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ABSTRACT

We consider the problem of inferring the unobserved edges of a
graph from data supported on its nodes. In line with existing ap-
proaches, we propose a convex program for recovering a graph
Laplacian that is approximately diagonalizable by a set of eigenvec-
tors obtained from the second-order moment of the observed data.
Unlike existing work, we incorporate prior knowledge about the dis-
tribution from where the underlying graph was drawn. In particular,
we consider the case where the graph was drawn from a graphon
model, and we supplement our convex optimization problem with a
provably-valid regularizer on the spectrum of the graph to be recov-
ered. We present the cases where the graphon model is assumed to
be known and the more practical setting where the relevant features
of the model are inferred from auxiliary network observations. Nu-
merical experiments on synthetic and real-world data illustrate the
advantage of leveraging the proposed graphon prior, even when the
prior is imperfect.

Index Terms— Network topology inference, spectral graph the-
ory, graph signal processing, graphon.

1. INTRODUCTION

Networks have emerged as an effective tool for analyzing and sum-
marizing complex systems in science and engineering [1-3]. The
abstraction of these systems as graphs enables one to examine local
structures of influence among agents via direct observation of the
edge structure, as well as global behavior via the spectral features
of algebraic representations of these graphs. The algebraic proper-
ties of networks are used to succinctly describe their behavior, such
as the centrality structure [4], community structure [5], or conduc-
tance [6]. In some settings, a network is known to the user or can
be simply constructed, e.g. a rail transportation network, where each
station is a node connected by train routes modeled by edges. How-
ever, the network structure must often be inferred from the system
behavior itself. For instance, the system of functional relationships
between regions of the brain may not be known directly, but needs
to be inferred from observed neural activity. This is an example of
the well-established problem of network topology inference.

In this work, we seek to infer the structure of the graph Lapla-
cian from so-called spectral templates [7], i.e., by first estimating
the eigenvectors of the Laplacian matrix from the observed data and
then selecting the eigenvalues that yield a graph Laplacian with de-
sirable features. Work in this direction has studied how the structure
of a graph shapes data supported on it and how to invert that pro-
cess for network topology inference, but has neglected the structure
endowed by common statistical models of real-world graphs. For
instance, wireless sensor networks are well-modeled as geometric
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random graphs [8], and social networks often follow power-law de-
gree distributions [9]. In this work, we aim to imbue the network
topology inference pipeline with this type of domain knowledge.
As a flexible random graph model, we assume the inferred graph
is drawn from a graphon, a non-parametric model for large random
graphs [10, 11]. Graphons have proven to be an effective model for
understanding large graphs, acting as a limit object for the graphs
they generate [12-15]. In this work, we leverage convergence re-
sults on graphs generated by graphons [16] to regularize the spectral
structure of the inferred graph Laplacian.

Related work. The problem of network topology inference is well-
studied from a variety of perspectives, each incorporating different
assumptions on the data model and imposing characteristics on the
graph structure. The statistical perspective represents each node as
a random variable, where the graph structure between them captures
conditional dependencies [17]. Network inference then seeks to find
a sparse inverse covariance (precision) matrix [18, 19]. Indeed, the
notion of incorporating constraints on the combinatorial structure of
the inferred graph in the context of probabilistic graphical models
was studied in [20]. This differs from our work here, where the
graph is assumed to be drawn from a distribution exhibiting certain
combinatorial properties in a statistical sense, but lacking hard com-
binatorial constraints.

On the other hand, modeling network processes as the descrip-
tion of a physical system yields another set of methodologies. In
these works, topology inference is performed under models of sys-
tems related to information diffusion, random walks, and related net-
work processes [21,22]. These techniques are closely related to
those in the graph signal processing literature [23], where the ob-
served data is modeled as a set of graph signals, which are assumed
to be smooth on the underlying graph [24, 25], or the output of a
graph filter applied to excitation noise [7,26], perhaps modeling heat
diffusion [27] or consensus dynamics [28,29]. Although our obser-
vation model is in line with this body of work, the novelty lies in
the incorporation of prior statistical knowledge of the graph to be
recovered in the form of a graphon model.

Contribution. The contributions of this paper are twofold:

i) We propose an efficient convex optimization problem for network
topology inference with a novel spectral shrinkage penalty that lever-
ages the relationship between the spectrum of the Laplacian and the
degree distribution of graphs drawn from graphons.

ii) We then demonstrate that this approach has practical utility be-
yond the case where the underlying graphon is known, by substitut-
ing the limiting (graphon) degree distribution with empirically ob-
tained degree statistics.

2. PRELIMINARIES

Notation. The notation [n] refers to the set of positive integers
{1,2,...,n}. We refer to matrices using bold uppercase letters,
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e.g. A, B, C, and to (column) vectors with bold lowercase letters,
e.g. v,w,x. Entries of matrix A are indicated by A;; while those
of vector x are denoted by z;. For clarity, we alternatively use the
notation [x]; = x;. The ¢2-norm of a vector is denoted by || - ||2.
The set of symmetric n X n matrices is denoted by S"*™. We use
the notation || - ||1,1 to denote the element-wise £;-norm of a matrix,
and || - || for the Frobenius norm. For a linear integral operator W
on L?[0, 1], its operator norm is specified by [|W]|:

[IW(l= sup
feL?[o,1] /10,1]2
I fll2=1

W (z,y) f(x) dzdy. (1)

Graphs, graph signals, and graph filters. A graph is a finite set
of nodes, coupled with a set of edges connecting those nodes. That
is, for a set of n nodes denoted by V), the set of edges £ C V x V
forms the graph G = (V, £). Typically, we endow the set of nodes
with arbitrarily ordered integer labels, saying that V = [n]. This
representation allows us to represent the graph with the adjacency
matrix A € R™*", where A;; = 1if (4,5) € &, taking value 0
otherwise. A graph is undirected if for any two nodes i, j, (i,7) € £
implies that (j,7) € &: that is, £ is composed of unordered tuples of
nodes. Under this condition, the adjacency matrix is symmetric. In
this setting, we define the Laplacian matrix as L = D — A, where
D = diag(A1) is the diagonal matrix of node degrees.

We model data on the nodes of a graph as a graph signal. A
graph signal is a real-valued function on the nodes of a graph x :
VY — R. If we endow the set of nodes with a labeling of positive
integers so that VV = [n], then a graph signal x has a natural repre-
sentation x in R™, where [x]; = x(4) for each i € [n].

With graph signals represented as vectors in R", we now define
graph filters as linear maps between them. Assuming that L has the
eigenvalue decomposition L = 3, \iviv; , a graph filter is a real
polynomial of L, e.g. for coefficients o,

T n
H(L) =Y aL"=> h(N)viv], )
k=0 i=1

where h : R — R s the extension of 7 to the real numbers.' Notice
that graph filters preserve the eigenvectors of the underlying Lapla-
cian, while distorting the eigenvalues.

Graphons as random graph models. A graphon is a symmetric,
measurable function from the unit square [0, 1]? to the unit interval
[0, 1], with the set of all such functions denoted by W [10]. For a
graphon W € W, we sample a graph of size n by first drawing i.i.d.
uniform random variables {(;}i—; ~ U[0, 1]. Then, the adjacency
matrix of our drawn graph is determined by setting A;; = Aj; = 1
with probability W (¢;, (), and A;; = Aj; = 0 otherwise. A
graphon determines a probability distribution over graphs of fixed
size in this way. For instance, the constant graphon W (z,y) = p for
all z,y € [0,1] yields Erdés-Rényi graphs of size n and edge den-
sity p. From this sampling method, one can see that any measure-
preserving bijection 7 : [0,1] — [0, 1] yields an equivalence rela-
tion between graphons. That is, if for all z,y € [0, 1] we say that
W7 (z,y) = W(r(z),7(y)), then W™ ~ W. Additionally, if two
graphons W°, W' are equal almost everywhere, we also say that
WO ~wh

Graph filters can be defined in terms of generic graph shift opera-
tors [30], but here we focus on those defined based on L.
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3. NETWORK TOPOLOGY INFERENCE

In order to formally define our problem, we need to assume a model
on how the underlying graph structure shapes the data on its nodes.
Without such a relationship, inferring the graph from the observed
graph signals would be a hopeless endeavor. To achieve this, we
leverage the versatility of graph filters in representing network pro-
cesses [30] and model the observed signals as the outputs of graph
filters. For simplicity we focus on a class of network processes corre-
sponding to discrete-time consensus dynamics, a well-studied model
for network topology inference [28,29]. More precisely, we model
our observed graph signals y € R™ as being generated by

T
y=H@L)w=]]dT-aL)w, 3)
k=1

with unknown coefficients 0 < ai < Apee(L) and w being an
unknown random vector drawn from a zero-mean distribution with
identity covariance. With this notation in place, we can formally
state our problem.

Problem 1. Consider an unknown graph G drawn from a known
graphon W. Given a collection of graph signals {ye}zn:l defined in
G following the model in (3), estimate the Laplacian L of G.

Given perfect knowledge of a graph filter H (L), it follows from (2)
that the eigenvectors of L can be readily obtained from an eigen-
decomposition of # (L). Moreover, even if the filter is unknown,
we can estimate {v;}7—, from the observations in {y*}7, as in
previous works [7,23]. In a nutshell, a simple computation of the
covariance Cy of the signals in (3) reveals that

Cy=H(L) =) h*(\)viv], @)
i=1

so that the covariance matrix of y shares a set of eigenvectors with
L. Thus, from the observed signals {y‘}7", we may estimate C,

via a sample covariance estimator éy and obtain approximate eigen-
vectors (or spectral templates) {V; };—;. Note that in obtaining these
estimated spectral templates we have not used the knowledge of the
specific form of the network process in (3) nor any knowledge of
the graphon W. In Section 3.1, we present a convex optimization
problem that takes as inputs {V; };—; and these additional sources of
information to provide an estimate of L, as desired in Problem 1.

Remark 1 (Alternative problem formulations). Although we fo-
cus on Problem 1 as stated, several variations and relaxations can
be tackled by incorporating the methodology proposed here with ex-
isting approaches. For instance, knowledge of the coefficients o
in (3) can be further exploited as in [29], and the identity covari-
ance of w can be relaxed as in [31,32]. Moreover, since the signals
{y*}7*, are used to obtain the estimated eigenvectors {¥;}7_;, the
optimization method proposed in the next section can be directly ap-
plied given any other source of approximated spectral templates [7].
Lastly, we might consider the case where the graphon W is also un-
known. This empirically-relevant variant is discussed toward the end
of Section 3.1 and illustrated in Section 4.

3.1. Inferring the Laplacian with graphon penalties

We now consider how knowledge of the graphon W from which a
graph was drawn can inform our inferred Laplacian spectrum. The
view of graphons as generative models for dense, simple graphs

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 23,2021 at 14:45:23 UTC from IEEE Xplore. Restrictions apply.



yields probabilistic bounds relating properties of graphs drawn from
a graphon and the analogous property of the graphon itself. For in-
stance, it is stated in [11, Corollary 10.4] that the density of a motif
in a sufficiently large graph concentrates around the density of that
motif in the graphon from which it was drawn, e.g. the homomor-
phism density of triangles in a graph:

1

3 tr (AS) AN W (z,y) W (y,2) W (z,2) dedydz. (5)

[0,1]3

In particular, the following result characterizes the spectrum of the
Laplacian matrix of large graphs drawn from a graphon.

Theorem 1 (From [16]). Let W be a piecewise-Lipschitz graphon

such that W(z1,y) < W(xa,y) when 1 < x2, and the infimum of

W over [0,1)? is bounded away from 0. Then, for a graph G of size
n sampled from W, where 0 = \1 < ... < A\, are the eigenvalues
of the Laplacian matrix of G, with probability at least 1 — 3v,

4/ 2
)~ d@)ls < Co+ {2 VIV TG+ € (@

where (1(x) = Apg)41/n for all x € [0,1), pu(l) = An/n,
d(z) = fol W (z,y)dy, and Co, C1 are dependent on v, the Lips-
chitz smoothness of W, and the infimum of W.

Notice that p(z) is a piecewise constant function given by the
eigenvalues of the Laplacian and the degree function d(zx) is the
analogous of a degree sequence defined directly on the continuous
graphon [15]. Informally, Theorem 1 states that the ordered Lapla-
cian eigenvalues concentrate near the ordered degree function as n
grows, especially for smooth graphons whose values are bounded far
away from zero. It is key to notice that this result does not depend
on knowing the particular degrees of the nodes in the graph nor their
latent positions ¢; € [0, 1] in the sampling procedure (cf. Section 2).
With Theorem 1 in hand, we propose a method for the recovery
of the graph Laplacian, with tolerance for imperfections in the spec-
tral templates brought about by noise or finite sampling effects. We
combine an ¢1-penalty on the inferred Laplacian matrix to promote
edge-sparsity [7,29], as well as a spectral shrinkage penalty towards
a prior degree function. One key property of the class of filters in (3)
is that the extension of H to the real numbers i : R — R is mono-
tonically decreasing and non-negative in the spectrum of L, so that
it preserves, in reverse, the ordering of the eigenvalues of L, even
after being squared as in (4). This is captured in the following con-
vex program, where the spectral templates {V;};_; are used as an
approximate ordered eigenbasis for the inferred matrix,

L1+ Bllu() — d(@)]3 @

s.t. P (L7 ZAIGZVZT> < €, Le [,,
=1

forall z € [0,1),

L*, A" = argmin || L]|
LA

(@) = Anaj+1/n
.U(l) = A"/nv

Ai < X149 foralli € [n — 1 — ),

where £ indicates the set of valid graph Laplacians, the function
p i S™X™ x S™X™ _ RT is a distance function on symmetric ma-
trices, and e dictates how far the eigenvectors of the inferred graph
Laplacian can be from the approximated spectral templates. The pa-
rameter 7) allows for slack in the ordering of the eigenvalues, due
to spectral perturbation in the estimation of the spectral templates.
Finally, u(x) and d(z) are the same as in Theorem 1.

The program (7) jointly recovers a spectrum A* and a valid
Laplacian that is close to A* in the eigenbasis {V;};=;. The spec-
trum is encouraged towards the degree function of the graphon based
on Theorem 1, and sparsity is promoted in the Laplacian. We em-
phasize that shrinking the Laplacian spectrum towards the graphon
degree function does not require knowledge of the degrees of par-
ticular nodes. That is, since the spectral shrinkage penalty operates
only on the eigenvalues of L, it is blind to permutations of the nodes.

Inference when the graphon is unknown. In practice, it may be
unrealistic to assume that the graphon W is known. However, the
rich statistical structures of this modeling assumption can still be
leveraged for the application of (7). Indeed, via Theorem 1 we have
distilled the signature of the graphon W down to its degree function
d(z). Therefore, if we can obtain an estimate of d(x) from auxiliary
information, then (7) can still be applied. If a sufficiently large graph
G = (V, &) is drawn from an unknown graphon W, then its degree
distribution will be similar to that of W. In particular, suppose that a
uniformly-sampled random subgraph of G is observed, where a sub-
set of the nodes Vo C V induces the graph Go = (Vo, EN Vo X Vo).
It is clear that Gy is also distributed according to the sampling pro-
cedure described in Section 2 applied to W. Therefore, the expected
normalized degree distribution of Gy is approximately the graphon
degree function d(z), following naturally by considering the homo-
morphism density of a star graph as a way to query the degree distri-
bution of a graph [33, Example 2.2].

With this in mind, we propose a modification to (7), where
a uniformly-sampled induced subgraph Gy on no nodes of G is
observed, with ordered vector of degrees dop = sort(Aol). In

~

this case, the natural approximate degree function is d(z) =

[do][ngzj+1/m0 for 0 < x < 1, and d(1) = [do]n,, Which we
use to then solve (7) with d(z) replaced by d(xz). Finally, even if
the observation of a subgraph Gy is infeasible, the assumption of a
graphon distribution can be used to incorporate information from
similar graphs potentially supported on a different set of nodes. For
instance, when inferring the topology of a particular brain network,
using the degree distribution of another, better-mapped brain would
be a reasonable approximation of the assumed graphon degree func-
tion W for use in (7).

4. EXPERIMENTS

We demonstrate the utility of incorporating prior information on the
graph model when inferring both real and synthetic networks.? Since
we are interested in recovering the network structure and not the
scale of L, we normalize all graph matrices to have unit Frobenius
norm before computing the error. That is, for a ground-truth Lapla-
cian L and an estimated Laplacian L*, our error function is

L
ILllm IILlle

err (L*,L) = H ®)

F
To minimize confounders when comparing methods, in estimating
L* we do not include any thresholding or rounding operation. In
solving (7), we use the distance p(A,B) = ||A — B||r, and set
n = 0 for the first experiment where the eigenvectors are perfectly
known and 1 = 2 for all other experiments.

Convergence with graph size. As stated in Theorem 1, the Lapla-
cian spectrum concentrates near the graphon degree distribution as
the sampled graph size grows. To illustrate this, we estimate syn-
thetic graphs of increasing sizes n € {20, 40, 60, 80,100} drawn

2Code available at git.roddenberry.xyz/graphon-nti
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Fig. 1. (A) Convergence of the inferred Laplacian for increasing graph size. ‘No d(z)’ indicates the absence of a spectral shrinkage penalty,
as in [29, Algorithm 3]. (B) Laplacian inference using noisy spectral templates and a graphon degree prior. (C) Inference of a synthetic graph
Laplacian from noisy spectral templates using subgraph degree statistics. (D) Denoising of the Rhesus Macaque cerebral cortex network

using subgraph degree statistics.

from the graphon W (z,y) = 2v(z” + y*) + (1 — 7), where y =
0.7. Three optimization programs are compared for graph estima-
tion: 1) Solving (7) for d(xz) = dw (z) computed based on the true
graphon W, ii) Solving (7) for d(z) = dw~(z) computed based
on the alternate graphon W' (z,y) = 1(1 — 7)(2® + y*) + 7, and
iii) Solving (7) for 5 = 0, as proposed in [29]. For the first two meth-
ods, the weight 8 is chosen for optimal estimation for each graph
size. As shown in Fig. 1A for all graph sizes, including a spectral
prior achieves a consistently higher accuracy than using no spectral
information, even for the imperfect case when W' is considered.
Moreover, Laplacian inference with the true generating graphon de-
gree distribution uniformly attains minimal error.

Noisy spectral templates. We demonstrate the estimation of a graph
of size n = 40 drawn from the graphon W (z,y) = 3v(z° +y°) +
(1 — ) when noisy spectral templates are available. These noisy
eigenvectors are obtained from sample covariance matrices com-
puted based on a varying number of observed filtered graph sig-
nals (cf. discussion before Remark 1), where the filter is given by
H(L) = I — aL. The same three methods from the previous exper-
iment are compared in Fig. 1B. Spectral shrinkage toward the true
graphon degree distribution greatly improves estimation compared
to the alternate graphon degree distribution or no spectral shrink-
age. This effect becomes more conspicuous for larger number of
observed signals, i.e., for the setting where the Laplacian eigenvec-
tors are better estimated.

Incorporating subgraph degree statistics. While the previous two
experiments assume knowledge of the graphon model, this might not
be readily available in practice. However, if the graph was indeed
drawn from a graphon, its subgraphs are distributed according to the
graphon as well. In particular, we use the degree distribution of an
observed subgraph for (7), as discussed at the end of Section 3.1. To
understand the performance of using empirical degree distributions
in (7), we do not constrain the recovered graph to match the observed
subgraph, although this would be done in practice. This can also be
interpreted as a valid illustration of the case where the degree distri-
bution is estimated from a different graph (as opposed to a subgraph)
drawn from the same (unknown) graphon.

Synthetic example. The results of the described procedure for graphs
drawn from the graphon W(x,y) = 1 — 0.8 max(x,y) and of size
n = 100 are plotted in Fig. 1C. We obtain a set of noisy spectral
templates using the same graph filter and increasing number of graph
signals as in the previous experiment. Then, degree functions are
extracted for subgraph sizes ng € {10, 30,50, 70,90}, as well as
the underlying graphon for comparison. Clearly, when the size of the
observed subgraph increases, the estimated degree profile improves,

yielding better performance. Moreover, as the number of sampled
graph signals m increases, the inferred network improves in quality
as well, due to the more accurately estimated spectral templates. The
experiment also reveals that, in the presence of noisy eigenvectors,
approximate knowledge of the degree distribution can be almost as
valuable as complete access to dw (x). The marginal value of the
latter becomes apparent for large number of available signals.

Sparsifying a noisy brain network. We consider the connectome
of the Rhesus Macaque’s cerebral cortex [34, 35], where each node
(|V| = 91) is a region in the cortex and each edge (|£| = 1401) cor-
responds to an interareal pathway. For no € {9, 18, 45,91} nodes,
we randomly select no nodes without replacement, and then com-
pute the empirical degree function c/l\(m) of the subgraph as before.
Then, we inject Gaussian noise of increasing variance into the adja-
cency matrix, and use the eigenvectors of the corresponding Lapla-
cian as noisy spectral templates in (7).

As shown in Fig. 1D, as the subgraph size no increases, the rela-
tive error between the recovered and true Laplacians decreases. This
indicates the utility of the degree function for the shrinkage penalty,
since a more accurate estimate of the degree distribution leads to bet-
ter recovery performance. Additionally, as the power of the injected
noise increases, the recovery performance degrades. This is intuitive,
as a corrupted set of spectral templates will bound the performance
of the recovery algorithm.

5. CONCLUSION AND FUTURE WORK

We considered the network topology inference problem through the
lens of a graphon modeling assumption. We demonstrated how the
spectral properties of graph Laplacians drawn from a graphon relate
to the degree function of that graphon, and how this relationship
can be used to recover the graph topology from so-called spectral
templates. The proposed method based on this property was then
extended to the case where the graphon is not known, but degree
information is available from either a subgraph or an auxiliary graph.

Future research avenues will incorporate more of the rich struc-
tures and statistical properties afforded by graphon-based models.
Specifically, rather than relying on a shrinkage penalty for the Lapla-
cian spectrum, one can relate the spectral moments of the adjacency
matrix to the homomorphism densities of cycles in a graphon [11].
Additionally, we will seek to generalize the considered penalties
based on conventional graphons to the empirically relevant class of
sparse exchangeable graph models [10]. Finally, we are currently in-
vestigating the use of spectral priors for the inference of higher-order
network models, where edges are not strictly pairwise, but can relate
arbitrarily large sets of nodes.
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