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Abstract. We study a family of dissections of flow polytopes arising from the subdivi-
sion algebra. To each dissection of a flow polytope, we associate a polynomial, called the
left-degree polynomial, which we show is invariant of the dissection considered (proven in-
dependently by Grinberg). We prove that left-degree polynomials encode integer points
of generalized permutahedra. Using that certain left-degree polynomials are related to
Grothendieck polynomials, we resolve special cases of conjectures by Monical, Tokcan, and
Yong regarding the saturated Newton polytope property of Grothendieck polynomials.

1. Introduction

The flow polytope FG associated to a directed acyclic graph G is the set of all flows
f : E(G) → R≥0 of size one. Flow polytopes are fundamental objects in combinatorial
optimization [18], and in the past decade they were also uncovered in representation theory
[1, 12], the study of the space of diagonal harmonics [8, 13], and the study of Schubert and
Grothendieck polynomials [4, 5]. A natural way to analyze a convex polytope is to dissect
it into simplices. The relations of the subdivision algebra, developed in a series of papers
[9, 10, 11], encode dissections of a family of flow (and root) polytopes (see Section 2 for
details).

Take any graph G with special source and sink vertices and fix a dissection R (into
simplices) produced by the subdivision algebra. We study an invariant of R called the left-
degree polynomial. Left-degree polynomials were introduced in [5] by Escobar and Mészáros.
They showed that for a family of trees, the left-degree polynomial does not depend on the
particular dissection considered. In Theorem A, we extend this result to any (not necessarily
simple) graph. This was independently proven by Grinberg in [7] using algebraic techniques.

Our main technique is to connect left-degree polynomials to flow polytopes. We study the
left-degree polynomial of a particular recursive dissection from [11]. In Corollary 3.16, we
partition the support of this left-degree polynomial (with multiplicity) into blocks and show
that the convex hull of each block is integrally equivalent to a flow polytope. Using this flow
perspective, we give an inductive proof of Theorem A.

Using the flow approach again, we connect the Newton polytopes of left-degree polynomials
to generalized permutahedra. In Theorem B, we show that the Newton polytope of every
homogeneous component of a left-degree polynomial is a generalized permutahedron. We
also prove the saturated Newton polytope property (SNP) of Monical, Tokcan, and Yong [14]:
every integer point in the Newton polytope is in the support of the polynomial.

We apply these results to Schubert and Grothendieck polynomials. Escobar and Mészáros
showed in [5, Theorem 5.3] that a certain family of Grothendieck polynomials are related
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to left-degree polynomials. We conclude in Theorem C that this family of Grothendieck
polynomials have SNP, and that the Newton polytopes of their homogeneous components
are generalized permutahedra. We conjecture this holds for all Grothendieck polynomials
(Conjecture 5.1).

The outline of this paper is as follows. Section 2 covers the necessary background. In
Section 3, we study the support of left-degree polynomials (left-degree sequences) directly,
and make the connection to flow polytopes. To maximize ease of reading, we restrict to the
case of simple graphs. In Section 4 we introduce left-degree polynomials and describe their
Newton polytopes. We apply this description to a family of Grothendieck polynomials in
Section 5. In Section 6, we describe the technical modifications required to drop the simple
graph assumption in the previous sections. We combinatorially prove left-degree polynomials
are an invariant of the underlying graph.

2. Background information

In this section, we summarize definitions, notations, and results that we use later. Through-
out this paper, by graph, we mean a directed acyclic graph where multiple edges are allowed
(as described below). Although we sometimes refer to edges by their endpoints, we allow
that G may have multiple edges. We also adopt the convention of viewing each element of
a multiset as being distinct, so that we may speak of subsets, though we will use the word
submultiset interchangeably to highlight the multiplicity. Due to this convention, all unions
in this paper are assumed to be disjoint multiset unions. For any integers m and n, we will
frequently use the notation [m,n] to refer to the set {m,m+1, . . . , n} and [n] to refer to the
set [1, n].

2.1. Flow Polytopes. Let G be a graph on vertex set [0, n] with edges directed from smaller
to larger vertices. For each edge e, let in(e) denote the smaller (initial) vertex of e, and
fin(e) the larger (final) vertex of e. Imagine fluid moving along the edges of G. At vertex
i let there be an external inflow of fluid ai (outflow of −ai if ai < 0), and call the vector
a = (a0, . . . , an) ∈ Rn+1 the netflow vector. Formally, a flow on G with netflow vector a is an
assignment f : E(G) → R≥0 of nonnegative values to each edge such that fluid is conserved
at each vertex. That is, for each vertex i∑︂

in(e)=i

f(e)−
∑︂

fin(e)=i

f(e) = ai.

The flow polytope FG(a) is the collection of all flows on G with netflow vector a. Alter-
natively, let MG denote the incidence matrix of G. That is, let the columns of MG be the
vectors ei − ej for (i, j) ∈ E(G), i < j, where ei is the (i + 1)-th standard basis vector in
Rn+1. Then,

FG(a) = {f ∈ RE
≥0 |MGf = a}.(2.1)

From this perspective, note that the number of integer points in FG(a) is exactly the number
of ways to write a as a nonnegative integral combination of the vectors ei−ej for edges (i, j)
in G, i < j. This number is known as the Kostant partition function KG(a). For brevity, we
write FG to mean FG(1, 0, . . . , 0,−1), and we refer to FG as the flow polytope of G, since in
this paper our primary focus is on studying these particular flow polytopes.

The following milestone result on volumes of flow polytopes was shown by Postnikov and
Stanley in unpublished work.
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Theorem 2.1 (Postnikov-Stanley). Let G be a directed acyclic connected graph on vertex
set [0, n]. Set di = indegG(i) − 1 for each vertex i, where indegG(i) is the number of edges
incoming to vertex i in G. The normalized volume of the flow polytope of G is given by

Vol FG = KG

(︄
0, d1, . . . , dn, −

n∑︂
i=1

di

)︄
.

Baldoni and Vergne [1] generalized this result for flow polytopes with arbitrary netflow
vectors. Theorem 2.1 beautifully connects the volume of the flow polytope of any graph to
an evaluation of the Kostant partition function. We note that since the number of integer
points of a flow polytope is already given by a Kostant partition function evaluation, the
volume of any flow polytope is given by the number of integer points of another.

Recall that two polytopes P1 ⊆ Rk1 and P2 ⊆ Rk2 are integrally equivalent if there is an
affine transformation T : Rk1 → Rk2 that is a bijection P1 → P2 and a bijection aff(P1) ∩
Zk1 → aff(P2)∩Zk2 . Integrally equivalent polytopes have the same face lattice, volume, and
Ehrhart polynomial.

Given a graph G and a set S of its edges, we use the notation G/S to denote the graph
obtained from G by contracting the edges in S (and deleting loops). We use the notation
G\S to denote the graph obtained from G by deleting the edges in S. For a set V of vertices
of G, we also use the notation G\V to denote the graph obtained from G by deleting the
vertices in V together with all edges incident to them. When S or V consists of just one
element, we simply write G/e or G\v.

While simple to prove, the following lemma is important. We leave its proof to the reader.

Lemma 2.2. Let G be a graph on [0, n]. Assume vertex j has only one outgoing edge e and
netflow aj ≥ 0. If e is directed from j to k, then

FG(a0, . . . , an) and FG/e(a0, . . . , aj−1, aj+1, aj+2, . . . , ak−1, ak + aj, ak+1, . . . , an)

are integrally equivalent. An analogous result holds if j has only one incoming edge and
aj ≤ 0.

2.2. Dissections of Flow Polytopes. For graphs with a special source and sink, there is
a systematic way to dissect the flow polytope F ˜︁G studied in [11]. Let G be a graph on [0, n],

and define ˜︁G on [0, n] ∪ {s, t} with s being the smallest vertex and t the biggest vertex by

setting E( ˜︁G) = E(G) ∪ {(s, i), (i, t) | i ∈ [0, n]}. Although we defined the flow polytope
FG(a) above only when G was a graph on [0, n], the definition (2.1) makes sense with any

totally ordered vertex set. For graphs ˜︁G, we take the ordering s < 0 < 1 < · · · < n < t.
The systematic dissections of F ˜︁G can be expressed either in the language of the subdivision
algebra or in terms of reduction trees [9, 10, 11]. We use the language of reduction trees.

Let G0 be a graph on [0, n] with edges (i, j) and (j, k) for some i < j < k. By a reduction
on G0, we mean the construction of three new graphs G1, G2 and G3 on [0, n] given by

E(G1) = E(G0)\{(j, k)} ∪ {(i, k)}
E(G2) = E(G0)\{(i, j)} ∪ {(i, k)}(2.2)

E(G3) = E(G0)\{(i, j), (j, k)} ∪ {(i, k)}

See Figure 1 for an example reduction. We say G0 reduces to G1, G2 and G3. We also
say that the above reduction is at vertex j, on the edges (i, j) and (j, k). The following
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proposition explains how the process of taking reductions dissects the flow polytope FG0

into other flow polytopes.

Proposition 2.3. Let G0 be a graph on [0, n] which reduces to G1, G2 and G3 as above.
Then for each m ∈ [3], there is a polytope Qm integrally equivalent to F ˜︁Gm

such that Q1 and
Q2 subdivide F ˜︁G0

and intersect in Q3. That is, the polytopes Q1, Q2, and Q3 satisfy

F ˜︁G0
= Q1

⋃︂
Q2 with Qo

1

⋂︂
Qo

2 = ∅ and Q1

⋂︂
Q2 = Q3.

Moreover, Q1 and Q2 have the same dimension as F ˜︁G0
, and Q3 has dimension one less.

Proof. Let r1 and r2 denote the edges of G0 from i to j and from j to k respectively that

were used in the reduction. Viewing R#E( ˜︁G0) as functions f : E( ˜︁G0) → R, cut F ˜︁G0
with the

hyperplane H defined by the equation f(r1) = f(r2). Let Q1 be the intersection of F ˜︁G0
with

the positive half-space f(r1) ≥ f(r2), let Q2 be the intersection of F ˜︁G0
with the negative

half-space f(r1) ≤ f(r2), and let Q3 be the intersection of F ˜︁G0
with the hyperplane H. See

Figure 1 for an illustration of the integral equivalence between Qm and F ˜︁Gm
. Notice that

since we are doing the reductions on the edges of G0 (as opposed to on the edges incident to

the source or sink in ˜︁G0), it follows that the hyperplane H meets F ˜︁G0
in its interior, giving

the claims on the dimensions of each Qm. □

i j k

i j k

i j k

i j k

p q

p− q

q

q − p

p

p

G0

G1

G2

G3

p > q

p < q

p = q

Figure 1. An illustration of the integral equivalence between Qm and F ˜︁Gm

for m ∈ [3] used Proposition 2.3.

Iterating this subdivision process will produce a dissection of F ˜︁G0
into simplices. This

process can be encoded using a reduction tree. A reduction tree of G is constructed as
follows. Let the root node of the tree be labeled by G. If a node has any children, then it
has three children obtained by performing a reduction on that node and labeling the children
with the graphs defined in (2.2). Continue this process until the graphs labeling the leaves
of the tree cannot be reduced. See Figure 2 for an example.
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Fix a reduction tree R of G. Let L be a graph labeling one of the leaves in R. Lemma
2.2 implies that F˜︁L is integrally equivalent to the standard simplex, so the flow polytopes of
the graphs labeling the leaves of R dissect F ˜︁G into unimodular simplices. Consequently, all
dissections we consider in this paper will be dissections into unimodular simplices. By full-
dimensional leaves ofR, we mean the leaves L with #E(L) = #E(G). By lower-dimensional
leaves we mean all other leaves L of R. Note that the full-dimensional leaves correspond
to top-dimensional simplices in the dissection of F ˜︁G, and the lower-dimensional leaves index
intersections of the top-dimensional simplices. The dissections produced by a reduction tree
are not generally triangulations, due to how leaves on different sides of the reduction tree
can intersect.

Recall the normalized volume of a polytope is the usual Euclidean volume scaled by the
volume of a unimodular simplex in the affine span of the polytope. Since all simplices F˜︁L of
leaves in a reduction tree are unimodular, we have the following result.

Corollary 2.4. The normalized volume of F ˜︁G equals the number of full-dimensional leaves
in any reduction tree of G.

2 2 1 2

1 3 0 4 0 3

Figure 2. A reduction tree for a graph on three vertices. The edges involved
in each reduction are shown in bold. The left-degree sequences of the leaves
are displayed below each leaf.

2.3. Left-Degree Sequences. Let G be a graph on [0, n], and let R be a reduction tree of
G. For each leaf L of R, consider the left-degree sequence

(indegL(1), indegL(2), . . . , indegL(n)) .

By full-dimensional sequences, we will mean left-degree sequences of full-dimensional leaves
of R. Although the actual leaves of a reduction tree are dependent on the individual reduc-
tions performed, we prove in Theorem A that the left-degree sequences are not.
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Example 2.5. Any reduction tree of K4 has the full-dimensional left-degree sequences

{(0, 0, 6), (0, 0, 6), (0, 1, 5), (0, 1, 5), (0, 2, 4), (0, 2, 4), (0, 3, 3), (1, 0, 5), (1, 1, 4), (1, 2, 3)}

3. Triangular arrays and left-degree sequences

In this section, we expand the technique described in [11] that characterized left-degree
sequences of full-dimensional leaves in a specific reduction tree of any graph. Given a graph
G, we construct this reduction tree T (G). We give a characterization of the left-degree
sequences of all leaves of this reduction tree, not just the full-dimensional ones. We then
connect this characterization to flow polytopes. The main result of this section is Corollary
3.16, where we provide a partition of the left-degree sequences of T (G) and biject each block
to the set of integer points in a flow polytope.

For simplicity, throughout this section we restrict to the case where G is a simple graph
on the vertex set [0, n]. The set SolG(F ) is defined in Definition 3.6 for simple graphs. We
address the more technical general case in Section 6 and prove Theorem A.

We begin by generalizing [11, Lemma 3] to include the descriptions of the lower dimen-
sional leaves of reductions performed at a special vertex v. The proof is a straightforward
generalization of that of [11, Lemma 3], illustrated in Figure 3. The key to the proof is the
special reduction order, whereby we always perform a reduction on the longest edges possible
that are incident to the vertex at which we are reducing (the length of an edge being the
absolute value of the difference of its vertex labels).

Lemma 3.1. Assume G has a distinguished vertex v with p incoming edges and one outgoing
edge (v, u). If we perform all reductions possible which involve only edges incident to v in
the special reduction order, then we obtain graphs Hi for i ∈ [p+1], and Kj for j ∈ [p], with

(indegHi
(v), indegHi

(u)) = (p+ 1− i, indegG(u)− 1 + i),

(indegKj
(v), indegKj

(u)) = (p− j, indegG(u)− 1 + j).

Note that the previous lemma vacuously yields only H1 = G if p = 0.

G with v = 2 and u = 3

H1 K1

K2H2 H3

0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 30 1 2 30 1 2 3

Figure 3. The graphs Hi and Kj of Lemma 3.1.
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We now construct a specific reduction tree T (G) and characterize the left-degree sequences
of its leaves. Denote by Ii the set of incoming edges to vertex i in G. Let Vi be the set of
vertices k with (k, i) ∈ Ii, and let G[0, i] be the restriction of G to the vertices [0, i]. For any
reduction tree R, by InSeq(R) we mean the multiset of left-degree sequences of the leaves of
R. Since we will build T (G) inductively from T (H) for smaller graphs H, it is convenient
to let InSeqn(R) denote the multiset InSeq(R) with each sequence padded on the right with
zeros to have length n.

We proceed using the following algorithm, analogous to the one described in [11].

• For the base case, define the reduction tree T (G[0, 1]) to be the single leaf G[0, 1].
Hence,

InSeq(T (G[0, 1])) = {(indegG(1))}.
• Having built T (G[0, i]), construct the reduction tree T (G[0, i + 1]) from T (G[0, i])
by appending the vertex i+1 and the edges Ii+1 to all graphs in T (G[0, i]) and then
performing reductions at each vertex in Vi+1 on all graphs corresponding to the leaves
of T (G[0, i]) in the special reduction order as described above Lemma 3.1.

• Let Vi+1 = {i1 < i2 < · · · < ik} and let (s1, . . . , sn) ∈ InSeqn(T (G[0, i])). Applying
Lemma 3.1 to each of the vertices i1, . . . , ik, we see that the leaves of T (G[0, i +
1]) which are descendants of the graph with n-left-degree sequence (s1, . . . , sn) in
T (G[0, i]) will have n-left-degree sequences exactly given by

(s1, . . . , sn) + vi+1[i1] + · · ·+ vi+1[ik]

where vi+1[il] ∈ S1(il) ∪ S2(il) and S1, S2 are given by

S1(il) = {(c1, . . . , cn) | cj = 0 for j /∈ {il, i+ 1}, cil = 1− s, and ci+1 = s− 1 for s ∈ [sil + 1]},
S2(il) = {(c1, . . . , cn) | cj = 0 for j /∈ {il, i+ 1}, cil = −s, and ci+1 = s− 1 for s ∈ [sil ]}.

Definition 3.2. For a simple graph G on [0, n], denote by T (G) the specific reduction
tree constructed using the algorithm described above. Denote by LD(G) the multiset
InSeq(T (G)).

We prove the following surprising property of LD(G) in Section 6, where we drop the
assumption that G be simple.

Theorem A. Let G be any (not necessarily simple) graph on [0, n]. Then for any reduction
tree R of G,

LD(G) = InSeq(R).

Definition 3.3. To each leaf L of T (G), associate the triangular array of numbers Arr(L)
given by

an1 an−1,1 · · · a31 a21 a11
an2 an−1,2 · · · a32 a22
...

... . . .

an,n−1 an−1,n−1

ann

where (ai1, ai2, . . . , aii) is the left-degree sequence of the leaf of T (G[0, i]) preceding (or
equaling if i = n) L in the construction of T (G).
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Theorem 3.4 ([11], Theorem 4). The arrays Arr(L) for full-dimensional leaves L of T (G)
are exactly the nonnegative integer solutions in the variables {aij | 1 ≤ j ≤ i ≤ n} to the
constraints

• a11 = #E(G[0, 1])
• aij ≤ ai−1,j if (j, i) ∈ E(G)
• aij = ai−1,j if (j, i) /∈ E(G)

• aii = #E(G[0, i])−
∑︁i−1

k=1 aik

Example 3.5. If G is the graph on [0, 4] with

E(G) = {(0, 1), (0, 2), (1, 2), (2, 3), (2, 4), (3, 4)},
then Theorem 3.4 gives the inequalities

0 ≤ a41 = a31 = a21 ≤ a11 = 1

0 ≤ a42 ≤ a32 ≤ a22 = 3− a21

0 ≤ a43 ≤ a33 = 4− a31 − a32

0 ≤ a44 = 6− a41 − a42 − a42

The first columns
(a41, a42, a43, a44)

of solutions to these inequalities are exactly the full-dimensional left-degree sequences of G.

Given a graph G, we write the constraints specified in Theorem 3.4 in the form shown in
Example 3.5 and call them the triangular constraint array of G. We proceed by generalizing
triangular constraint arrays to encode the lower-dimensional leaves of T (G) as well.

Definition 3.6. Denote by TriG(∅), or when the context is clear, by Tri(∅), the triangular
constraint array of G. For each subset F ⊆ E(G\0) (recall that G is simple in this section),
define a constraint array Tri(F ) by modifying Tri(∅) as follows: for each (j, i) ∈ F and each
ordered pair (m, j) with n ≥ m ≥ i, replace each occurrence (anywhere in the inequalities) of
amj by amj +1 and add 1 to the constant at the leftmost edge of row j. Denote by SolG(F ),
or when the context is clear, by Sol(F ), the collection of all integer solution arrays to the
constraints Tri(F ).

Example 3.7. With G as in Example 3.5 and F = {(2, 3), (2, 4), (3, 4)}, we have

Tri(F ) :

0≤ a41 = a31 = a21 ≤ a11 = 1
2≤ a42 + 2 ≤ a32 + 1 ≤ a22 = 3− a21
1≤ a43 + 1 ≤ a33 = 3− a31 − a32
0≤ a44 = 3− a41 − a42 − a43

The characterization of LD(G) = InSeq(T (G)) given in the construction of T (G) implies
the following theorem.

Theorem 3.8. The leaves of T (G) are in bijection with the multiset union of solutions to
the arrays Tri(F ), that is

{Arr(L) | L is a leaf of T (G)} =
⋃︂

F⊆E(G\0)

SolG(F ).
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In particular, LD(G) is the (multiset) image of the right-hand side under the map that takes
a triangular array to its first column (an1, . . . , ann).

Definition 3.9. For any F ⊆ E(G\0), denote by LD(G,F ) the submultiset of LD(G)
consisting of sequences occurring as the first column of an array in Sol(F ).

As a consequence of Theorem 3.8,

LD(G) =
⋃︂

F⊆E(G\0)

LD(G,F ).

Remark 3.10. Combinatorially, we can think of LD(G,F ) in the following way. Construct
the reduction tree T (G) of G. Take any graph H appearing as a node of T (G). Let H have
descendants H1, H2 and H3 in T (G) obtained by the reduction on edges (i, j) and (j, k) in
H with i < j < k, so that H3 has edge set E(H)\{(i, j), (j, k)} ∪ {(i, k)}. Label the edge
in T (G) between H and H3 by (j, k). To each leaf L of T (G), associate the set of all labels
on the edges of the unique path from L to the root G of T (G). The left-degree sequences of
leaves assigned a set F in this manner are exactly the elements of the multiset LD(G,F ).

0 1 2

0 1 2

0 1 2

0 1 2

G

Leaves L of T (G) F ⊆ E(G\0)

∅

{(1, 2)}

TriG(F )

0 ≤ a21 ≤ a11 = 1

0 ≤ a22 = 2− a21

1 ≤ a21 + 1 ≤ a11 = 1

0 ≤ a22 = 2− (a21 + 1)

SolG(F )

1 1

1

0 1

2

0 1

1

Figure 4. A small example demonstrating Theorem 3.8. In general, SolG(F )
will be empty for many F .

To understand the multisets Sol(F ) and LD(G,F ), we connect the constraint arrays Tri(F )
to flow polytopes. We begin by investigating the case where G = Kn+1 is the complete graph
on [0, n]. Given F ⊆ E(Kn+1\0), consider the numbers

fij = #{(j, k) ∈ F | k ≤ i}.(3.1)
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Observe that for each F ⊆ E(Kn+1\0), Tri(F ) is obtained from Tri(∅) by replacing aij in
Tri(∅) by aij + fij and replacing the 0 in the leftmost spot of row j by fnj. Also note that
fjj = 0 for each j. Thus, Tri(F ) is given by

fn1 ≤ an1 + fn1 ≤ · · · ≤ a21 + f21 ≤ a11 + f11 = #E(Kn+1[0, 1])

fn2 ≤ an2 + fn2 ≤ · · · ≤ a22 + f22 = #E(Kn+1[0, 2])− a21 − f21
...

... . . .

fnn ≤ ann + fnn = #E(Kn+1)−
n−1∑︂
k=1

ank −
n−1∑︂
k=1

fnk

Note that the real solution set in variables {aij} to Tri(F ) is a polytope in R(
n+1
2 ). For

any constraint array A, denote by Poly(A) the polytope defined by the inequalities in A. We
now work toward showing that the polytopes Poly(TriG(F )) are integrally equivalent to flow
polytopes. We first continue analyzing the case of the complete graph. Fix F ⊆ E(Kn+1\0).
For {(i, j) | 1 ≤ j < i ≤ n}, we introduce (nonnegative) slack variables zij to convert the

inequalities in Poly(Tri(F )) into equations Yij, given by

Yij :

⎧⎪⎨⎪⎩
aij + fij + zij = ai−1,j + fi−1,j if i > j
i∑︂

k=1

aik +
i∑︂

k=1

fik = #E(Kn+1[0, i]) if i = j.

Define an equivalent system of equations {Z ′
ij} by setting

Z ′
ij :

⎧⎪⎨⎪⎩
Yij if i > j or i = j = 1

Yij − Yi−1,j−1 −
j−1∑︂
k=1

Yjk if i = j > 1.

We then modify each equation Z ′
ij by rearranging negated terms to get equations Zij given

by

Zij :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
aij + zij = ai−1,j + fi−1,j − fij if i > j

aij = indegKn+1
(1) if i = j = 1

aij = indegKn+1
(j) +

j−1∑︂
k=1

zjk if i = j > 1

We now construct a graph Gr(Kn+1) whose flow polytope will be given by the equations Zij

(plus the conditions zij ≥ 0). Let the vertices of Gr(Kn+1) be

{vij | 1 ≤ j ≤ i ≤ n} ∪ {vn+1,n+1}
with the ordering v11 < v21 < · · · < vn1 < v22 < · · · < vnn < vn+1,n+1.
Let the edges of Gr(Kn+1) be labeled by the flow variables aij and zij. Set E(Gr(Kn+1)) =
Ea ∪ Ez where

Ea consists of edges aij : vij → vi+1,j for 1 ≤ j ≤ i ≤ n and

Ez consists of edges zij : vij → vii for 1 ≤ j < i ≤ n

and we take indices (n+ 1, j) to refer to (n+ 1, n+ 1).
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v11 v21 v31 v22 v32 v33 v44

z21

a11 a21

a31

a22

a32

1 0 0 2 0 3 -6
z32

z31

a33

a11a21

a22a32

a
33

a 3
1

z32

z31
z21

v44

v33

v32
v22

v31 v21 v11

Figure 5. Two drawings of the graph Gr(Kn+1) of Lemma 3.11. The drawing
on the right has the netflow vector a∅

Kn+1
.

To define the netflow vector aF
Kn+1

, we assign netflow indegKn+1
(j) to vertices vjj with j <

n+ 1, we assign netflow

−#E(Kn+1) +
n−1∑︂
k=1

fnk

to vn+1,n+1, and we assign netflow fi−1,j − fij to each remaining vertex vij.

The netflow vector aF
Kn+1

is given by reading each row of the triangular array

fn−1,1 − fn1 fn−2,1 − fn−1,1 · · · f11 − f21 indegKn+1
(1)

fn−1,2 − fn2 · · · f22 − f32 indegKn+1
(2)

... . . .

indegKn+1
(n)

right to left starting with the first row, moving top to bottom, and then appending−#E(Kn+1)+∑︁n−1
k=1 fnk at the end.

Lemma 3.11. The polytopes

FGr(Kn+1)(a
F
Kn+1

) and Poly(Tri(F ))

are integrally equivalent.

Proof. By construction, the flow equation at vertex vij in Gr(Kn+1) is exactly the equation
Zij for (i, j) ̸= (n + 1, n + 1). At vn+1,n+1, the flow equation is Ynn, which follows from the
equations Zij and adds no additional restrictions. The result now follows from the fact that
the transformation from {Yij}i,j to {Zij}i,j was unimodular. □

We now generalize Lemma 3.11 to any simple graphG on [0, n]. Note that for F ⊆ E(G\0),
TriG(F ) can be obtained from TriKn+1(F ) by turning certain inequalities into equalities and
changing all occurrences of #E(Kn+1[0, j]) to #E(G[0, j]) for each j. In terms of {Zij}i,j,
this amounts to setting zij = 0 whenever (j, i) /∈ E(G). Relative to the graph Gr(Kn+1), this
is equivalent to deleting the edges labeled zij for (j, i) /∈ E(G). Thus, we have the following
extension of Gr(Kn+1).

Definition 3.12. For a simple graph G on [0, n] define a graph Gr(G) on vertices

{vij | 1 ≤ j ≤ i ≤ n} ∪ {vn+1,n+1}
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ordered v11 < v21 < · · · < vn1 < v22 < · · · < vnn < vn+1,n+1 and with edges Ea ∪ Ez where

Ea consists of edges aij : vij → vi+1,j for 1 ≤ j ≤ i ≤ n and

Ez consists of edges zij : vij → vii for (j, i) ∈ E(G\0).
For any F ⊆ E(G\0), we define a netflow vector aF

G for Gr(G) by reading each row of the
triangular array

fn−1,1 − fn1 fn−2,1 − fn−1,1 · · · f11 − f21 indegG(1)
fn−1,2 − fn2 · · · f22 − f32 indegG(2)

... . . .

indegG(n)

right to left starting with the first row, moving top to bottom, and then appending
−#E(G) +

∑︁n−1
k=1 fnk at the end, where again, fij = #{(j, k) ∈ F | k ≤ i}.

We now have the following extension of Lemma 3.11 to all simple graphs.

Proposition 3.13. Let G be a simple graph on [0, n] and F ⊆ E(G\0). Then, Poly(TriG(F ))
is integrally equivalent to FGr(G)(a

F
G). In particular, the multiset of solutions SolG(F ) to

TriG(F ) consists precisely of the projections of integral flows on Gr(G) with netflow aF
G onto

the edges labeled {aij}.
Example 3.14. Let G be the graph on [0, 4] with

E(G) = {(0, 1), (0, 2), (1, 2), (2, 3), (2, 4), (3, 4)}
and F = {(2, 3)}. The graph Gr(G) and its netflow vector aF

G are shown in Figure 6.
Observe that contracting the edges {a11, a21, a31, a22, a32, a33} in Gr(G) yields the graph

shown in Figure 7, which is exactly ˜︁G\{s, 0}. The next result shows that this occurs in
general.

v11

a44a21 a31a11 a22 a32 a33

z21
z32

z43

a43

z42

a42

a41

1

Gr(G)

v21

0

v31

0

v41

0

v22

2

v32

−1

v42

0

v33

1

v43

0

v44

2

v55

−5

Figure 6. The graph Gr(G) when E(G) = {(0, 1), (0, 2), (1, 2), (2, 3), (2, 4), (3, 4)}.

For a graph G and a subset F ⊆ E(G\0), view F as a subgraph of G on the same vertex
set. Note that for each j,

fnj = #{(j, k) ∈ F | k ≤ n} = outdegF(j)

and the number

−#E(G) +
n−1∑︂
k=1

fnk
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z21 z32 z43 a44

a43

a42

a41

1

z42

1 1 2 −5

Figure 7. The graph Gr(G)/{a11, a21, a31, a22, a32, a33}

appearing as the last entry of aF
G equals −#E(G\F ).

Theorem 3.15. Let G be a simple graph on [0, n] and F ⊆ E(G\0). Then, the flow polytopes

FGr(G)

(︁
aF
G

)︁
and F ˜︁G\{s,0} (indegG(1)− outdegF (1), . . . , indegG(n)− outdegF (n),−#E(G\F ))

are integrally equivalent.

Proof. First, note that in Gr(G), the edges {aij | i < n} are each the only edges incoming
to their target vertex. Contracting these edges via Lemma 2.2 identifies vertices vij and vi′j.
Label the representative vertices vjj by j for j ∈ [n] and vn+1,n+1 by t. The remaining edges
are

zij : j → i for (j, i) ∈ E(G) and anj : j → t for j ∈ [n],

which are exactly the edges of ˜︁G− {s, 0}.

Viewing the netflow vector aF
G as the array

fn−1,1 − fn1 fn−2,1 − fn−1,1 · · · f11 − f21 indegG(1)
fn−1,2 − fn2 · · · f22 − f32 indegG(2)

... . . .

indegG(n)
−#E(G\F ),

Lemma 2.2 implies the entries of the netflow vector after contracting are given by reading
the sums of each row from top to bottom.

□

Recall from Definition 3.9 that LD(G,F ) is the multiset of left-degree sequences in InSeq(T (G))
occurring as the first column (an1, . . . , ann) of an array in Sol(F ). We now arrive at the main
result of this section.

Corollary 3.16. Let G be a simple graph on [0, n] and F ⊆ E(G\0). If bFG is the vector

bFG = (indegG(1)− outdegF(1), . . . , indegG(n)− outdegF(n),−#E(G\F ))

and ψ is the map that takes a flow on ˜︁G\{s, 0} to the tuple of its values on the edges
{(j, t) | j ∈ [n]}, then LD(G,F ) equals the (multiset) image under ψ of all integral flows on˜︁G\{s, 0} with netflow vector bFG.

In particular, LD(G,F ) is in bijection with integral flows on ˜︁G\{s, 0} with netflow bFG.

We note that the preceding result implies a formula for the Ehrhart polynomial of flow
polytopes of graphs with special source and sink vertices. In particular, a special case of
Theorem 2.1 follows readily.
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Theorem 3.17. Let G be a simple graph on [0, n] and let di = indegG(i). Then, the nor-

malized volume of the flow polytope of ˜︁G is

Vol F ˜︁G = K ˜︁G\{s,0} (d1, . . . , dn, −#E(G)) .(3.2)

Moreover, the Ehrhart polynomial of F ˜︁G is

Ehr(F ˜︁G, t) = (−1)d
d∑︂

i=0

(−1)i

⎛⎜⎜⎝ ∑︂
F⊆E(G\0)
#F=d−i

K ˜︁G\{s,0}
(︁
bFG
)︁⎞⎟⎟⎠(︃t+ i

i

)︃
,(3.3)

where bFG = (indegG(1) − outdegF(1), . . . , indegG(n) − outdegF(n),−#E(G\F )) and d =

#E( ˜︁G)−#V ( ˜︁G) + 1 is the dimension of F ˜︁G.
Proof. From the dissection of F ˜︁G obtained via the reduction tree T (G), it follows that
Vol F ˜︁G is the number of full-dimensional left-degree sequences. By Corollary 3.16, these
are in bijection with the integer points in the flow polytope F ˜︁G\{s,0} (d1, . . . , dn,−#E(G)),

proving (3.2).
To prove (3.3) note that F◦˜︁G =

⨆︁
σ◦∈DT (G)

σ◦, where DT (G) is the set of open simplices

corresponding to the leaves of the reduction tree T (G). Then,

Ehr(F◦˜︁G, t) =
∑︂

σ◦∈DT (G)

Ehr(σ◦, t).

Since all simplices in DT (G) are unimodular, it follows that for a k-dimensional simplex
σ◦ ∈ DT (G),

Ehr(σ◦, t) = Ehr(∆◦, t),

where ∆ is the standard k-simplex. By [3, Theorem 2.2], Ehr(∆◦, t) =
(︁
t−1
k

)︁
. Thus,

Ehr(F◦˜︁G, t) =
∞∑︂
i=0

fi

(︃
t− 1

i

)︃
,

where fi is the number of i-simplices in DT (G). For i ∈ [0, d],

fi =
∑︂

F⊆E(G\0)
#F=d−i

#LD(G,F ).

Corollary 3.16 then implies

fi =
∑︂

F⊆E(G\0)
#F=d−i

K ˜︁G\{s,0}
(︁
bFG
)︁
for i ∈ [0, d].

Therefore,

Ehr(F◦˜︁G, t) =
d∑︂

i=0

⎛⎜⎜⎝ ∑︂
F⊆E(G\0)
#F=d−i

K ˜︁G\{s,0}
(︁
bFG
)︁⎞⎟⎟⎠(︃t− 1

i

)︃
.

From the Ehrhart-Macdonald reciprocity [3, Theorem 4.1]

Ehr(F ˜︁G, t) = (−1)d Ehr(F◦˜︁G,−t),
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it follows that

Ehr(F ˜︁G, t) = (−1)d
d∑︂

i=0

⎛⎜⎜⎝ ∑︂
F⊆E(G\0)
#F=d−i

K ˜︁G\{s,0}
(︁
bFG
)︁⎞⎟⎟⎠(︃−t− 1

i

)︃

= (−1)d
d∑︂

i=0

(−1)i

⎛⎜⎜⎝ ∑︂
F⊆E(G\0)
#F=d−i

K ˜︁G\{s,0}
(︁
bFG
)︁⎞⎟⎟⎠(︃t+ i

i

)︃
.

□

4. Newton polytopes of left-degree polynomials

In this section, we study the Newton polytopes of polynomials LG(t) built from left-degree
sequences (see Definition 4.2). We first show that each of these polynomials have SNP (Def-
inition 4.1). Then, we investigate the Newton polytopes of their homogeneous components
and certain homogeneous subcomponents. We prove that these Newton polytopes are gen-
eralized permutahedra. Our main results can be summarized as:

Theorem B. Let G be a graph on [0, n]. Then the left-degree polynomial LG(t) has SNP, and
the Newton polytope of each homogeneous component Lk

G(t) of LG(t) of degree #E(G) − k
is a generalized permutahedron.

Theorems 4.8, 4.9 and 4.23 imply Theorem B, and contain more detail regarding the

elements of Theorem B. Recall that for a polynomial f =
∑︂

α∈Zn
≥0

cαt
α, the Newton polytope is

Newton(f) = Conv ({α | cα ̸= 0}) .

Definition 4.1. We say a polynomial f has saturated Newton polytope (SNP) if cα ̸= 0 when-
ever α ∈ Newton(f); that is, if the integer points of Newton(f) are exactly the exponents of
monomials appearing in f with nonzero coefficients.

The question of when a polynomial has SNP is a very natural one, and has recently been
investigated for various polynomials from algebra and combinatorics by Monical, Tokcan and
Yong in [14].

Recall from Definition 3.9 that for a simple graph G and a subset F ⊆ E(G\0), LD(G,F )
denotes the submultiset of LD(G) consisting of sequences occurring as the first column of an
array in Sol(F ). Just as in Section 3, for the remainder of this section we add the simplifying
assumption that G has no multiple edges. All of the results of this section are also valid for
graphs with multiple edges, with similar proof and notation modifications to those described
in Section 6.

Definition 4.2. Let G be a graph on [0, n]. For α ∈ LD(G), let codim(α) = #E(G) −∑︁n
i=1 αi. Define the left-degree polynomial LG(t) in variables t = (t1, t2, . . . , tn) by

LG(t) =
∑︂

α∈LD(G)

(−1)codim(α)tα.
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Similarly, for F ⊆ E(G\0), define LG,F (t) by

LG,F (t) =
∑︂

α∈LD(G,F )

(−1)codim(α)tα = (−1)#F
∑︂

α∈LD(G,F )

tα.

Note that the (−1)codim(α) in Definition 4.2 has no effect on the Newton polytope. It is
inherited from the definition of right-degree polynomials utilized in [5], which was designed
to agree with Grothendieck polynomials.

Restating Theorem 3.8 in terms of left-degree sequences gives the multiset union decom-
position

LD(G) =
⋃︂

F⊆E(G\0)

LD(G,F ).

Relative to Newton polytopes, this implies

Newton(LG(t)) = Conv

⎛⎝ ⋃︂
F⊆E(G\0)

Newton (LG,F (t))

⎞⎠ .(4.1)

We first study the polytope Newton(LG(t)), and then the component pieces Newton (LG,F (t)).
To start, we define a new constraint array.

Definition 4.3. Let G be a simple graph on [0, n]. Proceed as follows:

• Start with the triangular constraint array TriG(∅) of G as in Theorem 3.4.
• Replace the zero on the left of row j by ynj + yn−1,j + · · ·+ yj+1,j for j ∈ [n− 1], so
the zero on the left in row n is left unchanged.

• For each (i, j) with n ≥ i > j ≥ 1, replace all occurrences of aij in the array by

aij +
∑︁i

k=j+1 ykj.

• For every (j, i) /∈ E(G\0), set yij = 0 throughout.

We refer to this array as the augmented constraint array of G and view it as having variables
aij and yij subject to the additional constraints that for all 1 ≤ j < i ≤ n,

0 ≤ yij ≤ 1.

Example 4.4. If G is the graph on vertex set [0, 4] with
E(G) = {(0, 1), (0, 2), (1, 2), (2, 3), (2, 4), (3, 4)}, then we start with the constraints

0 ≤ a41 = a31 = a21 ≤ a11 = 1

0 ≤ a42 ≤ a32 ≤ a22 = 3− a21

0 ≤ a43 ≤ a33 = 4− a31 − a32

0 ≤ a44 = 6− a41 − a42 − a43

After performing the modifications, we arrive at

y21 ≤ a41 + y21 = a31 + y21 = a21 + y21 ≤ a11 = 1

y42 + y32 ≤ a42 + y42 + y32 ≤ a32 + y32 ≤ a22 = 3− a21 − y21

y43 ≤ a43 + y43 ≤ a33 = 4− a31 − y21 − a32 − y32

0 ≤ a44 = 6− a41 − y21 − a42 − y42 − y32 − a43 − y43
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Analogous to Lemma 3.11, we now work toward showing that Poly(A) is integrally equiv-
alent to a flow polytope. We use the technique with which we constructed Gr(G) in Lemma
3.11 togetherwith the proof idea of Theorem 3.15. Begin with the case where G is a complete
graph. By introducing slack variables zij for the inequalities in the augmented constraint
array (not 0 ≤ yij ≤ 1), we get equations Yij given by

Yij :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
aij + yij + zij = ai−1,j if i > j

aij = #E(G[0, 1]) if i = j = 1
i∑︂

k=1

aik +
i∑︂

m=2

m−1∑︂
k=1

ymk = #E(G[0, i]) if i = j > 1

Applying the exact same transformation used in the proof of Lemma 3.11, we get equivalent
equations Zij given by

Zij :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
aij + yij + zij = ai−1,j if i > j

aij = indegG(1) if i = j = 1

aij = indegG(i) +
i−1∑︂
k=1

zik if i = j > 1

To move from the complete graph to any simple graph, just set yij = 0 and zij = 0
whenever (j, i) /∈ E(G). We can realize the solutions to the Zij as points in a flow polytope
of some graph. However, to account for the additional restrictions 0 ≤ yij ≤ 1, we view it as a
capacitated flow polytope. This is for convenience and is not mathematically significant since
any capacitated flow polytope is integrally equivalent to an uncapacitated flow polytope [2,
Lemma 1].

Definition 4.5. Define the augmented constraint graph Graug(G) to have vertex set {vij | 1 ≤
j ≤ i ≤ n}∪{vn+1,n+1} with the ordering v11 < v21 < · · · < vn1 < v22 < · · · < vnn < vn+1,n+1

and edge set Ea ∪ Ez ∪ Ey labeled by the variables aij, zij, and yij respectively, where

Ea consists of edges aij : vij → vi+1,j for 1 ≤ j ≤ i ≤ n,

Ez consists of edges zij : vij → vii for (j, i) ∈ E(G\0),
Ey consists of edges yij : vij → vn+1,n+1 for (j, i) ∈ E(G\0),

and we take indices (n + 1, j) to refer to (n + 1, n + 1). Define a netflow vector aaug
G by

reading each row of the array

0 0 · · · 0 indegG(1)
0 0 · · · 0 indegG(2)

... . . .

indegG(n)
−#E(G)

from right to left and reading the rows from top to bottom.

Denote by F c
Graug(G) (a

aug
G ) the capacitated flow polytope of the graph Graug(G) with net-

flow aaug
G and with the capacity constraints 0 ≤ yij ≤ 1 for all 1 ≤ j < i ≤ n. By con-

struction, the points in F c
Graug(G) (a

aug
G ) are exactly the solutions to the augmented constraint

array of G.
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Definition 4.6. Similar to Theorem 3.15, contracting the edges {aij | 1 ≤ j ≤ i < n} of
Graug(G) and relabeling the representative vertices vnj by j and vn+1,n+1 by t, we obtain a
graph called the augmented graph of G. This graph is denoted Gaug and is defined on vertices
[n] ∪ {t} with labeled edges Ea ∪ Ez ∪ Ey where

Ea consists of edges anj : j → t for j ∈ [n];

Ez consists of edges zij : j → i for (j, i) ∈ E(G\0);
Ey consists of edges yij : j → t for (j, i) ∈ E(G\0).

Example 4.7. For G = K4, the graphs Graug(G) and Gaug are shown below.

v11 v21 v31 v22 v32 v33 v44

z21

a11 a21

a31

a22

a32

1 0 0 2 0 3 -6
z32

z31

a33

y32

y31

y21

z21

z31

z32 a33

a32

y32

a31

y31
Graug(G) Gaug

1 2 3 -6

y21

1 2 3 t

Before proceeding, recall the netflow vector

bFG = (indegG(1)− outdegF(1), . . . , indegG(n)− outdegF(n),−#E(G\F ))
for any F ⊆ E(G\0). Denote by F c

Gaug

(︁
b∅G
)︁
the capacitated flow polytope of the graph Gaug

with netflow b∅G and the capacity constraints 0 ≤ yij ≤ 1 for all 1 ≤ j < i ≤ n.

Theorem 4.8. Let A denote the augmented constraint array of G and Poly(A) the polytope
defined by the real valued solutions to A with the additional constraints 0 ≤ yij ≤ 1 for all i
and j with 1 ≤ j < i ≤ n. Then, the capacitated flow polytopes

Poly(A), F c
Graug(G) (a

aug
G ) , and F c

Gaug

(︁
b∅G
)︁

are all integrally equivalent.

Proof. Follows immediately from the constructions of Definitions 4.5 and 4.6. □

Theorem 4.9. For G a graph on [0, n], the Newton polytope of the left-degree polynomial
LG(t) and the capacitated flow polytope F c

Gaug

(︁
b∅G
)︁
satisfy

Newton(LG(t)) = ψ
(︁
F c

Gaug

(︁
b∅G
)︁)︁
,

where where ψ is the projection that takes a flow on F c
Gaug

(︁
b∅G
)︁
to its values on the edges

labeled {anj | j ∈ [n]}.

Proof. Let α ∈ LD(G,F ) for F ⊆ E(G\0). Consider the set of integer flows on Gaug such
that each edge yij has flow 1 if (j, i) ∈ F and zero otherwise. By the construction of Gaug,

these are in bijection with the integer flows on ˜︁G\{s, 0} with netflow vector bFG, which in
turn are in bijection to LD(G,F ) (Corollary 3.16). Thus α is the projection of a capacitated
flow on Gaug with netflow b∅G.
Conversely, let α = (α1, . . . , αn) ∈ ψ

(︁
F c

Gaug

(︁
b∅G
)︁)︁

be an integer point. Then, there exists

some flow f (not necessarily integral) on Gaug with netflow b∅G having the integer values αj
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on the a-edges (j, t). If we remove these edges and modify the netflow vector accordingly,
the new flow polytope we get is the (integrally capacitated) flow polytope of a graph with an
integral netflow vector. Any such polytope has integral vertices [18, Theorem 13.1]. Thus,
we can choose f to be an integral flow.

Since the edges labeled yij are constrained between 0 and 1, f takes value 0 or 1 on these
edges. If we let F = {(j, i) ∈ E(G\0) | f takes value 1 on the edge labeled by yij}, then f
induces a flow on ˜︁G\{s, 0} with netflow vector bFG, so α ∈ LD(G,F ). □

Corollary 4.10. For any graph G on [0, n], LG(t) has SNP.

Proof. The second half of the proof of Theorem 4.9 demonstrated that any integer point
α ∈ ψ

(︁
F c

Gaug

(︁
b∅G
)︁)︁

satisfied α ∈ LD(G,F ) for some F . Thus α ∈ LD(G). □

We now analyze the component polytopes Newton(LG,F (t)) and show that they are gen-
eralized permutahedra. We first briefly recall the relevant definitions from [16].

A generalized permutahedron is a deformation of the usual permutahedron obtained by
parallel translation of the facets. Generalized permutahedra are parameterized by real num-
bers {zI}I⊆[n] with z∅ = 0 and satisfying the supermodularity condition

zI∪J + zI∩J ≥ zI + zJ for any I, J ⊆ [n].

For a choice of parameters {zI}I⊆[n], the associated generalized permutahedron P z
n ({zI}) is

defined by

P z
n ({zI}) =

{︄
t ∈ Rn |

∑︂
i∈I

ti ≥ zI for I ̸= [n], and
n∑︂

i=1

ti = z[n]

}︄
.

There is a subclass of generalized permutahedra given by Minkowski sums of dilations
of the faces of the standard (n − 1)-simplex. For I ⊆ [n], let ∆I = Conv({ei | i ∈ I}),
where ei is the ith standard basis vector in Rn and ∆∅ is the origin. Given a set {yI}I⊆[n] of
nonnegative real numbers with y∅ = 0, consider the polytope

∑︁
I⊆[n] yI∆I .

Proposition 4.11 ([16], Proposition 6.3). Given nonnegative real numbers {yI}I⊆[n], set
zI =

∑︁
J⊆I yJ . Then

P z
n ({zI}) =

∑︂
I⊆[n]

yI∆I .

We now return to left-degree polynomials. Our goal is to show that

Newton(LG,F (t)) = P z
n

(︁
{zFI }I⊆[n]

)︁
for some parameters {zFI }I⊆[n]. The proof relies on the following fact about flow polytopes,
which readily follows from the max-flow min-cut theorem.

Lemma 4.12. Let G be a graph on [0, n] and α = (α0, . . . , αn) ∈ Rn+1. Then FG(α) is
nonempty if and only if

n∑︂
i=0

αi = 0 and
∑︂
i∈S

αi ≤ 0 for all S ⊆ [0, n] with outdegG(S) = 0.(4.2)
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Proof. Observe that the conditions (4.2) are necessary in order for FG(α) to be nonempty.
We now show they are also sufficient. For this, we rephrase the problem as a max-flow
problem on another graph. Let

G′ = (V (G) ∪ {s, t}, E(G) ∪ {(s, i) | i ∈ [0, n], αi > 0)} ∪ {(i, t) | i ∈ [0, n], αi < 0)}).
Direct edges of G′ from smaller to larger vertices, where s is the smallest and t is the largest.

Let the edges {(s, i) | i ∈ [0, n], αi > 0} have upper capacity αi, and the edges {(i, t) | i ∈
[0, n], αi < 0}, have upper capacity −αi. Let the edges belonging to both G and G′ have
the upper capacity

∑︁
i∈[0,n],αi>0 αi. Assign all edges of G′ the lower capacity of 0.

If the maximum flow on G′ saturates the edges incident to s (equivalently, to t), then
FG(α) is nonempty. We thus proceed to show that if α satisfies (4.2) with the given G, then
the maximum flow on G′ saturates the edges incident to s. In other words, if α satisfies
(4.2) with the given G, then the value of the maximum flow on G′ is

∑︁
i∈[0,n],αi>0 αi.

Recall that by the max-flow min-cut theorem [18, Theorem 10.3] the maximum value of
an s− t flow on G′ subject to the above capacity constraints equals the minimum capacity
of an s − t cut in G′. For the cut ({s}, V (G)\{s}) the capacity is

∑︁
i∈[0,n],αi>0 αi, and we

show that this is the minimum capacity of an s − t cut in G′. If the cut contains any edge
not incident to s or t, then the capacity of that edge is already

∑︁
i∈[0,n],αi>0 αi.

On the other hand, if the cut does not contain any edge not incident to s or t, the partition
of vertices is of the form ({s} ∪ S, Sc ∪ {t}), where S ⊆ [0, n] with outdegG(S) = 0 and
Sc = [0, n]\S. Thus, by (4.2) we have

∑︁
i∈S αi ≤ 0. The capacity of the cut ({s}∪S, Sc∪{t})

is ∑︂
i∈Sc,(s,i)∈G′

αi −
∑︂

i∈S,(i,t)∈G′

αi.

Note that
0 ≥

∑︂
i∈S

αi =
∑︂

i∈S,αi>0

αi +
∑︂

i∈S,(i,t)∈G′

αi.

Consequently, ∑︂
i∈Sc,(s,i)∈G′

αi −
∑︂

i∈S,(i,t)∈G′

αi ≥
∑︂

i∈Sc,(s,i)∈G′

αi +
∑︂

i∈S,αi>0

αi

=
∑︂

i∈[0,n],αi>0

αi

In other words, the capacity of any cut is at least
∑︁

i∈[0,n],αi>0 αi, and we saw that this is

achieved. Thus, the value of the maximum flow on G′ is
∑︁

i∈[0,n],αi>0 αi, as desired. □

For F ⊆ E(G\0), recall the numbers fij given by

fij = #{(j, k) ∈ F | k ≤ i}.
By Corollary 3.16 (Theorem 6.3 for the general case), LD(G,F ) is in bijection with integral

flows on the graph ˜︁G\{s, 0} with the netflow vector bFG defined by

bFG = (indegG(1)− outdegF(1), . . . , indegG(n)− outdegF(n),−#E(G\F ))
via projection onto the edges (i, t).

Definition 4.13. For a collection of vertices I of a graph G, define the outdegree outdegG(I)
to be the number of edges from vertices in I to vertices not in I.
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To each I ⊆ [n], associate the integer zFI given by

zFI =
∑︂
i∈S

indegG(i)− outdegF(i)(4.3)

where S ⊆ I is the maximal subset with outdegG(S) = 0.

Theorem 4.14. For a simple graph G, F ⊆ E(G\0), and {zFI } the parameters defined by
(4.3), Newton(LG,F (t)) is the generalized permutahedron

Newton(LG,F (t)) = Conv(LD(G,F )) = P z
n

(︁
{zFI }I⊆[n]

)︁
.

Furthermore, each integer point of P z
n

(︁
{zFI }

)︁
is in LD(G,F ), so LG,F (t) has SNP.

Proof. First, it is easy to check that the parameters zFI satisfy the supermodularity condition.
Thus, P z

n

(︁
{zFI }I⊆[n]

)︁
is a generalized permutahedron. To observe that Conv(LD(G,F )) ⊆

P z
n

(︁
{zFI }

)︁
, simply recall that LD(G,F ) equals the projection of integral flows on ˜︁G\{s, 0}

with netflow bFG onto the edges {(j, t)}j∈[n].
For the reverse direction, let d denote the truncation of bFG by its last entry, that is let
d = (d1, . . . , dn) where

di = indegG(i)− outdegF(i).

We must show that each point x = (x1, . . . , xn) ∈ P z
n

(︁
{zFI }

)︁
, the assignment anj = xj in˜︁G\{s, 0} can be extended to a flow on ˜︁G\{s, 0}. This is equivalent to showing

FG\0(d− x) ̸= ∅.

By Lemma 4.12, it suffices to note that∑︂
i∈S

di − xi ≤ 0 for all S ⊆ [n] with outdegG(S) = 0.

However, since outdegG(S) = 0, we have∑︂
i∈S

xi ≥ zS =
∑︂
i∈S

di.

□

We further show that Newton(LG,F (t)) can be written as
∑︁

I⊆[n] yI∆I for some parameters

yI . Let L = {J ⊆ [n] | outdegG(J) = 0}. L is a lattice under union and intersection, so
consider the set Q of join-irreducible elements of L (elements that cannot be written as the
union of other elements).

We explicitly describe the members of Q. Let δ(i) denote all the vertices of G that can be
reached from i by a directed path (including i itself).

Lemma 4.15. An element J ∈ L is join-irreducible if and only if J = δ(i) for some i ∈ [n].

For J ⊆ [n], define

yFJ =

{︄
indegG(k)− outdegF(k) if J ∈ Q, J covers J ′ in L, J\J ′ = {k}
0 if J /∈ Q

(4.4)
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Proposition 4.16. For any simple graph G and F ⊆ E(G\0),

P z
n

(︁
{zFI }

)︁
=
∑︂
I⊆[n]

yFJ ∆I .

Proof. Note that zFI = zFI1 where I1 is the largest element of L contained in I. Thus,

zFI = zFI1 =
∑︂
k∈I1

bk =
∑︂
J∈Q
J⊆I1

yFJ =
∑︂
J⊆I

yFJ .

Apply Proposition 4.11. □

From (4.4), we can read off the {yFI } decomposition of Newton(LG,F (t)). Then,

Newton(LG,F (t)) =
n∑︂

i=1

(indegG(i)− outdegF(i))∆δ(i).(4.5)

Example 4.17. For a simple graph G, recall that the transitive closure of G is the simple
graph formed by adding edges (i, j) to E(G) whenever the vertices i ̸= j are connected by a
directed path in G. If G is a simple graph on [0, n] such that the transitive closure of G\{0}
is complete, then for each F ⊆ E(G\0),

Newton(LG,F (t)) = Πn (indegG(1)− outdegF(1), . . . , indegG(n)− outdegF(n))

where Πn(x) is the Pitman-Stanley polytope as defined in [15], but shifted up one dimension
in affine space, that is

Πn(x) =

{︄
t ∈ Rn

≥0 |
k∑︂

p=1

tp ≤
k∑︂

p=1

xp for k ∈ [n− 1], and
n∑︂

p=1

tp =
n∑︂

p=1

xp

}︄
= xn∆{n} + xn−1∆{n−1,n} + · · ·+ x1∆[n].

Proposition 4.18. If T is a tree on [0, n], then Newton(LT,F (t)) is a simple polytope.

Proof. By the Cone-Preposet Dictionary for generalized permutahedra, ([17], Proposition
3.5) it is enough to show that each vertex poset Qv is a tree-poset, that is, its Hasse diagram
has no cycles. To show this, let I ⊆ [n] and consider the normal fan N(∆I) of the simplex
∆I . By (4.5), the normal fan of Newton(LG,F (t)) is the refinement of normal fans N(∆I).
Thus, a maximal cone of the normal fan of Newton(LG,F (t)) is given by an intersection

of maximal cones in each N(∆I) for I = δ(j), j ∈ [n], indegT (j) > 0. A maximal cone in
N(∆I) gives the vertex poset relations xi > xj for all j ∈ I and any chosen i ∈ I. Thus,
relations in the Hasse diagram of a vertex poset lift to undirected paths in T .

If some Qv has a cycle C, then we can lift the relations to get two different paths in T
between two vertices. This subgraph will contain a cycle, contradicting that T is a tree. □

The Newton polytopes of the homogeneous components of LG(t) are also generalized
permutahedra.

Definition 4.19. For each k ≥ 0 let Lk
G(t) denote the degree #E(G) − k homogeneous

component of LG(t), that is

Lk
G(t) =

∑︂
F⊆E(G\0)

#F=k

LG,F (t)
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For a simple graph G on [0, n], Theorem 4.9 showed that the augmented graph Gaug of
Definition 4.6 has the property that the projection of integral flows on Gaug with netflow

b∅G = (indegG(1), . . . , indegG(n),−#E(G))

and capacitance 0 ≤ yij ≤ 1 for all 1 ≤ j < i ≤ n onto the edges labeled anj for j ∈ [n]
is exactly LD(G). The following construction is a variation on this theme designed so its
integral flows will only project to left-degree sequences whose entries have a particular sum.

Definition 4.20. Given a simple graph G on [0, n] and k ≥ 0, let G(k) be the graph on
[1, n+ 1] ∪ {t} with labeled edges Ea ∪ Ez ∪ Ey where

Ea consists of edges anj : j → t for j ∈ [n];

Ez consists of edges zij : j → i for (j, i) ∈ E(G\0);
Ey consists of edges yij : j → n+ 1 for (j, i) ∈ E(G\0).

The flow polytope F c
G(k)(b

(k)
G ) is the flow polytope of G(k) with netflow vector b

(k)
G =

(indegG(1), . . . , indegG(n),−k, k −#E(G)) and capacities 1 on the edges yij.

Example 4.21. For G the complete graph on [0, 3], G(k) is shown below alongside Gaug for
comparison.

z21

z31

z32 a33

a32

y32

a31

y31
Gaug

1 2 3 -6

y21

z21

z31

z32

a33
y32

a31

y31
G(k)

1 2 3

y21 a32

–k k − 6

a33

Note that capacitated integral flows on G(k) with netflow b
(k)
G are in bijection with capac-

itated integral flows on Gaug with netflow b∅G where exactly k edges yij have flow 1, and the
bijection preserves the values on the edges {anj | j ∈ [n]}.

Theorem 4.22. For k ≥ 0, if ψ is the projection that takes a flow on F c
G(k)

(︂
b
(k)
G

)︂
to the

tuple of its values on the edges labeled anj for j in [n], then

Newton
(︁
Lk
G(t)

)︁
= ψ

(︂
F c

G(k)

(︂
b
(k)
G

)︂)︂
.

Proof. Let α be an integer point in Newton
(︁
Lk
G(t)

)︁
, so α ∈ LD(G,F ) for F ⊆ E(G\0) with

#F = k. Then, α corresponds to a capacitated integral flow on Gaug with netflow b∅G, which

in turn corresponds to a capacitated integral flow on G(k) with netflow b
(k)
G that ψ takes to

α.
Conversely, let α be an integer point in ψ

(︂
F c

G(k)

(︂
b
(k)
G

)︂)︂
. Lift α to an integral flow f on

G(k). The flow f corresponds to an integral flow on Gaug, so if F = {(j, i) | yij = 1 in f},
then #F = k and α ∈ LD(G,F ). □
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Similar to the proof of Theorem 4.14, for k ≥ 0 and I ⊆ [n], define parameters z
(k)
I by

z
(k)
I = min

{︄∑︂
i∈I

f(i, t) | f is a flow on G(k) with netflow vector b
(k)
G

}︄
.(4.6)

Theorem 4.23. For k ≥ 0 and {z(k)I } the parameters defined by (4.6), Newton(Lk
G(t)) is

the generalized permutahedron

Newton(Lk
G(t)) = P z

n

(︂
{z(k)I }I⊆[n]

)︂
.

Furthermore, each integer point of P z
n

(︂
{z(k)I }

)︂
is a left-degree sequence, so Lk

G(t) has SNP.

Additionally, if G is a tree, then L0
G(t) is the integer point transform of its Newton polytope.

Proof. The proof of the first two statements is analogous to that of Theorem 4.14. Alterna-
tively, SNP follows from the fact that the Newton(Lk

G) is the intersection of Newton(LG) by
a hyperplane.

Recall that the integer point transform of a polytope P ⊆ Rm is the polynomial

LP (x1, . . . , xm) =
∑︂

p∈P∩Zm

xp.

To prove the third statement we must show that if G is a tree, all nonzero coefficients of
L0
G are 1. It follows from Corollary 3.16 (Theorem 6.3) that LD(G, ∅) equals the multiset of

projections of integral flows on ˜︁G\{s, 0} with the netflow vector b∅G. Then, the multiplicity
of any particular α ∈ LD(T, ∅) is the number of flows on G\0 with netflow b∅G−α. However,
trees admit at most one flow for any given netflow vector, so every element of LD(G, ∅) has
multiplicity 1. This implies all coefficients in L0

G are 0 or 1. □

Theorems 4.9 and 4.23 imply the following.

Corollary 4.24. Given a graph G on the vertex set [0, n] with m edges, we have that

Newton(LG(t)) ∩

{︄
(x1, . . . , xn) ∈ Rn |

n∑︂
i=1

xi = m− k

}︄
= P z

n

{︂
z
(k)
I

}︂
I⊆[n]

,

for the parameters {z(k)I } given in (4.6).

Proof. We have that Newton(LG(t))∩{(x1, . . . , xn) ∈ Rn |
∑︁n

i=1 = m−k} = Newton(Lk
G(t)),

which by Theorem 4.23 equals P z
n

(︂
{z(k)I }I⊆[n]

)︂
. □

Theorems 3.17 and 4.23 imply:

Corollary 4.25. If G is a tree on [0, n], then the normalized volume of the flow polytope of˜︁G is

Vol F ˜︁G = Ehr(P 0
G, 1),

where P 0
G = Newton(L0

G(t)) is the generalized permutahedron specified in Theorem 4.23.

Corollary 4.25 is of the same flavor as Postnikov’s following beautiful result; for the details
of the terminology used in this theorem refer to [16].
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Theorem 4.26. [16, Theorem 12.9] For a bipartite graph G, the normalized volume of the
root polytope QG is

VolQG = Ehr(P−
G , 1),

where P−
G is the trimmed generalized permutahedron.

Root polytopes and flow polytopes are closely related, as can be seen by contrasting the
techniques and results in the papers [9, 10, 11, 12, 16]. It is thus reasonable to expect that
Corollary 4.25 and Theorem 4.26 are related mathematically. We invite the interested reader
to investigate their relationship.

5. Newton polytopes of Schubert and Grothendieck polynomials

In this section, we discuss the connection between left-degree sequences, Schubert poly-
nomials, and Grothendieck polynomials discovered in [5] and relate it to their Newton poly-
topes. Our main theorem is the following.

Theorem C. Let π ∈ Sn+1 be of the form π = 1π′ where π′ is a dominant permutation of
{2, 3, . . . n+ 1}. Then the Grothendieck polynomial Gπ has SNP and the Newton polytope of
each homogeneous component of Gπ is a generalized permutahedron. In particular, the Schu-
bert polynomial Sπ has SNP and Newton(Sπ) is a generalized permutahedron. Moreover,
Sπ is the integer point transform of its Newton polytope.

Theorem C implies that the recent conjectures of Monical, Tokcan, and Yong [14, Con-
jecture 5.1 & 5.5] are true in the special case of permutations 1π′, where π′ is a dominant
permutation. The authors and Alex Fink prove [14, Conjecture 5.1] in its full generality in
[6]. The following conjecture, discovered jointly with Alex Fink, is a strengthening of [14,
Conjecture 5.5] based on the results of this paper. We have tested it for all π ∈ Sn, for
n ≤ 8.

Conjecture 5.1. The Grothendieck polynomial Gπ has SNP and the Newton polytope of
each homogeneous component of Gπ is a generalized permutahedron.

Since [5] uses right-degree sequences and right-degree polynomials instead of their left-
degree counterparts, we will adopt this convention throughout this section. To simplify
notation, all graphs in this section will be on the vertex set [n+ 1]. Note the following easy
relation between right-degree and left-degree.

Given a graph G on vertex set [n + 1], let G∗ be the mirror image of the graph G with
vertex set shifted to [0, n]. More formally, let G∗ be the graph on vertices [0, n] with edges

E(G∗) = {(n+ 1− j, n+ 1− i) | (i, j) ∈ E(G)}.
The right-degree sequences of G are exactly the left-degree sequences of G∗ read back-
wards. Via Theorem A of Section 6 in hand, we define the right-degree multiset RD(G) as
the multiset of right-degree sequences of leaves in any reduction tree of G, and RD(G, ∅)
the submultiset of sequences whose components sum to #E(G) (notation consistent with
LD(G,F ) in Definition 3.9).

Definition 5.2. For any graph G on [n+ 1], define the right-degree polynomial RG by

RG(t1, t2, . . . tn) = LG∗(tn, tn−1, . . . , t1) =
∑︂

α∈RD(G)

(−1)codim(α)tα1
1 t

α2
2 . . . tαn

n

where codim(α) = #E(G)−
∑︁n

i=1 αi.
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For k ≥ 0, let Rk
G(t) denote the degree #E(G)− k homogeneous component of RG(t).

Define the reduced right-degree polynomial ˜︁RG as follows: If {vi1 , . . . vik} are the vertices of
G with positive outdegree, then RG is a polynomial in ti1 , . . . , tik . Obtain ˜︁RG by relabeling

the variables tim by tm for each m. Note that R0
G (resp. ˜︂R0

G) is the top homogeneous

component of RG (resp. ˜︁RG), and is given by

R0
G(t1, . . . , tn) =

∑︂
α∈RD(G,∅)

tα1
1 t

α2
2 . . . tαn

n

The following statement collects the right-degree analogues of Corollary 4.10 and Theorem
4.23 from the previous section.

Theorem 5.3. Let G be a graph on [n+1]. Then, RG(t) has SNP, and the Newton polytope
of each homogeneous component Rk

G is a generalized permutahedron. Additionally, if G is a
tree, then R0

G(t) equals the integer point transform of its Newton polytope.

We now recall the definition of pipe dreams of a permutation and the characterization of
Schubert and Grothendieck polynomials in terms of pipe dreams.

Definition 5.4. A pipe dream for π ∈ Sn+1 is a tiling of an (n + 1) × (n + 1) matrix with
two tiles, crosses and elbows ��, such that

(1) all tiles in the weak south-east triangle are elbows, and
(2) if we write 1, 2, . . . , n+1 on the top and follow the strands (ignoring second crossings

among the same strands), they come out on the left and read π from top to bottom.

A pipe dream is reduced if no two strands cross twice.

1 2 3 4

2

1

4

3

1 2 3 4

2

1

4

3

1 2 3 4

2

1

4

3

Figure 8. The reduced pipe dreams for π = 2143. All tiles not shown are elbows.

For π ∈ Sn+1 let PD(π) denote the collection of all pipe dreams of π and RPD(π) the
collection of all reduced pipe dreams of π. For P ∈ PD(π), define the weight of P by

wt(P ) =
∏︂

(i,j)∈cross(P )

ti

where cross(P ) denotes the set of indices of all crosses in P .
Recall that for any π ∈ Sn+1, the Grothendieck polynomial Gπ can be represented in terms

of pipe dreams of π by

Gπ(t1, . . . , tn) =
∑︂

P∈PD(π)

wt(P ),
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and the Schubert polynomialSπ is the lowest degree homogeneous component of the Grothendieck
polynomial:

Sπ(t1, . . . , tn) =
∑︂

P∈RPD(π)

wt(P ).

In [5, Theorem 5.1], it is proved that for any noncrossing tree T , the right-degree sequences
RD(T ) (see paragraph preceding Definition 5.2) are independent of the choice of reduction
tree for T , and the following connection to Grothendieck polynomials is shown.

Theorem 5.5 ([5, Theorem 5.3]). Let π ∈ Sn+1 be of the form π = 1π′ where π′ is a dominant
permutation of {2, 3, . . . n+1}. Then, there is a tree T (π) and nonnegative integers gi = gi(π)
such that ˜︁RT (π)(t) =

(︄
n∏︂

i=1

tgii

)︄
Gπ(t

−1
1 , . . . , t−1

n ).

Explicitly, if C(π) denotes the set core(π) ∪ {(1, 1)}, then gi(π) is the number of boxes in
column i of C(π).

In terms of Newton polytopes, Theorem 5.5 implies

Newton (Gπ) = φ
(︂
Newton

(︂ ˜︁RT (π) (t)
)︂)︂

and

Newton (Sπ) = φ
(︂
Newton

(︂ ˜︁R0
T (π) (t)

)︂)︂
where φ is the integral equivalence

(x1, . . . , xn) ↦→ (g1 − x1, . . . , gn − xn) .

Proof of Theorem C. By Theorem 5.3, right-degree polynomialsRG(t) have SNP. Since Newton
(︂ ˜︁RT (π)

)︂
is the image of Newton

(︁
RT (π)

)︁
by a projection forgetting coordinates that are always zero,

it follows from Theorem 5.5 that Gπ has SNP.
Theorem 5.3 and Theorem 5.5 also yield that each homogeneous component of Gπ has

SNP and that their Newton polytopes are generalized permutahedra. In particular, this
holds for the Schubert polynomial. Since by [5] the Schubert polynomial of π = 1π′, where
π′ is a dominant permutation, has 0, 1 coefficients, the last statement also follows. □

From the proof of Theorem 5.5 in [5], one can infer the following new transition rule for
Schubert polynomials of permutations of the form 1π′ with π′ dominant.

Lemma 5.6 (Transition rule for 1π′ Schubert polynomials). Let π ∈ Sn+1 be of the form
π = 1π′ with π′ a dominant permutation of {2, . . . , n + 1}. Let π′ have diagram given by
the partition λ(π′) = (λ1, · · · , λz) with λz = k. For 0 ≤ l ≤ k, let wl be the permutation on
{2, . . . , n+ 1} whose diagram is the partition (λ1 − (k − l), . . . , λz−1 − (k − l)). Then

Sπ(x) =
k∑︂

l=0

(︄
l∏︂

m=1

xm

)︄(︄
k+1∏︂

p=l+2

xzp

)︄
S1wl

(xϕl
)

where x = (x1, x2, . . .), xϕl
= (xϕl(1), xϕl(2), . . .), and ϕl(i) =

{︄
i if i ≤ l + 1

i+ k − l if i ≥ l + 2



28 KAROLA MÉSZÁROS AND AVERY ST. DIZIER

Example 5.7. Let π = 14523. Then, π′ = 4523, so λ(π′) = (2, 2). For 0 ≤ l ≤ 2,the
permutation wl will have diagram given by the partition (l). These permutations are w0 =
2345, w1 = 3245, and w2 = 3425. Hence, the terms in the transition rule are

(1)(x22x
2
3)S1w0(x1, x4, x5, x6) = x22x

2
3

(x1)(x
2
3)S1w1(x1, x2, x4, x5) = x21x

2
3 + x1x2x

2
3

(x1x2)(1)S1w2(x1, x2, x3, x4) = x21x
2
2 + x21x2x3 + x1x

2
2x3.

Adding these terms together gives the expected polynomial

Sπ(x1, x2, x3, x4) = x21x
2
2 + x21x2x3 + x1x

2
2x3 + x21x

2
3 + x1x2x

2
3 + x22x

2
3.

6. Left-degree sequences as invariants

In this section we prove the results of Section 3 without the assumption that G is simple.
Similar adjustments can be made to generalize Sections 4 and 5 away from simple graphs.
In this generality, we also prove the following main result.

Theorem A. Let G be any graph on [0, n]. Then for any reduction tree R of G,

LD(G) = InSeq(R).

Theorem A was first proved independently by Grinberg [7]. To deal with multiple edges in
E(G), we view each element of E(G) as being distinct. Formally, we may think of assigning a
distinguishing number to each copy of a multiple edge. In this way, we may speak of subsets
F ⊆ E(G\0) in the usual sense.

For G any graph on the vertex set [0, n], we can still construct the reduction tree T (G)
using the same algorithm as before in Definition 3.2. As in the case of simple graphs, the
leaves of this specific reduction tree can be encoded as solutions to some constraint arrays.
The key is using a generalized version of Lemma 3.1 with multiple incoming and outgoing
edges at vertex v. This generalization is derived the same way and is not harder, but far
more technical. The arrays we obtain are no longer necessarily triangular, but rather they
may be staggered. This is explained below and demonstrated in Examples 6.1 and 6.2. We
leave the proofs to the interested reader; they are straightforward generalizations of those in
the previous section. With T (G) in hand, LD(G) is defined exactly as before.
We now describe how to define the arrays TriG(∅). Start with the array constructed for

simple graphs in Definition 3.3. Replace each aij by a
(1)
ij in Definition 3.3 and Theorem 3.4.

Add variables a
(k)
ij with k > 1 for each additional copy of the edge (j, i) appearing in G.

When there are k > 1 copies of the edge (j, i) ∈ E(G), also replace a
(1)
ij ≤ a

(1)
i−1,j in the

constraint array by a
(1)
ij ≤ a

(2)
ij ≤ · · · ≤ a

(k)
ij ≤ a

(1)
i−1,j. The following example demonstrates

these changes.

Example 6.1. Following Example 3.5, if G is the graph on vertex set [0, 4] with

E(G) = {(0, 1), (0, 1), (0, 2), (1, 2), (1, 2), (2, 3), (2, 4), (3, 4), (3, 4)},
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we obtain the constraints

0 ≤ a
(1)
41 = a

(1)
31 = a

(1)
21 ≤ a

(2)
21 ≤ a

(1)
11 = 2

0 ≤ a
(1)
42 ≤ a

(1)
32 ≤ a

(1)
22 = 5− a

(1)
21

0 ≤ a
(1)
43 ≤ a

(2)
43 ≤ a

(1)
33 = 6− a

(1)
31 − a

(1)
32

0 ≤ a
(1)
44 = 9− a

(1)
41 − a

(1)
42 − a

(1)
43

Defining TriG(F ) for arbitrary G is requires analogous modifications. View E(G) as a
multiset, so we formally view each copy of a multiple edge (j, i) as a distinct element. Let
F vary over subsets of E(G\0), and define TriG(F ) from (the general version of) TriG(∅) as
before using the numbers fij of (3.1) and treating each a

(m)
ij identically for different m.

Example 6.2. With G as in Example 6.1 and F = {(1, 2), (1, 2), (2, 3)}, the array Tri(F ) is
given by

2 ≤ a
(1)
41 + 2 = a

(1)
31 + 2 = a

(1)
21 + 2 ≤ a

(2)
21 + 2 ≤ a

(1)
11 = 2

1 ≤ a
(1)
42 + 1 ≤ a

(1)
32 + 1 ≤ a

(1)
22 = 3− a

(1)
21

0 ≤ a
(1)
43 ≤ a

(2)
43 ≤ a

(1)
33 = 3− a

(1)
31 − a

(1)
32

0 ≤ a
(1)
44 = 6− a

(1)
41 − a

(1)
42 − a

(1)
43

Using the definition of TriG(F ) for arbitrary graphs G, we can extend the definitions of
SolG(F ) and LD(G,F ) from simple graphs to arbitrary graphs G. As in Proposition 3.13, for
each F ⊆ E(G\0) the polytope Poly(TriG(F )) is integrally equivalent to the flow polytope of
a graph Gr(G), a straightforward generalization of Definition 3.12. The proofs of Theorem
3.15 and Corollary 4.10 then go through with minor changes. In particular, we have the
following summary result.

Theorem 6.3. Let G be a graph on [0, n], ρ be the map that takes a triangular array in any

SolG(F ) to its first column
(︂
a
(1)
n1 , . . . , a

(1)
nn

)︂
, and ψ be the map that takes a flow on ˜︁G\{s, 0}

to the tuple of its values on the edges {(j, t) | j ∈ [n]}. For F ⊆ E(G\0), recall the netflow
vector

bFG = (indegG(1)− outdegF(1), . . . , indegG(n)− outdegF(n),−#E(G\F )) .

Then for each F ⊆ E(G\0),

LD(G,F ) = ρ (SolG(F )) = ψ
(︂
F ˜︁G\{s,0}

(︁
bFG
)︁
∩ Z#E( ˜︁G\{s,0})

)︂
, so

LD(G) =
⋃︂

F⊆E(G\0)

LD(G,F )

=
⋃︂

F⊆E(G\0)

ρ (SolG(F ))

=
⋃︂

F⊆E(G\0)

ψ
(︂
F ˜︁G\{s,0}

(︁
bFG
)︁
∩ Z#E( ˜︁G\{s,0})

)︂
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In the proof of Theorem A below, it will be more convenient to use an equivalent for-

mulation of Theorem 6.3. Instead of considering flows on ˜︁G\{s, 0} with netflow vector bFG,

consider flows on ˜︁G\{s} with netflow vector (0, bFG), where

(0, bFG) = (0, indegG(1)− outdegF(1), . . . , indegG(n)− outdegF(n),−#E(G\F )) .

Now, we use Theorem 6.3 to prove Theorem A. Before proceeding with the proof, we first
recall the relevant notation introduced previously. For a graph G on [0, n], let R be any
reduction tree of G and T (G) the specific reduction tree whose leaves are encoded by the
arrays SolG(F ) (constructed in Definition 3.2). Recall that InSeq(R) denotes the multiset
of left-degree sequences of the leaves of R, and LD(G) = InSeq(T (G)).

Proof of Theorem A. We proceed by induction on the maximal depth of a reduction tree of
G. For the base case, the only reduction tree possible is the single leaf G. For the induction,
perform a single reduction on G using fixed edges r1 = (i, j) and r2 = (j, k) with i < j < k to
get graphs G1, G2, and G3, with notation as in (2.2). Note that we are selecting particular
edges r1 and r2 even if there are multiple edges (i, j) or (j, k). Let r3 denote the new edge
(i, k) in Gm for each m ∈ [3]. Let R(Gm) be the reduction tree of Gm, m ∈ [3], induced from
R by restriction to the node labeled by Gm and all of its descendants.
By the induction assumption, InSeq(R(Gm)) is exactly LD(Gm), so

InSeq(R) =
⋃︂

m∈[3]

InSeq(R(Gm)) =
⋃︂

m∈[3]

LD(Gm).

Thus, we need to show that

LD(G) =
⋃︂

m∈[3]

LD(Gm)(6.1)

regardless of the choice of r1 and r2. However, if ρ is the map that takes an array to its first
column, then Theorem 6.3 yields the disjoint union decomposition

LD(G) =
⋃︂

F⊆E(G\0)

ρ (SolG(F )) .

Similarly, for each m ∈ [3],

LD(Gm) =
⋃︂

F⊆E(Gm\0)

ρ (SolGm(F ))

Thus, to prove (6.1), it suffices to show⋃︂
F⊆E(G\0)

ρ (SolG(F )) =
⋃︂

m∈[3]

⋃︂
F⊆E(Gm\0)

ρ (SolGm(F )).(6.2)

To show (6.2), to each F ⊆ E(G\0), we associate a tuple (Fm)m∈I(F,r1,r2) with I(F, r1, r2) ⊆
[3] and Fm ⊆ E(Gm\0), m ∈ [3], such that each subset of any E(Gm\0) is in exactly one
tuple and for each F ⊆ E(G\0),

ρ (SolG(F )) =
⋃︂

m∈I(F,r1,r2)

ρ (SolGm(Fm)).
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By Theorem 6.3, we verify the equivalent condition

ψ
(︂
F ˜︁G\{s}

(︁
0, bFG

)︁
∩ Z#E( ˜︁G\{s})

)︂
=

⋃︂
m∈I(F,r1,r2)

ψ
(︂
F ˜︁Gm\{s}

(︁
0, bFGm

)︁
∩ Z#E( ˜︁Gm\{s})

)︂
.

To make the notation more compact, let H = ˜︁G\{s} and Hm = ˜︂Gm\{s} for m ∈ [3]. We
proceed in several cases depending on F, r1, r2. In each case, the argument is very similar to
the proof of Proposition 2.3.

I. Suppose that r1 is not incident to vertex 0. The following four cases deal with this scenario.

Case 1: r1, r2 /∈ F : Associate to F the tuple (F1, F2) with

F1 = F and F2 = F.

Let h be an integral flow on H with netflow vector (0, bFG). For m ∈ [3], we define integral
flows on Hm with netflow (0, bFGm

) having the same image under ψ.

• If h(r1) ≥ h(r2), define h1 on H1 with netflow bF1
G1

by

h1(e) =

⎧⎪⎨⎪⎩
h(r2) if e = r3,

h(r1)− h(r2) if e = r1,

h(e) otherwise.

• If h(r1) < h(r2), define h2 on H2 with netflow bF2
G2

by

h2(e) =

⎧⎪⎨⎪⎩
h(r1) if e = r3,

h(r2)− h(r1)− 1 if e = r2,

h(e) otherwise.

For the inverse map, given integral flows hm on Hm with netflow bFm
Gm

for m ∈ [2], define

flows h(m) on H by

h(1)(e) =

⎧⎪⎨⎪⎩
h1(r1) + h1(r3) if e = r1,

h1(r3) if e = r2,

h1(e) otherwise.

and h(2)(e) =

⎧⎪⎨⎪⎩
h2(r3) if e = r1,

h2(r2) + h2(r3) + 1 if e = r2,

h2(e) otherwise.

Case 2: r1 ∈ F, r2 /∈ F : Associate to F the tuple (F1, F2) with

F1 = F\{r1} ∪ {r3} and F2 = F\{r1} ∪ {r3}.

Use the same maps on flows given in Case 1.

Case 3: r1 /∈ F, r2 ∈ F : Associate to F the tuple (F1, F2, F3) with

F1 = F\{r2} ∪ {r1}, F2 = F, and F3 = F\{r2}.

Let h be an integral flow on H with netflow vector (0, bFG). For m ∈ [3], we define integral
flows on Hm with netflow (0, bFm

Gm
) having the same image under ψ.
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• If h(r1) > h(r2), define h1 on H1 with netflow bF1
G1

by

h1(e) =

⎧⎪⎨⎪⎩
h(r2) if e = r3,

h(r1)− h(r2)− 1 if e = r1,

h(e) otherwise.

• If h(r1) < h(r2), define h2 on H2 with netflow bF2
G2

by

h2(e) =

⎧⎪⎨⎪⎩
h(r1) if e = r3,

h(r2)− h(r1)− 1 if e = r2,

h(e) otherwise.

• If h(r1) = h(r2), define h3 on H3 with netflow bF3
G3

by

h3(e) =

{︄
h(r1) if e = r3,

h(e) otherwise.

Given integral flows hm on Hm with netflows bFm
Gm

for m ∈ [3], construct the inverse map

by defining flows h(m) on H for m ∈ [3]. Let h(2) be the same as in Case 1, and define

h(1)(e) =

⎧⎪⎨⎪⎩
h1(r1) + h1(r3) + 1 if e = r1,

h1(r3) if e = r2,

h1(e) otherwise,

and h(3)(e) =

⎧⎪⎨⎪⎩
h3(r3) if e = r1,

h3(r3) if e = r2,

h3(e) otherwise.

Case 4: r1, r2 ∈ F : Associate to F the tuple (F1, F2, F3) with

F1 = F\{r2} ∪ {r3}, F2 = F\{r1} ∪ {r3}, and F3 = F\{r1, r2} ∪ {r3}.
Use the maps on flows given in Case 3.

A straightforward check shows that every F ⊆ E(Gm\0) for m ∈ [3] is reached exactly
once by cases 1-4.

II. Suppose that r1 is incident to vertex 0. The following two cases deal with this scenario.

Case 1’: r2 /∈ F : Associate to F the tuple (F1, F2) with

F1 = F and F2 = F.

Use the maps on flows given in Case 1.
Case 2’: r2 ∈ F : Associate to F the tuple (F2, F3) with

F2 = F and F3 = F\{r2}.
Use the maps on flows for H2 and H3 given in Case 3.

A straightforward check shows that every F ⊆ E(Gm\0) for m ∈ [3] is reached exactly
once by cases 1’-2’. □

Acknowledgments

We thank Balázs Elek, Alex Fink, and Allen Knutson for inspiring conversations. We are
grateful to the anonymous referees for their helpful and detailed feedback, which improved
the exposition of the paper.



GENERALIZED PERMUTAHEDRA TO GROTHENDIECK POLYNOMIALS VIA FLOW POLYTOPES 33

References

[1] W. Baldoni and M. Vergne. Kostant partitions functions and flow polytopes. Transform. Groups, 13(3-
4):447–469, 2008.

[2] W. Baldoni-Silva, J. A. De Loera, and M. Vergne. Counting integer flows in networks. Found. Comput.
Math., 4(3):277–314, 2004.

[3] M. Beck and S. Robins. Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra.
Springer-Verlag, 2007.
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[9] K. Mészáros. Root polytopes, triangulations, and the subdivision algebra, I. Trans. Amer. Math. Soc.,

363(8):4359–4382, 2011.
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[11] K. Mészáros. Product formulas for volumes of flow polytopes. Proc. Amer. Math. Soc., 143:937–954,

2015.
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