torsion. In this paper, we prove a local version of this
result. If the Khovanov homology of a link is supported on two adjacent diagonals over a range
of homological gradings and the Khovanov homology satisfies some other mild restrictions, then
the Khovanov homology of that link has only Z, torsion over that range of homological gradings.
These conditions are then shown to be met by an infinite family of three-braids, strictly containing
all three-strand torus links, thus giving a partial answer to Sazdanovi¢ and Przytycki’s conjecture
that three-braids have only Z, torsion in Khovanov homology. We use these computations and our
main theorem to obtain the integral Khovanov homology for all links in this family.

Introduction

In 1984, Jones discovered a powerful polynomial link invariant, now known as the
Jones polynomial [8]. In 1999, Khovanov [9] categorified the Jones polynomial /(L) to
a bigraded homology theory H(L) called Khovanov homology. Khovanov homology
categorifies the Jones polynomial in the sense that the Jones polynomial of alink can be
recovered as the graded Euler characteristic of its Khovanov homology. Each H"/(L)
is a finitely generated abelian group, and the Jones polynomial gets a contribution only
from the free part of H(L). Thus, torsion in Khovanov homology is a new phenomena
in knot theory which does not appear in the theory of Jones polynomials. Throughout
this paper, we will use the term ° Z - torsion, p a prime, to mean a direct summand
of isomorphism class Z,- in the primary decomposition of the integral Khovanov
homology of a link.

Khovanov homology is equipped with two gradings: the homological grading i and
the polynomial grading j. A link is homologically thin if its Khovanov homology is sup-
ported in bigradings 2i — j = s + 1 for some integer s. Non-split alternating links and
quasi-alternating links are homologically thin [11, 15]. In [24], Shumakovitch showed
that homologically thin links have only Z,- torsion in their Khovanov homology, and
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2 A. Chandler et al.

in [25] he used a relationship between the Turner and Bockstein differentials on Z,-
Khovanov homology to show in fact there is only Z, torsion. In this paper, we prove a
version of this result when the Khovanov homology of a link is thin over a restricted
range of homological gradings.

Let iy, iy € Z with i < i,. We say that H(L) is thin over [i, i,] if there isan s € Z
such that H**(L;Z,) is supported only in bigradings satisfying 2i — j = s + 1 for all
i with i3 < i < i, and for all primes p. If i is an integer with i < i < i, then we say
i € [i1, 12 ]; we similarly define i € (i1, i, ], (i1, i), or [i1, i2).

Theorem 4.7  Suppose that a link L satisfies:

(1) H(L) is thin over [iy, i,] for integers iy and i where HUV21(L) is supported in
bigradings (i, j) with2i — j=s + 1 for some s € Z,

(2) dimg H"*(L; Q) = dimg, H"*(L; Z,) for each odd prime p,

(3) H™"*(L) is torsion-free, and

(4) H'"YI(L) is trivial when j < 2i; — s — 3.

Then all torsion in H* (L) is Z, torsion for i € [iy, i,], that is, HUv21(L) = 7% @ 74

for some k, £ > 0.

We use Theorem 4.7 to show that certain families of closed three-braids have only
Z, torsion in their Khovanov homology. Various techniques have been used to show
that some other families of links only have Z, torsion in their Khovanov homology
or only have Z, torsion in certain gradings. In [7], Helme-Guizon, Przytycki, and
Rong established a connection between the Khovanov homology of a link and the
chromatic graph homology of graphs associated to diagrams of the link. In [14],
Lowrance and Sazdanovi¢ used this connection to show that in a range of homological
gradings, Khovanov homology contains only Z, torsion. This result can now be seen
as a corollary to Theorem 4.7.

Przytycki and Sazdanovi¢ [21] obtained explicit formulae for torsion in certain
bigradings and proved that the Khovanov homology of semi-adequate links contains
Z, torsion if the corresponding Tait-type graph has a cycle of length at least 3. In the
same paper, the authors conjectured the following, connecting torsion in Khovanov
homology to braid index:

Conjecture 1.1 (PS braid conjecture, 2012)

(1) The Khovanov homology of a closed 3-braid can have only Z, torsion.

(2) The Khovanov homology of a closed 4-braid cannot have Z,- torsion for p # 2.

(3) The Khovanov homology of a closed 4-braid can have only Z, and 74 torsion.

(4) The Khovanov homology of a closed n-braid cannot have Z,r torsion for p > n (p
prime).

(5) The Khovanov homology of a closed n-braid cannot have Z,r torsion for p™ > n.

Counterexamples to parts (2), (3), and (5) are given in [18], and a counterexample to
part (4) has recently been constructed by Mukherjee [17] (see also [19, 23]). However,
part (1) remains open, and computations suggest that part (1) is indeed true. One goal
of this (ongoing) project is to prove this.

Consider the braid group B; on s-strands whose generators are shown in Figure 1.
By convention, braid words are read from left to right, and multiplication of words
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Figure I. Generators and their inverses for the braid group B;.
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Figure 2: A braid diagram for the word 01020102010, € B3 and its braid closure.

wiw, corresponds to stacking the braid w, on top of wy, see, for example, Figure
2. Each strand in a braid diagram is assumed to be oriented upward. The half twist
A € B is defined as A = (0103 ... 05-1)(0102 . .. 05-2)---(0102) (01), and the full twist
is A2, The closure of a braid diagram is a diagram of a link (see, for example, Figure
2), and a famous result of Alexander states that every link can be represented by the
closure of a braid. For convenience, throughout this paper, a braid word will be used
to refer to either an element of the braid group or its braid closure depending on the
context in which it appears. If two elements of a braid group are conjugate, then the
corresponding braid closures are isotopic as links. Therefore, it would be convenient
to have a classification of elements of the braid group B up to conjugacy. For s = 2,
of course, the classification is trivial. For s > 4, no classification is known. For s = 3,
Murasugi provides the following [20].

Theorem 1.2 (Murasugi) Every element of the braid group Bs is conjugate to a unique
element of one of the following disjoint sets:

QO = {Azn | ne Z}, Q] = {Azn(fl(fz | ne Z},
QZ = {Azn(O']O'z)z | ne Z}, 03 = {A2n+1 | ne Z},
Q4= {A*"0 P |neZ}, Qs = {A*0] |neZ}, or

_ 2n _—P1 __q1 —Pr _4r
Q¢ ={A"0, "' a0, "7 0,

neZl},
where p, q, pi, and q; are positive integers.

With Murasugi’s classification in mind, we use Theorem 4.7 to show that certain
classes of three-braids have only Z, torsion in Khovanov homology (Theorem 5.5),
taking a significant step in the direction of proving part (1) of the PS (Przytycki-
Sazdanovi¢) conjecture.
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Theorem 5.5 All torsion in the Khovanov homology of a closed 3-braid L of type
Qo, O, Qy, or Qs is Z, torsion, that is, there exist nonnegative integers k and £ such
that H(L) = Z* @ Z5.

This paper is organized as follows. In Section 2, we give a construction of Khovanov
homology. In Section 3, we provide several computational tools in the form of a long
exact sequence and various spectral sequences associated to alternate differentials on
the Khovanov complex. In Section 4, we prove the main result of this paper, providing
conditions on the Khovanov homology of a link L under which all torsion in thin
regions of the integral Khovanov homology of L is Z, torsion. In order to achieve
this result, we will analyze interactions between the spectral sequences of Section 3.
In Section 5, we give an application of the main result, showing that all torsion in the
Khovanov homology of links in Qg, Q1, Q,, and Q3 is Z, torsion, and we give explicit
calculations of the integral Khovanov homology of links in Qg, Q;, Q,, and Q3. We
end with an explanation of why Theorem 4.7 does not apply to all closed three-braids.

A construction of Khovanov homology

Khovanov homology is an invariant of oriented links L c S* with values in the
category of bigraded modules over a commutative ring R with identity. We begin
with a construction of Khovanov homology. Our conventions for positive and negative
crossings, and for zero- and one-smoothings, are as given in Figure 3.

A bigraded R-module is an R-module M with a direct sum decomposition of the
form M = @, jez M*/. The submodule M"/ is said to have bigrading (i, j). For our
purposes we will refer to i as the homological grading and to j as the polynomial grading.
Given two bigraded R-modules M = @®; jez, M" and N = Di,jez N®i, we define the
direct sum M @&x N and tensor product M ®g N to be the bigraded R-modules
with components (M ® N)*/ = M/ @ N/ and (M ® N)*J = Drkem=i,l+n=j Mk g
N™"_ We also define homological and polynomial shift operators, denoted [-] and
{-}, respectively, by (M[r])"/ = M'"/ and (M{s})"/ = M"~.

Consider the directed graph whose vertex set V(n) = {0,1}" comprises n-tuples of
0s and 1s and whose edge set € () contains a directed edge from I € V(n) to J € V(n)
if and only if all entries of I and J are equal except for one, where I is 0 and J is 1. One
can think of the underlying graph as the one-skeleton of the n-dimensional cube. For
example, if n = 4, there are two outward edges starting from (0,1,0,1), one ending at
(0,1,1,1) and the other ending at (1,1, 0,1). The height of a vertex I = (ky, k2, ..., k,)
ish(I) = ky + ky + -+ + k. In other words, h(I) is the number of 1s in L. I ¢ is an edge
from I to J and they differ in the rth entry, the height of ¢ is |¢| := h(I). The sign of &

XK e )

- + Dy D D,

Figure 3: Conventions for crossings and smoothings in link diagrams.
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is (-1)¢:= (—1)2':11 ki In other words, the sign of ¢ is —1 if the number of Is before the
rth entry is odd, and is +1 if even.

Let Dbe a diagram of alink L with n crossings i, ¢z, . . ., ¢,. To each vertex I € V(n)
we associate a collection of circles D(I), called a Kauffman state, obtained by zero-
smoothing those crossings ¢; for which k; = 0 and one-smoothing those crossings
cj for which k; = 1. The zero- and one-smoothing conventions are given in Figure 3.
To each Kauffman state, we associate a bigraded R-module C(D(I)) as follows. Let
Ay = R[X]/X? = R1® RX be the bigraded module with generator 1 in bigrading (0, 1)
and generator X in bigrading (0, -1). Denoting the number of circles in D(I) by
|D(I)|, we define C(D(I)) := A?lD(I)l[h(I)]{h(I)}. Here, each tensor factor of A,
is understood to be associated with a particular circle of D(I). Having associated
modules with vertices, we now associate maps with directed edges. Define R-module
homomorphisms m: A, ® A, - A, and A: A, - A, ® A, (called multiplication
and comultiplication, respectively) by

m(1el)=1, m(1eX)=X, m(Xel)=X, m(X®X)=0,
A =18 X+X®1, A(X)=X®X.

To an edge ¢ from I to ] we associate the map d, : C(D(I)) - C(D(J)) defined as
follows.

(1) If|D(J)| = |D(I)| - 1, then D(J) is obtained by merging two circles of D(I) into
one: d, acts as multiplication m on the tensor factors associated to the circles being
merged, and acts as the identity map on the remaining tensor factors.

(2) If|D(J)| = |D(I)| +1 then D(J) is obtained by splitting one circle of D(I) into
two: d, acts as comultiplication A on the tensor factor associated to the circle
being split, and acts as the identity map on the remaining tensor factors.

Suppose D has n. positive crossings and n_ negative crossings. Define the bigraded
module
(2.1) C**(D)= @ C(DI))[-n_-){n,-2n_}.
IeV(n)
Define maps d': C**(D) — C**-*(D) by d' = Ylel=i(-1)*de. In [9], Khovanov
shows that (C(D), d) is a (co)chain complex, and since the maps d’ are polynomial
degree-preserving, we get a bigraded homology R-module
H(L;R) = @ H"(L;R)
i,jeZ

called the Khovanov homology of the link L with coefficients in R, or, more compactly,
the R-Khovanov homology of L. Proofs that d is a differential and that these homology
groups are independent of the diagram D and the ordering of the crossings can be
found in [3, 9, 29]. If R = Z we simply write H(L) = H(L;Z). In this article, we will
focus on the rings R = Z, Q, and Z,, where p is a prime.

The (unnormalized) Jones polynomial is recovered as the graded Euler character-
istic of Khovanov homology:

Ji(g) = 3 (-1)'q’ - rk(H™(L)).

i,je€Z
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Computational tools
A long exact sequence in Khovanov homology

Given an oriented link diagram D, there is a long exact sequence relating D to the
zero- and one-smoothings Dy and D, at a given crossing of D [9]. Each crossing in
an oriented link diagram is either positive ( e ) or negative ( N ) If the crossing
is negative, we set ¢ = n_(Dg) — n_(D) to be the number of negative crossings in Dy
minus the number in D. For each j there is a long exact sequence

(3.1) LR HY*(Dy) - H*I(D) - H=%/-%-1(Dy) O H*4(D)) > |

Note that in this case D; inherits an orientation, and Dy, must be given one.
Similarly, if the crossing is positive, we set ¢ = n_(D;) — n_(D) to be the number
of negative crossings in D; minus the number in D. For each j there is a long exact
sequence

(3.2) &) Hi—c—l,j—Sc—Z(Dl) N Hi,j(D) Hz] I(DO) Hz c,j=3c— Z(D ) N
and note that in this case Dy inherits an orientation, and D; must be given one.

The Bockstein spectral sequence

The Bockstein spectral sequence arises as the spectral sequence associated to an exact
couple, and is a powerful tool for analyzing torsion in homology theories.

Definition 3.1 Let Dy and E, be R-modules, and let iy : Dy — Dy, jo : Dy = Eo and
ko : Eg > Do be R-module homomorphisms satisfying ker(ip) = im(ky), ker(jo) =
im(iy) and ker(ko) =1im(jo). The pentuple (Do, Eo, ig, jo, ko) is called an exact
couple. Succinctly, an exact couple is an exact diagram of R-modules and homomor-
phisms of the following form.

Do‘ >D()

NA

The map dy : Eg = E, defined by dy := jg o k¢ satisfies do o dg = (jo 0 ko) © (jo ©
ko) = jo o (ko © jo) o ko = 0 and so defines a differential on Ey. Define E; = H(Ey, do)
to be the homology of the pair (Ey,dy), and define D; =im(io : Dy - Dy). Also,
define maps il : D] g D], j] : D1 — E1 and k] : El g D] by il = i0|D1, ]1(10([1)) =
jo(a) + doEy and ki(e +doEy) = ko(e). The resulting pentuple (Ds, Ey, i1, j1, k1)
is another exact couple [16, Proposition 2.7]. Iterating this process produces a
sequence (E,,d,)so called the spectral sequence associated to the exact couple
(Do, Eo» g, jo ko).
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Torsion in thin regions of Khovanov homology 7

Given a chain complex (C, d), let us denote its integral homology by H(C) and its
homology over coefficients in Z, by H(C;Z, ). Consider the short exact sequence

(33) 0 7 b, g edp

Z, 0,

where x p is multiplication by p, and red p is reduction modulo p. Tensoring a chain
complex (C, d) with (3.3) yields a short exact sequence of chain complexes

red p

0 yc 25 ¢ C®Z, — 0.

The associated long exact sequence in homology can be viewed as an exact couple

H(C) &

H(C)

(3.4)
d red p

H(C;Zy)

where 9 is the connecting homomorphism.

Definition 3.2 Let p be prime. The spectral sequence (E}, d}),s associated to the
exact couple (3.4) is called the Z,, Bockstein spectral sequence.

The following properties of the Bockstein spectral sequence will be of great impor-
tance for our purposes, the proofs of which can be found in [16, Chapter 10] and [6,
Proposition 3E.3].

(Bl) The first page is (E,dy) = (H(C;Z,), B) where f = (red p) o 0.

(B2) The infinity page is E° = (H(C)/Torsion) ® Z,.

(B3) If the Bockstein spectral sequence collapses on the EX page for a particular
bigrading (i, j), that is, if (E§)"/ = (Ey)"/, then H"/(C) contains no Z,r
torsion for r > k.

(B4) If rk (d})"™"7 is equal to the number of summands of Z,- in H*/(C) for all ,
then there is no torsion of order p in H*/(C) for ¢ > 2.

(B5) If C = C** is a bigraded complex with a bidegree (1,0) differential, then the
differentials d} also have bidegree (1,0).

For our purposes, we use the Z, Bockstein spectral sequence and property (B4) to
prove there is only Z, torsion in certain bigradings. To this end, we will consider inter-
actions between the Bockstein spectral sequence and the Turner spectral sequence,
discussed below.

3.3 Bar-Natan homology and the Turner spectral sequence

In [3], Bar-Natan constructs another link invariant in the form of a bigraded homol-
ogy theory BN**(L), this time over the ring Z,[u], where u is a formal variable.
This construction mirrors that of Khovanov homology as in Section 2, but using a
different Frobenius algebra. Setting u = 1, one obtains the singly graded filtered Bar-
Natan homology, denoted BN (L)’. Filtered Bar-Natan homology can be constructed
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as in Section 2, but with differential defined via the following multiplication and
comultiplication:

m3(1®1):1, mB(l®X):X, mB(X®1):X, mB(X®X):X,
Ap(1)=1®@ X +X®1+1®1, Ap(X)=X®X.
Turner shows the following in [28, Theorem 3.1].
Lemma 3.1 (Turner) Let L be an oriented link with k components. Then,

dimgz, (BN*(L)") = 2k, Specifically, if the components of L are Ly, L, ... ., Ly, then

dimgz, (BN'(L)") = # {E c{1,2,...,k}

2x > 1k(Lg,Ly) = i},

LeE,meE¢
where 1k(Ly, Ly,) is the linking number between Ly and L,y,.

Example 3.2 Let T(3, q) be the (3, g)-torus link. Specifically, T(3,3n) is the closure
of the braid A%", T((3,3n +1) is the closure of the braid A%"0y0, and T(3,3n +2) is
the closure of A%" (010, )?, each oriented so that crossings in A are negative crossings.

(1) The torus link T(3,3n) has three components and BN°(T(3,3n)) = 73,
BN™*"(T(3,3n))" = Z$ and BN'(T(3,3n))’ = 0 for i # 0 or —4n.

(2) The torus knot T(3,3n +1) satisfies BN’ (T(3,3n +1))" = Z2 and BN* (T (3,3n +
1)) 20 fori=0.

(3) Thetorusknot T(3,3n + 2) satisfies BN’ (T(3,3n + 2))’ = Z2 and BN* (T (3,3n +
2)) z0fori+0.

In [28], Turner defines a map dt on the Z,-Khovanov complex in the same manner
as the Khovanov differential d, but with multiplication and comultiplication given by

mT(1®1):0, mT(1®X):0, mT(X®1):O, mT(X®X):X,
AT(I) =1®1, AT(X) =0,

and the map dr satisfies d> =0and d odr + drod = 0.

Definition 3.3 (Turner) Let D be a diagram of a link L and (C(D;Z,),d) be the
Z,-Khovanov complex. The spectral sequence (E%, d7.),»1 associated to the double
complex (C(D;Z,),d, dr) is called the Turner spectral sequence.

The Turner spectral sequence satisfies the following properties.

(T1) The first page is (E%, d}) = (H(L;Zy), dy) where dy : H(L; Z,) -~ H(L; Z,) is
the induced map on homology.

(T2) Each map dY is a differential of bidegree (1, 2r).

(T3) If L is homologically thin over Z,, then the Turner spectral sequence collapses
at the second page.

(T4) The dimension of the infinity page of the Turner spectral sequence is 2" where n
is the number of components of L. There is a generator s, for each orientation o
of L representing a nontrivial homology classes on the infinity page of the Turner
spectral sequence. Let 0 be the reverse orientation of 0. The polynomial gradings
of s, and s, + sz differ by two, while Lemma 3.1 implies their homological
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gradings are the same. In summary, if P = Z, & Z,, where one copy of Z, is
in bidegree (0,1) and the other is in bidegree (0, -1), then

n-1

ET =@ P[hi]{p:}-
i=1
Because E. = H(L;Z,), there are nontrivial Z, summands in HM'Pi ([ 7,).
See the proof of Theorem 3.1 in [28] and Proposition 2.6 in [12] for details.
(T5) The Turner spectral sequence converges to the Bar-Natan homology: E7. =
BN*(L)’, where

BN'(L)' = D(EF)™.
j

The next ingredient we need is a “vertical” differential on the Z,-Khovanov
complex due to Shumakovitch [24]. Let D be a diagram of a link L. A differential
v:C(D;Zy) - C(D;Z,) is defined as follows. Recall that for a Kauffman state D(I),
the algebra C(D(I)) has 2/P(D! generators of the form a; ® a, ® -+ ® a|p(r)| where
a; € {1, X} and |D(I)| is the number of circles in D(I). For each Kauffman state,
we define a map vp(p) : C(D(I)) - C(D(I)) by sending a generator to the sum
of all possible generators obtained by replacing a single X with a 1. For example,
XXX I®X®X+X®1®X+X®X®l We then extend vp(j) linearly to
all of C(D(I)), and then to a map v : C(D;Z,) - C(D;Z,). The properties of this
map relevant to our purposes are given below, the proofs of which can be found in
Shumakovitch [24].

(V1) The map v is a differential of bidegree (0, 2).

(V2) The map v commutes with the Khovanov differential d, and so induces a map
(differential) v* : H(L;Z,) - H(L;Z,) on homology.

(V3) The complex (H(L;Z,),v*) is acyclic, that is, it has trivial homology.

The following lemma of Shumakovitch [25, Lemma 3.2.A] is the key to proving
Theorem 4.6. It relates the first Z, Bockstein map with the Turner and vertical
differentials. We use the behavior of the Turner spectral sequence and the acyclic
homology induced by v to determine when the Z, Bockstein spectral sequence
collapses.

Lemma 3.3 (Shumakovitch) Let L be a link. The Bockstein, Turner, and vertical
differentials on the Z,-Khovanov homology H(L;Z,) of L are related by dy. = dy o v* +
v*ody.

The Lee spectral sequence

Lee [10] defined an endomorphism on Khovanov homology that Rasmussen [22] used
to define the s concordance invariant. Let R be either Q or Z, where p is an odd
prime. The Lee differential dy, : C(D;R) — C(D;R) is defined in the same way as the
Khovanov differential d, but with multiplication and comultiplication given by

mL(1®1)=0, mL(1®X)=O, mL(X®1):0, mL(X®X):1,
Ar(1) =0, Ay(X)=1®L
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The map dy, satisfies d7 =0 and dody +dy od = 0. The resulting singly graded
homology theory is a link invariant, denoted Lee” (L; R), and it behaves as follows.

Lemma 3.4 (Lee) Let L be an oriented link with k components. Then,

dimpg (Lee* (L;R)) = 2%. Specifically, if the components of L are Ly, L,,...,Lg,
then

dimg (Lee’ (L;R)) = #{E c{1,2,...,k}

2x Y Ik(Lg,Ly) = i},

LeE,meE*
where 1k(Lyg, Ly, ) is the linking number between Ly and L,y,.

Definition 3.4 Let D be a diagram of a link L and (C(D;R),d) be the R-
Khovanov complex. The spectral sequence (E7, d] ),»1 associated to the double com-
plex (C(D;R),d, dy) is called the R-Lee spectral sequence.

The R-Lee spectral sequence satisfies the following properties.

(L1) The first pageis (E},d}) = (H(L;R),d;) where d; : H(L;R) - H(L;R) is the
induced map on homology.

(L2) Each map dj is a differential of bidegree (1, 4r).

(L3) The dimension of the infinity page of the Lee spectral sequence is 2" where 7 is
the number of components of L. There is a generator s, for each orientation o
of L representing the nontrivial homology classes on the infinity page of the Lee
spectral sequence. Let 0 be the reverse orientation of 0. The polynomial gradings
of s, + s5 and s, — s differ by two, while Lemma 3.4 implies their homological
gradings are the same. In summary, if P = R @ R, where one copy of R is in
bidegree (0,1) and the other is in bidegree (0, -1), then

B %;B:P[hi]{p,»}.

Because E! ~ H(L;R), there are nontrivial R summands in H"Pi*!(L;R).
Because E} = H(L;R), there is a bigraded submodule S of H(L; R) isomorphic
to E;°. See Section 4.4 in [10], Proposition 3.3 in [22], and Definition 71 in [4]
for details.

(L4) The Lee spectral sequence converges to Lee homology: E] = Lee*(L; R), where

Lee'(L;R) = (E) ™.
j

The main result

We now prove several lemmas that will lead to the proofs of Theorems 4.6 and 4.7.
Throughout the proofs, we take advantage of the properties of the Z,-Bockstein spec-
tral sequence, Turner spectral sequence, Lee spectral sequence and vertical differential
v*, described in Section 3.
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Torsion in thin regions of Khovanov homology 11

Suppose that H(L) is thin over the interval [i, i, ], and let Hl'»2](L; R) denote the
direct sum

- o
HURI(LR) = @ HY (LiR).
i=i;
As before, we drop the R from the notation in the case where R = Z. Our first lemma
states that all torsion in homological gradings (i, i, ] must be supported on the lower
diagonal.

Lemma 4.1 If H(L) is thin over [ iy, i,] where HU'v21(L) is supported in bigradings
(i, ) with 2i— j=s+1 for some s€Z, then any torsion summand of HI'"21(L)
with homological gradings i > iy is supported on the lower diagonal in bigrading
(i,2i —s—1).

Proof If H"*~**1(L) has a nontrivial torsion summand for some i € (iy, i, ], then
the universal coefficient theorem implies that H'™>*=**!(L; Z, ) is nontrivial for some
p> contradicting the fact that H(L) is thin over [ij,i,]. Therefore, all torsion in
homological gradings (i1, i, | appears in bigradings of the form (i,2i —s - 1). ]

Our next lemma gives a sufficient condition to ensure that H [iv22](L;Z) has no
odd torsion.

Lemma 4.2 Suppose that H(L) is thin over [iy, i,], all Lee differentials are zero in
homological grading i, — 1, and that

dimg H"*(L;Q) = dimg, H"*(L; Z,)
for each odd prime p. Then HU21(L;Z) contains no torsion of odd order.

Proof LetRbeQ orZ, for an odd prime p. Since H(L) is thin over [ iy, i, ], it follows
that there is an s € Z such that Hl'»21(L) is supported in bigradings (i, j) with 2i — j =
s + 1. Lemma 3.4 implies that the homological gradings of E7° are determined by the
linking numbers of the components of L, and thus do not depend on R. Because H(L)
is thin over [ iy, i, ], Property (L3) implies that in each homological grading i € [iy, i3]
where E7° is nontrivial, its polynomial gradings are 2i — s —1and 2i — s + 1, and hence
do not depend on R. Therefore, for each i € [iy, i, ],

(4.1) dimg (E®)>*~7Y(L; R) = dimg (E{°) "> (L; R).

We show that if i € [i}, i, ], then there cannot be any torsion in H** (L) of the form
Z,r for an odd prime p. By way of contradiction suppose that for some i € [iy, i ], the
group H»?*"1(L) contains a torsion summand of the form Z,- for some r > 0. The
universal coefficient theorem implies that

dimg H**~7(L;Q) < dimg, H"*~*"(1;Z,) and
dimg H' "*~7Y(L; Q) < dimgz, H "7 (L; Z,).
If iy =i or i; = i — 1, then we have a contradiction, and so we assume that i; <i—1.
Equation (4.1) and the previous inequality imply that the rank of the bidegree (1,4) Lee

map in bigrading (i — 2,2i — s — 5) over Z, is greater than its rank over Q. If i; = i - 2,
then the Lee differential (d] )"~/ is trivial on all pages r > 0 and for all j by assumption,

Downloaded from https://www.cambridge.org/core. 23 Jun 2021 at 18:14:08, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

12 A. Chandler et al.

and if i; < i — 2, then the Lee differential (d} )"~/ is trivial on all pages r > 0 and for
all j < 2i — s — 9 because H(L) is thin over [iy, i, |. Consequently,

dimg H > 7(L;Q) < dimz, H™>*7(L; Zy).

Since H(L) is thin over [i, i,], it follows that H"%2"~"3(L) = 0, and in particular,
there is no Z - torsion summand in bigrading (i —1,2i — s - 5). Thus the universal
coefficient theorem implies there is a Z,,+ torsion summand in bigrading (i —2,2i -
s —5) for some r’' > 0. In summary, a Z,r torsion summand in homological grading
i induces a dimension inequality in homological gradings i,i—1, and i — 2, and it
induces a Z,,» summand in homological grading i — 2. Since i € [iy, i,] is arbitrary,
repeating this argument for each new torsion summand implies that

dimg H"™*(L; Q) < dimgz, H™*(L; Z,),
which is a contradiction. [ |

Our next lemma states that in a thin region, the induced Turner map d7 has the
same rank on the lower and upper diagonals.

Lemma 4.3 Suppose that H(L) is thin over [ iy, i] where HUv21(L) is supported in
bigradings (i, j) with 2i — j = s + 1 for some s € Z. If i € [iy, i), then

rk (d;)i,Zi—s—l _ I'k (d;)i,Zi—erl'

Proof Lemma 3.3 states that d} = dj o v* + v* o d}. Because v* o v* = 0, it follows
that

1
viodr=viodgov' =dpov’.

Property (V3) and the fact that H(L) is thin over [i, iz ] imply that v* is an isomor-
phism in homological gradings [, i, ], which then implies the desired result. |

Suppose that H(L) is thin over [y, i, ] where H["*21(L) is supported in bigradings
(i,j) with 2i — j=s+1 for some s € Z. Also, suppose that all Lee differentials in
homological grading i; — 1are trivial and that dimg H™* (L; Q) = dimz, H**(L; Z,).
Lemmas 4.1 and 4.2 imply that the upper diagonal of H[">221(L) is torsion-free and
that all torsion on the lower diagonal is of the form Z, for various different values of
r. Therefore, H>***1(L) = ZX and

Hi,2i—s—1 (L) o~ Zk; &7 @ ® erfi

for some ki, k;,0;,r1,...,r¢, € Z and for each i € [iy, i,]. Figure 4 represents the
different summands in the thin region. Lemmas 3.1 and 3.4, together with (T4) and
(L3) imply that dimg(E;*)»?~**! = dimg, (E5°)»*~**! when i € [i, i,]. For each i €
(i1, i2], let n; = dimg(E;°)"?~**! = dimg, (E5°)»*~**1. The notation established in
this paragraph will be used in the statements and proofs of Lemmas 4.4 and 4.5.
Since the Turner and Lee spectral sequences use coeflicients that are fields, it follows
that the infinity page of each spectral sequence is determined by the first page and the
ranks of certain differentials in the respective spectral sequences. Specifically, for any
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Figure 4: A depiction of the summands of H [h2] (L). The entry kf represents the summand

7 in bigrading (i, 2i — s + 1). The entry ¢; represents {; summands of the form Z,- for various
values of r in bigrading (i,2i — s — 1). Since H* (L) has no torsion, ¢;, = 0.

iandjinZ,

(4.2) dimg, (E¥)" = dimg, (E})™ - > (tk (d})™ + 1k (d})'™7*") and
r=1

(4.3) dimg(E{*)" = dimg(E})™ - Y (rk (d] )™/ +rk (d])™"7*").
r=1

The proofs of Lemmas 4.4 and 4.5 below make use of these formulas along with the
fact that most of the maps in the infinite sums above are trivial for grading reasons.

Our next lemma states that the Turner spectral sequence collapses at the second
page in a thin region if all incoming Turner differentials are trivial. If the entire
homology is thin, then this lemma gives a proof of property (T3).

Lemma 4.4 Suppose that H(L) is thin over [iy, i,] for integers iy and i, and that
(dy)™%7 =0 for all r > 1 and for all j € Z. If i € [iy, i), then (dh.)> =0 for all r > 2
and for all j € Z.

Proof Since H(L) is thin over [iy, i,], there is an s € Z such that H["2]1(L) is
supported in bigradings (i, j) with 2i — j = s £ 1. Also, since H(L) is thin over [ iy, i, ]
and d’. has bidegree (1,2r), it follows that if r > 3, then the map (d7})"/ = 0 for all
i € [i1,i2) and for all j € Z because either its domain or codomain is trivial. Suppose
that the Turner differential on the second page is nonzero somewhere in the thin
region. Let i be the minimum homological grading in [iy, i) such that (d%)"/ is
nonzero for some j. For grading reasons, it must be the case that the domain of (d2 )"/
is on the bottom diagonal while the codomain of (d2)"/ is on the top diagonal. Thus
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j =2i—-s-1,and Equation 4.2 implies
dim(E;o)i,Zi—sfl — dimZz (ElT)i,Zi—s—l _ rk (le)i—l,Zi—sf?: _ I'k (le)i,Zi—s—l
— 1k (d%)"* "' and
dim(E;o)i,Zi—s+l — dimzz (ElT)i,Zi—s+1 _ I‘k (d;)i—l,zi—s—l _ I‘k (d;)i,Zi—s-#l’

where in the second equation, there is no rk (d7.)""*=*~ term because i is the mini-
mum homological grading in [ iy, i,) where (d% )"/ is nontrivial. Property (T4) implies
that dim(E5?)"*~5"! = dim(E°T°)i’2i’s+1, and since (EY)" = H"I(L;Z,), property
(V3) implies that dimg, (E7)"*" ™" = dimg, (E})"*'~*".

If i=1i, then rk(d})" %273 =rk(d})"">**1=0 by assumption, and
rk (d) 207571 = vk (d%)2075*1 by Lemma 4.3. If i > ij, then Lemma 4.3 implies
that rk (d}) ™77 = rk (d) "% and rk (d})"* " = rk (d)P7H Since
rk (d2)"*~71 > 0 by assumption, we have a contradiction in either case. Therefore,
(d%)"/ is zero for all i € [i}, i) and for all j € Z. ]

Our next lemma shows a relationship between the ranks of the Turner and Lee
differentials in a thin region and also between the number of torsion summands of
the form Z,- for various values of r.

Lemma 4.5 Suppose that a link L satisfies:

(1) H(L) is thin over [iy, i, | for integers iy and i,,

(2) H™*(L) is torsion-free, and

(3) all Lee and Turner differentials are zero in homological grading iy — 1 on every page
of the respective spectral sequences.

Then for each i € [iy, i),
Pl ()0 = 1k ()2 =

where () = dimg, H*Y2 (L) @ Z, — rk H*Y27=TY(L) is the number of sum-
mands of the form Zy: for various values of r in H'*>2=5+1(L).

Proof Since H(L) is thin over [i},i,], there is an s € Z such that HU'"21(L) is
supported in bigradings (i, j) with 2i — j = s £ 1. We proceed by induction on the
homological grading i.

For the base case, we prove the desired statement when i = i;. The left side of
Figure 5 depicts the maps involved in the base case. All incoming Lee maps are trivial,
and thus Equation 4.3 implies rk H?"~**!(L) = k} = n;, = dimg(E{°)™*"**". The
dimension of H"21=$*([;7,) is n;, + £; ;. Equation 4.2 implies

. o0 i1, 2i—s+1 _ % i1, 2i1—s+1
i = 2\ BT e = Ny i+l T pet >
ni, = dimg, (EY) ni +4 rk (d7)

and thus rk (d3)®* ="' =/, ;. Lemma 4.3 then implies rk (d )2 ! =
rk (d;)il,Zil—s-*—l — €i1+1-

Since dimg(E®)™?" ' =n; and all Lee maps in homological grading
iy —1 are trivial, Equation 4.3 implies that rk (dj )™~ = rk H20=571(L) -
dimg(Ep°) "' = k; — n;,. Because H™*(L) is torsion free, £; =0 , and
thus dimg, H"*""*7(L; Z,) = dimg, (E})™*" "' = k;. Lemma 4.4 implies that
(d2)*1=71 =0, and since all Turner maps in homological grading i; —1 are
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Figure 5: The left side depicts the Turner and Lee maps involved in the base case of the proof
of Lemma 4.5. The right side depicts the Turner and Lee maps involved in the inductive step of
the proof of Lemma 4.5.

trivial, Equation 4.2 implies that rk (d})™27! = dimg, H2""Y(L; Z,) -
dimg, (EF)*2"77! = k; — n;,. Therefore, rk (d)™?"~*™" = rk (d} )™*"~*7!, which
completes the base case.

For the inductive step, let i€ (i, i,) and assume that rk (d)" %273 =
rk (d})7"%=73 = {,. The right side of Figure 5 depicts the maps involved in the
inductive step. Because the Lee spectral sequence collapses at the second page
in bigrading (i,2i — s +1), Equation 4.3 implies that dimg(E;°)"* " = n; = k} -
rk (d} )7%*7573_ Similarly, since Lemma 4.4 implies that the Turner spectral sequence
collapses at the second page in bigrading (i,2i —s +1), Equation 4.2 implies that
dimgz, (ER)"2= = n; = kf + 0,4y — vtk (d5)7027571 — vk (d3)»2=5*1. Therefore, in
our notation, the equation dimgz, (E5*)»*~*! = n; = dimg(E;)"*~**! for all bigrad-
ings with i; < i < i, can be written in the following way:

(44) kP —rk (d]) T 2k Ly — ke (d5) TV —rk ()P

The inductive hypothesis implies that rk (d)" %2773 = rk (d}.) 2273,
and Lemma 4.3 implies that rk (d})" %2773 =rk (d;)" "%, Therefore
rk (dj )23 =1k (d3)""?"1, and thus Equation 4.4 implies that
rk (d3.)"*~* = {;,;. Lemma 4.3 then implies that rk (d.)"?"~" = vk (d}.)"?~* =
€i+1-

Because the Lee spectral sequence collapses at the second page in bigrading (i, 2i —
s —1), Equation 4.3 implies that dimg (E{®)"* ="' = n; = k; - rk (d} )"*~71. Simi-
larly, because Lemma 4.4 implies that the Turner spectral sequence collapses at the
second page in bigrading (i, 2i — s — 1), Equation 4.2 implies that dimgz, (E5* ) »2~5"! =
n; = k; +0; -k (d3) %7573 —rk (d3)»*"~*"!.The inductive hypothesis states that
rk (d3.)"7b277573 = ¢;, and thus n; = k; —rk (d}.)"** =1, Therefore, rk (d)"* 5! =
rk (d})»?=*71, completing the proof. [
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We can now combine the previous lemmas to give sufficient conditions for all
torsion in a thin region to be of order two.

Theorem 4.6  Suppose that a link L satisfies:

(1) H(L) is thin over [iy, i1 ] for integers i and i,,

(2) dimg H"*(L; Q) = dimg, H"*(L; Z,) for each odd prime p,

(3) H™*(L) is torsion-free, and

(4) all Lee and Turner differentials are zero in homological grading i, — 1 on every page
of the respective spectral sequences.

Ifi € [iy, iy], then all torsion in H>* (L) is Z, torsion, that is, H"21(L) = Z* @ 74 for

some k,{ > 0.

Proof Since H(L) is thin over [iy, i,], there is an integer s such that Hl"2](L)
is supported in bigradings (i, j) satisfying 2i — j = s + 1. Lemma 4.1 implies that all
torsion in H"»21(L) occurs on the lower diagonal, i.e., in bigradings (i, 2i — s — 1) for
i € (i1, i2]. Lemma 4.2 implies that H"2] (L) does not contain any torsion summands
of Z, for any odd prime p. Therefore, H("2] (L) consists of Z and Z,- summands for
various values of r.

Lemmas 3.3 and 4.5 imply that rk (d})>*~**! = rk (d}.)"* 7! = 4;,, for each
i € [i1,1y). Property (B4) of the Bockstein spectral sequence implies that there is no
torsion in H'21(L) of order 2" for r > 1. Therefore, the only torsion in H* (L) is of
the form Z, for i € [y, i5]. [

The main theorem of the paper follows from Theorem 4.6.

Theorem 4.7  Suppose that a link L satisfies:
() H(L) is thin over [iy, i,] for integers iy and i, where HU"21(L) is supported in
bigradings (i, j) with2i — j= s 1 for some s € Z,
(2) dimg H"*(L; Q) = dimg, H"*(L; Z,) for each odd prime p,
(3) H™*(L) is torsion-free, and
(4) H""M(L) is trivial when j < 2i, — s — 3.
Then all torsion in H* (L) is Z, torsion for i € [iy, i,], that is, HIv21(L) = Z* @ 74
for some k, £ > 0.

Proof Property (L2) states that the Lee differential on the E] page has bidegree
(1,4r). Since H"™"/(L) is trivial when j < 2i; — s — 3, all Lee differentials in homo-
logical grading i; —1 are zero. Property (T2) states that the Turner differential on
the E’. page has bidegree (1,2r). Thus, the only potential nonzero differential is
(d3)ib2h=s71 from H-b2=7Y(1; 7,) to H?15*1(L;7Z,). By Lemma 3.3, we have
(d;)il—l,zil—s—l — (d}g)il—l,Zi]—sH o (V*)il—l,Zil—s—l + (v*)il,zil—s—l o (djlg)il—l,zil—s—l_ If
(d3)~b21=s"1ig nonzero, then at least one of (d} ) ""21* or (d} )1~ 12175 T s also
nonzero, contradicting the fact that H* (L) has no torsion. Thus (d3.)*"b215"1 = 0,
Therefore, all Turner differentials in homological grading i; — 1 are zero. The result
follows from Theorem 4.6. ]

An application to three-braids

There are a number of results about the Khovanov homology of closed 3-braids,
but a full computation of the Khovanov homology of closed three-braids remains

Downloaded from https://www.cambridge.org/core. 23 Jun 2021 at 18:14:08, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

5.1

Torsion in thin regions of Khovanov homology 17

open. Turner [27] computed the Khovanov homology of the (3, q) torus links T(3, q)
over coefficients in Q or Z,, for an odd prime p (see also Stosi¢ [26]). Benheddi [5]
computed the reduced Khovanov homology of T(3,q) with coefficients in Z,. Let
H(L; Z,) be the reduced Khovanov homology of L with Z, coefficients. The Khovanov
homology of T'(3, q) with coefficients in Z,, shown here in Figure 7, can be obtained
from Benheddi’s computations via the isomorphism

(5.) H"(L;Zy) = H Y (L; Z,) @ HY(L; Z,)

from Corollary 3.2.C in [24]. We recover our j grading from Benheddi’s § grading by
letting j = & + 2i. Both Turner and Benheddi’s computations play a crucial role in our
proofs.

The literature on the Khovanov homology of nontorus closed three-braids is
considerably more sparse. Baldwin [2] proved that a closed three-braid is quasi-
alternating if and only if its Khovanov homology is homologically thin. Abe and
Kishimoto [1] used the Rasmussen s-invariant to compute the alternation number
and dealternating number of many closed three-braids. Lowrance [13] computed the
homological width of the Khovanov homology of all closed three-braids.

Over the next few sections, we prove Theorem 5.5, showing that all torsion in the
Khovanov homology of a closed braid in Qg, Qy, Q5, or Q3 is Z, torsion. In this
section, we use the same notation for a braid and its closure when the context is clear.
First, we argue that it suffices to prove Theorem 5.5 when the exponent n in A" in
the braid word is non-negative. Using Turner’s [27] and Benheddi’s [5] computations
together with the long exact sequences 3.1 and 3.2, we obtain the Khovanov homology
for all links in Qq, Q1, Q, and Q3, over Q and Z, where p is any prime. Finally, we
use these computations together with Theorem 4.7 to obtain the integral Khovanov
homology.

Reducing to the case n >0

Murasugi’s classification of the braid group B; expresses any three-braid as a word
A*" 3 for some n € Z and B € B3, up to conjugation. The following observations imply
that, for the purposes of determining which possible types of torsion which may
appear, we can assume 7 > 0.

(1) The mirror image m (D) of a link diagram D is the diagram obtained by changing
all crossings. On the level of braid words, m : B3 — Bs is a group homomorphism
satisfying m(o0;) = 07! and m(A) = A™". Recall that the torsion in Khovanov
homology of a link diagram and the torsion of its mirror image differ only by
a homological shift [9, Corollary 11]. So the Khovanov homology of L has Z,-
torsion if and only if the Khovanov homology of its mirror m (L) has Z - torsion.

(2) Consider the group homomorphism ¢ : B3 - B3 defined on generators by
¢(01) = o, and ¢(02) = 07. If the braid word w is a projection of a link L embedded
in {(x,y,z) € R? | 0 <z <1} to the plane z = 0, then the projection of L to the
plane z = 1is ¢(w). Thus the map ¢ preserves the isotopy type of the braid word.
Therefore, the Khovanov homology of the closure of w has Z- torsion if and only
if the Khovanov homology of the closure of ¢(w) has Z,- torsion. Note that the
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Figure 6: Left: The braid word w = A*0{ 0,01 € Q6 and the corresponding diagram ¢(w) =
A?03 010, Think of ¢(D) as D rotated about the dotted line. Right: The braid word w and
its mirror image m(w).

homomorphism ¢ satisfies $(A) = A. See Figure 6 for an example of the action
of ¢ on a braid diagram.

The following equalities together with the above two arguments show that in all
cases it suffices to determine torsion for n > 0:

(5.2) m(A72") = A*",

(5.3) m(A " 010,) = A*"2(0y07)?,

(5.4) m(A " (010,)*) = A 2(010,).

(5.5) m(A™271) = A2

(5.6) mp(A™*" 0, P) = A 0!,

(5.7) me(A™*"al) = A*a, 1,

(5.8) mo(A™"a Dol o ol = ATl e Lol o T

For the case of ()¢, although we will not address it in this paper, it may be necessary
to enlarge the class Qs to a class Qg which allows powers p;, q; to be equal to zero, so
that the right hand side of (5.8) stays inside Q.

5.2 Odd torsion in Qg, Q;, Q,, Q3

We begin with a theorem, shown by Turner in [27], that will be useful in conjunction
with Murasugi’s classification of three-braids and the long exact sequence of Section 3.

Theorem 5.1 (Turner) For each q € Z, the Khovanov homology H(T(3,q)) of the

torus link T (3, q) contains no Z,r torsion for p # 2. That is, there is no Z,r torsion for
p # 2 in the Khovanov homology of links of types Qq, Oy and Q,.
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We now compute the Khovanov homology of closed three-braids in Q3 over Q or
Z,, for any prime p. A corollary of this computation is that all torsion in the Khovanov
homology of such links is of the form Z,-.

Theorem 5.2 LetIF be Q or Z, where p is an odd prime. For any n > 0,
H(A*™ 4 F) 2 H(T(3,3n +1);F){~1} @ H(U; F)[-4n - 2]{-12n - 5}.

Proof First observe that A>"*! = (g,0,)*"*'g; where (0,0,)>"*! is a braid word for
T(3,3n +1). We consider smoothing the top o3.

The diagram Dy is a diagram of the unknot U and D; is a diagram of T(3,3n +1).
The top g7 in A*"*! is a negative crossing so we compute ¢ = n_(Dy) —n_(D) = (1 +
2n) — (6n + 3) = —4n — 2. Using (3.1) for each j, and letting F = Q or Z,, where p is an
odd prime, we get a long exact sequence
(5 9) &) Hi’j+1(T(3, 30 + 1);1[;) N Hi’j(D;F) N Hi+4"+2’j+12n+5(U;F)

' O HILL(T(3,30 + 1) F).

For i + —4n — 2’ —4n — 1) we have Hi+4n+2,j+12n+5(U;F) =0= Hi+4n+l’j+12"+5(U;F)
for every j, so exactness yields H"/(D;F) 2 H>/*'(T(3,3n +1);F) for every j. For
j# —12n -5 £1, the portion of the long exact sequence containing i = —4n — 2 and
—4n — 1 splits as
0 — H™*"27*Y(T(3,3n +1);F) — H *"2/(D;F) — 0,
0 — H*"Y*Y(T1(3,3n +1);F) — H **/(D;F) — 0.

Upon examining the homology of T'(3,3#n + 1), shown here in Figure 7, we have the
following two equalities:

(5.10) H*"2)(D;F) ~ H*"2*(T(3,3n +1);F) = 0,
(5.11) H*" Y (D;F) 2 H*"2*(T(3,3n +1);F) = 0,

when j# —-12n — 5+ 1. It remains to check the portion of the long exact sequence
containing i = —4n — 2, —4n — 1 in the cases j = -12n — 6, -12n — 4:

0 —> H_4n_2’_12n_3(T(3,3}’l + 1),F) N H—4n—2,—12n—4(D;F) N HO’I(U;F)

&) H—4n—1,—12n—3(T(3,3n + 1),F) N H_4n_1’_12n_4(D;]F) N 0,
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0 _ H—4n—2,—12n—5(T(3’ 31’1 + 1); IF) _ H—4n—2,—12n—6(D; F) _ HO’_l(U;F)
&) H—4n—1,—12n—5(T(3’ 30 + 1),F) N H—4n—1,—12n—6(D;F) —0.

From Figure 7, we obtain

H 4272 3(7(3,3n +1);F) = 0= H 272" (T(3,3n +1); F),

H A b 2n=3(1(3, 30 +1);F) = F = H " 72"73(7(3,3n +1); ),
and of course H**!(U;F) = T for any field F. Thus, we have exact sequences
(512) 00— H "2 24Dy ST B, F — H b 12n4(DiF) — 0,

(5.13) 0— H 42726y L O, grinbi2ns6(pop)y g,

From (5.12) and (5.13), it follows that each of the groups H *"~b712n=3#1(D;T),
H4"=2712n=351( Dy is isomorphic to either F or 0. We argue that all four of
them are isomorphic to F. A straightforward application of Lemma 3.4 yields the
dimension dimg (Lee™*""%(A?"*1;IF)) = 2. We found in equations (5.10) and (5.11) that
H " 2J (AL F) = 0for j # —12n - 5 + 1, and therefore, dimp H™*""2* (A", F) <
2. Since the Lee spectral sequence has E' page the F-Khovanov homology and
converges to Lee homology, we must also have dimp H™*"~>*(A?"*L;F) > 2, and
so it follows that H=4"~%~121=5£1(D: [f) = ¥, Finally, the nontriviality of these two
groups together with (5.12) and (5.13) imply that H**"%"12""4(D;F) 2 F and
H_4n_1’_12n_6(D;F) ~ T, u

Corollary5.3 IfL € Q3, then H(L) contains no Zr torsion for r > 1, where p is an odd
prime.

5.3 Even torsion in Qg, Q;, Q,, and Q3

In this section, we use Theorem 4.7 to explicitly compute all torsion for links in
Qo, Oy, Q,, and Q3. Benheddi [5, p. 94] computed the reduced Z,-Khovanov homol-
ogy of the torus links T'(3,q), and from those computations we can recover the
unreduced Z,-Khovanov homology of the torus links T(3, ), by using Equation
(5.1), and letting j = § + 2i. These computations encompass the closed three-braids in
Qo, 1, and Q,. We display the Q-Khovanov homology and Z,-Khovanov homology
of these links in the top three rows of Figure 7. The Z,-Khovanov homology of the
closure of braids in Q3 is computed from the Z,-Khovanov homology of T(3,3n + 1),
similarly to the proof of Theorem 5.2.

Theorem 5.4 Forany n >0,
H(A*™7,) = H(T(3,3n +1);Z,){-1} @ H(U; Z,)[-4n - 2]{-12n - 5}.

Proof For homological gradings —4n — 1 through 0, the proof of this theorem is
largely the same as the proof of Theorem 5.2. We focus on homological grading
—4n — 2. From (5.12) and (5.13) it follows that each of the groups

H—4n—1,—12n—5¢1 (D Zz) H—4n—2,—12n—5¢1 (D Zz)
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Figure 7: For the families T(3,3n), T(3,3n +1), T(3,3n + 2), A*"*! of links, we show in the
left (resp. right) column, the Khovanov homology over Z; (resp. F = Q or Z, where p is an odd
prime). Each colored box represents a single copy of Z; (resp F) which is killed in the Turner
(resp. Lee) spectral sequence.
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is isomorphic to either Z, or the trivial group. We argue that each of these groups is
isomorphic to Z,. Using Lemma 3.1, we find that dimz, (BN~*""2(A?"*1)") = 2. Using
Benheddi’s calculation [5] of the Z,-Khovanov homology of T(3,3#n + 1), shown in
Figure 7, the long exact sequence (5.9) gives

H 421 (A" 7,) = H 4207 (T(3,3n +1); Z,) = 0

for j#-12n-6,-12n — 4. Therefore, dimz, H™*""%*(A?"*1;7,) <2. Since the
Turner spectral sequence has E' page the Z,-Khovanov homology, and converges to
Bar-Natan homology,

dimZZ H—4n—2,*(A2n+l; Zz) > 2.

Therefore, it follows that H™*"~>712"=6(D; 7,) = Z, and H™*"~>"2""4(D; Z,) = Z,.
Finally, the nontriviality of these two groups together with (5.12) and (5.13) imply that
H_4n_1’_12n_4(D;Zz) = Zz and H_4n_2’_12n_6(D;Zz) = Zz. [ |

The Khovanov homology with Z, and Q coefficients of the closure of A2"*! is
depicted in Figure 7. The computations of Khovanov homology with Q@ and Z,
coefficients for closed braids in Q, Oy, Q5, and Q3 leads to the following application
of Theorem 4.7.

Theorem 5.5 All torsion in the Khovanov homology of a closed three-braid L of type
Qo, 1, Qp, or Q3 is Z, torsion, that is, there exist nonnegative integers k and £ such
that H(L) = Z* & Z5.

Proof Let L be a closed braid in Qg, O, Q,, or Q3. Theorem 5.1 and Corollary 5.3
imply L contains no Z,- torsion for any odd prime p. Therefore, L satisfies condition (2)
of Theorem 4.7 on any thin region. Figure 7 shows that all torsion in H(L) occursin the
thin “blue” regions, and moreover, no torsion is supported in the initial homological
grading of any thin region. Thus, each thin “blue” region satisfies conditions 1 and 3
of Theorem 4.7. Finally, if we look at any one of the thin “blue” regions in Figure 7,
we see that condition (4) is satisfied in the preceding homological grading with one
exception. Figure 7 shows that in H(T(3,3n);7Z,) the first blue piece does not satisfy
condition (4) of Theorem 4.7. Recall, however, that these Z, summands to the left all
survive to the infinity page of the Turner and Lee spectral sequences, so for this one
piece, the concerned reader can apply the stronger Theorem 4.6. We conclude that all
torsion in H(L) is Z, torsion. |

As corollaries, we obtain the integral Khovanov homology of closed three-braids
in Q(), Ql) Qz, and 03.

Corollary 5.6  For any n > 0,
H(A*™ ) =2 H(T(3,3n+1)){-1} ® H(U)[~4n - 2]{-12n - 5}.

Corollary 5.7  The integral Khovanov homology of links in classes Qg, Oy, Q,, and Q3
are given in Figures 8a, 8b, 9a, and 9b.
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of the form  of the form

-12n-1 |7 -12n-5 |7 A

@ (b)

Figure 8: In (a), we have the integral Khovanov homology of T(3,3n). In (b), we have the
integral Khovanov homology of T(3,3n +1).
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Figure 9: In (a) , we have the integral Khovanov homology of T'(3,3n + 2). In (b), we have the
integral Khovanov homology of the braid closure of A*"*!.

Closed three-braids in Q4, Qs5, and Q¢

One goal of this project is to prove part (1) of Conjecture 1.1, that closed three-
braids have only Z, torsion in Khovanov homology. Based on Murasugi’s classification
shown in Theorem 1.2, we have confirmed this result for links in the classes Q; for
0 < i < 3, leaving only the classes Q4, Q5, and Q. In Figures 10 and 11 we now point
out examples from these classes for which Theorem 4.6 is insufficient. In a future
paper, we plan to use these examples as a guide to come up with a stronger version
of Theorem 4.6 which can be used to deal with these remaining cases, perhaps by
showing a relationship between higher order Bockstein and Turner differentials, as
suggested by Shumakovitch [25].
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4 1 4 1 -5 0 5 0
4 Q|4 Zo| -4 Q|4 Zy
Zo | Zo Q Zs
Q|Q? Zy |73 Q Loy
Q Ly | Lo | Lo Q Ly | 2| Lo
Q Z Q| Q 73| Zy
Q Z Zy | Zs
8 Q 8 Z -16 Q 16 |Z
(a) (b) () (d)

Figure 10: In (a) we have the rational Khovanov homology of the closure of the 3-braid A%a7> €
Q4. In (b) we have the Z,-Khovanov homology of the closure of the 3-braid Azal_ 5 e Qu.
Theorem 4.6 cannot be applied here due to the homology being supported on 3 diagonals
in homological grading 0. In (c) we have the rational Khovanov homology of the closure of
the 3-braid A%0; € Qs. In (c) we have Z,-Khovanov homology of the closure of the 3-braid
A0, € Q5. Again, Theorem 4.6 cannot be applied due to Khovanov homology being supported
on 3 diagonals in homological grading -4.

-9 0 -9 0
-7 Q -7 Lo
Q Zy
Q Zo
Q Lo |Zs | Lo
QQ|Q Lo | Lo | Lo
Q|Q 73|73
QQ Zy|73|Zs
Q|Q Lo | Za
Lo | Lo
-25 Q =25 Zo
(a) (b)

Figure 1I: In (a) we have the rational Khovanov homology of the closure of the 3-braid
A40f 26, o e Q. In (b) we have the Z,-Khovanov homology of the closure of the 3-braid
A*07% 020" € Q6. Theorem 4.6 cannot be applied in this case due to the homology being
supported on 3 diagonals in homological grading -5.
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