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Abstract
The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be 
high, complicating efforts to quantify sink-source patterns across the entire region. 
Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across 
large spatial domains, but the reliability of different modeling techniques, each with 
different specifications and assumptions, has not been assessed in detail. Here, we 
compile eddy covariance and chamber measurements of annual and growing season 
CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net 
ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high-latitude (i.e., 
tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and 
test the accuracy and uncertainty of different statistical models. CO2 fluxes were up-
scaled at relatively high spatial resolution (1 km2) across the high-latitude region using 
five commonly used statistical models and their ensemble, that is, the median of all 
five models, using climatic, vegetation, and soil predictors. We found the performance 
of machine learning and ensemble predictions to outperform traditional regression 
methods. We also found the predictive performance of NEE-focused models to be 
low, relative to models predicting GPP and ER. Our data compilation and ensemble 
predictions showed that CO2 sink strength was larger in the boreal biome (observed 
and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to 
tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with 
large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, cli-
mate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated 
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1  |  INTRODUC TION

The terrestrial ecosystem carbon dioxide (CO2) balance is one of the 
largest uncertainties in the global carbon budget (Friedlingstein et al., 
2020), with high latitudes (i.e., tundra and boreal biomes) represent-
ing one of the least-constrained budgets (López-Blanco et al., 2019; 
Schuur et al., 2015; Zscheischler et al., 2017). Moreover, due to polar 
amplification and large carbon stocks, the high latitudes have the po-
tential for substantial positive feedbacks to climate warming (Abbott 
et al., 2016; Gasser et al., 2018; Schuur et al., 2008; Turetsky et al., 
2020). Currently, in the absence of major disturbances (e.g., fire), bo-
real forests are generally CO2 sinks (Bradshaw & Warkentin, 2015; 
Pan et al., 2011), while regional estimates of tundra vary from sinks 
(McGuire et al., 2009, 2012, 2016) to sources (Belshe et al., 2013). 
Both the growing and non-growing seasons are important for these 
annual budget estimates. A recent synthesis found that non-growing 
season soil CO2 emissions from the northern permafrost region are 
larger than previously estimated (Natali et al., 2019). However, CO2 
uptake by plants over the growing season can be substantial and is 
often the dominant component of the annual CO2 budget (Alekseychik 
et al., 2017; Kolari et al., 2009; Lafleur et al., 2012). The current state 

of the annual terrestrial high-latitude CO2 budget (net sink or source) 
remains highly uncertain. A key research priority is to develop robust 
data-driven quantitative frameworks to constrain regional boreal and 
tundra CO2 budgets at annual and seasonal time scales.

Estimating high-latitude CO2 fluxes across large areas and over long 
timescales is challenging due to their high spatiotemporal variability (Ai 
et al., 2018; Wilkman et al., 2018) that is controlled by a range of en-
vironmental variables (Camps-Valls et al., 2015; Lund et al., 2010). The 
ecosystem CO2 balance (i.e., net ecosystem CO2 exchange; NEE) is the 
relatively small difference between the two large CO2 fluxes of photo-
synthesis (gross primary production; GPP) and ecosystem respiration 
(ER; comprising autotrophic and heterotrophic respiration). Although 
NEE can be measured with the eddy covariance (EC) and chamber 
techniques (Baldocchi et al., 1988; Lundegårdh, 1927), GPP and ER are 
estimated indirectly using environmental light and temperature mea-
surements for EC sites (Lasslop et al., 2010; Reichstein et al., 2005) and 
dark chamber measurements for chamber sites (Shaver et al., 2007). 
Field studies have shown that GPP, ER, and NEE depend on climatic 
conditions (e.g., temperature, precipitation, and radiation) (López-
Blanco et al., 2017; Nobrega & Grogan, 2008; Zhang et al., 2018), veg-
etation (Cahoon et al., 2012; Fox et al., 2008; Järveoja et al., 2018), 

using the annual NEE ensemble prediction, suggests the high-latitude region was on 
average an annual CO2 sink during 1990–2015, although uncertainty remains high.
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and soil properties (e.g., soil nutrients and moisture) (Arens et al., 2008; 
Dagg & Lafleur, 2011; Lund et al., 2009). However, our understanding 
of the influence of these drivers on GPP and ER, and particularly on 
NEE, across the entire high-latitude region remains limited (see e.g., 
Belshe et al., 2013; Lund et al., 2010).

Knowledge of the contemporary high-latitude terrestrial CO2 
budget is further limited by an increasing, but still relatively sparse, 
flux measurement network (Alton, 2020; Chu et al., 2017; Virkkala 
et al., 2018). The majority of flux sites are concentrated within a few 
intensively studied regions, particularly Alaska and Fennoscandia 
(Metcalfe et al., 2018; Pastorello et al., 2020; Virkkala et al., 2019), 
with just a few sites in other large regions such as Siberia and north-
ern Canada. Consequently, issues related to the temporal, geograph-
ical and environmental representativeness of the measurements 
need to be considered to accurately estimate high-latitude carbon 
budgets and their uncertainties. Previous studies have used a va-
riety of synthesis approaches (Belshe et al., 2013; McGuire et al., 
2012), and statistical (Natali et al., 2019), process-based (López-
Blanco et al., 2019; McGuire et al., 2018; Rawlins et al., 2015; Wania 
et al., 2009) and atmospheric inversion models (McGuire et al., 
2012), yielding highly different CO2 budgets. Most of these model-
ing studies have been conducted at coarse spatial resolutions (25–
100 km; Natali et al., 2019; Rawlins et al., 2015; López-Blanco et al., 
2019) that do not fully capture the heterogeneity in high-latitude 
environments despite their importance for the regional CO2 budgets 
(Raynolds et al., 2019; Treat et al., 2018). New efforts synthesizing 
the current distribution of flux data and developing models at high 
spatial resolution are required to improve our understanding on the 
spatial patterns and magnitudes of CO2 fluxes.

Models that rely on the statistical relationships between CO2 
flux and predictor variables have been increasingly employed to con-
strain global and high-latitude CO2 budgets (e.g., Jung et al., 2020; 
Natali et al., 2019; Warner et al., 2019). These statistical models 
are useful for predicting fluxes across larger areas (i.e., upscaling) 
because they directly draw upon relationships between fluxes and 
environmental variables, can account for environmental variability 
across space and time at high resolutions, and are able to handle bi-
ases in the geographic representation of the data (Jung et al., 2020; 
Natali et al., 2019; Warner et al., 2019). A broad range of statistical 
models and data sources are available for upscaling, but not all of 
these have been fully utilized. For example, many past studies have 
upscaled high-latitude fluxes using a single model (Natali et al., 2019; 
Peltola et al., 2019; Ueyama, Ichii, et al., 2013), but how different 
models compare with each other is not well known (with exception 
of Jung et al., 2017 and Tramontana et al., 2016). Further, most of 
these studies have primarily used machine learning models due to 
their ability to capture non-linear relationships and interactions in 
data (Elith et al., 2008). However, traditional regression methods 
can be a powerful tool in upscaling high-latitude ground conditions 
due to their ability to extrapolate beyond the range of data used 
for training, and due to their generalizability and ease of interpreta-
tion (Aalto et al., 2018). Finally, many of the recent upscaling stud-
ies have relied on EC flux measurements only, neglecting chamber 

measurements despite their importance as additional data sources 
(with exception of Natali et al., 2019). Chambers are useful espe-
cially in remote, sparsely measured treeless tundra where they can 
capture the entire ecosystem CO2 balance and directly measure NEE 
and ER (Sørensen et al., 2019). Thus, a compilation of both EC and 
chamber flux measurements and the comparison of available mod-
eling techniques is clearly required to ensure accurate CO2 flux esti-
mates from existing data and models.

Here, we synthesize annual and growing season CO2 fluxes from 
EC and chamber measurements across the high-latitude terrestrial 
tundra and boreal region. We then use this new database to upscale 
annual average ecosystem CO2 fluxes at relatively high spatial res-
olution (1 km2) across the high-latitude domain using several statis-
tical models. We compare our new database of in situ CO2 fluxes 
to past tundra syntheses (Belshe et al., 2013; McGuire et al., 2012), 
provide a detailed assessment of model performance, analyze the 
spatial patterns and drivers of CO2 fluxes, and discuss the resulting 
CO2 budget estimates and recommendations for future work. We 
focus on understanding the spatial variability in average CO2 fluxes 
instead of a temporal analysis of CO2 flux change; however, our mod-
eling framework also considers the interannual variability in fluxes.

2  |  MATERIAL AND METHODS

2.1  |  Data collection

2.1.1  |  Collection of CO2 flux data

Our study area was defined by the high-latitude tundra and boreal bi-
omes (>45°N) based on global ecoregions (20.6 × 106 km2; Figure 1; 
Dinerstein et al., 2017). We first conducted a literature survey to iden-
tify existing EC and chamber-based terrestrial CO2 flux observations 
of GPP, ER, and NEE over annual and growing season periods across 
the domain. Potential sites were identified from previous studies (Ichii 
et al., 2017; Marushchak et al., 2013; McCallum et al., 2013; Watts 
et al., 2014) and prior synthesis efforts (Belshe et al., 2013; McGuire 
et al., 2012; Virkkala et al., 2018). We augmented the resulting site 
list using a Web of Science search with key words (“tundra” or “bo-
real” or “arctic”) and (“CO2 flux” or “CO2 exchange” or “CO2 budget”). 
Additionally, a community call was solicited through a CO2 flux syn-
thesis workshop (Parmentier et al., 2019), whereby investigators con-
tributed their most current unpublished data. Additional EC data were 
downloaded from FLUXNET2015 (Pastorello et al., 2020). The com-
piled dataset represents all natural terrestrial vegetation types (cat-
egorized by needle- or broadleaf forest, shrubland, grassland, wetland, 
and sparse vegetation) present in the high-latitude region.

We included studies and sites with NEE, GPP, and ER estimates 
over a full growing season or calendar year (i.e., cumulative flux). 
Growing season flux measurements are provided by EC and cham-
bers. Non-growing season flux measurements include a variety of 
methods in addition to EC and chambers (e.g., a gas diffusion method 
by Björkman et al., 2010, soda lime by Welker et al., 2004, or an 



    |  5VIRKKALA et al.

empirical model by Vogel et al., 2009). Growing season length and 
measurement period were defined in multiple ways at individual 
sites. To allow inter-site comparison, we filtered out measurements 
that did not represent the entire growing season and standardized 
the remaining measurements (see Supplementary Text Section 1.1 
and a similar approach in Belshe et al., 2013). From this filtered data-
set, we calculated average growing season daily flux rates based on 
the reported measurement length and standardized the fluxes based 
on a common growing season length. The final list of sites having 

representative annual or growing season measurements is provided 
in Table S1, sites that were excluded from our analysis are in Table S2.

The resulting dataset included 148 sites with CO2 fluxes from 
1990 to 2015 from variable measurement periods (Figure 1). We 
compiled 1448 cumulative annual and growing season flux values 
(when chamber measurements were aggregated per site; Figure 1); 
82% of the aggregated observations are from EC and 18% are from 
chambers. Annual and growing season NEE were the most widely re-
ported fluxes in the dataset (Figure 1). Unlike McGuire et al. (2012) 

F I G U R E  1  Measured median annual (a–c) and growing season (d–f) fluxes of GPP (gross primary production), ER (ecosystem respiration), 
and NEE (net ecosystem exchange) in the study domain (>45°N). The color of the point defines the median flux of the site (i.e., a sampling 
location), and the size of the point the number of observations that was measured (i.e., number of years). The background map represents 
the high-latitude region (dark gray = boreal biome, light gray = tundra biome). In all panels, sites that had only eddy covariance measurements 
are shown with black outline color around the point, and chamber measurements are without outline. One site had both eddy covariance 
and chamber measurements, but this is shown with black outline color. Positive numbers for NEE indicate net ecosystem CO2 loss to 
the atmosphere (i.e., CO2 source) and negative numbers indicate net ecosystem CO2 gain (i.e., CO2 sink)
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and Belshe et al. (2013) we also included data from the boreal biome, 
additional tundra sites, and wetlands (not synthesized in Belshe et al., 
2013; Figure S1). Similar to McGuire et al. (2012) and Belshe et al. 
(2013), our database primarily represents undisturbed environments. 
However, it also includes measurements from ca. 10 sites that have 
experienced high natural, anthropogenic or anthropogenically in-
duced disturbances, such as permafrost thaw (Bäckstrand et al., 
2010; Cassidy et al., 2016; Trucco et al., 2012), fires (Iwata et al., 
2011; Ueyama et al., 2019), insect outbreaks (Heliasz et al., 2011; 
López-Blanco et al., 2017; Lund et al., 2017), or extensive harvesting 
practices (Coursolle et al., 2012; Machimura et al., 2005). Throughout 
the text, positive numbers for NEE indicate net CO2 loss to the at-
mosphere (i.e., CO2 source) and negative numbers indicate net CO2 
gain (i.e., CO2 sink). GPP and ER are always given as positive numbers.

2.1.2  |  Gridded predictors and reference flux data

We acquired 10 eco-physiologically relevant predictors at 1-km2 
resolution (0.0083°) representing climate, vegetation, topo-
graphic, and soil conditions: growing degree days (GDD3; °C), 
freezing degree days (FDD; °C), water balance (WAB; mm), maxi-
mum growing season normalized difference vegetation index 
(NDVI), topographic wetness index (TWI), potential incoming 
direct annual solar radiation (RAD; MJ cm−2  yr−1), soil organic 
carbon stocks in the upper 2 meters (SOC; tons per ha), topsoil 
(0–5 cm) pH, topsoil clay content (CLAY; %), and land cover (LC; 
classes were mixed or broadleaved forest, needle-leaved for-
est, grassland and shrubland, wetland, sparse vegetation; see 
Supplementary Text Section 1.2 and Figure S2 for more infor-
mation about the predictors). These predictors characterize 
previously identified key relationships between CO2 fluxes and 
summer and winter temperatures, radiation, precipitation, local 
hydrology and soil conditions, soil carbon stocks, and vegetation 
properties (i.e., see Beer et al., 2010; Belshe et al., 2013; Lund 
et al., 2010; Natali et al., 2019; Ueyama, Iwata, et al., 2013). NDVI 
further reflects disturbances as it can show spectral browning 
signals related to drought, harvesting, or fires (Myers-Smith et al., 
2020; Figure S3; Supplementary Text Section 2.5). We recognize 
that GPP and ER partitioning and gap filling rely on supporting 
environmental data (e.g., temperature and radiation), and conse-
quently these fluxes already include some information about vari-
ables that we also used as predictors in our statistical models. We 
used annual (1990–2015) data for GDD3, FDD, WAB, and NDVI; 
the remaining predictors were considered to be static. All predic-
tor datasets were masked to only include high-latitude tundra and 
boreal biomes (Dinerstein et al., 2017), and to exclude permanent 
water bodies, urban areas, and croplands based on a land cover 
dataset developed by ESA (2017).

We compared our annual ecosystem NEE predictions and 
budgets (see Section 2.2.1) with FLUXCOM, a global product 
derived from FLUXNET EC towers and machine learning at 0.5° 
resolution (Baldocchi et al., 2001; Jung et al., 2017; Tramontana 

et al., 2016) and an ensemble of global Earth system models from 
the Coupled Model Intercomparison Project Phase 5 (CMIP5) at 
1.92 × 1.5° resolution (Taylor et al., 2012) (Supplementary Text 
Section 1.3).

2.2  |  Data analysis

2.2.1  |  Statistical modeling

Our main response variables were annual and growing season cumu-
lative GPP, ER, and NEE, but we also modeled daily average GPP, ER, 
and NEE during the growing season. Annual and growing season CO2 
fluxes were linked to the environmental predictors using a range of 
different statistical modeling methods (Figure S4). We used five 
statistical models; two were extensions of linear regression models, 
and three were based on machine-learning. All of these models have 
been widely used in empirical CO2 flux upscaling studies (Bond-
Lamberty & Thomson, 2010; Hursh et al., 2016; Tramontana et al., 
2016; Ueyama, Ichii, et al., 2013). Specifically, we examined gener-
alized linear models (GLMs); generalized additive models (GAMs); 
generalized boosted regression trees (GBMs); random forest (RF 
models); and support vector machines (SVMs).

We used several model approaches because individual mod-
els have inherent strengths and weaknesses (Supplementary Text 
Section 2). For example, machine learning methods might suffer from 
overfitting, whereas regression methods might result in unrealistic 
values when extrapolated outside the model data range. Further, indi-
vidual models may detect different patterns in the data, and the best 
performing models are not always the same for different response 
variables (Segurado & Araújo, 2004). We also produced an ensem-
ble prediction by calculating a median prediction over the five pre-
dictions from the individual modeling methods (see also Tramontana 
et al., 2016). We used the median instead of the mean to avoid ex-
treme predicted values inflating the ensemble prediction. In this pro-
cedure, the uncertainty of the ensemble is expected to be lower than 
the uncertainty of a single model (Aalto et al., 2018). Consequently, 
we produced six model predictions for each of our response variables.

To determine the main drivers of the spatial patterns of response 
variables, the relative contribution of predictors in the models was 
assessed using a prediction re-shuffling approach (Niittynen & 
Luoto, 2018). We first fit the model and developed predictions using 
the original data, and then repeated this procedure with the values 
for one predictor randomly permuted. The contribution of a variable 
was calculated as a correlation between these two predictions (i.e., 
original model and the model with a shuffled predictor) subtracted 
from one:

Values close to 1 indicate that the two predictions were differ-
ent, indicating high variable importance of the predictor variable. 

Relativecontribution =1−correlation
(

Predictionoriginal data, PredictionRandomly permuted data

)
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Each predictor was randomly permuted 100 times for each flux 
with each of the modelling methods, and an ensemble contribu-
tion was derived by taking a mean of the values. To visualize a 
predictor's effect on a response variable after controlling for the 
effects of other predictors, partial dependence plots were derived 
from the random forest model. For both variable importance and 
partial dependence plot analyses, we used daily average growing 
season fluxes because the growing season length estimates that 
were used to calculate growing season fluxes are not independent 
from GDD3. We found that the daily average fluxes correlated 
strongly with the growing season fluxes (Pearson's correlation 
0.93–0.94), so they can be assumed to reflect the same relation-
ships with the predictors.

To extrapolate across the study domain, we fit the models using 
the entire dataset to produce annual flux predictions and their 
ensembles that were subsequently averaged to 1990–2015 mean 
values. Because the ensemble predictions were among the most 
accurate and least uncertain predictions across all response vari-
ables, and because their use is generally recommended in predic-
tive efforts (Araújo & New, 2007), our final flux maps and budgets 
were based on the flux ensemble. In addition to annual and growing 
season budgets, we also calculated a non-growing season budget 
(see Table S4). We had different numbers of observations and sites 
available for each flux and model, and consequently observed and 
predicted ER and GPP fluxes and budgets do not sum up to NEE.

2.2.2  |  Model fit, predictive performance and 
uncertainty

To evaluate model fit, we predicted fluxes over the entire model 
training data. To assess the predictive performance of the models, 
we used a leave-one-site-out cross validation scheme in which each 
site was iteratively left out from the dataset, and the remaining 
data were used to predict fluxes for the excluded site (Bodesheim 
et al., 2018). For both model fit and predictive performance, we 
calculated bias as an average of the absolute error between predic-
tion and actual observations, Pearson correlation (r) to determine 
the strength of the linear relationship between the observed and 
predicted fluxes, and root mean squared error (RMSE) to estimate 
the model error. We use the terms “observed” and “predicted” to 
distinguish between field measurements and model predictions but 
acknowledge that some of these observed values represent indirect 
estimates of fluxes (e.g., GPP).

We evaluated the prediction uncertainty of all flux models and 
the budget uncertainty of annual and growing season NEE mod-
els using a repeated random resampling procedure (Aalto et al., 
2018). Prediction uncertainty was calculated to characterize the 
spatial variability in flux predictions across the high-latitude region, 
whereas budget uncertainty quantified the range of potential NEE 
budget values. We used bootstrapping (fractional resampling with 
replacement based on LC classes) to subset the model training data 
into 200 different datasets, all of which had the same number of 

observations as the original flux data itself. These 200 datasets were 
then used to produce 200 individual predictions with all five sta-
tistical models and their ensemble for each flux and for each year 
from 1990 to 2015 to assess prediction uncertainty which was 
summarized using the prediction interval (PI; 95th percentile – 5th 
percentile). Uncertainty for annual and growing season NEE budgets 
was estimated by calculating the range of budgets from the 50 first 
ensemble predictions out of the 200 predictions for each year from 
1990 to 2015, due to computational constraints. For more details, 
see Supplementary Text Section 2.4 and Figure S5.

3  |  RESULTS

3.1  |  Observed flux variation

Flux measurements showed considerable variation in magnitudes 
and signs (CO2 sink vs source) across the high-latitude environ-
ments (Figure 1 and Table 1). Observed annual NEE (no upscaling) 
was on average a small source of CO2 in the most northern parts of 
the study domain (tundra: +10 g C m−2 yr−1, 42 sites; northern per-
mafrost region: +6 g C m−2 yr−1, 63 sites) and in drier environments 
(tundra upland: +16 g C m−2 yr−1, 36 sites), whereas the boreal biome 
(−46 g C m−2 yr−1, 41 sites), and in particular boreal uplands (−47 C 
m−2 yr−1, 34 sites), and non-permafrost regions (−90 g C m−2 yr−1, 20 
sites) were net ecosystem CO2 sinks. All environmental categories 
were, on average, net CO2 sinks during the growing season, with the 
average NEE ranging from −37 to −115 g C m−2 period−1 (Table 1). 
Tundra upland and non-permafrost regions had the lowest average 
growing season sink strength. The non-permafrost region sink was 
greatly reduced by one disturbed site that had large source values 
up to +600 g C m−2 period−1 (Petrone et al., 2014), but this was not 
apparent in the annual averages because the same site did not re-
port annual fluxes. Although the environmental conditions at the 
sites were fairly representative of the entire high-latitude region 
(Figure S6), colder environments with low NDVI and GDD3 as well 
as high FDD were less well represented (e.g., large areas of Siberia; 
Figure 1). Some chamber sites were located in conditions that would 
have otherwise remained undersampled (Figure S6). These included 
sites with relatively high soil organic carbon stocks in Hudson Bay 
Lowland and northwestern Canada, and wet climates in Greenland 
and northern Fennoscandia.

3.2  |  Predictive performance of the models

The model fit and predictive performance analyses indicated that 
the GBM, RF and SVM (machine learning) methods outperformed 
the GLM and GAM (regression model) approaches across most of 
the response variables (in particular with NEE, but also with GPP 
and ER; model fit of annual machine learning models: r = 0.69–0.99 
vs. regression models: r = 0.6–0.92; predictive performance of an-
nual machine learning methods: r = 0.2–0.73 vs. regression models: 
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r  =  0.12–0.72; Figure 2g-i). We found that the machine learning-
based methods were less uncertain (Figure S7) and predicted values 
within the range of the observed fluxes as opposed to regression 
models. However, the machine learning method that performed 
best and had the least uncertainties varied depending on the flux 
response variable.

Ensemble predictions were among the best performing models 
(model fit of annual and growing season ensemble models: r = 0.68–
0.94; predictive performance of annual and growing season ensem-
ble models: r = 0.21–0.73; Figure 2 and Figure S8). However, similar 
to the individual models, model fit and predictive performance was 
lower for annual and growing season NEE compared to GPP and 
ER (model fit for GPP and ER: r = 0.89–0.94 vs. NEE: r = 0.68–0.77; 
predictive performance for GPP and ER: r  =  0.53–0.71 vs. NEE: 
r = 0.21–0.27; Figure 2 and Figure S8). Annual models for ER and 
NEE exhibited a better fit and predictive performance than the 
growing season models (based on r), whereas the opposite was true 
for GPP (Figure 2 and Figure S8). The growing season GPP model fit 
and predictive performance was higher than that of the ER models, 

but annual GPP and ER models performed equally well. Model fit 
and predictive performance were similar in models trained with 
and without chambers (Table S3). In most predictive performance 
analyses, the lowest and highest observed fluxes were over- and un-
derestimated, respectively, indicating overall poor predictive perfor-
mance at the extremes (Figures S9 and S10).

Average predicted and observed fluxes were of similar mag-
nitude (Table 1). However, there was a tendency for the average 
predicted values to have slightly larger GPP and ER values (e.g., ob-
served and predicted annual GPP in the tundra: 250 g C m−2 yr−1 and 
378 g C m−2 yr−1, respectively) and stronger net CO2 sink values than 
what was observed (e.g., observed and predicted annual NEE in the 
tundra: +10 g C m−2 yr−1 and −2 g C m−2 yr−1, respectively). Our cross-
comparison of annual and growing season flux ensemble predictions 
showed there was a mismatch between annual and growing season 
component fluxes in approximately 2% of the pixels (growing season 
GPP/ER larger than annual GPP/ER) and that unrealistic flux values 
(negative GPP or ER) were found in less than 0.01% of the pixels in 
the ensemble predictions.

TA B L E  1  Summary statistics of observed and predicted (using the average ensemble prediction) annual and growing season GPP (gross 
primary productivity), ER (ecosystem respiration), and NEE (net ecosystem exchange) fluxes (g C m−2 yr−1 for annual and g C m−2 period−1 for 
growing season fluxes) in different environments across the high-latitude region over 1990–2015. The time-series of the sites were averaged 
prior to calculating the observed mean flux (i.e., one flux value from one site was used when the regional averages were calculated). Positive 
numbers for NEE indicate net CO2 loss to the atmosphere (i.e., CO2 source) and negative numbers indicate net CO2 gain (i.e., CO2 sink). Note 
that ER and GPP do not sum up to NEE as different numbers of observations and sites were available for each flux and model. Moreover, 
some plant uptake occurs outside of our defined growing season, and consequently growing season GPP and annual GPP do not equal to 
each other. The average fluxes were calculated based on the extent of the high-latitude tundra and boreal biomes (Dinerstein et al., 2017), 
permafrost zones (Brown et al., 2002), and land cover (i.e., wetlands, and everything else is upland; ESA, 2017). The confidence intervals for 
the observed fluxes and the uncertainty ranges for the predicted fluxes can be found in the Table S6

Category
Annual  
GPP

Annual  
ER

Annual  
NEE

Growing  
season GPP

Growing  
season ER

Growing  
season NEE

Observed mean flux

High-latitude 482 456 −17 317 262 −63

Boreal 624 605 −46 420 347 −87

Tundra 250 259 10 232 192 −44

Boreal upland 676 647 −47 432 350 −84

Boreal wetland 406 381 −38 347 330 −102

Tundra upland 250 259 16 232 192 −37

Tundra wetland −24 −115

No permafrost 831 773 −90 405 370 −37

Permafrost 342 350 6 302 241 −67

Predicted mean flux

High-latitude 554 508 −20 343 283 −50

Boreal 638 594 −29 396 327 −52

Tundra 378 326 −2 230 192 −46

Boreal upland 653 604 −30 399 328 −51

Boreal wetland 437 458 −18 358 303 −64

Tundra upland 378 326 −1 229 191 −45

Tundra wetland 367 347 −29 281 242 −71

No permafrost 805 736 −56 447 375 −53

Permafrost 489 448 −11 315 259 −49
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3.3  |  Predicted flux variation

Predicted fluxes showed high spatial variability across the region 
with a general trend towards decreasing fluxes and sink strength 
with increasing latitude for GPP, ER, and NEE (Figure 3 and Figure 
S11). The variability was related to differences in climate (GDD3 
and FDD), solar radiation (RAD) and vegetation greenness (NDVI), 
which had the strongest influence on most of the fluxes (Figure 4). 
Moreover, SOC, CLAY, and LC were important variables for annual 
NEE; CLAY and SOC both had a positive yet saturating relationship 
(Figure S12). The relationship between LC and NEE suggested that 

the annual and growing season net sink strength was largest in wet-
lands and smallest in sparse vegetation (Figures S12 and S13). Some 
variables had a very low variable importance for most of the fluxes 
(e.g., TWI, soil pH).

Our predictions revealed regional hot spots in annual and grow-
ing season NEE, GPP, and ER. Strong annual and growing season CO2 
sinks, having low ER and high GPP, were found in forested regions 
with high GDD3, NDVI, RAD, and low FDD across Fennoscandia and 
European Russia, southern Canada, and southern Siberia (Figure 3 
and Figure S11). Annual CO2 sources were identified within northern 
and central Siberia, Greenland, northern and central Alaska, as well 

F I G U R E  2  Observed and predicted annual fluxes of GPP (gross primary production; a and d), ER (ecosystem respiration; b and e), and 
NEE (net ecosystem exchange; c and f) based on model fit (a–c) and predictive performance (d–e). Model fit was evaluated by predicting 
fluxes over the entire model training data, while predictive performance was assessed using a leave-one-site-out cross validation scheme 
in which each site was iteratively left out from the dataset, and the remaining data were used to predict fluxes for the excluded site. Model 
fit and predictive performance statistics (r = Pearson's correlation between observed and predicted fluxes, g; Bias = mean absolute bias, 
h; RMSE = root mean square error, i across annual fluxes and five modeling methods; GLM = generalized linear model; GAM = generalized 
additive model; GBM = generalized boosted regression tree; RF = random forest; SVM = support vector machine) and their median ensemble 
(ENS) are shown in subfigures g–i. The black line indicates a 1:1 relationship
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as northern Canada. These regions were located mainly in the tun-
dra, characterized by high FDD, and low GDD3 and NDVI. Growing 
season CO2 sources were located in southeastern Siberia, northern 
Siberia and some parts of southern and northern Canada. Largest 
uncertainties in flux predictions were found in areas with relatively 
strong CO2 sinks in the boreal biome, such as in Fennoscandia 
and eastern Canada, but also in the tundra (e.g., Canadian Arctic 
Archipelago; Figure 3 and Figure S11). The largest differences 
across our annual NEE, and CMIP5 and FLUXCOM predictions were 
found in European Russia, Fennoscandia, and southeastern Canada 
(Figure 5a–d).

3.4  |  Terrestrial ecosystem NEE budget for the 
high-latitude region

Our ensemble predictions showed that the high-latitude tundra and 
boreal region was on average an annual terrestrial ecosystem CO2 
sink over the 26-year (1990–2015) study period (Table 2). The annual 
NEE budget (based on upscaled NEE data) averaged −419 Tg C yr−1 
(90% uncertainty range: −559 to −189 Tg C yr−1; range of budgets 
across the study period: −449 to −366  Tg C yr−1). When estimat-
ing annual NEE according to the separately modeled annual GPP 

(11,344 Tg C yr−1) and ER (10,397 Tg C yr−1) budgets, we obtain an 
NEE budget of −948  Tg C yr−1. The average high-latitude growing 
season NEE budget over the period of 1990–2015 was −1018 Tg C 
yr−1 (−1332 to −455 Tg C yr−1, 90% uncertainty range), which was 
supported by the difference between the average growing season 
ER (5800 Tg C yr−1) and GPP (7016 Tg C yr−1) budgets. For the re-
gional budgets, see Table 2.

The average annual NEE budgets over the study period from 
CMIP5 and FLUXCOM were −488 and −1056 Tg C yr−1, respectively 
(Table S5). In the boreal biome, average annual GPP in our study was 
8850 compared to 8561 Tg C yr−1 in FLUXCOM. In the tundra biome, 
the average annual GPP in this study was twice as high as in FLUXCOM 
(2495 and 1267 Tg C yr−1, respectively). Differences were larger for 
annual ER. Our annual ER budget for the boreal and tundra biomes 
was 8241 and 2156 Tg C yr−1, respectively, but the same budgets were 
only 6363 and 1200 Tg C yr−1 in FLUXCOM. For the regional NEE bud-
gets estimated with CMIP5 and FLUXCOM, see Table S5.

4  |  DISCUSSION

This study provides a conceptual and methodological framework to 
bridge the gap between local, regional, and high-latitude scales in 

F I G U R E  3  Average predictions of 
annual CO2 fluxes at 1-km2 resolution 
over 1990–2015. Annual predictions (a–c), 
associated uncertainties (d–f) and mean 
fluxes and uncertainties along latitudes 
(g–i) of GPP (gross primary production), 
ER (ecosystem respiration), and NEE (net 
ecosystem exchange) of the statistical 
model ensembles over 1990–2015. The 
uncertainty (prediction interval, PI; 90% 
uncertainty range) is quantified as the 
variability of predictions over a random 
subset of pixels (n = 10,000) interpolated 
across the study domain based on a 
repeated (n = 200) bootstrap sampling 
procedure. It demonstrates how robust 
the relationships in the models are and 
how differences in model training data 
influence the predictions. The gray 
lines in a–f represent the borders of 
northern countries and points in g–i site 
locations
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statistical flux upscaling. Our framework is unique in that it (a) com-
piles a new dataset of growing season and annual fluxes using EC and 
chamber data and investigates the drivers of these fluxes; (b) quanti-
fies the performance of different statistical models; and (c) provides 
the first spatially continuous high-latitude maps of CO2 fluxes and 
their uncertainties at high spatial resolution, capturing the inherent 
spatial heterogeneity in predictors and fluxes and minimizing biases 
in upscaling compared to coarser scale models (Figure 5e). The bet-
ter geographical and environmental coverage of the flux measure-
ments compared to past efforts improves our understanding of the 
spatial patterns and regional budgets of terrestrial ecosystem CO2 
fluxes, however, uncertainties in our direct model estimates of NEE 
remained rather high.

4.1  |  Drivers and spatial patterns of GPP, 
ER, and NEE

Our results suggest that climatic, vegetation, and soil variables 
were all important predictors for terrestrial ecosystem CO2 fluxes. 
However, almost all CO2 fluxes were strongly driven by the broad 

climatic gradients and spatiotemporal variability in solar radiation, 
growing and non-growing season climatic conditions, water balance, 
and the resulting vegetation greenness patterns, supporting the find-
ings of previous syntheses (Belshe et al., 2013; Lund et al., 2010; 
Natali et al., 2019). Even though these climatic variables are not in-
dependent of our GPP and ER estimates (see Section 4.2), confidence 
in these results can be drawn from the underlying mechanistic rela-
tionships between the climate drivers and fluxes. For example, GPP 
across large scales is dependent on growing season temperatures, 
length of season, and radiation, which regulate and provide resources 
for plant growth (López-Blanco et al., 2017; Lund et al., 2010), and 
ER is largely driven by enzymatic processes, which are tightly linked 
with temperatures (Davidson et al., 2006) as well as plant growth (La 
Puma et al., 2007). In general, we found that warmer, moderately 
wet, and greener conditions (i.e., environments of higher biomass as 
indicated by NDVI) increased the magnitude of annual GPP and ER. 
However, our results also indicate that the overall net sink strength 
increases with larger greenness, warmer and shorter winters, and 
wetter climate. These results suggest that GPP and ER respond rather 
similarly to changes in climate and vegetation conditions across the 
high-latitude region, although GPP might increase even more due to 

F I G U R E  4  Variable importance for 
annual and growing season fluxes of GPP 
(gross primary production), ER (ecosystem 
respiration), and NEE (net ecosystem 
exchange). Explanatory variables are 
GDD3 (growing degree days), FDD 
(freezing degree days), WAB (water 
balance), NDVI (normalized difference 
vegetation index), TWI (topographic 
wetness index), RAD (potential incoming 
direct annual radiation), SOC (soil organic 
carbon stocks up to 2 m), pH (topsoil pH), 
CLAY (topsoil clay content), and LC (land 
cover). Variable importance was calculated 
by assessing how a randomly permuted 
predictor influences the predictions across 
all five statistical models. Values close to 
0 and 1 indicate low and high importance 
of the predictor variable, respectively. 
The box corresponds to the 25th and 
75th percentiles. The lines denote the 
1.5 IQR of the lower and higher quartile, 
where IQR is the inter-quartile range, 
or distance between the first and third 
quartiles
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increases in vegetation greenness (Berner et al., 2020) and changing 
climate (Lund et al., 2010). However, differences in these relationships 
might occur in different regions and land cover types (Baldocchi et al., 
2018; Belshe et al., 2013; Lafleur et al., 2012).

In addition to the climate and greenness variables operating 
mostly at large scales, other more local-scale variables such as soil 
organic carbon stock and land cover helped explain CO2 fluxes. Soil 
organic carbon stock was the most important predictor for annual 
NEE, and it had a positive relationship with it, demonstrating that 

areas with high carbon stocks might lose more CO2 to the atmo-
sphere. However, this result was not supported by the annual ER 
models, which would represent the main process behind this posi-
tive relationship (i.e., larger carbon stocks have more potential for 
increased CO2 emissions, particularly in dry conditions (Voigt et al., 
2019)). The lack of this relationship might be due to annual ER models 
not covering the full range of conditions represented by the annual 
NEE models, or spurious causal relationships being identified by the 
relatively poorly performing NEE models. The importance of land 

TA B L E  2  Annual and growing season average GPP, ER, and NEE budgets (Tg C yr−1) over 1990–2015 across the environments and the 
spatial extent of each environmental category when permanent water bodies, urban areas, and croplands were masked away. The NEE 
budgets are based on upscaled NEE data and include an uncertainty range derived by bootstrapping. Note that ER and GPP do not sum up 
to NEE as different numbers of observations and sites were available for each flux and model. For the non-growing season CO2 budgets 
estimated based on annual and growing season budgets, see Table S4

Category
Annual 
GPP

Annual 
ER Annual NEE

Growing 
season 
GPP

Growing 
season 
ER Growing season NEE Area ×106 km2

High-latitude 11,344 10,397 −419 (−559 to −189) 7016 5800 −1018 (−1332 to −455) 20.6

Boreal 8850 8241 −406 (−499 to −239) 5496 4531 −715 (−1037 to −224) 13.9

Tundra 2495 2156 −13 (−81 to 62) 1520 1269 −303 (−338 to −224) 6.7

Boreal upland 8437 7808 −389 (−475 to −226) 5158 4245 −655 (−973 to −196) 12.9

Boreal wetland 412 433 −17 (−28 to −10) 338 287 −60 (−70 to −29) 0.9

Tundra upland 2451 2115 −9 (−78 to 64) 1486 1240 −294 (−330 to −218) 6.6

Tundra wetland 44 41 −4 (−3 to −1) 34 29 −8 (−9 to −6) 0.1

No permafrost 3407 3116 −238 (−288 to −185) 1895 1587 −223 (−353 to −45) 4.2

Permafrost 7924 7269 −181 (−305 to 32) 5114 4207 −793 (−1000 to −414) 16.3

F I G U R E  5  Complementing annual NEE predictions averaged over 1990–2015. Mean annual NEE derived by subtracting annual ER 
(ecosystem respiration) from GPP (gross primary production) in this study (a), from a global upscaling product FLUXCOM (b), and from 
a process model ensemble CMIP5 (Coupled Model Intercomparison Project Phase 5) (c), and the standard deviation of these and the 
independently modeled annual NEE in this study (visualized in Figure 3c) (d). A regional-scale example of the spatial variation of annual NEE 
in our prediction in northern Alaska, with black outlines depicting the size of the pixel in one of the highest resolution (smallest pixel size) 
models in the CMIP5 ensemble (1.92 × 1.5°) (e)
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cover was expected as it summarizes many key processes related to 
carbon cycling (e.g., the carbon uptake capacity, temperature sensi-
tivity, as well as quantity and quality of carbon inputs into the soil; 
Sørensen et al., 2019) and other environmental characteristics (e.g., 
soil moisture is likely higher in wetlands than in sparse vegetation).

Our ensemble prediction suggested that most of the southern 
portion of the high-latitude terrestrial region was an annual net 
ecosystem CO2 sink while the central and northern regions were 
neutral or small net CO2 sources. Observed and predicted spatial 
patterns in fluxes were similar to those described by most previous 
studies. For example, our compiled field observations and predic-
tions are consistent with the majority of Alaskan tundra being an 
annual ecosystem CO2 source on average, similar to the average ob-
served fluxes in McGuire et al. (2012) or the prediction in Ueyama, 
Ichii, et al. (2013). The strongest annual ecosystem CO2 sinks in our 
study were located in southern European Russia, Fennoscandia, and 
southern Canada, as also observed in the FLUXCOM product (Jung 
et al., 2017; Tramontana et al., 2016).

For some regions, our ensemble prediction differed from the predic-
tions of previous studies. The distribution of annual net CO2 sources across 
the tundra biome was larger in our prediction compared to FLUXCOM, 
particularly in Siberia and Canada. This was likely explained by our models 
including some tundra sites from Canada, Greenland, European Russia, 
and Siberia, which were not covered by the FLUXCOM model training 
data. Some of the sites in these regions were annual net CO2 sources on 
some years (Emmerton et al., 2016; Karelin et al., 2013). A similar disagree-
ment was found between an Asia-focused statistical upscaling analysis 
by Ichii et al. (2017) which suggested stronger sink strength across large 
parts of Siberia, likely due to a limited number of northern eddy covari-
ance sites used to train their models. The largest regional differences be-
tween our predictions, CMIP5, and FLUXCOM occurred in central Siberia, 
Fennoscandia, European Russia, and eastern Canada and the Canadian 
Arctic Archipelago, and these differences were primarily driven by the 
fact that CMIP5 showed these regions to be sources whereas they were 
sinks in FLUXCOM and our analysis (Figure 5). These regional differences 
demonstrate that these particular areas should be studied further to un-
derstand the sink-source patterns more accurately in the future.

Our uncertainty estimation suggests that CO2 flux predictions 
should be interpreted carefully in areas that lack sampling locations 
or have large variability in fluxes that cannot be captured by the pre-
dictor variables. Such areas are particularly concentrated in European 
Russia, eastern Canada, and the Canadian Arctic Archipelago. As the 
accuracy of the prediction can usually be improved with increases in 
the quantity and quality of data, new measurements in these regions 
or better predictors would likely improve the performance of high-
latitude CO2 flux models.

4.2  |  Key sources of uncertainty in our 
modeling approach

No single best model could be identified across the five mod-
eling methods. However, the three machine learning methods 

outperformed the two regression models, particularly for NEE, as 
demonstrated by the improved model performance, lower uncer-
tainty, and the lack of unrealistically high or low flux values in predic-
tions. The better performance of the machine learning methods was 
likely related to their flexibility and capability to find complex struc-
tures in the flux data (Elith et al., 2008). Our results demonstrate 
that several machine learning methods should be tested to produce 
the most accurate high-latitude flux predictions and that ensemble 
methods provide robust predictions (Araújo & New, 2007). Our re-
sults also indicate that an ensemble prediction based on machine 
learning methods alone would likely lead to higher model accuracy 
and transferability (see also Tramontana et al., 2016).

Our models performed well when predicting to the same data 
that the models were trained with, but the models had challenges 
when tested against independent validation data. The predictive 
performance of our ensemble predictions was comparable to (an-
nual GPP and ER) or less than (growing season GPP, ER, NEE, and 
annual NEE) that of in other global and regional upscaling studies 
(Ichii et al., 2017; Natali et al., 2019; Peltola et al., 2019; Tramontana 
et al., 2016; Ueyama, Ichii, et al., 2013). However, comparisons of 
cross-validation results are hampered by different cross-validation 
techniques used in studies, with some of the studies including ob-
servations from the same site both in the model training and valida-
tion data, therefore providing overly optimistic accuracy estimates 
based on non-independent data. Moreover, these other studies pri-
marily focused on a smaller area and/or shorter time period (with 
the exception of Tramontana et al., 2016), and used a different set 
of predictors, further complicating this comparison. In these other 
studies, the correlation (r) between observed and predicted fluxes 
(derived with cross validation), measured mostly throughout the 
year as daily-to-monthly fluxes, was roughly 0.65–0.7 for NEE and 
0.7–0.8 for GPP and ER. There are several reasons for why some 
of our models performed more poorly than these previous studies, 
which we explain below.

The lower quantity of measurements and weaker comparability 
of fluxes derived with EC and chamber techniques and with vari-
able measurement lengths might explain the lower predictive per-
formance in our study compared to the other upscaling studies. As 
we used aggregated fluxes over the growing season and annual time 
scales, the sample size in our models was smaller than in other ef-
forts which all used daily or monthly fluxes (a few hundred observa-
tions versus thousands of observations). A larger sample size usually 
increases the predictive performance of the models, particularly 
when these measurements cover variable environmental conditions 
that can be captured by the predictors. For example, FLUXCOM 
models (Jung et al., 2017, 2020; Tramontana et al., 2016) might 
have had a higher predictive performance than our models because 
they use a global FLUXNET database (Pastorello et al., 2020), which 
covers broad environmental gradients. However, FLUXNET data 
originates mostly from lower latitudes (e.g., only five sites from the 
Arctic and 34 from the boreal out of 224 global sites in total used 
in Tramontana et al., 2016). This could explain the larger net sink 
strength in FLUXCOM compared to our predictions. The higher 
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predictive performance of FLUXCOM compared to our prediction 
might also be explained by the fact that FLUXNET is based on a 
single flux measurement technique (EC) with standardized filtering, 
gap-filling, and partitioning procedures. We included chambers to 
our analysis as they covered conditions that were not covered by 
the EC network even though we acknowledge that using both cham-
ber and EC measurements, and different partitioning methods for 
EC, increased the number of different flux measurement techniques 
and study designs, and may have made the comparison of fluxes 
across sites more uncertain (Fox et al., 2008; Tramontana et al., 
2016). However, we observed no significant differences in fluxes 
estimated with the two approaches indicative of these mismatches 
(Figure S6d), and the performance of models did not change when 
chambers were excluded from model training data. These results 
suggest that the relatively low performance of some models is re-
lated to the high variability in both EC and chamber-derived CO2 
flux estimates that is not captured by our predictors. Further, it 
demonstrates that including chamber measurements, despite op-
erating at different spatial and temporal resolutions than the EC 
technique, did not decrease the model performance. It is also possi-
ble that the lower predictive performance of growing season models 
compared to annual models was related to the variable growing sea-
son measurement periods used across the studies. We accepted this 
variability because our goal was to use as many published fluxes as 
possible to improve the geographical and environmental coverage 
of sites.

The accuracy of our ensemble predictions varied depending on 
the flux, with the predictive performance being lowest for NEE mod-
els (r  =  0.21–0.27). The predictive performance of our GPP and ER 
models was higher (r = 0.53–0.73) and is comparable to past efforts 
(Ichii et al., 2017; Natali et al., 2019; Tramontana et al., 2016; Ueyama, 
Ichii, et al., 2013) because these fluxes represent the ecophysiologi-
cal and biogeochemical processes describing CO2 uptake and loss, re-
spectively. GPP and ER also already included some information about 
temperature and radiation variables that we used as predictors in our 
statistical models, which may introduce some circularity and artificially 
inflate the model performance. Our NEE models over- and underesti-
mated low and high (i.e., large negative and positive) values, respec-
tively, by approximately 100–200 g C m−2  yr−1, which has also been 
demonstrated with NEE and other fluxes in previous upscaling studies 
(Ichii et al., 2017; Tramontana et al., 2016; Warner et al., 2019). These 
extreme values were often from disturbed sites experiencing for ex-
ample, permafrost thaw or extreme forest management practices, or 
represented an observation that was notably different from the site 
mean. Based on the cross validation results of the individually modeled 
annual NEE, a substantial fraction (53%) of annual source observations 
were predicted to be sinks (similar to the pattern observed in Ichii et al., 
2017; Figure 3b), but some sink observations (24%) were also predicted 
as sources. We also discovered that the observed average annual NEE 
was often larger (more positive) than the individually predicted aver-
age NEE, which was either a result of the model not being able to pre-
dict sources accurately, or of the distribution of flux sites being biased 
towards environments with larger CO2 source observations than the 

entire region on average (see the large number of sites with source ob-
servations originating primarily only from Alaska in Figure 1). These re-
sults demonstrate that the predictors included in our analyses did not 
fully represent the spatial gradients and dynamic temporal variability 
in environmental conditions that influence carbon cycle processes, and 
particularly the high and low NEE conditions. Further research should 
explore improvements offered by other current and potential future 
predictors related to the disturbance and permafrost conditions, snow 
cover duration and snow depth, soil moisture and nutrient availabil-
ity, and phenology, root properties, and microbial communities (Illeris 
et al., 2003; Järveoja et al., 2018; Nobrega & Grogan, 2007).

Even though the geographical and environmental coverage of the 
flux sites was improved in our study compared to previous efforts, our 
models included only ca. 10 sites from heavily disturbed conditions 
(see Section 2.1.1). Consequently, our sites did not cover the full range 
of disturbance and post-disturbance recovery conditions and the asso-
ciated impacts on CO2 fluxes. For example, rapidly thawing permafrost 
and burned landscapes remained largely under-sampled across Siberia. 
These disturbances have a substantial impact on carbon cycling in 
high-latitude ecosystems (Abbott et al., 2016; Walker et al., 2019), in-
cluding direct emissions from the disturbance (not estimated with our 
models) and typically increased net CO2 emissions for several years 
to decades after the disturbance (Coursolle et al., 2012; Kittler et al., 
2017; Lund et al., 2017; Turetsky et al., 2020) which should ideally be 
captured by our models. The lack of flux data representing disturbed 
and post-disturbance recovery conditions likely leads to underestima-
tions in net ecosystem CO2 emissions, and is generally thought as one 
of the key limitations in statistical upscaling efforts (Jung et al., 2020; 
Zscheischler et al., 2017).

4.3  |  Terrestrial ecosystem CO2 budget and its 
uncertainty

Although our models may be biased towards sinks, our results sug-
gest that high-latitude terrestrial ecosystems were on average an an-
nual net CO2 sink during 1990–2015. The uncertainty of this budget 
was high, as demonstrated by the low predictive performance of the 
annual NEE model, and the fact that budgets derived from differ-
ent predictions (individual NEE predictions and ER-GPP predictions) 
differed by ca. 500 Tg C yr−1 – the latter most likely being linked to 
the different numbers of observations and sites available for each 
flux and model (Figure 1). Nevertheless, the annual NEE budget was 
of similar magnitude to the one estimated by CMIP5 models and 
larger (less negative) than the one estimated by FLUXCOM (Table 
S5). The boreal biome was responsible for most of this sink strength 
(−406 Tg C yr−1, from −499 to −239 Tg C yr−1; 13.9 × 106 km2). In 
contrast, the tundra biome was on average a small sink (−13  Tg C 
yr−1, from −81 to +62  Tg C yr−1; 6.7  ×  106  km2) or a small source 
(+10 g C m−2 yr−1), based on our predictions and observations. This 
suggests that the tundra biome was on average close to CO2 neu-
tral even though the large soil organic carbon stocks of this region 
would indicate larger historical CO2 sink strength (Hugelius et al., 
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2014). Our tundra budget is within the range (though on average 
more positive, indicating stronger source) of the one comprising pro-
cess and inversion models, and field-based estimates by McGuire 
et al. (2012) (−103 Tg C yr−1, from −297 to +89 Tg C yr−1). However, it 
differs from the source budget (+462 Tg C yr−1, from +94 to +840 Tg 
C yr−1; 10.5 × 106 km2; wetlands not included) estimated by Belshe 
et al. (2013). The divergence of average annual NEE across our and 
Belshe et al. (2013) study is likely explained by our inclusion of fluxes 
from wetlands, which were on average annual net ecosystem CO2 
sinks (Table 1). The discrepancy between our and the McGuire et al. 
(2012) study can be explained by a 50% increase in new annual tun-
dra source observations in our dataset (see e.g., Celis et al., 2017; 
Euskirchen et al., 2014), which were not included in the McGuire 
et al. (2012) analysis. Further, there are some differences in the 
study domain boundaries (e.g., the tundra domain in Belshe et al., 
2013 was larger than in this study) which might explain some of the 
discrepancies between these studies, although the general patterns 
of these boundaries were rather similar (see e.g., Figure 1 in McGuire 
et al., 2012 vs. our tundra domain in Figure 1).

Our findings suggest that both the boreal and tundra biomes 
were relatively strong CO2 sinks during the growing season. Our 
growing season CO2 budgets estimated for the same seasons as in 
previous studies (see Supplementary Text Section 2.3), derived both 
by predicting NEE as well as subtracting GPP from ER suggest that 
the growing season net uptake is stronger than or similar to the esti-
mates in Belshe et al. (2013) and Natali et al. (2019). The growing sea-
son NEE budget calculated for 100 days in the tundra was −296 Tg 
C yr−1 in this study, compared to −137 ± 80 Tg C yr−1 in Belshe et al. 
(2013). The growing season NEE budget estimated for 153 days in 
the northern permafrost region in this study was −1122 Tg C yr−1, 
whereas the process model estimates varied between −687 and 
−1647 Tg C yr−1 in Natali et al. (2019). Further, the observed daily 
average growing season NEE in tundra demonstrated a stronger sink 
strength than the average growing season NEE reported in McGuire 
et al. (2012) and Belshe et al. (2013) (−0.6, −0.3, and −0.2 g C m−2 d−1, 
respectively). Even though we acknowledge that some plant uptake 
and CO2 emissions occur outside of our defined growing season (i.e., 
our growing season estimates did not capture the spring and autumn 
seasons), our results demonstrate that growing season CO2 uptake 
might be larger than previously thought.

4.4  |  Summary and next steps in high-latitude CO2 
flux upscaling

Overall, our findings suggest that statistical predictions aimed at de-
scribing high-latitude CO2 flux patterns provide new insights into the 
understanding of broad GPP and ER patterns but have uncertainty 
with NEE. Furthermore, this study demonstrates that machine learn-
ing models are a robust and accurate empirical approach to predict-
ing high-latitude terrestrial CO2 fluxes, and that no individual machine 
learning model outperformed the others. This therefore supports the 
use of ensemble predictions to reduce uncertainties associated with a 

single method and to produce more robust predictions. Nevertheless, 
the building of better models with an improved flux measurement 
network remains the highest research priority. Our results suggest 
that the next steps for future high-latitude upscaling efforts are to 
(a) measure fluxes over the entire year in as many sites as possible, 
(b) establish new sites in data-poor regions and regions where CO2 
predictions were most uncertain, such as in European Russia, Siberia, 
eastern Canada, and Canadian Arctic Archipelago, and specifically in 
disturbed and high-Arctic conditions, (c) develop better geospatial pre-
dictors (e.g., describing soil moisture and nutrients or permafrost thaw) 
to explain fluxes, (d) conduct detailed sensitivity tests of the impor-
tance of the flux measurement method, data distribution, and different 
predictor datasets influencing the budgets, and (e) build models at a 
finer temporal resolution than annual and growing season, to capture 
rapidly changing transition periods and bypass issues associated with 
temporal aggregation and varying definitions of seasons. High-latitude 
specific models are needed to more accurately monitor current emis-
sions and improve understanding of the role of high-latitude regions in 
the global carbon cycle, as large changes in carbon cycling are likely in 
the near future.
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