
Classifying Math Knowledge Components via
Task-Adaptive Pre-Trained BERT

Abstract. Educational contents labeled with proper knowledge com-
ponents (KCs) are particularly useful to teachers or content organizers.
However, manually labeling educational contents is labor intensive and
error-prone. To address this challenge, prior research proposed machine
learning based solutions to auto-label educational contents with limited
success. In this work, we significantly improve prior research by (1) ex-
panding the input types to include KC descriptions, instructional video
titles, and problem descriptions (i.e., three types of prediction task),
(2) doubling the granularity of the prediction from 198 to 385 KC la-
bels (i.e., more practical setting but much harder multinomial classifica-
tion problem), (3) improving the prediction accuracies by 0.5-2.3% using
Task-adaptive Pre-trained BERT, outperforming six baselines, and (4)
proposing a simple evaluation measure by which we can recover 56-73%
of mispredicted KC labels.
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1 Introduction

In the math education community, teachers, Intelligent Tutoring Systems (ITSs)
and Learning Management Systems (LMSs) have long focused on bringing learn-
ers to the target mastery over a set of skills, also known as Knowledge Com-
ponents (KCs). Common Core State Standards (CCSS)1 is one of the most
common categorizations of knowledge components skills in mathematics from
kindergarten to high school in the United States. For example, in the CCSS
code 7.NS.A.1, 7 stands for 7-th grade, NS stands for the domain Number sys-
tem, A.1 stands for the standard number of the code [4]. In the process of using
KCs, the aforementioned stakeholders often encounter the challenges in three
scenarios: (1) teachers need to know what KCs a student is unable to master
by describing the code content (S1), (2) ITSs need to tag instructional videos
with KCs for better content management (S2), and (3) LMSs need to know what
KCs a problem is associated with in recommending instructional videos to aid
problem solving (S3).

The solutions to these scenarios typically frame the problem as the multi-
nominal classification–i.e., given the input text, predicts one most relevant KC
label out of many KCs: I(nput) 7→ text and O(utput) 7→ KC. Prior research so-
lutions include SVM-based [11], Non-negative Matrix Factorization (NMF) [5],
Skip-gram Representation [16], Neural Network [17] or even cognitively-based

1 www.corestandards.org
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Fig. 1: Three types of input with corresponding KC labels: (a) KC description
text, (b) YouTube video title, and (c) problem text with no labels

knowledge representation [19]. Existing solutions, however, used relatively small
number of labels (e.g., 39 or 198) with the input of problem text only (similar
to Fig. (c)) [16,11,17].

Toward this challenge, in this work, we significantly improve existing state-
of-the-art (SOTA) methods in auto-labeling educational contents. First, based
on three scenarios of S1, S2, and S3, we consider three types of input, includ-
ing KC descriptions, instructional video titles, and problem text (as shown in
Fig. 1). Second, we solve the multinomial classification problem with 385 KC
labels (instead of 198). Note that the problem becomes much harder. Third,
we adopt the Task-adpative Pre-trained (TAPT) BERT [8] in solving the multi-
nomial classification problem. Our solution outperforms six baselines, including
three classical machine learning (ML) methods and two prior approaches, im-
proving the prediction accuracies by 0.5-2.3% for the tasks of S1, S2, and S3,
respectively. Finally, we propose a new evaluation measure, TEXSTR, that en-
ables 56-69% more KC labels to be correctly predicted than using the classical
measure of accuracy.
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2 Related Work

KC Models Rose et al. [19] is the first work predicting knowledge components,
which took a cognitively-based knowledge representation approach. The scale
of KCs it examined was small with only 39 KCs. Later research extended the
scale of KCs using a variety of techniques. For example, Desmariais [5] used non-
negative matrix factorization to induce Q-matrix [3] from simulated data and
obtained an accuracy of 75%. The approach did not hold when applying to real
data and only got an accuracy of 35%. The two aforementioned studies shared
the same drawback: not using the texts from the problems. Karlovcec et al. [11]
used problem text data from the ASSISTments platform [9] and created a 106-
KC model using 5-fold cross validation via ML approach SVM, achieving top 1
accuracy of 62.1% and top 5 accuracy of 84.2%. Pardos et al. [16] expanded the
set of KCs to 198 and achieved 90% accuracy via Skip-gram word embeddings
of problem id per user (no problem text used). However, Patikorn et al. [17] did
a generalizability study of Pardos et al. [16]’s work and only achieved 13.67%
accuracy on a new dataset. They found that was because Pardos et al. [16]’s
model was over-fitting due to memorizing the question templates and HTML
formatting as opposed to encoding the real features of the data. Hence, Patikorn
et al. [17] removed all the templates and HTML formatting and proposed a new
model using Multi-Layer-Perceptron algorithm, which achieved 63.80% testing
accuracy and 22.47% on a new dataset. The model of Patikon et al. [17] became
a new SOTA for the type of problem text. The preceding research was only
focused on problem related content (ID or texts) whereas our work use not only
the problem text but also the KC descriptions and video title data covering a
broad range of data.

Pre-Trained BERT Models The state-of-the-art language model BERT (Bidi-
rectional Encoder Representations From Transformer) [6] is a pre-trained lan-
guage representation model that was trained on 16 GB of unlabeled texts in-
cluding Books Corpus and Wikipedia with a total of 3.3 billion words and a
vocabulary size of 30,522. Its advantage over other pre-trained language mod-
els such as ELMo [18] and ULMFiT [10] is its bidirectional structure by using
the masked language model (MLM) pre-training objective. The MLM randomly
masks 15% of the tokens from the input to predict the original vocabulary id of
the masked word based on its context from both directions [6]. The pre-trained
model then can be used to train from new data for tasks such as text classifi-
cation, next sentence prediction. Users can also further pre-train BERT model
with their own data and then fine-tune. This combining process has become
popular in the past two years as it can usually achieve better results than fine-
tuning only strategy. Sun et al. [20] proposed a detailed process on how to further
pre-train new texts and fine-tune for classification task, achieving a new SOTA
accuracy. Models such as FinBERT [15], ClinicalBERT [1], BioBERT [14], SCIB-
ERT [2], and E-BERT [22] that were further pre-trained on huge domain corpora
(e.g.billions of news articles, clinical texts or PMC Full-text and abstracts) were
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Fig. 2: An illustration of training and fine-tuning process of BASE vs. TAPT

referred as Domain-adaptive Pre-trained (DAPT) BERT and models further pre-
trained on task-specific data are referred as Task-adaptive Pre-trained (TAPT)
BERT by Gururangan et al. [8]. Although DAPT models usually achieve better
performance (1-8% higher), TAPT models also demonstrated competitive and
sometimes even higher performance (2% higher) according to Gururangan et al.
[8]. In Liu et al. [15], FinBERT-task was 0.04% higher than domain FinBERT in
accuracy. In addition, TAPT requires less time and resource to train. In light of
this finding, we use the task-specific data to further pre-train the BERT model.

3 The Proposed Approach

To improve upon existing solutions to the problem of auto-labeling educational
contents, we propose to exploit recent advancements by BERT language models.
Since BERT can encode both linguistic structures and semantic contexts in texts
well, we hypothesize its effectiveness in solving the KC labeling problem.

3.1 Task-Adpative Pre-Trained (TAPT) BERT

In particular, we propose to adopt the Task-adaptive Pre-trained (TAPT) BERT
and fine-tune it for three types of data. The “pre-training” process is unsu-
pervised such that unlabeled task-specific texts get trained for MLM objective
whereas the “fine-tuning” process is supervised such that labeled task-specific
texts get trained for classification (see Fig. 2). We call a BERT model that only
has a fine-tuning process as BASE. For TAPT, we first initialize the weights from
the original BERT (i.e., BERT-base-uncased model). Then, we further pre-train
the weights using the unlabeled task-specific texts for MLM objective, a process
of randomly masking off 15% of the tokens and predict their original vocabu-
lary IDs. The pre-training performance is measured by the accuracy of MLM.
Once TAPT is trained, we fine-tune TAPT with the task-specific labeled texts
by splitting them into training, validation and testing datasets and feed them
into the last softmax layer for classification. We measure the performance of
fine-tuning via the testing data accuracy. For BASE, we do not further train
it after initializing the weights but directly fine-tune it with the task-specific
data for classification (see Fig. 2). To show the effectiveness of the TAPT BERT
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Fig. 3: An illustration of multiple possibilities of a correct label for a given video
title text

approach, we compare it against six baselines including BASE BERT for three
tasks:

– Td: to predict K-12 KCs using dataset Dd (description text) based on S1

– Tt: to predict K-12 KCs using dataset Dt (video title text) based on S2

– Tp: to predict K-12 KCs using dataset Dp (problem text) based on S3

3.2 Evaluating KC Labeling Problem Better: TEXSTR

In the regular setting of multinomial classification to predict KC labels, the
evaluation is done as binary–i.e., exact-match or non-match. For instance, if a
method predicts a KC label to be 7.G.B.6, but its ground truth is 7.G.A.5,
7.G.B.6 is considered to be a non-match. However, the incorrectly predicted
label of 7.G.B.6 could be closely related to 7.G.A.5 and thus still be useful to
teachers or content organizers.

For example, in Fig. 3, the input to the classification problem is a video title
“Sal explains how to find the volume of a rectangular prism fish tank that has
fractional side lengths.” Its ground truth label is 7.G.B.6 (7-th grade geometry
KC), described as “Solve real world problem involving ... volume ... composed
of ... prisms.” When one looks at three non-match labels, however, their de-
scriptions do not seem to be so different (see in Fig. 3). That is, all of the
three non-match labels (6.G.A.2, 5.MD.C.5, and 5.MD.C.3 ) mention “volume
solving” through “fine/relate/recognize with operations and concepts,” which is
quite similar to the KC description of the ground truth. However, due to the
nature of exact-match based evaluation, these three labels are considered wrong
predictions. Further, domain experts explain that some skills are prerequisites
to other skills, or that some problems have more than one applicable skills (thus
multiple labels) and they could all be correct.

Therefore, we argue that using a strict exact-matching based method in eval-
uating the quality of the predicted KC labels is limited. Rather, we have to use
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a method that considers both semantic and structural similarities among KC
labels and their descriptions.

– Semantic Similarity (Ct): We adopt the Doc2Vec algorithm [13] to capture
the similarity between KC labels. Doc2Vec, derived from word-vector algo-
rithm, generates similarity scores between documents instead of words and
is proved to have lower error rate (7.7-16%) than the word vector approach
[13].

– Structural Similarity (Cs): We exploit prerequisite relationships among skills
(KC labels) and capture such as edges and KC labels as nodes in a graph.
The prerequisite relationships are extracted from a K-G8 math coherence
map by Jason Zimba [23] and a high school (G9-G12) coherence map by
UnboundEd Standard Institue [21]. Then, we adopt Node2Vec algorithm [7]
that is efficient and flexible in exploring nodes similarity and achieved a new
SOTA performance in network classification problem [7].

In the end, we craft a new evaluation measure, named as TEXSTR (Λ), by
combining both Ct and Cs as follows: Λ = α ·Ct + (1−α) ·Cs, where α controls
the weight between Ct and Cs as an oscillating parameter.

4 Empirical Validation

4.1 Datasets and Evaluation Measure

Table 1 summarizes the details of the datasets for pre-training and fine-tuning
processes. Dd contains 6,384 description texts (84,017 tokens) and 385 math
KCs (an example shown in Fig. 1-a). Part of Dd are extracted from Common
Core Standards website2 and part are provided by k12.com3, an education man-
agement organization that provides online education to American students from
kindergarten to Grade 12. Dt contains 6,748 video title texts (62,135 tokens) and
272 math KCs (an example shown in Fig. 1-b) Part of Dt are extracted from
Youtube.com (via youtube DataAPI4) and part are provided by k12.com. Dp

contains 13,722 texts (589,549 tokens) and 213 math KCs provided by ASSIST-
ments5 (an example shown in Fig. 1-c). Further, Dd+t, Dd+p, Dt+p, and Dall

are different combinations of the unlabeled texts from Dd, Dt, and Dp. They are
only used in the TAPT pre-training process. We pre-process all aforementioned
texts by removing all the templates and HTML markups to avoid over-fitting,
suggested by the previous SOTA method [17]. In the TAPT pre-training pro-
cess, 100% of the unlabeled texts from the aforementioned datasets are used for
pre-training. In fine-tuning process for both TAPT and BASE , only Dd, Dt,
and Dp are used and 72% of their texts and labels are used for training, 8% are
for validation and 20% are for testing (see in Table 1 Row 1-3 and Col. 6-8).

2 http://www.corestandards.org/math
3 http://www.k12.com
4 http://developers.google.com/youtube/v3
5 http://www.assistments.org/
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Table 1: A summary statistics of datasets.

Name # Labels # Texts # Tokens
Fine-tuning Partition

Training (72%) Validation (8%) Testing (20%)

Dd 385 6,384 84,017 4,596 511 1,277
Dt 272 6,748 62,135 4,858 540 1,350
Dp 213 13,722 589,549 9,879 1,098 2,745

Dd+t / 13,132 146,152 / / /
Dd+p / 20,106 673,566 / / /
Dt+p / 20,470 651,684 / / /
Dall / 26,854 735,701 / / /

As an evaluation measure, following prior research [17,16,19,5,11] for direct
comparison, we use Accuracy@k as (TP + TN)/(TP + TN + FP + FN), when
a method predicts top-k KC labels. Further, we evaluate our method using the
proposed TEXSTR measure.

4.2 Pre-training and Fine-tuning Details

To further pre-train, we follow the same pre-training process of original BERT
with the same network architecture (12 layers, 768 hidden dimensions, 12 heads,
110M parameters) but on our own unlabeled task-specific texts (see Col. 4 in
Table 1). With an 8-core v3 TPU, we further train all our models with 100k
steps, achieving MLM accuracy of above 97% that lasts about 1-4 hours. We
experiment hyper-parameters such as learning rate (lr) ∈ {1e-5, 2e-5, 4e-5, 5e-
5, 2e-4}, batch size (bs) ∈ {8, 16, 32}, and max-sequence length (max-seq-len)
∈ {128, 256, 512}. The highest MLM accuracy was achieved when lr ← 2e-5, bs
← 32, and max-seq-len ← 128 (for Dd and Dt) and max-seq-len ← 512 with the
same lr and bs (for Dp, Dd+p, Dt+p, Dall).

To fine-tune, we also follow the original BERT script by splitting Dd, Dt,
Dp into 72% for training, 8% for validation and 20% for testing per task. After
experimenting the same hyper-parameter search, we find that the best testing
accuracy is obtained when ep ← 25, lr← 2e-5, bs← 32, and max-seq-len← 128
for Dd, Dt whereas the best testing accuracy for Dp is obtained when ep ← 25,
lr ← 2e-5, bs ← 32, and max-seq-len ← 512. We find that after ep ← 25, it is
difficult to gain significant increase on the testing accuracy. Hence, the optimal
hyper-parameters while task-dependent seem to have very minimal change across
tasks. This finding is consistent with SCIBERT reported [2].

4.3 Result #1: TAPT BERT vs. Other Approaches

Table 2 summarizes the experimental results of six baseline approaches and
TAPT for each task. For baseline methods, we group them into categories (1)
classical ML, (2) prior work (see in Table 2), and (3) BASE BERT. As to classical
ML methods, we select Random Forest, XGBoost, and SVM based method [11].
As to prior research, we select Skip-gram Neural Network [16] and Multi-layer
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Table 2: Accuracy comparison (best and 2nd best accuracy in blue bold and
underlined, respectively, BL† for baseline best, and * for statistical significance
with p-value < 0.001)

Approach Type Algorithm
Dd Dt Dp

Acu@1 Acu@3 Acu@1 Acu@3 Acu@1 Acu@3

Classical ML
SVM [11] 44.87 70.40 48.15 70.30 78.07 87.69
XGBoost 43.07 71.34 45.33 66.15 77.63 87.94

Random Forest 49.26 78.78 49.33 74.37 78.03 88.23

Prior Work
Skip-Gram NN [16] 34.07 34.15 43.00 43.52 76.88 77.06
Sklearn MLP [17] 50.53 74.41 48.22 57.95 80.70 81.13

BERT
BASE 48.30 76.40 50.99 76.55 81.73 90.99
TAPT 50.60 79.29 52.71 78.83 82.43 92.51

Improvement
|TAPT −BL†| 0.07 0.51 1.72 2.28 0.70 1.52
|TAPT −BASE| 2.30∗ 0.51∗ 1.72∗ 2.28∗ 0.70∗ 1.52∗

Perceptron algorithm [17] (prior SOTA). Other prior approaches do not take
texts as input, and thus are not applicable in our setting.

Overall, we see that TAPT models outperform all other methods at both
Acu@1 and Acu@3 across three tasks. Note TAPT models here are simply
trained on the unlabeled texts from Dd, Dt, and Dp. Compared to the best
method in baseline, TAPT has an increase of 0.70%, 1.72%, 0.07% at Acu@1
and 0.51%, 2.28%, 1.52% at Acu@3 across three tasks. Compared to BASE,
TAPT shows an increase of 2.30%, 1.72%, 0.70% at Acu@1 and 0.51%, 2.28%,
1.52% at Acu@3 across three tasks. Acu@1 and Acu@3 from both TAPT and
BASE models are the average performance over five random seeds with sig-
nificant difference (see last row in Table 2). BERT variants such as FinBERT
[15], SCIBERT [2], BioBERT [14] and E-BERT [22] were able to achieve a 1-
4% increase when further trained on much larger domain knowledge corpus (i.e.
2-14 billion tokens). Our corpus although comparatively small with Dd (84,017
tokens), Dt (62,135 tokens), and Dp (589,549 tokens) still result in a decent
improvement of 0.51-2.30%.

4.4 Result #2: Augmented TAPT and TAPT Generalizability

In addition to the simply trained TAPTs (referred as simple TAPT) in Table
2, we augment the pre-training data and form another four TAPTs (TAPTd+t,
TAPTd+p, TAPTt+p and TAPTall). We call them augmented TAPT. Table
3 showcases the differences in Acu@3 between simple and augmented TAPT.
For Dd, augmented TAPTd+p outperforms all simple TAPT models (Acu@3 =
79.56%) and augmented TAPTd+t achieves the second best Acu@3 (79.40%).
For Dt, all the augmented TAPT models only outperform simple TAPTp. For
Dp, augmented TAPTt+p outperforms all simple TAPTs with Acu@3 of 92.64%.
To sum up, augmenting the pre-training data for TAPT seems to help increase
the accuracy further.

Furthermore, we compare the generalizability of TAPT to BASE over differ-
ent datasets. We define the generalizability as task accuracy (specifically Acu@3)
that a model can obtain when applied to a different dataset. Both BASE and
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Table 3: Acu@3: BASE vs. TAPT. (best and 2nd best per row in bold and
underlined, and subscripts indicate outperformance over BASE)

Data BASE
Simple Augmented

TAPTd TAPTt TAPTp TAPTd+t TAPTd+p TAPTt+p TAPTall

Dd 76.40 79.292.89 78.782.38 77.841.44 79.403.00 79.563.16 79.012.61 79.012.61

Dt 76.55 77.851.30 78.832.28 76.30−0.25 77.561.01 77.561.01 77.701.15 77.781.23

Dp 90.99 91.220.23 91.440.45 92.511.52 92.061.07 92.501.51 92.641.65 92.351.36

TAPT are pre-trained models and obtain task accuracy via fine-tuning on a
different task data. The subscripts in Table 3 present the difference in Acu@3
between TAPT and BASE, showcasing who has stronger generalizability (− sign
indicates weak generalizability). For Dd, all simple and augmented TAPT mod-
els generalize better than BASE, especially augmented TAPTs have an average
of about 3% increase. For Dt, all TAPT models have better generalizability than
BASE with over 1% average increase except for TAPTp. For Dp, we also see all
the TAPTs generalize better than BASE model with the augmented TAPTt+p

having the best generalizability.

4.5 Result #3: TEXSTR Based Evaluation

Following the definition of TEXSTR (=Λ) in Section 3.2, we vary the values of
α by {0, 0.5, 1} and generate three variations of Λ for top-3 predictions. We
then decide the percentage of miss-predictions to be reconsidered based on Λ
value by three cut-off thresholds {0.5, 0.75, 0.9}. Before that, we make sure that
the predicted labels are not subsequent to the ground truth, i.e., if the ground
truth is 7.G.A.2, a predicted label such as 8.G.A.3 shall not be reconsidered as
correct because it is the skill to be learned subsequently “after” 7.G.A.2. In such
a case, we exclude predicted labels that have subsequent relations to the ground
truth and calculate Λ.

Table 4 presents the percentage of miss-predictions after removing the subsequent-
relation labels by three Λ thresholds when α ∈ {0, 0.5, 1}. Across three values of
α and datasets, note that 56-73% of miss-predictions could be reconsidered as
correct if Λ > 0.5, 5-53% of them could be reconsidered if Λ > 0.75, and 0-32%
could be reconsidered if Λ > 0.9. The wide percentage range for Λ ∈ {0.75, 0.9}
infers that higher thresholds of Λ are more sensitive to the change of α.

To further ensure the TEXSTR measure to be useful in practice, we conduct
an empirical study where eight experienced K-12 math teachers rate each pair
of top-3 KC labels and the corresponding text (e.g., description, video title, or
problem text) on a scale of 1 to 5. The Fleiss’ kappa value to assess the multi-
rater agreement among eight teachers is 0.436, which is considered as moderate
agreement by Landis et al. [12]. We ensure that none of top-3 miss-predicted
KCs are subsequent to ground truths and have Λ score at least 0.5. Then, we
quantify the relevance (Υ ) score as either Λ score (when α = 0.5) or teachers’
rating of [1,5] range divided by 5 (to be on the same scale as TEXSTR’s [0,1]).
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Table 4: % of miss-predictions recovered by TEXSTR (Λ)

Data # Miss-predictions
Λ > 0.5 Λ > 0.75 Λ > 0.9

α = 0 α = 0.5 α = 1 α = 0 α = 0.5 α = 1 α = 0 α = 0.5 α = 1

Dd 248 70.16 68.95 72.98 52.82 24.19 8.87 32.26 2.42 0.81
Dt 240 58.33 55.83 57.5 37.92 17.08 6.67 17.08 0 1.25
Dp 166 60.84 56.63 58.43 38.55 16.27 5.42 18.67 1.2 1.2

Table 5: % of top-3 predictions by relevance (Υ ) level when α = 0.5

Υ
Top 1 Top 2 Top 3

Λ Teachers ∆ Λ Teachers ∆ Λ Teachers ∆

> 0.5 100 54.31 -45.69 100 40.95 -59.05 100 21.98 -78.02
> 0.75 37.93 43.53 5.60 20.69 27.16 6.47 6.9 13.79 6.89
> 0.9 3.45 31.03 27.58 0 13.79 13.79 0 9.48 9.48

Table 5 summarizes three varying relevance scores (Υ ∈ {0.5, 0.75, 0.9}) on
the pair of top-3 predictions and the texts. For Top-1 predictions, TEXSTR
considers all of them to have Υ > 0.5 (due to the pre-selection) and 37.93% of
all have Υ > 0.75 and 3.45% have Υ > 0.9. Teachers, on the other hand, think
that only 54.31% of the texts have Υ > 0.5 (↓ 45.69% from Λ) but 43.53% have
Υ > 0.75 (↑ 5.6% from Λ) and 31.03% have Υ > 0.9 (↑ 27.58% from Λ). We
also find a similar pattern for Top-2 and Top-3 predictions where teachers find
6.47-6.89% more cases than TEXSTR that have Υ > 0.75 and 9.48-13.79% more
cases than TEXSTR that have Υ > 0.9. This indicates that TEXSTR is more
conservative than teachers in judging the relevance of KC labels to texts when
Υ ∈ {0.75, 0.9}, suggesting TEXSTR is effective in reassessing miss-predictions
and “recover” them as correct labels in practice.

5 Conclusion

The paper classified 385 math knowledge components from kindergarten to 12th
grade using three data sources (e.g., KC descriptions, video titles, and prob-
lem texts) via the Task-adaptive Pre-trained (TAPT) BERT model. TAPT has
achieved a new SOTA by outperforming six baselines by up to 2% at Acu@1
and up to 2.3% at Acu@3. We also compared TAPT to BASE and found the ac-
curacy of TAPT increased by 0.5-2.3% with a significant p-value. Furthermore,
the paper discovered that TAPT trained on the augmented data by combining
different task-specific texts had better Acu@3 than TAPT simply trained on the
individual datasets. In general, TAPT has better generalizability than BASE by
up to 3% at Acu@3 across different tasks. Finally, the paper proposed a new eval-
uation measure TEXSTR to reassess the predicted KCs by taking into account
semantic and structural similarity. TEXSTR was able to reconsider 56-73% of
miss-predictions as correct for practical use.
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