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Abstract

The regional variability in tundra and boreal carbon dioxide (CO,) fluxes can be
high, complicating efforts to quantify sink-source patterns across the entire region.
Statistical models are increasingly used to predict (i.e., upscale) CO, fluxes across
large spatial domains, but the reliability of different modeling techniques, each with
different specifications and assumptions, has not been assessed in detail. Here, we
compile eddy covariance and chamber measurements of annual and growing season
CO, fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net
ecosystem exchange (NEE) during 1990-2015 from 148 terrestrial high-latitude (i.e.,
tundra and boreal) sites to analyze the spatial patterns and drivers of CO, fluxes and
test the accuracy and uncertainty of different statistical models. CO, fluxes were up-
scaled at relatively high spatial resolution (1 km?) across the high-latitude region using
five commonly used statistical models and their ensemble, that is, the median of all
five models, using climatic, vegetation, and soil predictors. We found the performance
of machine learning and ensemble predictions to outperform traditional regression
methods. We also found the predictive performance of NEE-focused models to be
low, relative to models predicting GPP and ER. Our data compilation and ensemble
predictions showed that CO, sink strength was larger in the boreal biome (observed
and predicted average annual NEE -46 and -29 g C m~2yr, respectively) compared to
tundra (average annual NEE +10 and -2 g C m™2 yr %). This pattern was associated with
large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, cli-

mate, and vegetation productivity. The terrestrial ecosystem CO, budget, estimated
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1 | INTRODUCTION

The terrestrial ecosystem carbon dioxide (CO,) balance is one of the
largest uncertainties in the global carbon budget (Friedlingstein et al.,
2020), with high latitudes (i.e., tundra and boreal biomes) represent-
ing one of the least-constrained budgets (Lopez-Blanco et al., 2019;
Schuur et al., 2015; Zscheischler et al., 2017). Moreover, due to polar
amplification and large carbon stocks, the high latitudes have the po-
tential for substantial positive feedbacks to climate warming (Abbott
et al., 2016; Gasser et al., 2018; Schuur et al., 2008; Turetsky et al.,
2020). Currently, in the absence of major disturbances (e.g., fire), bo-
real forests are generally CO, sinks (Bradshaw & Warkentin, 2015;
Pan et al., 2011), while regional estimates of tundra vary from sinks
(McGuire et al., 2009, 2012, 2016) to sources (Belshe et al., 2013).
Both the growing and non-growing seasons are important for these
annual budget estimates. A recent synthesis found that non-growing
season soil CO, emissions from the northern permafrost region are
larger than previously estimated (Natali et al., 2019). However, CO,
uptake by plants over the growing season can be substantial and is
often the dominant component of the annual CO, budget (Alekseychik
et al., 2017; Kolari et al., 2009; Lafleur et al., 2012). The current state
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using the annual NEE ensemble prediction, suggests the high-latitude region was on

average an annual CO, sink during 1990-2015, although uncertainty remains high.

Arctic, CO, balance, empirical, greenhouse gas, land, permafrost, remote sensing

of the annual terrestrial high-latitude CO, budget (net sink or source)
remains highly uncertain. A key research priority is to develop robust
data-driven quantitative frameworks to constrain regional boreal and
tundra CO, budgets at annual and seasonal time scales.

Estimating high-latitude CO, fluxes across large areas and over long
timescales is challenging due to their high spatiotemporal variability (Ai
et al., 2018; Wilkman et al., 2018) that is controlled by a range of en-
vironmental variables (Camps-Valls et al., 2015; Lund et al., 2010). The
ecosystem CO, balance (i.e., net ecosystem CO, exchange; NEE) is the
relatively small difference between the two large CO, fluxes of photo-
synthesis (gross primary production; GPP) and ecosystem respiration
(ER; comprising autotrophic and heterotrophic respiration). Although
NEE can be measured with the eddy covariance (EC) and chamber
techniques (Baldocchi et al., 1988; Lundegardh, 1927), GPP and ER are
estimated indirectly using environmental light and temperature mea-
surements for EC sites (Lasslop et al., 2010; Reichstein et al., 2005) and
dark chamber measurements for chamber sites (Shaver et al., 2007).
Field studies have shown that GPP, ER, and NEE depend on climatic
conditions (e.g., temperature, precipitation, and radiation) (Lépez-
Blanco et al., 2017; Nobrega & Grogan, 2008; Zhang et al., 2018), veg-
etation (Cahoon et al., 2012; Fox et al., 2008; Jarveoja et al., 2018),
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and soil properties (e.g., soil nutrients and moisture) (Arens et al., 2008;
Dagg & Lafleur, 2011; Lund et al., 2009). However, our understanding
of the influence of these drivers on GPP and ER, and particularly on
NEE, across the entire high-latitude region remains limited (see e.g.,
Belshe et al., 2013; Lund et al., 2010).

Knowledge of the contemporary high-latitude terrestrial CO,
budget is further limited by an increasing, but still relatively sparse,
flux measurement network (Alton, 2020; Chu et al., 2017; Virkkala
et al., 2018). The majority of flux sites are concentrated within a few
intensively studied regions, particularly Alaska and Fennoscandia
(Metcalfe et al., 2018; Pastorello et al., 2020; Virkkala et al., 2019),
with just a few sites in other large regions such as Siberia and north-
ern Canada. Consequently, issues related to the temporal, geograph-
ical and environmental representativeness of the measurements
need to be considered to accurately estimate high-latitude carbon
budgets and their uncertainties. Previous studies have used a va-
riety of synthesis approaches (Belshe et al., 2013; McGuire et al.,
2012), and statistical (Natali et al., 2019), process-based (Lépez-
Blanco et al., 2019; McGuire et al., 2018; Rawlins et al., 2015; Wania
et al., 2009) and atmospheric inversion models (McGuire et al.,
2012), yielding highly different CO, budgets. Most of these model-
ing studies have been conducted at coarse spatial resolutions (25-
100 km; Natali et al., 2019; Rawlins et al., 2015; Lépez-Blanco et al.,
2019) that do not fully capture the heterogeneity in high-latitude
environments despite their importance for the regional CO, budgets
(Raynolds et al., 2019; Treat et al., 2018). New efforts synthesizing
the current distribution of flux data and developing models at high
spatial resolution are required to improve our understanding on the
spatial patterns and magnitudes of CO, fluxes.

Models that rely on the statistical relationships between CO,
flux and predictor variables have been increasingly employed to con-
strain global and high-latitude CO, budgets (e.g., Jung et al., 2020;
Natali et al., 2019; Warner et al., 2019). These statistical models
are useful for predicting fluxes across larger areas (i.e., upscaling)
because they directly draw upon relationships between fluxes and
environmental variables, can account for environmental variability
across space and time at high resolutions, and are able to handle bi-
ases in the geographic representation of the data (Jung et al., 2020;
Natali et al., 2019; Warner et al., 2019). A broad range of statistical
models and data sources are available for upscaling, but not all of
these have been fully utilized. For example, many past studies have
upscaled high-latitude fluxes using a single model (Natali et al., 2019;
Peltola et al., 2019; Ueyama, Ichii, et al., 2013), but how different
models compare with each other is not well known (with exception
of Jung et al., 2017 and Tramontana et al., 2016). Further, most of
these studies have primarily used machine learning models due to
their ability to capture non-linear relationships and interactions in
data (Elith et al., 2008). However, traditional regression methods
can be a powerful tool in upscaling high-latitude ground conditions
due to their ability to extrapolate beyond the range of data used
for training, and due to their generalizability and ease of interpreta-
tion (Aalto et al., 2018). Finally, many of the recent upscaling stud-
ies have relied on EC flux measurements only, neglecting chamber

measurements despite their importance as additional data sources
(with exception of Natali et al., 2019). Chambers are useful espe-
cially in remote, sparsely measured treeless tundra where they can
capture the entire ecosystem CO, balance and directly measure NEE
and ER (Sgrensen et al., 2019). Thus, a compilation of both EC and
chamber flux measurements and the comparison of available mod-
eling techniques is clearly required to ensure accurate CO, flux esti-
mates from existing data and models.

Here, we synthesize annual and growing season CO, fluxes from
EC and chamber measurements across the high-latitude terrestrial
tundra and boreal region. We then use this new database to upscale
annual average ecosystem CO, fluxes at relatively high spatial res-
olution (1 km?) across the high-latitude domain using several statis-
tical models. We compare our new database of in situ CO, fluxes
to past tundra syntheses (Belshe et al., 2013; McGuire et al., 2012),
provide a detailed assessment of model performance, analyze the
spatial patterns and drivers of CO, fluxes, and discuss the resulting
CO, budget estimates and recommendations for future work. We
focus on understanding the spatial variability in average CO, fluxes
instead of a temporal analysis of CO, flux change; however, our mod-

eling framework also considers the interannual variability in fluxes.

2 | MATERIAL AND METHODS

2.1 | Datacollection

211 | Collection of CO, flux data

Our study area was defined by the high-latitude tundra and boreal bi-
omes (>45°N) based on global ecoregions (20.6 x 10° km?; Figure 1;
Dinerstein et al., 2017). We first conducted a literature survey to iden-
tify existing EC and chamber-based terrestrial CO, flux observations
of GPP, ER, and NEE over annual and growing season periods across
the domain. Potential sites were identified from previous studies (Ichii
et al,, 2017; Marushchak et al., 2013; McCallum et al., 2013; Watts
et al., 2014) and prior synthesis efforts (Belshe et al., 2013; McGuire
et al.,, 2012; Virkkala et al., 2018). We augmented the resulting site
list using a Web of Science search with key words (“tundra” or “bo-
real” or “arctic”) and (“CO,, flux” or “CO, exchange” or “CO, budget”).
Additionally, a community call was solicited through a CO, flux syn-
thesis workshop (Parmentier et al., 2019), whereby investigators con-
tributed their most current unpublished data. Additional EC data were
downloaded from FLUXNET2015 (Pastorello et al., 2020). The com-
piled dataset represents all natural terrestrial vegetation types (cat-
egorized by needle- or broadleaf forest, shrubland, grassland, wetland,
and sparse vegetation) present in the high-latitude region.

We included studies and sites with NEE, GPP, and ER estimates
over a full growing season or calendar year (i.e., cumulative flux).
Growing season flux measurements are provided by EC and cham-
bers. Non-growing season flux measurements include a variety of
methods in addition to EC and chambers (e.g., a gas diffusion method
by Bjérkman et al., 2010, soda lime by Welker et al., 2004, or an
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FIGURE 1 Measured median annual (a-c) and growing season (d-f) fluxes of GPP (gross primary production), ER (ecosystem respiration),
and NEE (net ecosystem exchange) in the study domain (>45°N). The color of the point defines the median flux of the site (i.e., a sampling
location), and the size of the point the number of observations that was measured (i.e., number of years). The background map represents
the high-latitude region (dark gray = boreal biome, light gray = tundra biome). In all panels, sites that had only eddy covariance measurements
are shown with black outline color around the point, and chamber measurements are without outline. One site had both eddy covariance
and chamber measurements, but this is shown with black outline color. Positive numbers for NEE indicate net ecosystem CO, loss to

the atmosphere (i.e., CO, source) and negative numbers indicate net ecosystem CO, gain (i.e., CO, sink)

empirical model by Vogel et al., 2009). Growing season length and
measurement period were defined in multiple ways at individual
sites. To allow inter-site comparison, we filtered out measurements
that did not represent the entire growing season and standardized
the remaining measurements (see Supplementary Text Section 1.1
and a similar approach in Belshe et al., 2013). From this filtered data-
set, we calculated average growing season daily flux rates based on
the reported measurement length and standardized the fluxes based
on a common growing season length. The final list of sites having

representative annual or growing season measurements is provided
in Table S1, sites that were excluded from our analysis are in Table S2.

The resulting dataset included 148 sites with CO, fluxes from
1990 to 2015 from variable measurement periods (Figure 1). We
compiled 1448 cumulative annual and growing season flux values
(when chamber measurements were aggregated per site; Figure 1);
82% of the aggregated observations are from EC and 18% are from
chambers. Annual and growing season NEE were the most widely re-
ported fluxes in the dataset (Figure 1). Unlike McGuire et al. (2012)
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and Belshe et al. (2013) we also included data from the boreal biome,
additional tundra sites, and wetlands (not synthesized in Belshe et al.,
2013; Figure S1). Similar to McGuire et al. (2012) and Belshe et al.
(2013), our database primarily represents undisturbed environments.
However, it also includes measurements from ca. 10 sites that have
experienced high natural, anthropogenic or anthropogenically in-
duced disturbances, such as permafrost thaw (Bickstrand et al.,
2010; Cassidy et al., 2016; Trucco et al., 2012), fires (Iwata et al.,
2011; Ueyama et al., 2019), insect outbreaks (Heliasz et al., 2011;
Lopez-Blanco et al., 2017; Lund et al., 2017), or extensive harvesting
practices (Coursolle et al., 2012; Machimura et al., 2005). Throughout
the text, positive numbers for NEE indicate net CO, loss to the at-
mosphere (i.e., co, source) and negative numbers indicate net co,

gain (i.e., CO, sink). GPP and ER are always given as positive numbers.

2.1.2 | Gridded predictors and reference flux data
We acquired 10 eco-physiologically relevant predictors at 1-km?
resolution (0.0083°) representing climate, vegetation, topo-
graphic, and soil conditions: growing degree days (GDD3; °C),
freezing degree days (FDD; °C), water balance (WAB; mm), maxi-
mum growing season normalized difference vegetation index
(NDVI), topographic wetness index (TWI), potential incoming
direct annual solar radiation (RAD; MJ cm™? yr'l), soil organic
carbon stocks in the upper 2 meters (SOC; tons per ha), topsoil
(0-5 cm) pH, topsoil clay content (CLAY; %), and land cover (LC;
classes were mixed or broadleaved forest, needle-leaved for-
est, grassland and shrubland, wetland, sparse vegetation; see
Supplementary Text Section 1.2 and Figure S2 for more infor-
mation about the predictors). These predictors characterize
previously identified key relationships between CO, fluxes and
summer and winter temperatures, radiation, precipitation, local
hydrology and soil conditions, soil carbon stocks, and vegetation
properties (i.e., see Beer et al.,, 2010; Belshe et al., 2013; Lund
et al., 2010; Natali et al., 2019; Ueyama, lwata, et al., 2013). NDVI
further reflects disturbances as it can show spectral browning
signals related to drought, harvesting, or fires (Myers-Smith et al.,
2020; Figure S3; Supplementary Text Section 2.5). We recognize
that GPP and ER partitioning and gap filling rely on supporting
environmental data (e.g., temperature and radiation), and conse-
quently these fluxes already include some information about vari-
ables that we also used as predictors in our statistical models. We
used annual (1990-2015) data for GDD3, FDD, WAB, and NDVI;
the remaining predictors were considered to be static. All predic-
tor datasets were masked to only include high-latitude tundra and
boreal biomes (Dinerstein et al., 2017), and to exclude permanent
water bodies, urban areas, and croplands based on a land cover
dataset developed by ESA (2017).

We compared our annual ecosystem NEE predictions and
budgets (see Section 2.2.1) with FLUXCOM, a global product
derived from FLUXNET EC towers and machine learning at 0.5°
resolution (Baldocchi et al., 2001; Jung et al., 2017; Tramontana

et al., 2016) and an ensemble of global Earth system models from
the Coupled Model Intercomparison Project Phase 5 (CMIP5) at
1.92 x 1.5° resolution (Taylor et al., 2012) (Supplementary Text
Section 1.3).

2.2 | Data analysis

2.2.1 | Statistical modeling

Our main response variables were annual and growing season cumu-
lative GPP, ER, and NEE, but we also modeled daily average GPP, ER,
and NEE during the growing season. Annual and growing season CO,,
fluxes were linked to the environmental predictors using a range of
different statistical modeling methods (Figure S4). We used five
statistical models; two were extensions of linear regression models,
and three were based on machine-learning. All of these models have
been widely used in empirical CO, flux upscaling studies (Bond-
Lamberty & Thomson, 2010; Hursh et al., 2016; Tramontana et al.,
2016; Ueyama, Ichii, et al., 2013). Specifically, we examined gener-
alized linear models (GLMs); generalized additive models (GAMs);
generalized boosted regression trees (GBMs); random forest (RF
models); and support vector machines (SVMs).

We used several model approaches because individual mod-
els have inherent strengths and weaknesses (Supplementary Text
Section 2). For example, machine learning methods might suffer from
overfitting, whereas regression methods might result in unrealistic
values when extrapolated outside the model data range. Further, indi-
vidual models may detect different patterns in the data, and the best
performing models are not always the same for different response
variables (Segurado & Araujo, 2004). We also produced an ensem-
ble prediction by calculating a median prediction over the five pre-
dictions from the individual modeling methods (see also Tramontana
et al., 2016). We used the median instead of the mean to avoid ex-
treme predicted values inflating the ensemble prediction. In this pro-
cedure, the uncertainty of the ensemble is expected to be lower than
the uncertainty of a single model (Aalto et al., 2018). Consequently,
we produced six model predictions for each of our response variables.

To determine the main drivers of the spatial patterns of response
variables, the relative contribution of predictors in the models was
assessed using a prediction re-shuffling approach (Niittynen &
Luoto, 2018). We first fit the model and developed predictions using
the original data, and then repeated this procedure with the values
for one predictor randomly permuted. The contribution of a variable
was calculated as a correlation between these two predictions (i.e.,
original model and the model with a shuffled predictor) subtracted
from one:

Relative contribution = 1 —correlation

(PredlCtlonoriginal data’ PredICtlonRandomly permuted data)

Values close to 1 indicate that the two predictions were differ-
ent, indicating high variable importance of the predictor variable.
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Each predictor was randomly permuted 100 times for each flux
with each of the modelling methods, and an ensemble contribu-
tion was derived by taking a mean of the values. To visualize a
predictor's effect on a response variable after controlling for the
effects of other predictors, partial dependence plots were derived
from the random forest model. For both variable importance and
partial dependence plot analyses, we used daily average growing
season fluxes because the growing season length estimates that
were used to calculate growing season fluxes are not independent
from GDD3. We found that the daily average fluxes correlated
strongly with the growing season fluxes (Pearson's correlation
0.93-0.94), so they can be assumed to reflect the same relation-
ships with the predictors.

To extrapolate across the study domain, we fit the models using
the entire dataset to produce annual flux predictions and their
ensembles that were subsequently averaged to 1990-2015 mean
values. Because the ensemble predictions were among the most
accurate and least uncertain predictions across all response vari-
ables, and because their use is generally recommended in predic-
tive efforts (Aratjo & New, 2007), our final flux maps and budgets
were based on the flux ensemble. In addition to annual and growing
season budgets, we also calculated a non-growing season budget
(see Table S4). We had different numbers of observations and sites
available for each flux and model, and consequently observed and
predicted ER and GPP fluxes and budgets do not sum up to NEE.

2.2.2 | Model fit, predictive performance and
uncertainty

To evaluate model fit, we predicted fluxes over the entire model
training data. To assess the predictive performance of the models,
we used a leave-one-site-out cross validation scheme in which each
site was iteratively left out from the dataset, and the remaining
data were used to predict fluxes for the excluded site (Bodesheim
et al., 2018). For both model fit and predictive performance, we
calculated bias as an average of the absolute error between predic-
tion and actual observations, Pearson correlation (r) to determine
the strength of the linear relationship between the observed and
predicted fluxes, and root mean squared error (RMSE) to estimate
the model error. We use the terms “observed” and “predicted” to
distinguish between field measurements and model predictions but
acknowledge that some of these observed values represent indirect
estimates of fluxes (e.g., GPP).

We evaluated the prediction uncertainty of all flux models and
the budget uncertainty of annual and growing season NEE mod-
els using a repeated random resampling procedure (Aalto et al.,
2018). Prediction uncertainty was calculated to characterize the
spatial variability in flux predictions across the high-latitude region,
whereas budget uncertainty quantified the range of potential NEE
budget values. We used bootstrapping (fractional resampling with
replacement based on LC classes) to subset the model training data
into 200 different datasets, all of which had the same number of
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observations as the original flux data itself. These 200 datasets were
then used to produce 200 individual predictions with all five sta-
tistical models and their ensemble for each flux and for each year
from 1990 to 2015 to assess prediction uncertainty which was
summarized using the prediction interval (Pl; 95th percentile - 5th
percentile). Uncertainty for annual and growing season NEE budgets
was estimated by calculating the range of budgets from the 50 first
ensemble predictions out of the 200 predictions for each year from
1990 to 2015, due to computational constraints. For more details,

see Supplementary Text Section 2.4 and Figure S5.

3 | RESULTS

3.1 | Observed flux variation

Flux measurements showed considerable variation in magnitudes
and signs (CO, sink vs source) across the high-latitude environ-
ments (Figure 1 and Table 1). Observed annual NEE (no upscaling)
was on average a small source of CO, in the most northern parts of
the study domain (tundra: +10 g C m2 yr’i, 42 sites; northern per-
mafrost region: +6 g C m2 yrl, 63 sites) and in drier environments
(tundra upland: +16 g C m™2 yr™?, 36 sites), whereas the boreal biome
(-46 g C m™2 yrt, 41 sites), and in particular boreal uplands (-47 C
m2 yr'l, 34 sites), and non-permafrost regions (-90 g C m2 yr'i, 20
sites) were net ecosystem CO, sinks. All environmental categories
were, on average, net CO, sinks during the growing season, with the
average NEE ranging from -37 to -115 g C m™2 period™ (Table 1).
Tundra upland and non-permafrost regions had the lowest average
growing season sink strength. The non-permafrost region sink was
greatly reduced by one disturbed site that had large source values
up to +600 g C m™2 period™ (Petrone et al., 2014), but this was not
apparent in the annual averages because the same site did not re-
port annual fluxes. Although the environmental conditions at the
sites were fairly representative of the entire high-latitude region
(Figure S6), colder environments with low NDVI and GDD3 as well
as high FDD were less well represented (e.g., large areas of Siberia;
Figure 1). Some chamber sites were located in conditions that would
have otherwise remained undersampled (Figure S6). These included
sites with relatively high soil organic carbon stocks in Hudson Bay
Lowland and northwestern Canada, and wet climates in Greenland
and northern Fennoscandia.

3.2 | Predictive performance of the models

The model fit and predictive performance analyses indicated that
the GBM, RF and SVM (machine learning) methods outperformed
the GLM and GAM (regression model) approaches across most of
the response variables (in particular with NEE, but also with GPP
and ER; model fit of annual machine learning models: r = 0.69-0.99
vs. regression models: r = 0.6-0.92; predictive performance of an-
nual machine learning methods: r = 0.2-0.73 vs. regression models:
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TABLE 1 Summary statistics of observed and predicted (using the average ensemble prediction) annual and growing season GPP (gross
primary productivity), ER (ecosystem respiration), and NEE (net ecosystem exchange) fluxes (g C m™ yr™* for annual and g C m™2 period™ for
growing season fluxes) in different environments across the high-latitude region over 1990-2015. The time-series of the sites were averaged
prior to calculating the observed mean flux (i.e., one flux value from one site was used when the regional averages were calculated). Positive
numbers for NEE indicate net CO, loss to the atmosphere (i.e., Co, source) and negative numbers indicate net CO, gain (i.e., Co, sink). Note
that ER and GPP do not sum up to NEE as different numbers of observations and sites were available for each flux and model. Moreover,
some plant uptake occurs outside of our defined growing season, and consequently growing season GPP and annual GPP do not equal to
each other. The average fluxes were calculated based on the extent of the high-latitude tundra and boreal biomes (Dinerstein et al., 2017),
permafrost zones (Brown et al., 2002), and land cover (i.e., wetlands, and everything else is upland; ESA, 2017). The confidence intervals for
the observed fluxes and the uncertainty ranges for the predicted fluxes can be found in the Table S6

Annual Annual Annual
Category GPP ER NEE
Observed mean flux
High-latitude 482 456 -17
Boreal 624 605 -46
Tundra 250 259 10
Boreal upland 676 647 -47
Boreal wetland 406 381 -38
Tundra upland 250 259 16
Tundra wetland -24
No permafrost 831 773 -90
Permafrost 342 350 6
Predicted mean flux
High-latitude 554 508 -20
Boreal 638 594 -29
Tundra 378 326 =2
Boreal upland 653 604 -30
Boreal wetland 437 458 -18
Tundra upland 378 326 -1
Tundra wetland 367 347 -29
No permafrost 805 736 -56
Permafrost 489 448 -11

r = 0.12-0.72; Figure 2g-i). We found that the machine learning-
based methods were less uncertain (Figure S7) and predicted values
within the range of the observed fluxes as opposed to regression
models. However, the machine learning method that performed
best and had the least uncertainties varied depending on the flux
response variable.

Ensemble predictions were among the best performing models
(model fit of annual and growing season ensemble models: r = 0.68-
0.94; predictive performance of annual and growing season ensem-
ble models: r = 0.21-0.73; Figure 2 and Figure S8). However, similar
to the individual models, model fit and predictive performance was
lower for annual and growing season NEE compared to GPP and
ER (model fit for GPP and ER: r = 0.89-0.94 vs. NEE: r = 0.68-0.77,
predictive performance for GPP and ER: r = 0.53-0.71 vs. NEE:
r = 0.21-0.27; Figure 2 and Figure S8). Annual models for ER and
NEE exhibited a better fit and predictive performance than the
growing season models (based on r), whereas the opposite was true
for GPP (Figure 2 and Figure S8). The growing season GPP model fit
and predictive performance was higher than that of the ER models,

Growing Growing Growing
season GPP season ER season NEE
317 262 -63
420 347 -87
232 192 -44
432 350 -84
347 330 -102
232 192 -37
-115
405 370 -37
302 241 -67
343 283 -50
396 327 -52
230 192 -46
399 328 -51
358 303 -64
229 191 -45
281 242 -71
447 375 =58
315 259 -49

but annual GPP and ER models performed equally well. Model fit
and predictive performance were similar in models trained with
and without chambers (Table S3). In most predictive performance
analyses, the lowest and highest observed fluxes were over- and un-
derestimated, respectively, indicating overall poor predictive perfor-
mance at the extremes (Figures S9 and S10).

Average predicted and observed fluxes were of similar mag-
nitude (Table 1). However, there was a tendency for the average
predicted values to have slightly larger GPP and ER values (e.g., ob-
served and predicted annual GPP in the tundra: 250 g C m™2 yr™* and
378gC m2 yr‘l, respectively) and stronger net CO, sink values than
what was observed (e.g., observed and predicted annual NEE in the
tundra: +10 g Cm 2 yrtand -2 g C m™2 yr'}, respectively). Our cross-
comparison of annual and growing season flux ensemble predictions
showed there was a mismatch between annual and growing season
component fluxes in approximately 2% of the pixels (growing season
GPP/ER larger than annual GPP/ER) and that unrealistic flux values
(negative GPP or ER) were found in less than 0.01% of the pixels in
the ensemble predictions.
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FIGURE 2 Observed and predicted annual fluxes of GPP (gross primary production; a and d), ER (ecosystem respiration; b and e), and
NEE (net ecosystem exchange; c and f) based on model fit (a-c) and predictive performance (d-e). Model fit was evaluated by predicting
fluxes over the entire model training data, while predictive performance was assessed using a leave-one-site-out cross validation scheme

in which each site was iteratively left out from the dataset, and the remaining data were used to predict fluxes for the excluded site. Model
fit and predictive performance statistics (r = Pearson's correlation between observed and predicted fluxes, g; Bias = mean absolute bias,

h; RMSE = root mean square error, i across annual fluxes and five modeling methods; GLM = generalized linear model; GAM = generalized
additive model; GBM = generalized boosted regression tree; RF = random forest; SVM = support vector machine) and their median ensemble
(ENS) are shown in subfigures g-i. The black line indicates a 1:1 relationship

3.3 | Predicted flux variation

Predicted fluxes showed high spatial variability across the region
with a general trend towards decreasing fluxes and sink strength
with increasing latitude for GPP, ER, and NEE (Figure 3 and Figure
S11). The variability was related to differences in climate (GDD3
and FDD), solar radiation (RAD) and vegetation greenness (NDVI),
which had the strongest influence on most of the fluxes (Figure 4).
Moreover, SOC, CLAY, and LC were important variables for annual
NEE; CLAY and SOC both had a positive yet saturating relationship
(Figure S12). The relationship between LC and NEE suggested that

the annual and growing season net sink strength was largest in wet-
lands and smallest in sparse vegetation (Figures S12 and S13). Some
variables had a very low variable importance for most of the fluxes
(e.g., TWI, soil pH).

Our predictions revealed regional hot spots in annual and grow-
ing season NEE, GPP, and ER. Strong annual and growing season CO,,
sinks, having low ER and high GPP, were found in forested regions
with high GDD3, NDVI, RAD, and low FDD across Fennoscandia and
European Russia, southern Canada, and southern Siberia (Figure 3
and Figure S11). Annual CO, sources were identified within northern
and central Siberia, Greenland, northern and central Alaska, as well
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as northern Canada. These regions were located mainly in the tun-
dra, characterized by high FDD, and low GDD3 and NDVI. Growing
season CO, sources were located in southeastern Siberia, northern
Siberia and some parts of southern and northern Canada. Largest
uncertainties in flux predictions were found in areas with relatively
strong CO, sinks in the boreal biome, such as in Fennoscandia
and eastern Canada, but also in the tundra (e.g., Canadian Arctic
Archipelago; Figure 3 and Figure S11). The largest differences
across our annual NEE, and CMIP5 and FLUXCOM predictions were
found in European Russia, Fennoscandia, and southeastern Canada
(Figure 5a-d).

3.4 | Terrestrial ecosystem NEE budget for the
high-latitude region

Our ensemble predictions showed that the high-latitude tundra and
boreal region was on average an annual terrestrial ecosystem CO,
sink over the 26-year (1990-2015) study period (Table 2). The annual
NEE budget (based on upscaled NEE data) averaged -419 Tg C yr™
(90% uncertainty range: -559 to -189 Tg C yr’i; range of budgets
across the study period: -449 to -366 Tg C yr%). When estimat-
ing annual NEE according to the separately modeled annual GPP

(11,344 Tg C yr'l) and ER (10,397 Tg C yr'l) budgets, we obtain an
NEE budget of -948 Tg C yr*. The average high-latitude growing
season NEE budget over the period of 1990-2015 was -1018 Tg C
yr! (1332 to -455 Tg C yr', 90% uncertainty range), which was
supported by the difference between the average growing season
ER (5800 Tg C yr™!) and GPP (7016 Tg C yr'!) budgets. For the re-
gional budgets, see Table 2.

The average annual NEE budgets over the study period from
CMIP5 and FLUXCOM were -488 and -1056 Tg C yr'l, respectively
(Table S5). In the boreal biome, average annual GPP in our study was
8850 compared to 8561 Tg C yr'tin FLUXCOM. In the tundra biome,
the average annual GPP in this study was twice as high asin FLUXCOM
(2495 and 1267 Tg C yr'}, respectively). Differences were larger for
annual ER. Our annual ER budget for the boreal and tundra biomes
was 8241 and 2156 Tg C yr'l, respectively, but the same budgets were
only 6363 and 1200 Tg C yr ™t in FLUXCOM. For the regional NEE bud-
gets estimated with CMIP5 and FLUXCOM, see Table S5.

4 | DISCUSSION

This study provides a conceptual and methodological framework to
bridge the gap between local, regional, and high-latitude scales in
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FIGURE 4 Variable importance for
annual and growing season fluxes of GPP
(gross primary production), ER (ecosystem
respiration), and NEE (net ecosystem
exchange). Explanatory variables are
GDD3 (growing degree days), FDD
(freezing degree days), WAB (water
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cover). Variable importance was calculated
by assessing how a randomly permuted
predictor influences the predictions across
all five statistical models. Values close to
0 and 1 indicate low and high importance
of the predictor variable, respectively.

The box corresponds to the 25th and

75th percentiles. The lines denote the

1.5 IQR of the lower and higher quartile,
where IQR is the inter-quartile range,

or distance between the first and third
quartiles

s
WAE

"
NDVI

Explanatory variable

-
SOCH

HA
P 1

CLAY

-

LCH
1

4

"

_.._

+
.

¥
-

GPP
ER

- NEE

-1+ -

-
-

1+
-

+

- -

-
-

0.0 0.1

statistical flux upscaling. Our framework is unique in that it (a) com-
piles a new dataset of growing season and annual fluxes using EC and
chamber data and investigates the drivers of these fluxes; (b) quanti-
fies the performance of different statistical models; and (c) provides
the first spatially continuous high-latitude maps of CO, fluxes and
their uncertainties at high spatial resolution, capturing the inherent
spatial heterogeneity in predictors and fluxes and minimizing biases
in upscaling compared to coarser scale models (Figure 5e). The bet-
ter geographical and environmental coverage of the flux measure-
ments compared to past efforts improves our understanding of the
spatial patterns and regional budgets of terrestrial ecosystem CO,
fluxes, however, uncertainties in our direct model estimates of NEE

remained rather high.

4.1 | Drivers and spatial patterns of GPP,
ER, and NEE

Our results suggest that climatic, vegetation, and soil variables
were all important predictors for terrestrial ecosystem CO, fluxes.
However, almost all CO, fluxes were strongly driven by the broad

0.2 0.3 0.40.0 0.1

Variable importance

0.2 0.3 0.4

climatic gradients and spatiotemporal variability in solar radiation,
growing and non-growing season climatic conditions, water balance,
and the resulting vegetation greenness patterns, supporting the find-
ings of previous syntheses (Belshe et al., 2013; Lund et al., 2010;
Natali et al., 2019). Even though these climatic variables are not in-
dependent of our GPP and ER estimates (see Section 4.2), confidence
in these results can be drawn from the underlying mechanistic rela-
tionships between the climate drivers and fluxes. For example, GPP
across large scales is dependent on growing season temperatures,
length of season, and radiation, which regulate and provide resources
for plant growth (Lépez-Blanco et al., 2017; Lund et al., 2010), and
ER is largely driven by enzymatic processes, which are tightly linked
with temperatures (Davidson et al., 2006) as well as plant growth (La
Puma et al., 2007). In general, we found that warmer, moderately
wet, and greener conditions (i.e., environments of higher biomass as
indicated by NDVI) increased the magnitude of annual GPP and ER.
However, our results also indicate that the overall net sink strength
increases with larger greenness, warmer and shorter winters, and
wetter climate. These results suggest that GPP and ER respond rather
similarly to changes in climate and vegetation conditions across the
high-latitude region, although GPP might increase even more due to
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FIGURE 5 Complementing annual NEE predictions averaged over 1990-2015. Mean annual NEE derived by subtracting annual ER
(ecosystem respiration) from GPP (gross primary production) in this study (a), from a global upscaling product FLUXCOM (b), and from

a process model ensemble CMIP5 (Coupled Model Intercomparison Project Phase 5) (c), and the standard deviation of these and the
independently modeled annual NEE in this study (visualized in Figure 3c) (d). A regional-scale example of the spatial variation of annual NEE
in our prediction in northern Alaska, with black outlines depicting the size of the pixel in one of the highest resolution (smallest pixel size)

models in the CMIP5 ensemble (1.92 x 1.5°) (e)

TABLE 2 Annual and growing season average GPP, ER, and NEE budgets (Tg C yr™) over 1990-2015 across the environments and the
spatial extent of each environmental category when permanent water bodies, urban areas, and croplands were masked away. The NEE
budgets are based on upscaled NEE data and include an uncertainty range derived by bootstrapping. Note that ER and GPP do not sum up
to NEE as different numbers of observations and sites were available for each flux and model. For the non-growing season CO, budgets

estimated based on annual and growing season budgets, see Table S4

Annual Annual
Category GPP ER Annual NEE
High-latitude 11,344 10,397 -419 (-559 to -189)
Boreal 8850 8241 -406 (-499 to -239)
Tundra 2495 2156 -13(-81to 62)
Boreal upland 8437 7808 -389 (-475 to —226)
Boreal wetland 412 433 -17 (-28 to -10)
Tundra upland 2451 2115 -9 (-78 to 64)
Tundra wetland 44 41 -4 (-3 to -1)
No permafrost 3407 3116 -238 (-288 to -185)
Permafrost 7924 7269 -181 (-305 to 32)

increases in vegetation greenness (Berner et al., 2020) and changing
climate (Lund et al., 2010). However, differences in these relationships
might occur in different regions and land cover types (Baldocchi et al.,
2018; Belshe et al., 2013; Lafleur et al., 2012).

In addition to the climate and greenness variables operating
mostly at large scales, other more local-scale variables such as soil
organic carbon stock and land cover helped explain CO, fluxes. Soil
organic carbon stock was the most important predictor for annual
NEE, and it had a positive relationship with it, demonstrating that

Growing Growing
season season
GPP ER Growing season NEE Area x10° km?
7016 5800 -1018 (-1332 to -455) 20.6
5496 4531 -715 (-1037 to -224) 13.9
1520 1269 -303 (-338 to —224) 6.7
5158 4245 -655 (-973 to -196) 12.9
338 287 -60 (-70 to -29) 0.9
1486 1240 -294 (-330 to -218) 6.6
34 29 -8 (-9 to -6) 0.1
1895 1587 -223 (-353 to -45) 4.2
5114 4207 -793 (1000 to -414) 16.3

areas with high carbon stocks might lose more CO, to the atmo-
sphere. However, this result was not supported by the annual ER
models, which would represent the main process behind this posi-
tive relationship (i.e., larger carbon stocks have more potential for
increased CO, emissions, particularly in dry conditions (Voigt et al.,
2019)). The lack of this relationship might be due to annual ER models
not covering the full range of conditions represented by the annual
NEE models, or spurious causal relationships being identified by the
relatively poorly performing NEE models. The importance of land



VIRKKALA ET AL.

cover was expected as it summarizes many key processes related to
carbon cycling (e.g., the carbon uptake capacity, temperature sensi-
tivity, as well as quantity and quality of carbon inputs into the soil;
Sgrensen et al., 2019) and other environmental characteristics (e.g.,
soil moisture is likely higher in wetlands than in sparse vegetation).

Our ensemble prediction suggested that most of the southern
portion of the high-latitude terrestrial region was an annual net
ecosystem CO, sink while the central and northern regions were
neutral or small net CO, sources. Observed and predicted spatial
patterns in fluxes were similar to those described by most previous
studies. For example, our compiled field observations and predic-
tions are consistent with the majority of Alaskan tundra being an
annual ecosystem CO, source on average, similar to the average ob-
served fluxes in McGuire et al. (2012) or the prediction in Ueyama,
Ichii, et al. (2013). The strongest annual ecosystem CO, sinks in our
study were located in southern European Russia, Fennoscandia, and
southern Canada, as also observed in the FLUXCOM product (Jung
et al.,, 2017; Tramontana et al., 2016).

For some regions, our ensemble prediction differed from the predic-
tions of previous studies. The distribution of annual net CO, sources across
the tundra biome was larger in our prediction compared to FLUXCOM,
particularly in Siberia and Canada. This was likely explained by our models
including some tundra sites from Canada, Greenland, European Russia,
and Siberia, which were not covered by the FLUXCOM model training
data. Some of the sites in these regions were annual net CO, sources on
some years (Emmerton et al., 2016; Karelin et al., 2013). A similar disagree-
ment was found between an Asia-focused statistical upscaling analysis
by Ichii et al. (2017) which suggested stronger sink strength across large
parts of Siberia, likely due to a limited number of northern eddy covari-
ance sites used to train their models. The largest regional differences be-
tween our predictions, CMIP5, and FLUXCOM occurred in central Siberia,
Fennoscandia, European Russia, and eastern Canada and the Canadian
Arctic Archipelago, and these differences were primarily driven by the
fact that CMIP5 showed these regions to be sources whereas they were
sinks in FLUXCOM and our analysis (Figure 5). These regional differences
demonstrate that these particular areas should be studied further to un-
derstand the sink-source patterns more accurately in the future.

Our uncertainty estimation suggests that CO, flux predictions
should be interpreted carefully in areas that lack sampling locations
or have large variability in fluxes that cannot be captured by the pre-
dictorvariables. Such areas are particularly concentrated in European
Russia, eastern Canada, and the Canadian Arctic Archipelago. As the
accuracy of the prediction can usually be improved with increases in
the quantity and quality of data, new measurements in these regions
or better predictors would likely improve the performance of high-
latitude CO, flux models.

4.2 | Key sources of uncertainty in our
modeling approach

No single best model could be identified across the five mod-
eling methods. However, the three machine learning methods
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outperformed the two regression models, particularly for NEE, as
demonstrated by the improved model performance, lower uncer-
tainty, and the lack of unrealistically high or low flux values in predic-
tions. The better performance of the machine learning methods was
likely related to their flexibility and capability to find complex struc-
tures in the flux data (Elith et al., 2008). Our results demonstrate
that several machine learning methods should be tested to produce
the most accurate high-latitude flux predictions and that ensemble
methods provide robust predictions (Aradjo & New, 2007). Our re-
sults also indicate that an ensemble prediction based on machine
learning methods alone would likely lead to higher model accuracy
and transferability (see also Tramontana et al., 2016).

Our models performed well when predicting to the same data
that the models were trained with, but the models had challenges
when tested against independent validation data. The predictive
performance of our ensemble predictions was comparable to (an-
nual GPP and ER) or less than (growing season GPP, ER, NEE, and
annual NEE) that of in other global and regional upscaling studies
(Ichii et al., 2017; Natali et al., 2019; Peltola et al., 2019; Tramontana
et al., 2016; Ueyama, Ichii, et al., 2013). However, comparisons of
cross-validation results are hampered by different cross-validation
techniques used in studies, with some of the studies including ob-
servations from the same site both in the model training and valida-
tion data, therefore providing overly optimistic accuracy estimates
based on non-independent data. Moreover, these other studies pri-
marily focused on a smaller area and/or shorter time period (with
the exception of Tramontana et al., 2016), and used a different set
of predictors, further complicating this comparison. In these other
studies, the correlation (r) between observed and predicted fluxes
(derived with cross validation), measured mostly throughout the
year as daily-to-monthly fluxes, was roughly 0.65-0.7 for NEE and
0.7-0.8 for GPP and ER. There are several reasons for why some
of our models performed more poorly than these previous studies,
which we explain below.

The lower quantity of measurements and weaker comparability
of fluxes derived with EC and chamber techniques and with vari-
able measurement lengths might explain the lower predictive per-
formance in our study compared to the other upscaling studies. As
we used aggregated fluxes over the growing season and annual time
scales, the sample size in our models was smaller than in other ef-
forts which all used daily or monthly fluxes (a few hundred observa-
tions versus thousands of observations). A larger sample size usually
increases the predictive performance of the models, particularly
when these measurements cover variable environmental conditions
that can be captured by the predictors. For example, FLUXCOM
models (Jung et al., 2017, 2020; Tramontana et al., 2016) might
have had a higher predictive performance than our models because
they use a global FLUXNET database (Pastorello et al., 2020), which
covers broad environmental gradients. However, FLUXNET data
originates mostly from lower latitudes (e.g., only five sites from the
Arctic and 34 from the boreal out of 224 global sites in total used
in Tramontana et al., 2016). This could explain the larger net sink
strength in FLUXCOM compared to our predictions. The higher
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predictive performance of FLUXCOM compared to our prediction
might also be explained by the fact that FLUXNET is based on a
single flux measurement technique (EC) with standardized filtering,
gap-filling, and partitioning procedures. We included chambers to
our analysis as they covered conditions that were not covered by
the EC network even though we acknowledge that using both cham-
ber and EC measurements, and different partitioning methods for
EC, increased the number of different flux measurement techniques
and study designs, and may have made the comparison of fluxes
across sites more uncertain (Fox et al., 2008; Tramontana et al.,
2016). However, we observed no significant differences in fluxes
estimated with the two approaches indicative of these mismatches
(Figure Séd), and the performance of models did not change when
chambers were excluded from model training data. These results
suggest that the relatively low performance of some models is re-
lated to the high variability in both EC and chamber-derived CO,
flux estimates that is not captured by our predictors. Further, it
demonstrates that including chamber measurements, despite op-
erating at different spatial and temporal resolutions than the EC
technique, did not decrease the model performance. It is also possi-
ble that the lower predictive performance of growing season models
compared to annual models was related to the variable growing sea-
son measurement periods used across the studies. We accepted this
variability because our goal was to use as many published fluxes as
possible to improve the geographical and environmental coverage
of sites.

The accuracy of our ensemble predictions varied depending on
the flux, with the predictive performance being lowest for NEE mod-
els (r = 0.21-0.27). The predictive performance of our GPP and ER
models was higher (r = 0.53-0.73) and is comparable to past efforts
(Ichii et al., 2017; Natali et al., 2019; Tramontana et al., 2016; Ueyama,
Ichii, et al., 2013) because these fluxes represent the ecophysiologi-
cal and biogeochemical processes describing CO,, uptake and loss, re-
spectively. GPP and ER also already included some information about
temperature and radiation variables that we used as predictors in our
statistical models, which may introduce some circularity and artificially
inflate the model performance. Our NEE models over- and underesti-
mated low and high (i.e., large negative and positive) values, respec-
tively, by approximately 100-200 g C m2 yr'i, which has also been
demonstrated with NEE and other fluxes in previous upscaling studies
(Ichii et al., 2017; Tramontana et al., 2016; Warner et al., 2019). These
extreme values were often from disturbed sites experiencing for ex-
ample, permafrost thaw or extreme forest management practices, or
represented an observation that was notably different from the site
mean. Based on the cross validation results of the individually modeled
annual NEE, a substantial fraction (53%) of annual source observations
were predicted to be sinks (similar to the pattern observed in Ichii et al.,
2017; Figure 3b), but some sink observations (24%) were also predicted
as sources. We also discovered that the observed average annual NEE
was often larger (more positive) than the individually predicted aver-
age NEE, which was either a result of the model not being able to pre-
dict sources accurately, or of the distribution of flux sites being biased
towards environments with larger CO, source observations than the

entire region on average (see the large number of sites with source ob-
servations originating primarily only from Alaska in Figure 1). These re-
sults demonstrate that the predictors included in our analyses did not
fully represent the spatial gradients and dynamic temporal variability
in environmental conditions that influence carbon cycle processes, and
particularly the high and low NEE conditions. Further research should
explore improvements offered by other current and potential future
predictors related to the disturbance and permafrost conditions, snow
cover duration and snow depth, soil moisture and nutrient availabil-
ity, and phenology, root properties, and microbial communities (llleris
et al., 2003; Jarveoja et al., 2018; Nobrega & Grogan, 2007).

Even though the geographical and environmental coverage of the
flux sites was improved in our study compared to previous efforts, our
models included only ca. 10 sites from heavily disturbed conditions
(see Section 2.1.1). Consequently, our sites did not cover the full range
of disturbance and post-disturbance recovery conditions and the asso-
ciated impacts on CO, fluxes. For example, rapidly thawing permafrost
and burned landscapes remained largely under-sampled across Siberia.
These disturbances have a substantial impact on carbon cycling in
high-latitude ecosystems (Abbott et al., 2016; Walker et al., 2019), in-
cluding direct emissions from the disturbance (not estimated with our
models) and typically increased net CO, emissions for several years
to decades after the disturbance (Coursolle et al., 2012; Kittler et al.,
2017; Lund et al., 2017; Turetsky et al., 2020) which should ideally be
captured by our models. The lack of flux data representing disturbed
and post-disturbance recovery conditions likely leads to underestima-
tions in net ecosystem CO,, emissions, and is generally thought as one
of the key limitations in statistical upscaling efforts (Jung et al., 2020;
Zscheischler et al., 2017).

4.3 | Terrestrial ecosystem CO, budget and its
uncertainty

Although our models may be biased towards sinks, our results sug-
gest that high-latitude terrestrial ecosystems were on average an an-
nual net CO, sink during 1990-2015. The uncertainty of this budget
was high, as demonstrated by the low predictive performance of the
annual NEE model, and the fact that budgets derived from differ-
ent predictions (individual NEE predictions and ER-GPP predictions)
differed by ca. 500 Tg C yr'! - the latter most likely being linked to
the different numbers of observations and sites available for each
flux and model (Figure 1). Nevertheless, the annual NEE budget was
of similar magnitude to the one estimated by CMIP5 models and
larger (less negative) than the one estimated by FLUXCOM (Table
S5). The boreal biome was responsible for most of this sink strength
(-406 Tg C yrl, from -499 to -239 Tg C yr'}; 13.9 x 10° km?). In
contrast, the tundra biome was on average a small sink (-13 Tg C
yr'l, from -81 to +62 Tg C yr'l; 6.7 x 10 km?) or a small source
(+10 g C m™2 yr'%), based on our predictions and observations. This
suggests that the tundra biome was on average close to CO, neu-
tral even though the large soil organic carbon stocks of this region
would indicate larger historical CO, sink strength (Hugelius et al.,
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2014). Our tundra budget is within the range (though on average
more positive, indicating stronger source) of the one comprising pro-
cess and inversion models, and field-based estimates by McGuire
etal. (2012) (<103 Tg C yr'%, from -297 to +89 Tg C yr'%). However, it
differs from the source budget (+462 Tg C yr*, from +94 to +840 Tg
Cyrl; 10.5 x 10° km?; wetlands not included) estimated by Belshe
et al. (2013). The divergence of average annual NEE across our and
Belshe et al. (2013) study is likely explained by our inclusion of fluxes
from wetlands, which were on average annual net ecosystem CO,
sinks (Table 1). The discrepancy between our and the McGuire et al.
(2012) study can be explained by a 50% increase in new annual tun-
dra source observations in our dataset (see e.g., Celis et al., 2017,
Euskirchen et al., 2014), which were not included in the McGuire
et al. (2012) analysis. Further, there are some differences in the
study domain boundaries (e.g., the tundra domain in Belshe et al.,
2013 was larger than in this study) which might explain some of the
discrepancies between these studies, although the general patterns
of these boundaries were rather similar (see e.g., Figure 1 in McGuire
et al., 2012 vs. our tundra domain in Figure 1).

Our findings suggest that both the boreal and tundra biomes
were relatively strong CO, sinks during the growing season. Our
growing season CO, budgets estimated for the same seasons as in
previous studies (see Supplementary Text Section 2.3), derived both
by predicting NEE as well as subtracting GPP from ER suggest that
the growing season net uptake is stronger than or similar to the esti-
mates in Belshe et al. (2013) and Natali et al. (2019). The growing sea-
son NEE budget calculated for 100 days in the tundra was -296 Tg
C yr'tin this study, compared to 137 + 80 Tg C yr ! in Belshe et al.
(2013). The growing season NEE budget estimated for 153 days in
the northern permafrost region in this study was -1122 Tg C yr,
whereas the process model estimates varied between -687 and
-1647 Tg C yr'! in Natali et al. (2019). Further, the observed daily
average growing season NEE in tundra demonstrated a stronger sink
strength than the average growing season NEE reported in McGuire
etal. (2012) and Belshe et al. (2013) (-0.6, -0.3,and -0.2 g Cm2d %,
respectively). Even though we acknowledge that some plant uptake
and CO, emissions occur outside of our defined growing season (i.e.,
our growing season estimates did not capture the spring and autumn
seasons), our results demonstrate that growing season CO, uptake

might be larger than previously thought.

4.4 | Summary and next steps in high-latitude CO,
flux upscaling

Overall, our findings suggest that statistical predictions aimed at de-
scribing high-latitude CO, flux patterns provide new insights into the
understanding of broad GPP and ER patterns but have uncertainty
with NEE. Furthermore, this study demonstrates that machine learn-
ing models are a robust and accurate empirical approach to predict-
ing high-latitude terrestrial CO, fluxes, and that no individual machine
learning model outperformed the others. This therefore supports the
use of ensemble predictions to reduce uncertainties associated with a
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single method and to produce more robust predictions. Nevertheless,
the building of better models with an improved flux measurement
network remains the highest research priority. Our results suggest
that the next steps for future high-latitude upscaling efforts are to
(a) measure fluxes over the entire year in as many sites as possible,
(b) establish new sites in data-poor regions and regions where CO,
predictions were most uncertain, such as in European Russia, Siberia,
eastern Canada, and Canadian Arctic Archipelago, and specifically in
disturbed and high-Arctic conditions, (c) develop better geospatial pre-
dictors (e.g., describing soil moisture and nutrients or permafrost thaw)
to explain fluxes, (d) conduct detailed sensitivity tests of the impor-
tance of the flux measurement method, data distribution, and different
predictor datasets influencing the budgets, and (e) build models at a
finer temporal resolution than annual and growing season, to capture
rapidly changing transition periods and bypass issues associated with
temporal aggregation and varying definitions of seasons. High-latitude
specific models are needed to more accurately monitor current emis-
sions and improve understanding of the role of high-latitude regions in
the global carbon cycle, as large changes in carbon cycling are likely in

the near future.
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