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Abstract

While wetlands are the largest natural source of methane (CH,) to the atmosphere,
they represent a large source of uncertainty in the global CH, budget due to the
complex biogeochemical controls on CH, dynamics. Here we present, to our knowl-
edge, the first multi-site synthesis of how predictors of CH, fluxes (FCH4) in fresh-
water wetlands vary across wetland types at diel, multiday (synoptic), and seasonal
time scales. We used several statistical approaches (correlation analysis, general-
ized additive modeling, mutual information, and random forests) in a wavelet-based
multi-resolution framework to assess the importance of environmental predictors,
nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and
air temperature were dominant predictors of FCH4 at sites with smaller seasonal vari-
ation in water table depth (WTD). In contrast, WTD was the dominant predictor for
wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical
wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 + 11 days,
and lagged air and soil temperature by median values of 8 + 16 and 5 + 15 days, re-
spectively. Temperature and WTD were also dominant predictors at the multiday
scale. Atmospheric pressure (PA) was another important multiday scale predictor
for peat-dominated sites, with drops in PA coinciding with synchronous releases of
CH,. At the diel scale, synchronous relationships with latent heat flux and vapor pres-
sure deficit suggest that physical processes controlling evaporation and boundary

layer mixing exert similar controls on CH, volatilization, and suggest the influence of
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CH, emissions.

KEYWORDS

1 | INTRODUCTION

Methane (CH,) is responsible for almost one quarter of the cumu-
lative radiative forcing since the start of the industrial revolution
(Etminan et al., 2016). As the largest natural source to the atmo-
sphere, wetlands are responsible for ~30% of global CH, emissions,
but their contribution to the global CH, budget is highly uncertain
(Bridgham et al., 2013; Jackson et al., 2020; Saunois et al., 2020).
The complexity of wetland CH, exchange, which is the net result
of CH, production, consumption, and transport, makes interpret-
ing and predicting fluxes challenging (Bridgham et al., 2013).
Previous site-level (Chang et al., 2019; Chu et al., 2014; Desai
et al., 2015; Pugh et al., 2018) and synthesis studies (Knox et al.,
2019; Moore & Dalva, 1993; Olefeldt et al., 2013; Peltola et al.,
2019; Treat et al., 2018; Turetsky et al., 2014; Updegraff et al.,
2001) of wetland CH, exchange have improved understanding
of the abiotic and biotic controls on wetland CH, fluxes (FCH4).
These studies established that temperature, water table position,
air pressure and atmospheric turbulence, sediment biogeochemis-
try, and vegetation often dominate as coarse controls on net FCH4
from wetlands, with distinct controls varying by wetland type
(Bridgham et al., 2013; Lai, 2009; Olefeldt et al., 2013; Treat et al.,
2018; Turetsky et al., 2014; Wen et al., 2018). Both air and soil
temperature (TA and TS, respectively) can influence FCH4, with
the former dominating physical processes of diffusive transport
in plants and the latter strongly influencing microbial processes
controlling CH, production and oxidation and subsequent soil dif-
fusion and ebullition; thus, both often emerge as dominant pre-
dictors of FCH4 within and across sites (Knox et al., 2019; Morin,
2019). Water table depth (WTD) governs the reduction-oxidation
(redox) zones that determine CH, production and oxidation
(Bubier et al., 1995; Malhotra & Roulet, 2015; Moore & Knowles,
1989; Perryman et al., 2020, etc.). Physical processes such as
turbulent conditions and atmospheric pressure (PA) fluctuations
can influence the transport of CH, from the soil profile into the
atmosphere, particularly in porous peat soils where ebullition is
often the primary CH, transport mechanism during the pressure-
falling phase (Nadeau et al., 2013; Sachs et al.,, 2008; Ueyama,
Yazaki, et al., 2020). Biological factors such as plant community
type and primary production also influence CH, production and
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pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged
relationships with ecosystem photosynthesis indicate recent carbon substrates, such
as root exudates, may also control FCH4. By addressing issues of scale, asynchrony,
and nonlinearity, this work improves understanding of the predictors and timing of

wetland FCH4 that can inform future studies and models, and help constrain wetland

eddy covariance, generalized additive modeling, lags, methane, mutual information, predictors,
random forest, synthesis, time scales, wetlands

consumption through a variety of mechanisms, including supplying
labile carbon compounds that fuel methanogenesis (Christensen
et al., 2003; Tittel et al., 2019); enhancing oxygen transport into
anoxic soil layers via aerenchyma, thereby supporting rhizosphere
CH, oxidation (Laanbroek, 2010); and mediating transport of CH,
to the atmosphere via aerenchyma, allowing CH, to bypass poten-
tial oxidation in surface soils (Knoblauch et al., 2015; Kwon et al.,
2017; Villa et al., 2020).

Determining the environmental controls on FCH4 is critical for
understanding and modeling these fluxes. In addition to considering
direct, mechanistic drivers of methanogenesis, methanotrophy, and
CH, transport (e.g., temperature, WTD, PA; c.f., Table 1), there are
also benefits to understanding alternative variables that are strongly
correlated with FCH4 even if such variables (e.g., latent heat [LE]) are
indirectly linked to FCH4 (Table 1). These indirect variables can be
measured alongside FCH4 and its direct drivers to help capture the
complex and nonlinear relationships between environmental drivers
and FCH4 and can describe similar processes to those influencing
CH, exchange (Morin et al., 2014), and therefore are well-suited for
inclusion in data-driven FCH4 models.

While a general concept of the overall controls on wetland
FCH4 has been established, understanding the functional controls
on FCH4 is highly influenced by the temporal and spatial scales of
measurements (Turetsky et al.,, 2014). In particular, until recently,
data and synthesis studies were largely biased toward chamber-
based measurements from temperate and northern high-latitude
regions (Olefeldt et al., 2013; Turetsky et al., 2014). However, man-
ual chamber measurements are typically discrete in time and space,
and therefore may not capture the full spatiotemporal range of CH,
dynamics, limiting the investigation of the underlying drivers and
patterns of FCH4 in wetlands (Morin, 2019).

Eddy covariance (EC) flux towers provide ecosystem-scale, non-
invasive and near-continuous measurements of the exchange of
mass (e.g., carbon dioxide [CO,], CH,, water) and energy between
the land surface and the atmosphere (Baldocchi, 2014). Methane
exchange in wetlands often involves nonlinear and asynchro-
nous processes across multiple time scales (Schaller et al., 2019;
Sturtevant et al., 2016). The continuous, high-frequency nature of
EC measurements along with supporting biophysical measurements
offer promising datasets for improving understanding of wetland
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TABLE 1 Physical and biological predictors included in this analysis and references from studies that have previously identified these
variables as predictors of methane fluxes (FCH4). Here we consider variables that have a direct influence on methane (CH,) production,
consumption, and/or transport (white cells associated with each predictor), and variables that represent a proxy or are correlated with
a process that has a direct influence on FCH4 (gray cells). We also include scales at which we hypothesize that these predictors will be

dominant

Predictor

Biological predictors

Gross primary
productivity
(GPP)

Ecosystem
respiration
(RECO)

Net ecosystem
exchange (NEE)

Mechanism(s) and hypothesized scale

Oxygenation of zone around roots (direct driver of CH, consumption) (diel to seasonal
scale)

Carbon substrate for methanogens (i.e., root exudates, root mortality, plant residue;
proxy for CH, production) (diel to seasonal scale)

Coupling between FCH4 and leaf photosynthesis may indicate that FCH4 is regulated
by stomatal conductance (proxy for CH, transport) (diel scale)

CH, transport through aerenchymatous vegetation will lead to coupling between
vegetation development (e.g., stalk diameter, Leaf area index [LAI]) and FCH4 since
seasonal development of the vegetation will increase the available aerenchyma area
(proxy for CH, transport) (seasonal scale)

May describe similar effects to those that influence CH, production/consumption/
flux (proxy for FCH4) (diel to seasonal scale)

Breakdown of complex carbon compounds provides simple carbon substrates that
fuel methanogenesis and CH, production (diel to seasonal scale)

NEE is linked to plant activity (GPP; direct effect and proxy for FCH4) and respiration
(RECO; proxy for FCH4) (diel to seasonal scale)

Biological and physical predictors

Latent heat
turbulent flux
(LE)

Physical predictors

Air temperature
(TA)

Soil temperature
(TS)

Water table depth
(WTD)

Incoming
shortwave
radiation
(SW_IN)

Vapor pressure
deficit (VPD)

Evaporation of water and CH, volatilization from the water and plant surfaces are
driven by similar physical mechanisms and tend to covary (proxy for CH,, transport)
(diel to seasonal scale)

LE is linked to plant activity (e.g., LAl is a strong determinant of LE; proxy for CH,
transport) (seasonal scale)

Influence of vapor pressure deficit (VPD)/humidity gradients on pressurized
ventilation in aerenchymatous vegetation (proxy for CH,, transport) (diel scale)

In some species, stomatal conductance of water vapor from the vegetation is
correlated with CH, transport through plant tissue (proxy for CH, transport) (diel
scale)

Temperature dependence of microbial CH, production and consumption (direct
driver of CH, production and consumption) (multiday to seasonal scale)

Influence on diffusive transport in plants (direct driver of CH, transport) (multiday to
seasonal scale)

Temperature dependence of microbial processes controlling CH, production and
oxidation (direct driver of CH, production and consumption) (multiday to seasonal
scale)

Influence on soil diffusion and ebullition of CH, (direct driver of CH, transport)
(multiday to seasonal scale)

Influence on soil redox conditions (direct driver of CH, production and consumption)
(multiday to seasonal scale)

Influence on slow vs. rapid diffusion of CH, through water vs. soils, respectively (CH,
transport) (diel to multiday scale)

Influence on the rates of ebullition (CH,, transport) (diel to multiday scale)

Influence on TA, TS, GPP, LE, and mixing of the water column (proxy for FCH4) (diel to
seasonal scale)
Influence of light on plant activity (proxy for CH, transport) (diel and seasonal scale)

Influence on pressurized ventilation of CH, in aerenchymatous vegetation (direct
influence on CH,, transport) (diel scale)

Influence on GPP and LE (proxy for FCH4) (diel to seasonal scale)
Covaries with near-surface CH, concentration in the air through boundary layer
growth and depth (proxy for CH, transport) (diel scale)
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TABLE 1 (Continued)

Predictor Mechanism(s) and hypothesized scale

Friction velocity
(USTAR)

e Near-surface turbulence can influence ebullition and diffusion, and increased
turbulence can lead to increased aeration and transient flushing of CH, stored in soil

ST i v L

References

Sachs et al. (2008); Nadeau et al.
(2013), Koebsch et al. (2015)

(direct driver of CH,, transport) (diel to multiday scale)

Atmospheric

pressure (PA) driver of CH, transport) (diel to multiday scale)

Wind direction
(wD)?

o Atmospheric pressure (falling pressure) as a trigger for methane ebullition (direct

e Related to site heterogeneity (indirect relationship with FCH4) (diel to seasonal scale)

Tokida (2005); Tokida et al.
(2007); Sachs et al. (2008);
Linkhorst et al. (2020)

Jammet et al. (2017); Tuovinen
et al. (2019)

Note that WD was separated into sine and cosine of wind direction (sinWD, cosWD) to represent WD as a continuous function.

FCH4 over multiple time scales. For example, water-level fluctu-
ations correspond with pulses of CH, with hourly to daily delays
(Hatala, Detto, & Baldocchi, 2012), but also inhibit FCH4 across a
range of time scales (Koebsch et al., 2015; Sturtevant et al., 2016).
However, despite the fact that many of these processes and time
scales are poorly characterized at the ecosystem scale, they are im-
portant for predicting FCH4 and, therefore, are critical to include
in data-driven and process-based models (Koebsch et al., 2015; Li
et al., 2018). While studies using EC flux data can elucidate these
knowledge gaps, most studies focus on single sites, thus limiting the
scope of inference and generalization across multiple wetland types
at regional and global scales. Furthermore, given the complexity of
wetland FCH4, more studies explicitly questioning assumptions of
linear, synchronous, and single-scale analyses are needed, which
can provide new insights into interpretations and predictions of CH,,
dynamics.

Robust statistical approaches are required to capture and de-
scribe CH, dynamics. Numerous statistical methods with known
strengths and weaknesses have been used to describe and model
FCH4, ranging from simple correlation analysis to more complex
machine learning algorithms (Genuer et al., 2010; Kim et al., 2020;
Peltola et al.,, 2019). By implementing and comparing multiple
statistical approaches, it is possible to evaluate how our under-
standing of the complex interactions between controls on FCH4
is influenced by the choice of statistical analysis (Trifunovic et al.,
2020).

In this study, we take advantage of near-continuous EC mea-
surements to elucidate the predictors and timing of wetland CH,,
flux dynamics. Here we use the term “predictor” rather than
“driver” or “control” since we are considering direct, indirect,
and coincident variables associated with FCH4 (c.f., Table 1). We
leverage the FLUXNET-CH4 dataset (Knox et al., 2019; Delwiche
et al., in press) and multiple statistical approaches to analyze mea-
surements from 23 EC sites across the world (representing 107
site-years of data) to better constrain the dominant predictors of
freshwater, non-tidal wetland FCH4 across time scales and wet-
land types. Specifically, we address the following questions: (i)
What are the dominant predictors of FCH4 at diurnal to seasonal
time scales at each wetland? (ii) How does the relative dominance
of each predictor vary across wetland types? (iii) Is the identifi-
cation of dominant predictors of FCH4 influenced by the choice

of statistical approach? (iv) How important are nonlinearities and

lags in interpreting FCH4?

2 | METHODS

2.1 | Dataset and site description
In all, 23 sites from the FLUXNET-CH4 database (Table 2; Figure 1)
were selected for this analysis because they had at least one full
year of FCH4 measurements and reported all predictors of interest
(Table 1). We only analyzed data for non-tidal, freshwater wetlands
because FCH4 from tidal wetlands is influenced by additional fac-
tors such as salinity, sulfate, and tidal action (Seyfferth et al., 2020).
Data standardization, gap-filling, and partitioning of net ecosystem
exchange (NEE) of CO, for the FLUXNET-CH4 dataset are described
in detail in Knox et al. (2019) and Delwiche et al. (in press). Here we
considered physical predictors of FCH4 such as TA, TS, WTD, PA,
incoming shortwave radiation (SW_IN), vapor pressure deficit (VPD),
and wind direction (WD), biological predictors such as gross primary
productivity (GPP), NEE, or ecosystem respiration (RECO), and coin-
cident, indirect variables such as LE, to understand which variables
are strongly correlated with FCH4 and under what conditions and
time scales (Table 1). When more than one observation depth for
TS was available, we selected TS at the depth where the statisti-
cal dependence of FCH4 on TS was highest (see Section 2.2.3). As
noted above, here we use the term “predictor” rather than the terms
“driver” or “control” since several of the variables considered here do
not have a direct influence on CH, production, consumption, and/
or transport, but rather reflect variables that represent a proxy or
are correlated with processes that have a direct influence on FCH4.
However, in the Discussion, we emphasize which predictors repre-
sent direct drivers of FCH4 and which reflect proxies (c.f., Table 1).
Sites were classified into bog, fen, marsh, swamp, rice paddy, and
drained wetland based on site-specific literature (Delwiche et al., in
press; Table 2; Figure 1). Climate was extracted and modified from
Olson et al. (2001) using site coordinates and includes boreal, tem-
perate, and tropical/subtropical. No tundra sites were included in
this analysis due to the lack of key ancillary variables (e.g., WTD) in
the FLUXNET-CH4 database. Management regimes included natu-
ral, managed, and restored freshwater wetlands (Table 2).
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FIGURE 1 Locations of non-tidal,
freshwater wetland eddy covariance sites

< included in this analysis of methane flux,
w‘JJPP':‘fJ with sites colored by wetland type. More

information on these sites is provided in
Table 2. Base map data from https://www.
soest.hawaii.edu/pwessel/gshhg/

2.2 | W.ithin-site analysis of the dominant
predictors of CH,, fluxes

To investigate the complexity of wetland FCH4, we compared mul-
tiple statistical approaches to analyze the dominant predictors of
FCH4 and evaluate whether findings of the most important predic-
tors of FCH4 were consistent across approaches. We used methods
commonly used in analyses of FCH4 and their drivers, ranging from
simple linear correlation to more complex methods such as general-
ized additive models (GAM), information theory, and random forests
(RF). For each method, the goal was to identify and rank the impor-
tance of predictors of FCH4 (i.e., independent variables) to explain
the variability of FCH4 (i.e., dependent variable).

Variable importance analyses using each of the four methods were
first performed using daily mean data, a common time step for ana-
lyzing FCH4 (Rinne et al., 2018; Turetsky et al., 2014). Analyses were
also performed on wavelet-decomposed data using half-hourly data, as
described below, to assess how predictors vary across time scales (i.e.,
diel to seasonal time scales), as partitioning variability across scales can

help isolate and identify important processes (Koebsch et al., 2015).

221 |

Wavelet-based time-scale decomposition

The maximal overlap discrete wavelet transform (MODWT) was
used to decompose the time scales of variability in gap-filled FCH4
and explanatory variables (Sturtevant et al., 2016; see Supporting
Information for full details and implementation including treatment
of gaps). The MODWT decomposes the time series into the detail
added from progressively coarser to finer scales, and can be either
summed or treated individually to explore patterns across scales. The
detail in the half-hourly fluxes was reconstructed for dyadic scales
1 (2 measurements = 1 h) to 14 (2** measurements = 341 days). We
summed the detail over adjacent scales to yield four general time
scales of variation (Sturtevant et al., 2016). Time scales of variation
included the “hourly scale” (1-2 h) representing short-term perturba-
tions such as clouds passing overhead, the “diel scale” (4 h-1.3 days)
representing the diel cycles in radiation and temperature, the “multi-
day scale” (2.7-21.3 days) encompassing synoptic weather variabil-
ity and shorter-term variations in water levels, and the “seasonal

scale” (42.7-341 days) representing vegetation phenology, seasonal

hydrological cycle, and the annual solar cycle. Data were wavelet
decomposed into the hourly, diel, multiday, and seasonal scales
with the Wavelet Methods for Time Series Analysis (WMTSA) using
the Wavelet Toolkit in MATLAB (Cornish et al., 2003). We focused
predominantly on the predictors of diel to seasonal time scales as
the hourly wavelet scale is often dominated by noise (Hollinger &
Richardson, 2005). As such, the hourly scale was only produced to
show the distribution of FCH4 variability across time scales.

Since wavelet decomposition requires special treatment of gaps,
we used gap-filled data from the FLUXNET-CH4 database for the
wavelet decomposition. However, following wavelet decomposi-
tion, the original gaps were subsequently re-introduced prior to the
analyses described below in all but the seasonal time scale to mini-
mize biasing the results based on gap-filling algorithms (Sturtevant
et al., 2016). Original gaps at the seasonal scale were not removed

because gap lengths were small relative to this scale.

2.2.2 Linear correlation

|
A pairwise Pearson's linear correlation analysis between predic-
tors and FCH4 was performed on all sites and time scales described
above, with predictor importance represented by the coefficient of
determination (Table S1). Log transformation was not performed as
difficulties arise in interpreting log transformed variables. In addi-
tion, negative and zero values would need to be either discarded or
manipulated for a log transformation and therefore skew the results.
All analyses were conducted in Matlab 2019a (Mathwork Inc.). The
linear correlation was deemed significant at an « level of 0.05.

2.2.3 Relative mutual information

|
In information theory, mutual information (I) defines the average
tendency for paired states of two variables (e.g., X and Y) to co-
exist (Fraser & Swinney, 1986). Computed from the marginal and
joint probability distributions of X and Y, relative mutual informa-
tion (IR,) characterizes the proportion of bits required to repre-
sent Y that is redundant given the knowledge of X. Put differently,
it is a normalized measure of the statistical dependence of Y on X,
with larger values indicating higher dependence, or in this context,


https://www.soest.hawaii.edu/pwessel/gshhg/
https://www.soest.hawaii.edu/pwessel/gshhg/
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identifying a stronger link to FCH4. A strength of I, lies in the lack
of parametric assumptions about the relationships between X and Y,
and therefore, it can address both linear and nonlinear interactions.
The strength of I, and IR, is further enhanced by adding a time lag
() to these metrics, thereby allowing us to identify both synchro-
nous and asynchronous interactions. A “synchronous” interaction is
defined as one in which the maximum IR, is found at 7 = 0 (i.e.,
zero-time lag), indicating that variations in Y are most related to si-
multaneous variations in X. Otherwise, the interaction is character-
ized as “asynchronous,” where maximum IR, at z > O indicates that
the fluctuations in Y lagged variations in X, while maximum IR, at
7 < 0 implies that variations in Y lead variations in X. As such, mutual
information can identify both the statistical strength (i.e., predictor
importance) and asynchrony of complex biosphere-atmosphere in-
teractions, such as wetland FCH4 (Sturtevant et al., 2016).

IR between FCH4 (X) and biophysical predictors (Y) of inter-
est was calculated for both daily mean data and wavelet decom-
posed data over a range of time lags (z) using version 1.5 of the
ProcessNetwork Software (Table S2; Ruddell et al., 2008). Details on
the lags, discretization, statistical significance, and bias correction

are provided in the Supporting Information.

2.2.4 | Generalized additive models

The third method used to assess important predictors of FCH4 was
generalized additive models (GAMs). FCH4 often follows nonlinear
relationships with various potential predictor variables. Unlike linear
correlation analysis, GAMs have the capability of describing these
nonlinear relationships and treating the degree of nonlinearity as a
quantity to be estimated. We developed GAMs of FCH4 using each
predictor individually. Relative predictor importance was determined
by comparing the deviance explained among predictors (Table S3). All
GAMs were implemented using the mgcv package in R version 3.6.2
(Wood, 2011), with details provided in the Supporting Information.

2.2.5 | Random forests
The last method used to assess variable importance and the domi-
nant predictors of FCH4 was random forests (RF), which is a machine
learning algorithm that grows an ensemble of decision trees (Breiman,
2001). A strength of decision trees is that this approach can reproduce
nonlinearities among multiple predictor variables to explain FCH4. For
each tree, data are successively split at decision nodes to minimize vari-
ance in the resulting branches. Predictor variables can be considered at
multiple decision nodes within a single tree, allowing the RF algorithm
to thoroughly explore possible predictor conditions. Moreover, the RF
algorithm is less prone to issues of overfitting associated with single
trees because it grows an ensemble (forest) of decision trees and each
tree is trained using randomly drawn (bagged) subsamples of the data.
A RF algorithm was trained for each site using the ranger pack-
age in R (R Core Team, 2019; Wright & Ziegler, 2017) with details

ST i v

provided in the Supporting Information. We ranked predictors using
permutation importance, which avoids bias of other methods (Strobl
et al., 2007) and scaled importance for site comparisons (Table S4).
We also provide out-of-bag model fit metrics (coefficient of deter-
mination, mean absolute error, and bias) as a further evaluation of
relative confidence in results between sites (Figures S13 and S14).

2.2.6 | Variable importance standardization

Each statistical method was used to provide a numeric ranking of
variable importance, which we used to estimate dominant FCH4
predictors (i.e., the highest ranked covariates) and assess how pre-
dictors vary between statistical methods. However, the statistical
approaches have different scales for variable importance scores and
different ranges between sites. As such, variable importance metrics
for each method were normalized between zero and one, and there-
fore for all sites and methods, the strongest predictor has a value
of one and the lowest a value of zero. This normalization ensures

comparability in scores across wetland sites and methods.

2.3 | Visualizing and cross-site synthesis of the
dominant predictors of CH, fluxes

To distill the information generated from the variable importance
metrics described above, heatmaps and principal component analy-
sis (PCA) were used to visualize and assess predictor patterns across
sites and wetland types. Here we used the heatmap.2 function in
gplots R package (Warnes et al., 2019) to generate a heatmap (with-
out cluster analysis) of the normalized variable importance metrics
described above to help visualize dominant predictors across sites.

PCA was used to summarize and visualize the information con-
tained in the variable importance analysis. For each method, we com-
pressed the standardized variable importance scores generated using
the statistical approaches described in Sections 2.2.2-2.2.5 into two
principal components. The distributions of sites on the principal com-
ponents visualize how strongly FCH4 at each site was regulated by
the environmental predictors. PCA was done using the prcomp func-
tion in base R. Columns of the normalized matrices were centered so
that the mean of each column was equal to zero (Abdi & Williams,
2010).

3 | RESULTS

3.1 | Magnitude of FCH4 and time scales of
variability

FCH4 exhibited a wide range of magnitudes across the 23 sites, with
median FCH4 varying from 0.5 to 541 nmol m™2s™* (Table 2). Median
FCH4 averaged within wetland types was highest in marshes, fol-
lowed by rice, fens, bogs, and swamps.
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FIGURE 2 Variance of methane flux (FCH4) wavelet coefficients at each time scale of interest as a percentage of the total variance for all
sites in Table 2. The color of site labels indicates wetland type as defined in Table 2, and include bogs (pink), drained (orange), fens (green),
marshes (blue), rice paddies (red), and swamps (gray). Note that the time scales of variation are described in Section 2.2.1. See Table 2 for site

information

TABLE 3 Summary of top three dominant significant predictors (p < 0.05) of freshwater wetland methane flux across sites for each time
scale and statistical methods including correlation, synchronous and maximum information theory (IR), generalized additive modeling (GAM),
and random forest (RF). Variables are defined in Table 1. Note that significance was not assessed for RF based on the method of estimating
variable importance. Analyses for “Seasonal,” “Multiday,” and “Diel” time scales were on wavelet transformed data

Seasonal Multiday Diel Daily average
Statistical Method #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3
Correlation TS LE TA PA TA LE LE NEE SW_IN TS TA GPP
Synchronous IR TS TA LE TS TA PA LE NEE GPP TS TA GPP
Maximum IR TS TA LE TS TA LE NEE LE GPP TS GPP NEE
GAM TS TA LE TA sinWD TS LE NEE SW_IN TA TS GPP
RF TS NEE TA WTD TS TA NEE LE GPP TS GPP WTD

FCH4 exhibited strong variation across time scales (Figure 2).
The seasonal time scale tended to dominate FCH4 variability across
wetland sites, although it was notably lower in some tropical/sub-
tropical sites where the seasonal variability of multiple biophysical
predictors (e.g., radiation, temperature, GPP) tended to be much
lower than in temperate and boreal sites. The variation in FCH4
at multiday and hourly scales was generally low. However, some
sites with low fluxes tended to have higher variation at the hourly
scale (e.g., FI-Si2 and US-Uaf) due to the higher signal to noise ratio
(Hollinger & Richardson, 2005).

Variation at the diel scale also varied across sites. Sites with
high diel FCH4 variation typically showed a diurnal pattern of
highest fluxes during late-morning to mid-afternoon and lower
fluxes at night (Figure 2; Figure S1). Nonetheless, some sites with
considerable variation at the diel scale exhibited different diurnal
patterns (Figure S1). At some sites, the proportion of variance in
FCH4 at the diel scale appeared large despite a lack of a typical
ID-Pag, FI-Si2, MY-MLM, US-Uaf). This was

largely attributed to the fact that at these sites variation at other

diurnal pattern (e.g.,

scales (e.g., seasonal) was low (Figure 2) and/or the magnitude of
FCH4 was low.

3.2 | Dominant predictors of FCH4 across
time scales
3.2.1 | Summary across sites, time

scales, and methods

To assess the dominant predictors at each time scale, we aver-
aged normalized variable importance scores across sites for each
method (Table 3). At the seasonal scale, TS was always ranked as
the dominant predictor. TA alternated as either the second or third
most important predictor along with LE or NEE. Overall, the differ-
ent approaches tended to converge on the top predictors, with each
of these dominant predictors explaining on average >50% of the
variance in seasonal FCH4 based on the linear correlation and GAM
analyses (Tables S1 and S3).

Similar to the seasonal scale, there was also general consistency
between methods at the multiday scale, with all approaches again
identifying temperature (TS and/or TA) in the top three predictors
(Table 3). Other key predictors that emerged at the multiday scale
included PA, LE, WTD, and wind direction (WD). While overall less
of the variability in multiday FCH4 was explained by each of the
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individual predictors, the top predictor at each site generally ex-
plained between 10% and 50% of the variance in multiday FCH4
(Tables S1 and S3), with site-level R? > 0.95 for the RF model with all
predictors (Figure S13).

At the diel scale, all approaches identified LE and NEE as the top
two predictors of FCH4, and with GPP or SW_IN as the third most
important predictor depending on the method (Table 3). While the
explanatory power of individual predictors was lowest at the diel
scale, predictors did explain up to 50% of the variability in FCH4
for sites with a typical diurnal pattern (i.e., lower fluxes at night and
higher during the day; Tables S1 and S3).

Daily averaged data are often used for analysis of FCH4 vari-
ation at the seasonal scale (Chu et al., 2014; Rinne et al., 2018).
However, unlike wavelet seasonal transformed data, daily av-
erages also include influences from other time scales of varia-
tion. As such, although temperature (TS or TA) was consistently
found to be the top driver across methods at this time step, other
variables such as GPP, NEE, and WTD, which were identified
as key controls of FCH4 at the multiday and diel scales, were
also identified in the top three drivers for daily averaged data
(Table 3).

Given the consistent patterns across methods (Table 3), we focus
on the findings of the IR method for the remainder of the results. The
IR approach is explicitly designed to identify both synchronous and
asynchronous relationships (Sturtevant et al., 2016), representing an
advantage over the other statistical methods where accounting for

lags is possible but it is not among their inherent strengths. However,
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results from the other statistical approaches are presented as neces-
sary (primarily in the Sl) to show consistency or highlight differences
in the methods.

3.2.2 | Patterns within and across sites at the
seasonal scale

Figure 3 shows a detailed picture of the dominant predictors within
and across sites determined by maximum IR between FCH4 and
biophysical variables. The heatmap at the seasonal scale for both
maximum IR (Figure 3a) and synchronous IR (Figure S2a) shows that
temperature (TS or TA) was the dominant predictor across the ma-
jority of sites at this scale, with LE, NEE, and GPP also among top
predictors, corroborating the broader patterns across sites shown in
Table 3. The dominance of temperature, LE, NEE, and GPP was also
apparent in the other statistical approaches (Figure S3). However,
Figure 3a and Figure S2a also revealed other patterns which were
obscured when averaging variable rankings across sites; notably,
WTD was a dominant predictor at the swamp and drained sites and
two of the rice paddy sites. The importance of WTD at these sites
was also consistent across statistical methods (Figure S3).

The importance of temperature and WTD was also evident in
the PCA of IR results (Figure 4). Sites clustered along PC1 (29% of
explained variance) which corresponds predominantly with WTD,
TA, LE, and VPD (highly correlated with TA) as dominant predictors
of FCH4 at the seasonal scale (Table S5). This clustering by wetland
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FIGURE 4 Biplots showing the two largest components from the principal component analysis of the matrix of normalized, maximum
relative mutual information (IR) at the (a) seasonal scale, and (b) multiday scale. In (a), sites are colored by wetland type and the size of the
dots represent the ratio of the standard deviation (SD) in water table depth (WTD) to SD in air temperature (TA) at the site. Direction and
importance of normalized, maximum IR is illustrated by the vectors. See Table 2 for site information and Table 1 for predictor variable

information

type further supports the finding above that while temperature was
a dominant predictor at most sites, WTD was a key control at the
swamp, drained but seasonally inundated, and two of the rice paddy
sites. Sites where WTD is a dominant predictor at the seasonal scale
also tended to have a greater ratio in the variation of WTD relative to
TA (Figure 4). This visible clustering along axes of WTD and tempera-
ture (and variables correlated with temperature) was also apparent
in the PCA of the results from the linear correlation, GAM, and RF
analyses (Figure S4), again supporting the findings of the IR analysis
of the dominant predictors of FCH4 at the seasonal scale (Table 3;
Figures S3 and S4).

The results of the PCA also suggested other clusters across wet-
land types. Fens and most bogs tended to cluster together along PC2
in the bottom right corner of the scatter plot indicating the impor-
tance of GPP and RECO as secondary predictors of FCH4 in these
wetland types (Figures 3a and 4; Table S5). However, except for
GAM, similar clustering for bogs and fens was less apparent in the
other statistical approaches (Figure S4).

For sites where WTD was among the higher ranked predictors
(the swamp and drained sites, two rice paddy sites, and the bog NZ-
Kop; Figure Sé), seasonal FCH4 lagged WTD by an average of ap-
proximately 17 + 11 days (standard deviation; Figure 5a; Figures S5
and S6). The lag at peak IRwrp req @t individual sites ranged from 2
to 35 days (Figure 5a; Figures S5 and Sé). The median lag between
seasonal FCH4 and TA was 8 + 16 days (Figure 5b), and the median
lag with TS was 5 + 15 days (Figure 5c). These findings suggest a
more synchronous relationship between FCH4 and temperature at
the seasonal scale relative to WTD (Figure 5). As noted in the meth-
ods, here we selected TS at the depth where IRrs Fcpa Was greatest.

We hypothesize this is the depth where CH, production was great-
est but acknowledge the lack of information on the depth profile of
CH, oxidation and labile carbon supply. With respect to negative
lags with TS, a negative lag does not indicate that seasonal FCH4
began to increase before TS; for all sites and site years, seasonal
FCH4 began to increase after TS, and therefore negative lags with
TS reflected the fact that seasonal FCH4 peaked prior to TS and/
or began to decrease prior to the decrease in TS at the end of the
growing season (Figure S7). Lags were also observed with respect to
other top predictors of seasonal FCH4 (Figure 5d,e), where both LE
and GPP tended to increase and/or peak prior to FCH4 (Figure S8).
The median lag between FCH4 and LE was 17 + 18 days (Figure 5d)
while FCH4 lagged GPP by 12.5 + 23 days (Figure 5e).

3.2.3 | Patterns within and across sites at the
multiday scale

WTD, TA, and PA were among the top predictors at the multiday
scale (Table 3; Table Sé; Figures 3b and 4b) and were generally
consistent across statistical approaches. However, the relation-
ships with WTD and PA were less apparent for linear correlation
analysis and GAMs, respectively (Table S6; Figure S9). While clus-
tering across wetland types was less pronounced at the multiday
scale (Figure 4b; Figure S9), some patterns emerged. Notably, PA
was in the top three predictors at several peat-dominated sites, in-
cluding bogs, fens, a peat swamp, and a restored marsh underlain
by peat (Figure 3a; Figure S10). The relationship between FCH4
and PA was near-synchronous. Although Figure 6a suggests that
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 (a ] | (b ! fluctuations on the order of 0.5-2 kPa resulted in pulses of CH, on
6 (@) WTD 6 ®) _: A the order of 5-100 nmol m™2s™, with larger pulses in CH, at high
— — B emitting sites (Figure S10).
% 41 % 4r : Similar to the relationship with PA, there was a near-
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variation in FCH4 slightly led variation in WTD (a lag of ~8 h) and
6 (c) ' TlS | 6l (d) : LE a secondary interaction wher'e FCH4 Iagge'd WTD. As iIIust'rated
| for US-Tw1, the wavelet detail reconstruction for these variables
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2t k 2t secondary lagged interaction was frequently the result of lower
H : FCH4 after a subsequent rise in WTD (Figure 6f). The one excep-
0 —l |_| ol— 1 | tion to this pattern was at the rice paddy site (US-Twt), where IR as
-20 0 20 40 60 -20 0 20 40 60 a function of lag only had a single peak (Figure 6e), with maximum
Lag (days) Lag (days) IRwro,Fens OCCUTTing at a lag of ~5 days.
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3.2.4 | Patterns within and across sites at the
- : : diel scale
o | Some sites had more variation at the diel scale than others. Sites
21 | ] which exhibited a typical diurnal pattern primarily included fens,
! marshes, swamps, and rice paddies, with amplitudes in the diel
0 i ‘ pattern ranging between ~8 and 172 nmol m™2s™* (Figure 7; Figure
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FIGURE 5 Histogram of the lag [inferred from maximum
relative mutual information (IR)] between methane flux (FCH4)
and (a) water table depth (WTD) (7 sites, median lag = 17 days and
mean lag = 18.3 days), (b) air temperature (TA) (19 sites, median

lag = 8 days and mean lag = 10.8 days), (c) soil temperature (TS)

at depth where IR at zero lag was greatest (17 sites, median

lag = 5 days and mean lag = 5.4 days), (d) latent heat flux (LE) (16
sites, median lag = 17 days and mean lag = 20.2 days), and (e) gross
primary productivity (GPP) (10 sites, median lag = 12.5 days and
mean lag = 20.7 days). Red line indicates zero lag, dashed black line
represents median lag across sites, and solid black line represents
mean lag across sites. Note that the variable number of sites is due
to the fact that we only included sites where the driver of interest
(i.e., WTD, TA or TS) was statistically significant and in the top five
highest ranked predictors. See Table 2 for site information and
Table 1 for predictor variable information

FCH4 slightly led drops in PA (on the order of ~4 + 2 h), these
lags are not significantly different from zero at the multiday scale
(Sturtevant et al., 2016). As such, drops in PA coincided with
synchronous releases of FCH4 (Figure éb; Figure S10). Pressure

S1). While not all fens, marshes, and swamps exhibited diel varia-
tion, only one of the bogs had a typical diurnal pattern (Figure 7;
Table 2). All sites with a typical diurnal pattern had aerenchyma-
tous vegetation and only JP-BBY had mosses (Sphagnum) present
(Table 2).

Across statistical methods, top predictors of FCH4 at the diel
scale included LE, NEE, and GPP, although in some cases SW_IN was
also among the top predictors of diel FCH4 (Table 3). Of the sites
characterized by a typical diurnal pattern, the dominant relation-
ships observed were between FCH4 and LE (5 sites), GPP (3 sites),
net ecosystem production (NEP, or negative NEE; 2 sites), VPD (1
site), and SW_IN (1 site; Figure 7). The relationship between FCH4
and LE was approximately synchronous (z ~ 0 h), with lags ranging
between -1 and 0.5 h, and a median lag of O h. Lags were slightly
longer for the other biophysical predictors, ranging up to 4 h for GPP,
3 h for NEP, 2 h for SW_IN, and 1 h for VPD.

While in most cases the mean diel pattern of the biophysical
predictor with maximum IR closely matched that of FCH4, in some
cases the diel patterns were less well aligned (e.g., DE-Zrk; Figure 7).
This discrepancy occurs because IR reflects not only similarity in the
shape of the diel pattern but also in the magnitude of the diel vari-
ability (Figure S11; Sturtevant et al., 2016). For example, at DE-Zrk,
the shape of the diel pattern in FCH4 appears to be more strongly
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FIGURE 6 Relative mutual information (IR) as a function of lag between wavelet transformed multiday methane flux (FCH4) and (a)
atmospheric pressure (PA), (c) temperature (TA or TS depending on which had the highest IR), and (e) water table depth (WTD). For ease

of visualization only sites where drivers were the top predictor of multiday FCH4 are included here. Vertical lines represent zero lag (z = O;
dotted red line), and the mean (black line) and median (dashed black line) lag of maximum IR across sites. IR across all sites and lags were
significant. Wavelet detail reconstruction of FCH4 and (b) PA (note the negative sign for ease of visualization) for JP-BBY, (d) TS for DE-Zrk,
and (f) WTD for US-Tw1. Note that the mean is removed in wavelet detail reconstructions, therefore, the y-axes are relative rather than
absolute. Panels (b), (d), and (f) illustrate an example of the relationships observed in panels (a), (c), and (e). See Table 2 for site information

and Table 1 for predictor information

related to VPD while the amplitude of the pattern was more closely
related to GPP (Figure S11). This discrepancy between the mean diel
pattern of the biophysical predictor with maximum IR and FCH4 was
observed in some other sites as well (e.g., KR-CRK; US-Twt); however,
when considering synchronous relationships (i.e., 7 = 0), in most cases
the diel pattern in FCH4 closely matched that of LE or VPD (Figure
S12).

4 | DISCUSSION

Methane exchange in wetlands is complex, and often involves
nonlinear and lagged interactions across a range of time scales
(Sturtevant et al., 2016). While several studies have explored en-
vironmental controls on FCH4 across wetland types and biomes
(Olefeldt et al., 2013; Treat et al., 2018; Turetsky et al., 2014), this
is the first multi-site synthesis study that explores how predictors
of non-tidal, freshwater wetland FCH4 vary across time scales, as-
sesses how the relative dominance of these predictors varies across

wetland types, and identifies nonlinear and asynchronous charac-
teristics of these relationships.

4.1 | Comparison of approaches

A unique feature of this study is the use of multiple statistical ap-
proaches, ranging from simple (linear correlation) to more complex
(GAM, IR, RF), to investigate whether our understanding of the pre-
dictor FCH4 relationships is influenced by the method of analysis.
All statistical approaches generally converged on the top predictors
of FCH4 across sites and time scales (Table 3). However, when con-
sidering patterns and clustering across sites, there were some dif-
ferences between approaches, most notably at the multiday scale
(Figure S9). For example, at the multiday scale, linear correlation did
not identify WTD among the top predictors (Figure S9). The lack of
agreement between linear correlation and IR is similar to a previ-
ous study that combined wavelet analysis and IR to investigate site-
level FCH4 (Sturtevant et al., 2016). They found that, while linear



KNOX ET AL.

FIGURE 7 Average diel variation in
the wavelet detail reconstruction for
methane flux (FCH4) and the predictor
at maximum relative mutual information
(IR), with the lead or lag (z) at which it
occurred (in hours, positive and negative
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correlation analysis was generally capable of capturing the major
diel and seasonal relationships, multiday and asynchronous rela-
tionships were unresolved using linear correlation (Sturtevant et al.,
2016). Therefore, more complex approaches such as IR, GAM, and
RF may be better suited for investigating complex CH, dynamics in

wetlands.

4.2 | Dynamics of CH, exchange and influence of
temperature on FCH4

As observed previously (Knox et al., 2019; Sturtevant et al., 2016),
the seasonal time scale tended to dominate FCH4 variability across
sites. The notable exceptions were some tropical and subtropical
sites which is expected since they typically do not experience the
large seasonal variations in temperature, radiation, and GPP that
contribute to the FCH4 seasonality observed at higher latitude sites
(Delwiche et al., in press).

Across all statistical methods, temperature (TS or TA) was a dom-
inant predictor of FCH4 at the seasonal scale (Table 3; Figure 8). This
finding agrees with other studies across a range of temperate and
boreal wetland ecosystems that identified TS as the dominant con-
trol over wetland FCH4 (Chu et al., 2014; Knox et al., 2019; Morin,
2019; Sachs et al., 2008; Turetsky et al., 2014). This relationship
is expected because microbial activity is stimulated by increased
temperature when there is no water limitation and the seasonal

Time of day

5 & 8 days
17 days
17 days

FIGURE 8 Conceptual diagram summarizing the dominant
predictors of methane flux (FCH4) across methods, including
median leads and lags identified from the relative mutual
information (IR) analysis, across sites and time scales. Variables
are sorted by importance by the most dominant (outer ring)
to least (inner ring). Directional arrows indicate significant
leads (right arrow) and lags (left arrow) of corresponding
predictor with the same color. Predictors are air temperature
(TA), soil temperature (TS), water table depth (WTD), latent
heat turbulent flux (LE), gross primary productivity (GPP),
net ecosystem exchange (NEE), air pressure (PA), and

vapor pressure deficit (VPD); more predictor details in

Table 1
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temperature variation is relatively large (Table 1; Yvon-Durocher
et al.,, 2014). However, the dominance of temperature as a driver
of seasonal FCH4 in this study and earlier studies is influenced by
the bias of a larger number of sites located at higher latitudes which
exhibit a distinct seasonal pattern in temperature. As discussed
below, FCH4 in seasonally inundated wetlands, particularly those at
lower latitudes with relatively uniform year-round temperature, was
strongly influenced by WTD (Figures 3 and 4).

Across sites, lags between FCH4 and temperature at the seasonal
scale were predominantly positive, with a median lag of 8 + 16 days
for TA and 5 + 15 days for TS (Figures 5 and 8). These positive lags
are generally consistent with results from a synthesis of FCH4 sea-
sonality in freshwater wetlands of the FLUXNET-CH4 dataset that
found the spring onset of FCH4 lags the increase in TS by an aver-
age of 31 * 40 days (Delwiche et al., in press). However, the shorter
median lags in this study can be explained by the fact that there
was a wider range in lags observed in the FLUXNET-CH4 dataset
(Delwiche et al., in press). Moreover, the lags in this study reflect the
alignment between the FCH4 and TS seasonal wavelet detail which
resulted in the highest IR (i.e., the lag reflects the best alignment
of the variability in the two time series and therefore greatest sta-
tistical dependence), rather than the numbers of days FCH4 lagged
the spring increase in temperature. In the few instances where we
did observe negative lags between FCH4 and temperature, FCH4
peaked slightly before TS or TA. This is also consistent with the find-
ings of Delwiche et al. (in press) who observed that for 36% of the
wetland sites in the FLUXNET-CH4 database, the timing of peak
seasonal FCH4 led the soil temperature peak, and the findings of
Chang et al. (2021) who observed a negative seasonal FCH4 hyster-
esis with temperature (for both the shallowest and deepest TS used)
at a number of sites. However, as discussed in Section 4.6, further
research is needed to better mechanistically constrain the causes of
the observed lags, in particular for factors affecting CH, production,
oxidation, and transport (Chang et al., 2019).

Across multiple sites, including a range of wetland types, tem-
perature was also a dominant predictor at the multiday scale, with
synoptic variations in temperature coinciding with near-synchronous
fluctuations in FCH4 (Figures 6 and 8). While this pattern can be in
part related to changes in CH, production with temperature (Yvon-
Durocher et al., 2014), changes in temperature can also influence
ebullition rates and diffusive fluxes in wetlands through changes
in CH,, solubility, thermal expansion and contraction of free-phase
gas, and the transfer of gas across the air-water interface (Table 1;
Barber et al., 1988; Chanton et al., 1989; Fechner-Levy & Hemond,
1996; McNicol et al., 2017).

4.3 | Influence of water table dynamics on
CH, exchange

Coupling wavelet analysis with IR identified nonlinear responses of
FCH4 to WTD across multiple time scales (Figure 8). At the seasonal
scale, WTD was the dominant driver of FCH4 in wetland types and

regions with pronounced seasonal variations in WTD and lower
variations in temperature (e.g., in seasonal wetlands and rice pad-
dies; Bansal et al., 2018; Runkle et al., 2019; Figures 3 and 4). For
sites where WTD was a major predictor at the seasonal scale, FCH4
lagged WTD on the order of 17 + 11 days (Figure 5). Lags reported
here are within the range reported by other studies that found that
FCH4 lagged WTD by approximately 10-11 days (Goodrich et al.,
2015; Moore & Dalva, 1993; Schifer et al., 2014). Water table fluc-
tuations also modulated FCH4 at shorter time scales (Figure 4).
Notably, sites with fluctuating water levels tended to show pulses
in FCH4 coinciding or occurring slightly before minimums in WTD,
followed by a recovery in FCH4 with a lag of ~4-6 days following
rising water levels (Figure 6). This result is similar to other studies
which have also found FCH4 pulses during water table drawdown
(Bansal et al., 2020; Hatala, Detto, Sonnentag, et al., 2012; Knox
et al., 2016; Moore & Dalva, 1993; Sturtevant et al., 2016). These
interactions are consistent with the release of stored CH, as hydro-
static pressure drops, with peak release occurring as the water table
crosses the soil surface (Chen et al., 2017; Knox et al., 2016; Ueyama,
Yazaki, et al., 2020). As illustrated in Figure 6f, different magnitudes
of FCH4 pulses are therefore likely dependent on the current CH,
pool in porewater and CH, production rates (Bansal et al., 2020;
Sturtevant et al., 2016). Furthermore, sustained reduction in FCH4
following rises in water levels likely results from the time taken to
deplete reoxidized alternative electron acceptors or replenish the
soil CH, pool, causing a slow return to higher CH, fluxes (Koebsch,
Gottschalk, et al., 2020; Moore & Dalva, 1993; Sturtevant et al.,
2016). This mechanism can also explain the delay in the rise in FCH4
following the rise in WTD at the seasonal scale, which is consist-
ent with studies that show recovery time of FCH4 from weeks to
months following re-wetting (Table 1; Kim et al., 2012).

While saturated conditions are generally a prerequisite for CH,
production (Bridgham et al., 2013), although not exclusively (Angle
et al., 2017), WTD did not appear as an important predictor for sites
exhibiting relatively low variation in WTD (Figure 4). This is similar
to other studies of wetland CH, exchange where the water table
remained above the surface or showed little variation (Knox et al.,
2016; Song et al., 2011; Strachan et al., 2015; Yang et al., 2017). This
result highlights the limitation of these types of observational stud-
ies to identify controls that do not vary, and underscores the need
for experimental studies and long-term continuous measurements
of ecosystem-scale FCH4 to capture a wide range of environmental
conditions (Sturtevant et al., 2016).

4.4 | Role of pressure fluctuations on
CH, exchange

Atmospheric pressure is often observed to be an important con-
trol on FCH4 from peatlands, with ebullition being the main
transport mechanisms during the pressure-falling phase (Table 1;
Nadeau et al., 2013; Sachs et al., 2008; Tokida, 2005; Tokida et al.,
2007). Decreasing PA can lead to gas release from solution and
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the enlargement of the volume of gas, resulting in increased ebul-
lition (Tokida et al., 2007). Similarly, in freshwater lake environ-
ments, a correlation between low PA and increased rates of FCH4
is frequently observed (Casper et al., 2000; Engle & Melack, 2000;
Mattson & Likens, 1990). We found that PA was a dominant predic-
tor on FCH4 in several peat-dominated sites across a range of wet-
land types (Figures 4 and 8). As in other studies (Nadeau et al., 2013),
we found that drops in PA coincided with synchronous releases of
CH,, with synoptic variations in PA resulting in CH, pulses on the
order of 5-100 nmol m™2s™* (Figure S$10).

4.5 | Influence of plant activity on FCH4 and the
relationship between LE and FCH4

At the seasonal scale, LE, GPP, and NEE were generally found to be
secondary predictors of FCH4 (Table 3; Figure 8). While LE does not
directly drive FCH4, the few studies that have examined the rela-
tionship between FCH4 and LE have always found it to be significant
(Morin, 2019; Morin et al., 2014; Sturtevant et al., 2016). This strong
association between LE and FCH4 is due to the fact that evaporation
of water and CH,, volatilization from water and plant surfaces are
driven by similar physical mechanisms and therefore tend to covary
(Table 1; Morin, 2019). LE is also linked to plant activity (e.g., Leaf
Area Index [LAI] is a strong determinant of LE) at the seasonal scale,
and hence LE can represent a proxy for CH, transport through aer-
enchymatous vegetation (Table 1; Morin, 2019; Morin et al., 2014).

GPP represents a proxy for the mechanisms of carbon inputs
and root exudates to fuel methanogenesis, plant-mediated transport
of CH, to the atmosphere via aerenchymatous tissue, and oxygen
transport via aerenchyma into the soil fuel methane oxidation and/
or reduce methane production (Table 1; Turetsky et al., 2014). The
first two mechanisms increase FCH4 while the latter decreases
FCHA4. Similar to other studies (Chu et al., 2014; Morin et al., 2014;
Rinne et al., 2018), GPP was found to be among the top predictors
of FCH4 at the seasonal scale across multiple sites, although it al-
ways followed temperature in relative importance (Figure 3; Figure
S3). The relationship between GPP and FCH4 observed in this study
supports earlier studies suggesting that the relationship between
GPP and FCH4 is dominated by either the addition of root exudates
to the rhizosphere, particularly for deeper rooted plants, or the re-
sult of increased CH,, transport through aerenchymatous vegetation
(Bellisario et al., 1999; Chu et al., 2014; Hargreaves et al., 2001,
Hatala, Detto, & Baldocchi, 2012).

At the seasonal scale, FCH4 lagged both LE (17 + 18 days) and
GPP (~13 + 23 days) considerably. These lags reflect the fact that
GPP and LE peaked before FCH4, similar to the findings of Delwiche
et al. (in press) and Mitra et al. (2020). At the seasonal scale, this
lag suggests a delay between labile organic carbon inputs from
plants (either in the form of exudates or fresh detritus) and FCH4
(Megonigal et al., 2004). Alternatively, this delay could be caused
by confounding variables such as temperature (Rinne et al., 2018),
again highlighting the importance of considering direct drivers of

T e L

CH, production, oxidation, and transport (e.g., substrate availabil-
ity, microbial composition, redox) rather than proxies (e.g., GPP) for
these controls as we were limited to in this study.

As observed in other studies, plant activity was linked to FCH4
at the diel scale (Table 3; Figures 3 and 8). While studies generally
agree that plant activity controls diel variations in wetland FCH4,
it is challenging to identify whether the direct mechanism is the
strength of internal gas transport, stomatal conductance, or stimu-
lation of CH, production through a supply of photosynthate as root
exudates (Hatala, Detto, & Baldocchi, 2012; Koebsch et al., 2015;
Morin et al., 2014; Van der Nat & Middelburg, 2000). Our observa-
tion that LE and VPD were generally the strongest synchronous diel
predictors of FCH4 suggests that internal gas transport rather than
stomatal conductance (as represented by synchronous coupling be-
tween FCH4 and GPP, NEE or SW_IN) generally controls FCH4 at
the diel scale (Table 1; Sturtevant et al., 2016; Villa et al., 2020). If we
consider maximum IR at the diel scale, lags with LE and VPD were
small, again supporting the role of VPD-pressurized ventilation as
an important mechanism driving CH, exchange in these sites with
aerenchymatous vegetation (Tables 1 and 2). The strong covariance
of FCH4 with LE and VPD also suggests that the physical processes
that control evaporation and boundary layer mixing exert very sim-
ilar controls on CH, volatilization (Table 1). At four sites, maximum
IR was between GPP or NEP and FCH4, suggesting that recent pho-
tosynthates may also control FCH4 at the diel scale (Table 1), with
a lag on the order of 1-4 h (Figure 8). These lags are comparable to
other studies which found that GPP caused a diurnal pattern in CH,
emissions (Hatala, Detto, & Baldocchi, 2012; Knox et al., 2016; Mitra
et al., 2020). However, in some cases where GPP was identified as a
dominant predictor of FCH4 at the diel scale, GPP seemed to mod-
ulate the amplitude of the diel pattern rather than the shape of the
diel pattern in FCH4 (Figure S11).

4.6 | Limitations and next steps

Although separating the time scales of variation was useful for iso-
lating and identifying dominant predictors of FCH4, one limitation
of these approaches is that they do not explicitly account for de-
pendencies and interactions among drivers (Sturtevant et al., 2016).
For example, temperature may be a confounding effect when inter-
preting the importance of LE and GPP at the seasonal scale since
temperature influences both of these variables. Similarly, RF variable
importance rankings can be susceptible to shuffling when highly
correlated predictors are present, though this was not observed in
this study. While in this study we assume that a stronger variable
importance metric provides evidence that a given predictor is more
important, future work could explicitly consider partial or interactive
effects among drivers. For instance, future studies could test ap-
proaches such as conditional or partial mutual information (Frenzel
& Pompe, 2007; Sharma & Mehrotra, 2014; Zhao et al., 2016), condi-
tional variable importance for RF (Strobl et al., 2008), or commonal-
ity analysis and structural equation modeling (Koebsch, Sonnentag,
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et al., 2020) to characterize interactions and interdependencies
among multiple predictors.

Additionally, future research could focus on addressing causation
in a similar nonlinear, multi-resolution framework. While the meth-
ods selected here were used due to their widespread application and
intuitive statistical interpretation, other methods are better suited
for assessing causation (Runge et al., 2019). For instance, Granger
causality has been used for assigning causation in environmental
time series (Detto et al.,, 2012; Hatala, Detto, & Baldocchi, 2012;
Molini et al., 2010). Transfer entropy, which quantifies information
flow rather than simply overlap, is a nonparametric information
theory metric that implies causation (Schreiber, 2000). Here, we fo-
cused on mutual information over transfer entropy due to its lower
data requirements (Ruddell & Kumar, 2009) and greater ease of in-
terpretation (Sturtevant et al., 2016). However, future work could
focus on more explicitly addressing causation.

While 42 freshwater wetland sites are currently included in the
FLUXNET-CH4 dataset (Delwiche et al., in press), the lack of ancil-
lary measurements (most notably WTD) precluded the inclusion of
many sites from our analysis. Furthermore, the dataset contains far
fewer sites in the tropics relative to higher latitude regions (Delwiche
et al., in press). As such, our analysis is limited to a subset of 23 sites,
predominantly located in temperate and boreal latitudes (Figure 1).
The inclusion of a handful of subtropical and tropical sites in this
study highlights differences in the dominant predictors of FCH4 at
the seasonal scale between low-latitude, seasonal wetlands, and
higher latitude sites (i.e., the relative importance of WTD vs. tem-
perature). Moving forward, we encourage site principal investigators
to measure and report the full suite of variables listed in Table 1 and
to expand the number of low-latitude sites so that future studies
can include a larger number of sites with greater spatial coverage in
the tropics. This expansion can improve the spatial representative-
ness of sites in future analyses ensuring that our understanding of
wetland FCH4 does not remain biased toward temperate and high-
latitude regions, particularly in North America and Europe (Figure 1).
It can also increase the statistical power of future studies.

Finally, while coupling wavelet decomposition and the statis-
tical analyses presented here provide a valuable post hoc tool for
inferring controls on FCH4 and can generally explain much of the
variability in FCH4 across scales, they are empirical approaches fo-
cused on net FCH4, and therefore do not explicitly allow for direct
assessment of the drivers of CH, production, oxidation, and trans-
port (Table 1). As mentioned above, future work could focus on bet-
ter integrating eddy covariance FCH4 measurements across sites
with critical but often missing drivers of FCH4. For instance, this
includes direct measurements of redox potential and oxygen con-
tent, substrate availability, and detailed information on soil microbial
communities driving CH, production and consumption (Kwon et al.,
2017; Nemitz et al., 2018). Furthermore, this could be done in a spa-
tially explicit manner to better understand site-level heterogeneity,
which is something that was not directly addressed in this study
due to the integrative nature of eddy covariance measurements
(although we did explore site-level heterogeneity to some extent

by including wind direction, but these variables did not come up
as dominant variables in the analyses). Future research should also
focus on pairing eddy covariance observations with stable isotope
analyses of CH,, and incubation, chamber, and leaf-level measure-
ments to provide improved understanding of the direct mechanisms
of CH, production, transport, and oxidation (Chanton et al., 1997;
Marushchak et al., 2016; Villa et al., 2020). In particular, with respect
to CH, transport and controls on FCH4 at the diel scale, given that
the majority of the sites measured FCH4 using an open-path sensor,
it is also possible that density corrections may have influenced diel
patterns in CH, exchange, and, in turn, the evaluation of biophysical
predictors of FCH4 and associated lags (Chamberlain et al., 2017).
As such, coupling eddy covariance measurements with leaf cham-
ber measurements or isotope analyses is especially useful for better
identifying controls on diel scale FCH4.

Nonetheless, by combining multiple statistical methods in a
wavelet-based multi-resolution framework, this study contributes
to an improved understanding of the predictors of FCH4 across a
wide range of non-tidal, freshwater wetlands, which can help inform
empirical and process-based models of FCH4 (Oikawa et al., 2017).
As such, while our analysis does not provide an explicit predictive
model, it does provide the timing and scale-dependent information
that can help guide modeling efforts toward better representing
scale-dependent, asynchronous and nonlinear processes inherent
in FCH4 (Sturtevant et al., 2016), thereby helping better constrain

wetland CH, emissions.

ACKNOWLEDGEMENTS

We acknowledge primary support from the Gordon and Betty
Moore Foundation (Grant GBMF5439, “Advancing Understanding
of the Global Methane Cycle”; Stanford University) and from the
John Wesley Powell Center for Analysis and Synthesis of the U.S.
Geological Survey (“Wetland FLUXNET Synthesis for Methane”
working group). Benjamin R. K. Runkle was supported by the
National Science Foundation (NSF) Award 1752083. Masahito
Ueyama was supported by ArCS Il (JPMXD1420318865) and
JSPS KAKENHI (20K21849). William J. Riley and Qing Zhu were
supported by the U.S. Department of Energy (DOE) BER-RGCM-
RUBISCO project (DEAC02-05CH11231). Jessica Turner acknowl-
edges support from NSF GRFP (DGE-1747503) and NTL LTER
(DEB-1440297). Minseok Kang was supported by the National
Research Foundation of Korea (NRF-2018 R1C1B6002917). Rodrigo
Vargas acknowledges support from NSF (grant #1652594). Dennis
Baldocchi acknowledges the California Department of Water
Resources for a funding contract from the California Department
of Fish and Wildlife and the U.S. Department of Agriculture (NIFA
grant #2011-67003-30371). Oliver Sonnentag acknowledges
funding by the Canada Research Chairs, Canada Foundation for
Innovation Leaders Opportunity Fund, and Natural Sciences and
Engineering Research Council Discovery Grant Programs for work
at CA-SCB. Benjamin Poulter acknowledges support from the
NASA Carbon Cycle and Ecosystems Program. Gil Bohrer acknowl-
edges funding by DOE (DE-SC0021067) and the Ohio Department



KNOX ET AL.

of Natural Resources (Subaward N18B 315-11). Pavel Alekseychik
acknowledges support from the CLIMOSS project funded by
the Academy of Finland (grant #296116), and the SOMPA pro-
ject funded by the Strategic Research Council at the Academy of
Finland (grant #312912). Tuula Aalto and Annalea Lohila acknowl-
edge the support from the Academy of Finland project UPFORMET
(grant #307331). Eeva-Stiina Tuittila acknowledges the support
from the Academy of Finland (grants #287039 and #330840). Mats
Nilsson and Matthias Peichl acknowledge the support from the
Swedish national research infrastructure ICOS and SITES and from
the Swedish Research Council (grant # 2018-03966 and # 2019-
04676), Swedish Research Council for Environment, Agricultural
Sciences and Spatial Planning (grant # 2016-01289) and the Kempe
Foundation (SMK-1211). Pia Gottschalk acknowledges the sup-
port from the German Federal Ministry of Food and Agriculture
(BMEL) within the ERA-NET FACCE ERA-GAS, with FACCE ERA-
GAS received funding from the European Union’s Horizon 2020
Research and Innovation Programme (grant #696356). The Fl-Lom,
FI-Sii, and SE-Deg sites are part of the ICOS European Research
Infrastructure. We acknowledge the following AmeriFlux sites for
their data records: US-Uaf, US-Los, US-Myb, US-OWC, US-Tw1,
US-Tw4, US-WPT, and US-MAC. In addition, funding for AmeriFlux
data resources and core site data was provided by the DOE’s Office
of Science. Any use of trade, firm, or product names is for descrip-
tive purposes only and does not imply endorsement by the U.S.

Government.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available in the
FLUXNET-CH4 Community Product, available at https://fluxnet.
org/data/fluxnet-ch4-community-product/. DOIs for individual site

data are provided in Table 2.

ORCID
Sara H. Knox "= https://orcid.org/0000-0003-2255-5835
Gavin McNicol "= https://orcid.org/0000-0002-6655-8045

Dennis Baldocchi “* https://orcid.org/0000-0003-3496-4919
Ankur R. Desai "= https://orcid.org/0000-0002-5226-6041
https://orcid.org/0000-0003-0561-8988
https://orcid.org/0000-0003-3541-672X
Avni Malhotra "= https://orcid.org/0000-0002-7850-6402
Benjamin R. K. Runkle "= https://orcid.org/0000-0002-2583-1199
Rodrigo Vargas " https://orcid.org/0000-0001-6829-5333
Mathias Goeckede "= https://orcid.org/0000-0003-2833-8401
https://orcid.org/0000-0003-0761-9458
https://orcid.org/0000-0002-6248-9388
https://orcid.org/0000-0003-1045-7680
https://orcid.org/0000-0003-3765-6399
https://orcid.org/0000-0002-9940-5846
https://orcid.org/0000-0002-1744-6290
https://orcid.org/0000-0002-9959-4771
https://orcid.org/0000-0003-4304-3951
https://orcid.org/0000-0002-9493-8600

Jinxun Liu

Annalea Lohila

Jiquan Chen
Gerald Jurasinski
Franziska Koebsch
Mats B. Nilsson
Matthias Peichl
Olli Peltola
Torsten Sachs
George L. Vourlitis
Benjamin Poulter

19
= [Blobal Change Biology gAY LEYJ—
REFERENCES

Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley
Interdisciplinary Reviews: Computational Statistics, 2(4), 433-459.
https://doi.org/10.1002/wics.101

Angle, J. C., Morin, T. H., Solden, L. M., Narrowe, A. B., Smith, G. J.,
Borton, M. A,, Rey-Sanchez, C., Daly, R. A., Mirfenderesgi, G., Hoyt,
D. W, Riley, W. J., Miller, C. S., Bohrer, G., & Wrighton, K. C. (2017).
Methanogenesis in oxygenated soils is a substantial fraction of wet-
land methane emissions. Nature Communications, 8(1567). https://
doi.org/10.1038/s41467-017-01753-4

Baldocchi, D. (2014). Measuring fluxes of trace gases and energy be-
tween ecosystems and the atmosphere - The state and future of
the eddy covariance method. Global Change Biology, 20(12), 3600-
3609. https://doi.org/10.1111/gcbh.12649

Bansal, S., Johnson, O. F., Meier, J., & Zhu, X. (2020). Vegetation af-
fects timing and location of wetland methane emissions. Journal of
Geophysical Research: Biogeosciences, 125, e2020JG0O0577. https://
doi.org/10.1029/2020JG005777

Bansal, S., Tangen, B., & Finocchiaro, R. (2018). Diurnal patterns of
methane flux from a seasonal wetland: Mechanisms and method-
ology. Wetlands, 38(5), 933-943. https://doi.org/10.1007/s1315
7-018-1042-5

Barber, T. R,, Burke, Jr., R. A., & Sackett, W. M. (1988). Diffusive flux of
methane from warm wetlands. Global Biogeochemical Cycles, 2(4),
411-425. https://doi.org/10.1029/GB002i004p00411

Bellisario, L. M., Bubier, J. L., Moore, T. R., & Chanton, J. P.
(1999). Controls on CH, emissions from a northern peat-
land. Global Biogeochemical Cycles, 13(1), 81-91. https://doi.
org/10.1029/1998GB900021

Bohrer, G., Kerns, J., Morin, T. H., Rey-Sanchez, A. C,, Villa, J., & Ju, Y.
(2020). FLUXNET-CH4 US-OWC old woman creek. United States.
https://doi.org/10.18140/FLX/1669690

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
https://doi.org/10.1023/A:1010933404324

Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., & Zhuang, Q. (2013).
Methane emissions from wetlands: Biogeochemical, microbial, and
modeling perspectives from local to global scales. Global Change
Biology, 19(5), 1325-1346. https://doi.org/10.1111/gch.12131

Bubier, J. L., Moore, T. R,, Bellisario, L., Comer, N. T., & Crill, P. M. (1995).
Ecological controls on methane emissions from a northern peat-
land complex in the zone of discontinuous permafrost, Manitoba,
Canada. Global Biogeochemical Cycles, 9(4), 455-470. https://doi.
org/10.1029/95gb02379

Campbell, D., & Goodrich, J. (2020). FLUXNET-CH4 NZ-kop kopuatai.
New Zealand. https://doi.org/10.18140/FLX/1669652

Casper, P, Maberly, S. C., Hall, G. H., & Finlay, B. J. (2000). Fluxes
of methane and carbon dioxide from a small productive lake
to the atmosphere. Biogeochemistry, 49(1), 1-19. https://doi.
org/10.1023/A:1006269900174

Chamberlain, S. D., Verfaillie, J., Eichelmann, E., Hemes, K. S., & Baldocchi,
D. D. (2017). Evaluation of density corrections to methane fluxes
measured by open-path eddy covariance over contrasting land-
scapes. Boundary-Layer Meteorology, 165(2), 197-210. https://doi.
org/10.1007/s10546-017-0275-9

Chang, K., Riley, W. J., Brodie, E. L., McCalley, C. K., Crill, P. M., & Grant,
R. F. (2019). Methane production pathway regulated proximally by
substrate availability and distally by temperature in a high-latitude
mire complex. Journal of Geophysical Research: Biogeosciences,
124(10), 3057-3074. https://doi.org/10.1029/2019JG005355

Chang, K. Y., Riley, W. J., Knox, S. H., Jackson, R. B., McNicol, G., Poulter,
B., Aurela, M., Baldocchi, D., Bansal, S., Bohrer, G., Campbell, D.
|, Cescatti, A., Chu, H., Delwiche, K. B., Desai, A., Euskirchen,
E., Friborg, T., Goeckede, M., Holm, G., .. Zona, D. (2021).
Global wetland methane emissions have hysteretic responses to


https://fluxnet.org/data/fluxnet-ch4-community-product/
https://fluxnet.org/data/fluxnet-ch4-community-product/
https://orcid.org/0000-0003-2255-5835
https://orcid.org/0000-0003-2255-5835
https://orcid.org/0000-0002-6655-8045
https://orcid.org/0000-0002-6655-8045
https://orcid.org/0000-0003-3496-4919
https://orcid.org/0000-0003-3496-4919
https://orcid.org/0000-0002-5226-6041
https://orcid.org/0000-0002-5226-6041
https://orcid.org/0000-0003-0561-8988
https://orcid.org/0000-0003-0561-8988
https://orcid.org/0000-0003-3541-672X
https://orcid.org/0000-0003-3541-672X
https://orcid.org/0000-0002-7850-6402
https://orcid.org/0000-0002-7850-6402
https://orcid.org/0000-0002-2583-1199
https://orcid.org/0000-0002-2583-1199
https://orcid.org/0000-0001-6829-5333
https://orcid.org/0000-0001-6829-5333
https://orcid.org/0000-0003-2833-8401
https://orcid.org/0000-0003-2833-8401
https://orcid.org/0000-0003-0761-9458
https://orcid.org/0000-0003-0761-9458
https://orcid.org/0000-0002-6248-9388
https://orcid.org/0000-0002-6248-9388
https://orcid.org/0000-0003-1045-7680
https://orcid.org/0000-0003-1045-7680
https://orcid.org/0000-0003-3765-6399
https://orcid.org/0000-0003-3765-6399
https://orcid.org/0000-0002-9940-5846
https://orcid.org/0000-0002-9940-5846
https://orcid.org/0000-0002-1744-6290
https://orcid.org/0000-0002-1744-6290
https://orcid.org/0000-0002-9959-4771
https://orcid.org/0000-0002-9959-4771
https://orcid.org/0000-0003-4304-3951
https://orcid.org/0000-0003-4304-3951
https://orcid.org/0000-0002-9493-8600
https://orcid.org/0000-0002-9493-8600
https://doi.org/10.1002/wics.101
https://doi.org/10.1038/s41467-017-01753-4
https://doi.org/10.1038/s41467-017-01753-4
https://doi.org/10.1111/gcb.12649
https://doi.org/10.1029/2020JG005777
https://doi.org/10.1029/2020JG005777
https://doi.org/10.1007/s13157-018-1042-5
https://doi.org/10.1007/s13157-018-1042-5
https://doi.org/10.1029/GB002i004p00411
https://doi.org/10.1029/1998GB900021
https://doi.org/10.1029/1998GB900021
https://doi.org/10.18140/FLX/1669690
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1111/gcb.12131
https://doi.org/10.1029/95gb02379
https://doi.org/10.1029/95gb02379
https://doi.org/10.18140/FLX/1669652
https://doi.org/10.1023/A:1006269900174
https://doi.org/10.1023/A:1006269900174
https://doi.org/10.1007/s10546-017-0275-9
https://doi.org/10.1007/s10546-017-0275-9
https://doi.org/10.1029/2019JG005355

KNOX ET AL.

ey

seasonal temperature. Nature Communications, 12, 2266. https://
doi.org/10.1038/s41467-021-22452-1

Chanton, J. P, Martens, C. S., & Kelley, C. A. (1989). Gas transport
from methane-saturated, tidal freshwater and wetland sedi-
ments. Limnology and Oceanography, 34(5), 807-819. https://doi.
org/10.4319/10.1989.34.5.0807

Chanton, J. P,, Whiting, G. J.,, Blair, N. E., Lindau, C. W., & Bollich, P. K.
(1997). Methane emission from rice: Stable isotopes, diurnal varia-
tions, and CO, exchange. Global Biogeochemical Cycles, 11(1), 15-27.
https://doi.org/10.1029/96GB03761

Chen, J., & Chu, H. (2020). FLUXNET-CH4 US-WPT winous point north
marsh. United States. https://doi.org/10.18140/FLX/1669702

Chen, W., Zhang, F., Wang, B., Wang, J., Tian, D, Han, G., Wen, X., Yu,
G., & Niu, S. (2019). Diel and seasonal dynamics of ecosystem-scale
methane flux and their determinants in an alpine meadow. Journal
of Geophysical Research: Biogeosciences, 124(6), 1731-1745. https://
doi.org/10.1029/2019jg005011

Chen, X., Schéfer, K. V. R., & Slater, L. (2017). Methane emission through
ebullition from an estuarine mudflat: 2. Field observations and
modeling of occurrence probability. Water Resources Research,
53(8), 6439-6453. https://doi.org/10.1002/2016wr019720

Christensen, T. R., Ekberg, A., Strom, L., Mastepanov, M., Panikov, N.,
Oquist, M., Svensson, B. H., Nykinen, H., Martikainen, P. J., &
Oskarsson, H. (2003). Factors controlling large scale variations in
methane emissions from wetlands. Geophysical Research Letters,
30(7), 261. https://doi.org/10.1029/2002GL016848

Chu, H., Chen, J., Gottgens, J. F., Ouyang, Z., John, R., Czajkowski, K., &
Becker, R. (2014). Net ecosystem methane and carbon dioxide ex-
changes in a Lake Erie coastal marsh and a nearby cropland. Journal
of Geophysical Research: Biogeosciences, 119(5), 722-740. https://
doi.org/10.1002/2013JG002520

Cornish, C. R., Percival, D. B., & Bretherton, C. S. (2003). The WMTSA
Wavelet Toolkit for data analysis in the geosciences. Eos Trans.
AGU, 84(46), Fall Meet. Suppl., Abstract NG11A-0173.

Delwiche, K. B., Knox, S. H., Malhotra, A., Fluet-Chouinard, E., McNicol,
G., Feron, S., Ouyang, Z., Papale, D., Trotta, C., Canfora, E., Chea,
Y.-W., Christianson, D., Alberto, M. C. R., Alekseychik, P., Aurela,
M., & others. (in press). FLUXNET-CH4: A global, multi-ecosystem
dataset and analysis of methane seasonality from freshwater wet-
lands. Earth System Science Data.

Desai, A. R. (2020). FLUXNET-CH4 US-Los lost creek. United States.
https://doi.org/10.18140/FLX/1669682

Desai, A. R., Xu, K., Tian, H., Weishampel, P., Thom, J., Baumann,
D., Andrews, A. E., Cook, B. D., King, J. Y., & Kolka, R. (2015).
Landscape-level terrestrial methane flux observed from a very tall
tower. Agricultural and Forest Meteorology, 201, 61-75. https://doi.
org/10.1016/j.agrformet.2014.10.017

Detto, M., Molini, A., Katul, G., Stoy, P., Palmroth, S., & Baldocchi, D.
(2012). Causality and persistence in ecological systems: A nonpara-
metric spectral granger causality approach. The American Naturalist,
179(4), 524-535. https://doi.org/10.1086/664628

Eichelmann, E., Knox, S., Rey-Sanchez, A. C., Valach, A., Sturtevant,
C., Szutu, D., Verfaillie, J., & Baldocchi, D. (2020). FLUXNET-CH4
US-Tw4 twitchell east end wetland. United States. https://doi.
org/10.18140/FLX/1669698

Engle, D., & Melack, J. M. (2000). Methane emissions from an Amazon
floodplain lake: Enhanced release during episodic mixing and
during falling water. Biogeochemistry, 51(1), 71-90. https://doi.
org/10.1023/A:1006389124823

Etminan, M., Myhre, G., Highwood, E. J., & Shine, K. P. (2016). Radiative
forcing of carbon dioxide, methane, and nitrous oxide: A significant
revision of the methane radiative forcing. Geophysical Research
Letters, 43(24), 12614-12623. https://doi.org/10.1002/2016g
1071930

Fechner-Levy, E. J., & Hemond, H. F. (1996). Trapped methane vol-
ume and potential effects on methane ebullition in a northern

peatland. Limnology and Oceanography, 41(7), 1375-1383. https://
doi.org/10.4319/10.1996.41.7.1375

Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for
strange attractors from mutual information. Physical Review A:
General Physics, 33(2), 1134-1140. https://doi.org/10.1103/physr
eva.33.1134

Frenzel, S., & Pompe, B. (2007). Partial mutual information for coupling
analysis of multivariate time series. Physical Review Letters, 99(20),
204101. https://doi.org/10.1103/PhysRevLett.99.204101

Genuer, R., Poggi, J.-M., & Tuleau-Malot, C. (2010). Variable selection
using random forests. Pattern Recognition Letters, 31(14), 2225-
2236. https://doi.org/10.1016/j.patrec.2010.03.014

Goodrich, J. P, Campbell, D. ., Roulet, N. T., Clearwater, M. J., & Schipper,
L. A. (2015). Overriding control of methane flux temporal variabil-
ity by water table dynamics in a Southern Hemisphere, raised bog.
Journal of Geophysical Research: Biogeosciences, 120(5), 819-831.
https://doi.org/10.1002/2014)G002844

Hargreaves, K. J., Fowler, D., Pitcairn, C. E. R., & Aurela, M. (2001).
Annual methane emission from Finnish mires estimated from
eddy covariance campaign measurements. Theoretical and
Applied Climatology, 70(1), 203-213. https://doi.org/10.1007/
s007040170015

Hatala, J. A., Detto, M., & Baldocchi, D. D. (2012). Gross ecosystem pho-
tosynthesis causes a diurnal pattern in methane emission from rice.
Geophysical Research Letters, 39(6), https://doi.org/10.1029/2012G
L051303

Hatala, J. A., Detto, M., Sonnentag, O., Deverel, S. J., Verfaillie, J., &
Baldocchi, D. D. (2012). Greenhouse gas (CO,, CH,, H,0) fluxes
from drained and flooded agricultural peatlands in the Sacramento-
San Joaquin Delta. Agriculture, Ecosystems & Environment, 150, 1-
18. https://doi.org/10.1016/j.agee.2012.01.009

Hollinger, D. Y., & Richardson, A. D. (2005). Uncertainty in eddy cova-
riance measurements and its application to physiological models.
Tree Physiology, 25(7), 873-885. https://doi.org/10.1093/treep
hys/25.7.873

lwata, H. (2020). FLUXNET-CH4 JP-Mse Mase rice paddy field. Japan.
https://doi.org/10.18140/FLX/1669647

lwata, H., Ueyama, M., & Harazono, Y. (2020). FLUXNET-CH4 US-
Uaf University of Alaska, Fairbanks. United States. https://doi.
org/10.18140/FLX/1669701

Jackson, R. B., Saunois, M., Bousquet, P., Canadell, J. G., Poulter, B.,
Stavert, A. R., Bergamaschi, P., Niwa, Y., Segers, A., & Tsuruta, A.
(2020). Increasing anthropogenic methane emissions arise equally
from agricultural and fossil fuel sources. Environmental Research
Letters, 15, 071002. https://doi.org/10.1088/1748-9326/ab9ed2

Jammet, M., Dengel, S., Kettner, E., Parmentier, F.-J.-W., Wik, M., Crill, P.,
& Friborg, T. (2017). Year-round CH, and CO, flux dynamics in two
contrasting freshwater ecosystems of the subarctic. Biogeosciences,
14(22), 5189-5216. https://doi.org/10.5194/bg-14-5189-2017

Kim,D.-G.,Vargas,R.,Bond-Lamberty, B., & Turetsky, M.R.(2012). Effects
of soil rewetting and thawing on soil gas fluxes: A review of current
literature and suggestions for future research. Biogeosciences, 9(7),
2459-2483. https://doi.org/10.5194/bg-9-2459-2012

Kim, Y., Johnson, M. S., Knox, S. H., Andrew Black, T., Dalmagro, H. J,,
Kang, M., Kim, J., & Baldocchi, D. (2020). Gap-filling approaches for
eddy covariance methane fluxes: A comparison of three machine
learning algorithms and a traditional method with principal compo-
nent analysis. Global Change Biology, 26(3), 1499-1518. https://doi.
org/10.1111/gcb.14845

Knoblauch, C., Spott, O., Evgrafova, S., Kutzbach, L., & Pfeiffer, E. (2015).
Regulation of methane production, oxidation, and emission by
vascular plants and bryophytes in ponds of the northeast Siberian
polygonal tundra. Journal of Geophysical Research: Biogeosciences,
120(12), 2525-2541. https://doi.org/10.1002/2015JG003053

Knox, S. H., Jackson, R. B., Poulter, B., McNicol, G., Fluet-Chouinard,
E., Zhang, Z., Hugelius, G., Bousquet, P., Canadell, J. G., Saunois,


https://doi.org/10.1038/s41467-021-22452-1
https://doi.org/10.1038/s41467-021-22452-1
https://doi.org/10.4319/lo.1989.34.5.0807
https://doi.org/10.4319/lo.1989.34.5.0807
https://doi.org/10.1029/96GB03761
https://doi.org/10.18140/FLX/1669702
https://doi.org/10.1029/2019jg005011
https://doi.org/10.1029/2019jg005011
https://doi.org/10.1002/2016wr019720
https://doi.org/10.1029/2002GL016848
https://doi.org/10.1002/2013JG002520
https://doi.org/10.1002/2013JG002520
https://doi.org/10.18140/FLX/1669682
https://doi.org/10.1016/j.agrformet.2014.10.017
https://doi.org/10.1016/j.agrformet.2014.10.017
https://doi.org/10.1086/664628
https://doi.org/10.18140/FLX/1669698
https://doi.org/10.18140/FLX/1669698
https://doi.org/10.1023/A:1006389124823
https://doi.org/10.1023/A:1006389124823
https://doi.org/10.1002/2016gl071930
https://doi.org/10.1002/2016gl071930
https://doi.org/10.4319/lo.1996.41.7.1375
https://doi.org/10.4319/lo.1996.41.7.1375
https://doi.org/10.1103/physreva.33.1134
https://doi.org/10.1103/physreva.33.1134
https://doi.org/10.1103/PhysRevLett.99.204101
https://doi.org/10.1016/j.patrec.2010.03.014
https://doi.org/10.1002/2014JG002844
https://doi.org/10.1007/s007040170015
https://doi.org/10.1007/s007040170015
https://doi.org/10.1029/2012GL051303
https://doi.org/10.1029/2012GL051303
https://doi.org/10.1016/j.agee.2012.01.009
https://doi.org/10.1093/treephys/25.7.873
https://doi.org/10.1093/treephys/25.7.873
https://doi.org/10.18140/FLX/1669647
https://doi.org/10.18140/FLX/1669701
https://doi.org/10.18140/FLX/1669701
https://doi.org/10.1088/1748-9326/ab9ed2
https://doi.org/10.5194/bg-14-5189-2017
https://doi.org/10.5194/bg-9-2459-2012
https://doi.org/10.1111/gcb.14845
https://doi.org/10.1111/gcb.14845
https://doi.org/10.1002/2015JG003053

KNOX ET AL.

M., Papale, D., Chu, H., Keenan, T. F.,, Baldocchi, D., Torn, M. S.,
Mammarella, ., Trotta, C., Aurela, M., Bohrer, G, ... Zona, D. (2019).
FLUXNET-CH4 synthesis activity: Objectives, observations, and
future directions. Bulletin of the American Meteorological Society,
100(12), 2607-2632. https://doi.org/10.1175/BAMS-D-18-0268.1

Knox, S. H., Matthes, J. H., Sturtevant, C., Oikawa, P. Y., Verfaillie, J., &
Baldocchi, D. (2016). Biophysical controls on interannual variabil-
ity in ecosystem-scale CO, and CH, exchange in a California rice
paddy. Journal of Geophysical Research: Biogeosciences, 121(3), 978-
1001. https://doi.org/10.1002/2015JG003247

Knox, S., Matthes, J. H., Verfaillie, J., & Baldocchi, D. (2020).
FLUXNET-CH4 US-Twt Twitchell Island. https://doi.org/10.18140/
FLX/1669700

Koebsch, F., Gottschalk, P., Beyer, F., Wille, C., Jurasinski, G., & Sachs,
T. (2020). The impact of occasional drought periods on vege-
tation spread and greenhouse gas exchange in rewetted fens.
Philosophical Transactions of the Royal Society of London, Series B,
Biological Sciences, 375(1810), 20190685. https://doi.org/10.1098/
rstb.2019.0685

Koebsch, F., & Jurasinski, G. (2020). FLUXNET-CH4 DE-Hte Huetelmoor.
Germany. https://doi.org/10.18140/FLX/1669634

Koebsch, F., Jurasinski, G., Koch, M., Hofmann, J., & Glatzel, S. (2015).
Controls for multi-scale temporal variation in ecosystem methane
exchange during the growing season of a permanently inundated
fen. Agricultural and Forest Meteorology, 204, 94-105. https://doi.
org/10.1016/j.agrformet.2015.02.002

Koebsch, F., Sonnentag, O., Jarveoja, J., Peltoniemi, M., Alekseychik,
P., Aurela, M., Arslan, A. N., Dinsmore, K., Gianelle, D., Helfter, C.,
Jackowicz-Korczynski, M., Korrensalo, A., Leith, F., Linkosalmi, M.,
Lohila, A., Lund, M., Maddison, M., Mammarella, I., Mander, U,, ...
Peichl, M. (2020). Refining the role of phenology in regulating gross
ecosystem productivity across European peatlands. Global Change
Biology, 26(2), 876-887. https://doi.org/10.1111/gcb.14905

Kwon, M. J,, Beulig, F., llie, ., Wildner, M., Kiisel, K., Merbold, L., Mahecha,
M. D., Zimov, N., Zimov, S. A., Heimann, M., Schuur, E. A. G., Kostka,
J. E., Kolle, O., Hilke, I., & Gockede, M. (2017). Plants, microorgan-
isms, and soil temperatures contribute to a decrease in methane
fluxes on a drained Arctic floodplain. Global Change Biology, 23(6),
2396-2412. https://doi.org/10.1111/gcb.13558

Laanbroek, H. J. (2010). Methane emission from natural wetlands: in-
terplay between emergent macrophytes and soil microbial pro-
cesses. A mini-review. Annals of Botany, 105(1), 141-153. https://
doi.org/10.1093/aob/mcp201

Lai, D. Y. F. (2009). Methane dynamics in northern peatlands: A review.
Pedosphere, 19(4), 409-421. https://doi.org/10.1016/s1002-0160(09)
00003-4

Li, H., Dai, S., Ouyang, Z., Xie, X., Guo, H., Gu, C,, Xiao, X., Ge, Z., Peng, C.,
& Zhao, B. (2018). Multi-scale temporal variation of methane flux
and its controls in a subtropical tidal salt marsh in eastern China.
Biogeochemistry, 137(1), 163-179. https://doi.org/10.1007/s1053
3-017-0413-y

Linkhorst, A., Hiller, C., DelSontro, T., M. Azevedo, G., Barros, N., Mendonca,
R., & Sobek, S. (2020). Comparing methane ebullition variability across
space and time in a Brazilian reservoir. Limnology and Oceanography,
65(7), 1623-1634. https://doi.org/10.1002/In0.11410

Lohila, A., Aurela, M., Tuovinen, J.-P., Laurila, T., Hatakka, J., Rainne, J., &
Mékeld, T. (2020). FLUXNET-CH4 FI-Lom Lompolojankka. Finland.
https://doi.org/10.18140/FLX/1669638

Malhotra, A., & Roulet, N. T. (2015). Environmental correlates of peat-
land carbon fluxes in a thawing landscape: Do transitional thaw
stages matter? Biogeosciences, 12(10), 3119-3130. https://doi.
org/10.5194/bg-12-3119-2015

Marushchak, M. E., Friborg, T., Biasi, C., Herbst, M., Johansson, T.,
Kiepe, I., Liimatainen, M., Lind, S. E., Martikainen, P. J.,, Virtanen,
T., Soegaard, H., & Shurpali, N. J. (2016). Methane dynamics in the
subarctic tundra: Combining stable isotope analyses, plot- and

o oeo NSRS

ecosystem-scale flux measurements. Biogeosciences, 13(2), 597-
608. https://doi.org/10.5194/bg-13-597-2016

Matthes, J. H., Sturtevant, C., Oikawa, P., Chamberlain, S. D., Szutu, D.,
Ortiz, A. A., Verfaillie, J., & Baldocchi, D. (2020). FLUXNET-CH4 US-
Myb Mayberry Wetland. United States. https://doi.org/10.18140/
FLX/1669685

Mattson, M. D., & Likens, G. E. (1990). Air pressure and methane fluxes.
Nature, 347(6295), 718-719. https://doi.org/10.1038/347718b0

McNicol, G., Sturtevant, C. S., Knox, S. H., Dronova, |., Baldocchi, D. D., &
Silver, W. L. (2017). Effects of seasonality, transport pathway, and
spatial structure on greenhouse gas fluxes in a restored wetland.
Global Change Biology, 23(7), 2768-2782. https://doi.org/10.1111/
gch.13580

Megonigal, J. P., Hines, M. E., & Visscher, P. T. (2004). Anaerobic me-
tabolism: linkages to trace gases and aerobic processes. In W.
Schlesinger, H. Holland, & K. Turekian (Eds.), Treatise on geochemis-
try (Vol. 8, pp. 317-424). Elsevier.

Mitra, B., Minick, K., Miao, G., Domec, J.-C., Prajapati, P., McNulty, S. G.,
Sun, G, King, J. S., & Noormets, A. (2020). Spectral evidence for
substrate availability rather than environmental control of meth-
ane emissions from a coastal forested wetland. Agricultural and
Forest Meteorology, 291, 108062. https://doi.org/10.1016/j.agrfo
rmet.2020.108062

Molini, A., Katul, G. G., & Porporato, A. (2010). Causality across rain-
fall time scales revealed by continuous wavelet transforms.
Journal of Geophysical Research, 115(D14), 579. https://doi.
org/10.1029/2009JD013016

Moore, T. R., & Dalva, M. (1993). The influence of temperature and
water table position on carbon dioxide and methane emissions
from laboratory columns of peatland soils. Journal of Soil Science,
44(4), 651-664. https://doi.org/10.1111/j.1365-2389.1993.tb023
30.x

Moore, T. R., & Knowles, R. (1989). The influence of water table lev-
els on methane and carbon dioxide emissions from peatland
soils. Canadian Journal of Soil Science, 69(1), 33-38. https://doi.
org/10.4141/cjss89-004

Morin, T. H. (2019). Advances in the eddy covariance approach
to CH, monitoring over two and a half decades. Journal of
Geophysical Research: Biogeosciences, 124(3), 453-460. https://doi.
org/10.1029/2018JG004796

Morin, T. H., Bohrer, G., Frasson, R. P. D. M., Naor-Azreli, L., Mesi, S.,
Stefanik, K. C., & Schéfer, K. V. R. (2014). Environmental drivers of
methane fluxes from an urban temperate wetland park. Journal of
Geophysical Research: Biogeosciences, 119(11), 2188-2208. https://
doi.org/10.1002/2014JG002750

Nadeau, D. F., Rousseau, A. N., Coursolle, C., Margolis, H. A., & Parlange,
M. B. (2013). Summer methane fluxes from a boreal bog in north-
ern Quebec, Canada, using eddy covariance measurements.
Atmospheric Environment, 81, 464-474. https://doi.org/10.1016/j.
atmosenv.2013.09.044

Nemitz, E., Mammarella, I., Ibrom, A., Aurela, M., Burba, G. G., Dengel,
S., Gielen, B., Grelle, A., Heinesch, B., Herbst, M., Hortnagl, L.,
Klemedtsson, L., Lindroth, A., Lohila, A., McDermitt, D. K., Meier,
P., Merbold, L., Nelson, D., Nicolini, G., ... Zahniser, M. (2018).
Standardisation of eddy-covariance flux measurements of methane
and nitrous oxide. International Agrophysics, 32(4), 517-549. https://
doi.org/10.1515/intag-2017-0042

Nilsson, M. B., & Peichl, M. (2020). FLUXNET-CH4 SE-Deg Degero.
Sweden. https://doi.org/10.18140/FLX/1669659

Oikawa, P. Y., Jenerette, G. D., Knox, S. H., Sturtevant, C., Verfaillie, J.,
Dronova, |., Poindexter, C. M., Eichelmann, E., & Baldocchi, D. D.
(2017). Evaluation of a hierarchy of models reveals importance of
substrate limitation for predicting carbon dioxide and methane
exchange in restored wetlands. Journal of Geophysical Research:
Biogeosciences, 122(1), 145-167. https://doi.org/10.1002/2016J)
G003438


https://doi.org/10.1175/BAMS-D-18-0268.1
https://doi.org/10.1002/2015JG003247
https://doi.org/10.18140/FLX/1669700
https://doi.org/10.18140/FLX/1669700
https://doi.org/10.1098/rstb.2019.0685
https://doi.org/10.1098/rstb.2019.0685
https://doi.org/10.18140/FLX/1669634
https://doi.org/10.1016/j.agrformet.2015.02.002
https://doi.org/10.1016/j.agrformet.2015.02.002
https://doi.org/10.1111/gcb.14905
https://doi.org/10.1111/gcb.13558
https://doi.org/10.1093/aob/mcp201
https://doi.org/10.1093/aob/mcp201
https://doi.org/10.1016/s1002-0160(09)00003-4
https://doi.org/10.1016/s1002-0160(09)00003-4
https://doi.org/10.1007/s10533-017-0413-y
https://doi.org/10.1007/s10533-017-0413-y
https://doi.org/10.1002/lno.11410
https://doi.org/10.18140/FLX/1669638
https://doi.org/10.5194/bg-12-3119-2015
https://doi.org/10.5194/bg-12-3119-2015
https://doi.org/10.5194/bg-13-597-2016
https://doi.org/10.18140/FLX/1669685
https://doi.org/10.18140/FLX/1669685
https://doi.org/10.1038/347718b0
https://doi.org/10.1111/gcb.13580
https://doi.org/10.1111/gcb.13580
https://doi.org/10.1016/j.agrformet.2020.108062
https://doi.org/10.1016/j.agrformet.2020.108062
https://doi.org/10.1029/2009JD013016
https://doi.org/10.1029/2009JD013016
https://doi.org/10.1111/j.1365-2389.1993.tb02330.x
https://doi.org/10.1111/j.1365-2389.1993.tb02330.x
https://doi.org/10.4141/cjss89-004
https://doi.org/10.4141/cjss89-004
https://doi.org/10.1029/2018JG004796
https://doi.org/10.1029/2018JG004796
https://doi.org/10.1002/2014JG002750
https://doi.org/10.1002/2014JG002750
https://doi.org/10.1016/j.atmosenv.2013.09.044
https://doi.org/10.1016/j.atmosenv.2013.09.044
https://doi.org/10.1515/intag-2017-0042
https://doi.org/10.1515/intag-2017-0042
https://doi.org/10.18140/FLX/1669659
https://doi.org/10.1002/2016JG003438
https://doi.org/10.1002/2016JG003438

KNOX ET AL.

=Ly e

Olefeldt, D., Turetsky, M. R., Crill, P. M., & David McGuire, A. (2013).
Environmental and physical controls on northern terrestrial meth-
ane emissions across permafrost zones. Global Change Biology,
19(2), 589-603. https://doi.org/10.1111/gcb.12071

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D,
Powell, G. V. N., Underwood, E. C., Damico, J. A,, ltoua, |., Strand,
H. E., Morrison, J. C., Loucks, C. J,, Allnutt, T. F,, Ricketts, T. H.,
Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K.
R. (2001). Terrestrial ecoregions of the world: A new map of life on
Earth. BioScience, 51(11), 933.

Peltola, O., Vesala, T., Gao, Y., Raty, O., Alekseychik, P., Aurela, M.,
Chojnicki, B., Desai, A. R., Dolman, A. J., Euskirchen, E. S., Friborg,
T., Gockede, M., Helbig, M., Humphreys, E., Jackson, R. B., Jocher,
G., Joos, F., Klatt, J., Knox, S. H., ... Aalto, T. (2019). Monthly
gridded data product of northern wetland methane emis-
sions based on upscaling eddy covariance observations. Earth
System Science Data, 11(3), 1263-1289. https://doi.org/10.5194/
essd-11-1263-2019

Perryman, C. R., McCalley, C. K., Malhotra, A., Florencia Fahnestock, M.,
Kashi, N. N., Bryce, J. G., Giesler, R., & Varner, R. K. (2020). Thaw
transitions and redox conditions drive methane oxidation in a per-
mafrost peatland. Journal of Geophysical Research: Biogeosciences,
125(3). https://doi.org/10.1029/2019jg005526

Pugh, C. A, Reed, D. E., Desai, A. R., & Sulman, B. N. (2018). Wetland
flux controls: How does interacting water table levels and tem-
perature influence carbon dioxide and methane fluxes in north-
ern Wisconsin? Biogeochemistry, 137(1), 15-25. https://doi.org/
10.1007/s10533-017-0414-x

Pypker, T. G., Moore, P. A., Hribljan, J. A., & Chimner, R. (2013). Shifting
environmental controls on CH, fluxes in a sub-boreal peatland.
Biogeosciences, 10, 7971-7981. https://doi.org/10.5194/bg-10-79
71-2013

R Core Team. (2019). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing. https://www.R-proje
ct.org/

Rinne, J., Tuittila, E.-S., Peltola, O., Li, X., Raivonen, M., Alekseychik, P.,
Haapanala, S., Pihlatie, M., Aurela, M., Mammarella, I., & Vesala, T.
(2018). Temporal variation of ecosystem scale methane emission
from a boreal fen in relation to temperature, water table position,
and carbon dioxide fluxes. Global Biogeochemical Cycles, 32(7),
1087-1106. https://doi.org/10.1029/2017gh005747

Ruddell, B. L., & Kumar, P. (2009). Ecohydrologic process networks:
1. ldentification. Water Resources Research, 45(3). https://doi.
org/10.1029/2008WR007279

Ruddell, B. L., Sturtevant, C., Kang, M., & Yu, R. (2008). ProcessNetwork
Software (Version 1.5) [Computer software]. https://github.com/
ProcessNetwork/ProcessNetwork_Software

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E.,
Glymour, C., Kretschmer, M., Mahecha, M., Mufnoz-Mari, J., van
Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M., Schélkopf,
B., Spirtes, P., Sugihara, G., Sun, J., ... Zscheischler, J. (2019).
Inferring causation from time series in Earth system sciences.
Nature Communications, 10(2553). https://doi.org/10.1038/s4146
7-019-10105-3

Runkle, B. R. K., Suvocarev, K., Reba, M. L., Reavis, C. W., Smith, S. F,,
Chiu, Y.-L., & Fong, B. (2019). Methane emission reductions from
the alternate wetting and drying of rice fields detected using the
eddy covariance method. Environmental Science & Technology, 53(2),
671-681. https://doi.org/10.1021/acs.est.8b05535

Ryu, Y., Kang, M., & Kim, J. (2020). FLUXNET-CH4 KR-CRK Cheorwon
Rice paddy. Republic of Korea. https://doi.org/10.18140/FLX/
1669649

Sachs, T., Wille, C., Boike, J., & Kutzbach, L. (2008). Environmental con-
trols on ecosystem-scale CH, emission from polygonal tundra
in the Lena River Delta. Siberia. Journal of Geophysical Research:
Biogeosciences, 113(G3). https://doi.org/10.1029/2007JG000505

Sachs, T., & Wille, C. (2020). FLUXNET-CH4 DE-Zrk Zarnekow. Germany.
https://doi.org/10.18140/FLX/1669636

Sakabe, A., Itoh, M., Hirano, T., & Kusin, K. (2020). FLUXNET-CH4
ID-Pag Palangkaraya undrained forest. Indonesia. https://doi.
org/10.18140/FLX/1669643

Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G.,
Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S.,
Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P.,
Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol, M.,
... Zhuang, Q. (2020). The global methane budget 2000-2017. Earth
System Science Data, 12(3), 1561-1623. https://doi.org/10.5194/
essd-12-1561-2020

Savi, F., Di Bene, C., Canfora, L., Mondini, C., & Fares, S. (2016).
Environmental and biological controls on CH, exchange over
an evergreen Mediterranean forest. Agricultural and Forest
Meteorology, 226-227, 67-79. https://doi.org/10.1016/j.agrformet.
2016.05.014

Schifer, K. V. R., Tripathee, R., Artigas, F., Morin, T. H., & Bohrer, G.
(2014). Carbon dioxide fluxes of an urban tidal marsh in the Hudson-
Raritan estuary. Journal of Geophysical Research: Biogeosciences,
119(11), 2065-2081. https://doi.org/10.1002/2014jg002703

Schaller, C,, Kittler, F., Foken, T., & Gockede, M. (2019). Characterisation
of short-term extreme methane fluxes related to non-turbulent
mixing above an Arctic permafrost ecosystem. Atmospheric
Chemistry and Physics, 19(6), 4041-4059. https://doi.org/10.5194/
acp-19-4041-2019

Schreiber, T. (2000). Measuring information transfer. Physical
Review Letters, 85(2), 461-464. https://doi.org/10.1103/PhysR
evlLett.85.461

Seyfferth, A. L., Bothfeld, F., Vargas, R., Stuckey, J. W., Wang, J., Kearns,
K., Michael, H. A., Guimond, J., Yu, X., & Sparks, D. L. (2020). Spatial
and temporal heterogeneity of geochemical controls on carbon cy-
cling in a tidal salt marsh. Geochimica et Cosmochimica Acta, 282,
1-18. https://doi.org/10.1016/j.gca.2020.05.013

Sharma, A., & Mehrotra, R. (2014). An information theoretic alterna-
tive to model a natural system using observational information
alone. Water Resources Research, 50(1), 650-660. https://doi.
org/10.1002/2013wr013845

Song, C.,Sun, L., Huang, Y., Wang, Y., & Wan, Z. (2011). Carbon exchange
in a freshwater marsh in the Sanjiang Plain, northeastern China.
Agricultural and Forest Meteorology, 151(8), 1131-1138. https://doi.
org/10.1016/j.agrformet.2011.04.001

Sonnentag, O., & Helbig, M. (2020). FLUXNET-CH4 CA-SCB scotty creek
bog. Canada. https://doi.org/10.18140/FLX/1669613

Sparks, J. P. (2020). FLUXNET-CH4 US-MAC MacArthur agro-ecology.
United States. https://doi.org/10.18140/FLX/1669683

Strachan, I. B., Nugent, K. A., Crombie, S., & Bonneville, M.-C. (2015).
Carbon dioxide and methane exchange at a cool-temperate fresh-
water marsh. Environmental Research Letters, 10(6), 065006. https://
doi.org/10.1088/1748-9326/10/6/065006

Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., & Zeileis, A. (2008).
Conditional variable importance for random forests. BMC
Bioinformatics, 9, 307. https://doi.org/10.1186/1471-2105-9-307

Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias
in random forest variable importance measures: lllustrations,
sources, and a solution. BMC Bioinformatics, 8, 25. https://doi.
org/10.1186/1471-2105-8-25

Sturtevant, C., Ruddell, B. L., Knox, S. H., Verfaillie, J., Matthes, J. H.,
Oikawa, P. Y., & Baldocchi, D. (2016). Identifying scale-emergent,
nonlinear, asynchronous processes of wetland methane exchange.
Journal of Geophysical Research: Biogeosciences, 121(1), 188-204.
https://doi.org/10.1002/2015JG003054

Tittel, J., Hils, M., & Koschorreck, M. (2019). Terrestrial vegetation
drives methane production in the sediments of two German reser-
voirs. Scientific Reports, 9(1), 15944. https://doi.org/10.1038/s4159
8-019-52288-1


https://doi.org/10.1111/gcb.12071
https://doi.org/10.5194/essd-11-1263-2019
https://doi.org/10.5194/essd-11-1263-2019
https://doi.org/10.1029/2019jg005526
https://doi.org/10.1007/s10533-017-0414-x
https://doi.org/10.1007/s10533-017-0414-x
https://doi.org/10.5194/bg-10-7971-2013
https://doi.org/10.5194/bg-10-7971-2013
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1029/2017gb005747
https://doi.org/10.1029/2008WR007279
https://doi.org/10.1029/2008WR007279
https://github.com/ProcessNetwork/ProcessNetwork_Software
https://github.com/ProcessNetwork/ProcessNetwork_Software
https://doi.org/10.1038/s41467-019-10105-3
https://doi.org/10.1038/s41467-019-10105-3
https://doi.org/10.1021/acs.est.8b05535
https://doi.org/10.18140/FLX/1669649
https://doi.org/10.18140/FLX/1669649
https://doi.org/10.1029/2007JG000505
https://doi.org/10.18140/FLX/1669636
https://doi.org/10.18140/FLX/1669643
https://doi.org/10.18140/FLX/1669643
https://doi.org/10.5194/essd-12-1561-2020
https://doi.org/10.5194/essd-12-1561-2020
https://doi.org/10.1016/j.agrformet.2016.05.014
https://doi.org/10.1016/j.agrformet.2016.05.014
https://doi.org/10.1002/2014jg002703
https://doi.org/10.5194/acp-19-4041-2019
https://doi.org/10.5194/acp-19-4041-2019
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1016/j.gca.2020.05.013
https://doi.org/10.1002/2013wr013845
https://doi.org/10.1002/2013wr013845
https://doi.org/10.1016/j.agrformet.2011.04.001
https://doi.org/10.1016/j.agrformet.2011.04.001
https://doi.org/10.18140/FLX/1669613
https://doi.org/10.18140/FLX/1669683
https://doi.org/10.1088/1748-9326/10/6/065006
https://doi.org/10.1088/1748-9326/10/6/065006
https://doi.org/10.1186/1471-2105-9-307
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1002/2015JG003054
https://doi.org/10.1038/s41598-019-52288-1
https://doi.org/10.1038/s41598-019-52288-1

KNOX ET AL.

Tokida, T. (2005). Ebullition of methane from peat with falling atmo-
spheric pressure. Geophysical Research Letters, 32(13), 3257. https://
doi.org/10.1029/2005GL022949

Tokida, T., Miyazaki, T., Mizoguchi, M., Nagata, O., Takakai, F., Kagemoto,
A., & Hatano, R. (2007). Falling atmospheric pressure as a trigger
for methane ebullition from peatland. Global Biogeochemical Cycles,
21(2). https://doi.org/10.1029/2006GB002790

Treat, C. C., Anthony Bloom, A., & Marushchak, M. E. (2018). Nongrowing
season methane emissions-a significant component of annual emis-
sions across northern ecosystems. Global Change Biology, 24(8),
3331-3343. https://doi.org/10.1111/gcb.14137

Trifunovic, B., Vazquez-Lule, A., Capooci, M., Seyfferth, A. L.,
Moffat, C., & Vargas, R. (2020). Carbon dioxide and methane
emissions from temperate salt marsh tidal creek. Journal of
Geophysical Research: Biogeosciences, 125(8), 84. https://doi.org/
10.1029/2019JG005558

Tuovinen, J.-P., Aurela, M., Hatakka, J., Rasanen, A., Virtanen, T.,
Mikola, J., lvakhov, V., Kondratyev, V., & Laurila, T. (2019).
Interpreting eddy covariance data from heterogeneous Siberian
tundra: Land cover-specific methane fluxes and spatial represen-
tativeness. Biogeosciences, 16, 255-274. https://doi.org/10.5194/
bg-16-255-2019

Turetsky, M. R., Kotowska, A., Bubier, J., Dise, N. B., Crill, P., Hornibrook,
E. R. C., Minkkinen, K., Moore, T. R., Myers-Smith, I. H., Nykanen,
H., Olefeldt, D., Rinne, J., Saarnio, S., Shurpali, N., Tuittila, E.-S.,
Waddington, J. M., White, J. R., Wickland, K. P., & Wilmking, M.
(2014). A synthesis of methane emissions from 71 northern, tem-
perate, and subtropical wetlands. Global Change Biology, 20(7),
2183-2197. https://doi.org/10.1111/gcb.12580

Ueyama, M., Hirano, T., & Kominami, Y. (2020). FLUXNET-CH4 JP-BBY
Bibai bog. Japan. https://doi.org/10.18140/FLX/1669646

Ueyama, M., Yazaki, T., Hirano, T., Futakuchi, Y., & Okamura, M. (2020).
Environmental controls on methane fluxes in a cool temperate
bog. Agricultural and Forest Meteorology, 281, 107852. https://doi.
org/10.1016/j.agrformet.2019.107852

Updegraff, K., Bridgham, S. D., Pastor, J., Weishampel, P., & Harth, C.
(2001). Response of CO, and CH, emissions from peatlands to
warming and water table manipulation. Ecological Applications,
11(2), 311. https://doi.org/10.2307/3060891

Valach, A., Szutu, D., Eichelmann, E., Knox, S., Verfaillie, J., & Baldocchi,
D. (2020). FLUXNET-CH4 US-Tw1 twitchell wetland west pond.
United States. https://doi.org/10.18140/FLX/1669696

Van der Nat, F.-J., & Middelburg, J. J. (2000). Methane emission from tidal
freshwater marshes. Biogeochemistry, 49(2), 103-121. https://doi.
org/10.1023/A:1006333225100

Vesala, T., Tuittila, E.-S., Mammarella, ., & Alekseychik, P. (2020).
FLUXNET-CH4 FI-Si2 Siikaneva-2 Bog. Finland. https://doi.org/
10.18140/FLX/1669639

Vesala, T., Tuittila, E.-S., Mammarella, I., & Rinne, J. (2020). FLUXNET-CH4
FI-Sii Siikaneva. Finland. https://doi.org/10.18140/FLX/1669640

Villa, J. A., Ju, Y., Stephen, T., Rey-Sanchez, C., Wrighton, K. C., & Bohrer,
G. (2020). Plant-mediated methane transport in emergent and
floating-leaved species of a temperate freshwater mineral-soil wet-
land. Limnology and Oceanography, 65(7), 1635-1650. https://doi.
org/10.1002/In0.11467

Villa, J. A,, Ju, Y., Yazbeck, T., Waldo, S., Wrighton, K. C., & Bohrer, G.
(2021). Ebullition dominates methane fluxes from the water sur-
face across different ecohydrological patches in a temperate
freshwater marsh at the end of the growing season. Science of the
Total Environment, 767, 144498. https://doi.org/10.1016/j.scito
tenv.2020.144498

e, NSRS

Vourlitis, G., Dalmagro, H., Nogueira, J. S., Johnson, M., & Arruda, P.
(2020). FLUXNET-CH4 BR-Npw northern pantanal wetland. Brazil.
https://doi.org/10.18140/FLX/1669368

Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W. H. A.,
Lumley, T., Maechler, M., Magnusson, A., Moeller, S., Schwartz, M.,
& Venables, B. (2019). gplots: Various R programming tools for plot-
ting data. https://cran.r-project.org/web/packages/gplots/index.
html

Wen, X., Unger, V., Jurasinski, G., Koebsch, F., Horn, F., Rehder, G., Sachs,
T., Zak, D., Lischeid, G., Knorr, K.-H., Béttcher, M. E., Winkel, M.,
Bodelier, P. L. E., & Liebner, S. (2018). Predominance of methano-
gens over methanotrophs in rewetted fens characterized by high
methane emissions. Biogeosciences, 15(21), 6519-6536. https://doi.
org/10.5194/bg-15-6519-2018

Wong, G. X., Melling, L., Tang, A. C. |, Aeries, E. B., Waili, J. W., Musin, K.
K., Lo, K. S., & Kiew, F. (2020). FLUXNET-CH4 MY-MLM Maludam
National Park. Malaysia. https://doi.org/10.18140/FLX/1669650

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal
likelihood estimation of semiparametric generalized linear models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology),
73(1), 3-36. https://doi.org/10.1111/j.1467-9868.2010.00749.x

Wright, M. N., & Ziegler, A. (2017). ranger: A fast implementation of random
forests for high dimensional data in C++ and R. Journal of Statistical
Software, 77(1), 1-17. https://doi.org/10.18637/jss.v077.i01

Yang, W. H., McNicol, G., Teh, Y. A, Estera-Molina, K., Wood, T.
E., & Silver, W. L. (2017). Evaluating the classical versus an
emerging conceptual model of peatland methane dynamics.
Global Biogeochemical Cycles, 31(9), 1435-1453. https://doi.
org/10.1002/2017GB005622

Yvon-Durocher, G., Allen, A. P, Bastviken, D., Conrad, R., Gudasz, C.,
St-Pierre, A., Thanh-Duc, N., & del Giorgio, P. A. (2014). Methane
fluxes show consistent temperature dependence across micro-
bial to ecosystem scales. Nature, 507(7493), 488-491. https://doi.
org/10.1038/nature13164

Zhao, J., Zhou, Y., Zhang, X., & Chen, L. (2016). Part mutual information
for quantifying direct associations in networks. Proceedings of the
National Academy of Sciences of the United States of America, 113(18),
5130-5135. https://doi.org/10.1073/pnas.1522586113

Zona, D., Gioli, B., Commane, R., Lindaas, J., Wofsy, S. C., Miller, C. E.,
Dinardo, S. J., Dengel, S., Sweeney, C., Karion, A., Chang, R.-W.,
Henderson, J. M., Murphy, P. C., Goodrich, J. P., Moreaux, V.,
Liljedahl, A., Watts, J. D., Kimball, J. S., Lipson, D. A., & Oechel, W.
C. (2016). Cold season emissions dominate the Arctic tundra meth-
ane budget. Proceedings of the National Academy of Sciences of the
United States of America, 113(1), 40-45. https://doi.org/10.1073/
pnas.1516017113

SUPPORTING INFORMATION
Additional supporting information may be found online in the
Supporting Information section.

How to cite this article: Knox SH, Bansal S, McNicol G, et al.
Identifying dominant environmental predictors of freshwater
wetland methane fluxes across diurnal to seasonal time
scales. Glob Change Biol. 2021;00:1-23. https://doi.
org/10.1111/gcb.15661



https://doi.org/10.1029/2005GL022949
https://doi.org/10.1029/2005GL022949
https://doi.org/10.1029/2006GB002790
https://doi.org/10.1111/gcb.14137
https://doi.org/10.1029/2019JG005558
https://doi.org/10.1029/2019JG005558
https://doi.org/10.5194/bg-16-255-2019
https://doi.org/10.5194/bg-16-255-2019
https://doi.org/10.1111/gcb.12580
https://doi.org/10.18140/FLX/1669646
https://doi.org/10.1016/j.agrformet.2019.107852
https://doi.org/10.1016/j.agrformet.2019.107852
https://doi.org/10.2307/3060891
https://doi.org/10.18140/FLX/1669696
https://doi.org/10.1023/A:1006333225100
https://doi.org/10.1023/A:1006333225100
https://doi.org/10.18140/FLX/1669639
https://doi.org/10.18140/FLX/1669639
https://doi.org/10.18140/FLX/1669640
https://doi.org/10.1002/lno.11467
https://doi.org/10.1002/lno.11467
https://doi.org/10.1016/j.scitotenv.2020.144498
https://doi.org/10.1016/j.scitotenv.2020.144498
https://doi.org/10.18140/FLX/1669368
https://cran.r-project.org/web/packages/gplots/index.html
https://cran.r-project.org/web/packages/gplots/index.html
https://doi.org/10.5194/bg-15-6519-2018
https://doi.org/10.5194/bg-15-6519-2018
https://doi.org/10.18140/FLX/1669650
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1002/2017GB005622
https://doi.org/10.1002/2017GB005622
https://doi.org/10.1038/nature13164
https://doi.org/10.1038/nature13164
https://doi.org/10.1073/pnas.1522586113
https://doi.org/10.1073/pnas.1516017113
https://doi.org/10.1073/pnas.1516017113
https://doi.org/10.1111/gcb.15661
https://doi.org/10.1111/gcb.15661

