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Imaging with the Elliptic Radon Transform in Three Dimensions from an
Analytical and Numerical Perspective\ast 
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Abstract. The three-dimensional elliptic Radon transform (eRT) averages distributions over ellipsoids of rev-
olution. It thus serves as a linear model in seismic imaging where one wants to recover the earth's
interior from reflected wave fields. As there is no inversion formula known for the eRT, approxi-
mate formulas have to be used. In this paper we suggest several of those, microlocally analyze their
properties, and provide and implement an adapted algorithm whose performance we test by diverse
numerical experiments. Our previous results of [Inverse Problems, 34 (2018), 014002, 114001] are
thus generalized to three space dimensions.
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1. Introduction. The elliptic Radon transform F serves as a model in seismic imaging
when sources and receivers are offset by a constant vector and linearization has been performed
about a constant background sound speed. One is led to solve the linear equation Fn = y
where y represents preprocessed measurements of the reflected acoustic wave fields and n
represents the high frequency content of the searched-for true speed of sound. As there is no
inversion formula known in this geometric setting, one has to find, study, and implement more
general approximate inversion schemes.

For instance, in Kirchhoff migration, the classical inversion scheme of geophysics, one
applies a kind of convolution operator K followed by a dual transform (generalized backpro-
jection) F \sharp to the data to obtain F \sharp Ky. Instead of n we thus recover F \sharp KFn. The imaging
operator F \sharp KF is the sum of a low pass filter (partial identity) and a smoothing operator; see
[3]. Consequently, some of the features of n are indeed visible in F \sharp KFn.

Another approach consists of applying F \ast , the formal L2-adjoint (backprojection), yielding
the normal operator F \ast \psi F as imaging operator (\psi is a smooth cutoff function needed for
technical reasons; see start of section 3 below). Imaging properties of F \ast \psi F in different
settings have been analyzed by many authors including [7, 8, 19, 23, 25].
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IMAGING WITH THE ELLIPTIC RADON TRANSFORM IN 3D 2251

In our two previous papers [11, 12] (see also [22]) we have contributed to this research
twofold. First, we have augmented the normal operator by a properly supported pseudodiffer-
ential operator K of positive order so that KF \ast \psi F enhances features (discontinuities) of n.
In contrast, the abovementioned two examples deliver rather smooth versions of n. Further,
we have microlocally analyzed these operators in two spatial dimensions to understand how
they map singularities. Using this knowledge, we have been able to construct K with useful
imaging properties. Second, also in two spatial dimensions, we have developed and imple-
mented a corresponding regularization scheme based on the approximate inverse [16]. The
present paper extends our two-dimensional results to three space dimensions. By no means
is this generalization trivial: the microlocal analysis is more involved and the implementation
of the numerical scheme poses additional challenges.

Our material is organized as follows. In the next section we briefly recall how the seismic
model with the elliptic Radon transform is obtained by linearizing the acoustic wave equation.
Then, we introduce our first imaging operator in section 3 and analyze it microlocally, which
leads us to define new operators with improved imaging properties. To give a somewhat
self-contained presentation, we provide basic concepts from microlocal analysis. Section 4 is
devoted to our numerical scheme where implementation issues are discussed in some detail.
Finally, we report and comment on numerical experiments not only to illustrate our microlocal
predictions (section 5.1) but also to test the robustness of the numerical scheme with respect
to noise in the offset and modeling error (section 5.2). Moreover, we discuss the formation
of artifacts appearing in the reconstructions. A sound microlocal explanation remains to be
given, though, in future research.

2. The forward operator. A well-established method to investigate the subsurface of the
earth is to generate pressure waves on the surface and measure their returning reflections.
For simplification we assume that no shear waves occur and that the earth has constant
mass density. Then, wave propagation with sound speed \nu is described by the acoustic wave
equation

1

\nu 2(x)
\partial 2t u(t, x;x\mathrm{s}) - \Delta u(t, x;x\mathrm{s}) = \delta (x - x\mathrm{s})\delta (t)(2.1)

for time t \geq 0 at location x \in R3 with source location x\mathrm{s}. We augment (2.1) with vanishing
initial conditions

u(0, \cdot ;x\mathrm{s}) = \partial tu(0, \cdot ;x\mathrm{s}) = 0(2.2)

(interpreted in a distributional sense) since the environment is at rest before the wave is
excited. The task is to reconstruct the speed of sound \nu from the backscattered field u(t,x\mathrm{r};x\mathrm{s})
observed at a receiver point x\mathrm{r} for (t,x\mathrm{r};x\mathrm{s}) \in [0, T\mathrm{m}\mathrm{a}\mathrm{x}]\times \scrR \times \scrS , where T\mathrm{m}\mathrm{a}\mathrm{x} is the recording
time and \scrR and \scrS are the sets of receiver and source positions, respectively.

We consider the common offset scanning geometry where the distance of source to receiver
is a constant vector. This geometry is realized by

x\mathrm{s} = x\mathrm{s}(s) = (s1, s2  - \alpha , 0)\top and x\mathrm{r} = x\mathrm{r}(s) = (s1, s2 + \alpha , 0)\top D
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2252 GRATHWOHL, KUNSTMANN, QUINTO, AND RIEDER

for a fixed offset \alpha \geq 0 and (s1, s2) \in S0 \subseteq R2, where S0 is a nonempty open, bounded, and
connected subset of R2.

To solve the inverse problem, we make the classical ansatz

1

\nu 2(x)
=

1 + n(x)

c2

for x \in R3 with a constant and a priori known background velocity c, say, c = 1, and a function
n being compactly supported in R3

+ := \{ x \in R3 | x3 > 0\} (the x3-axis points downward). In
doing so we are seeking n instead of \nu . Physically the quantity n can be interpreted as a kind
of reflectivity, which captures the high frequency variations of \nu ; see [4, sect. 3.2.1].

The solution \widetilde u of (2.1) and (2.2) for \nu = c = 1 is our reference solution:

\partial 2t \widetilde u(t, x;x\mathrm{s}(s)) - \Delta \widetilde u(t, x;x\mathrm{s}(s)) = \delta (x - x\mathrm{s}(s))\delta (t).(2.3)

We follow the lines of [6] and [26] to derive a linear equation for n. For further details see [10]
and [12].

By the Born approximation we derive the following representation of u - \widetilde u:

(u - \widetilde u)(t,x\mathrm{r}(s);x\mathrm{s}(s))(2.4)

=  - \partial 2t
\int 

R3
+

a\bfx \mathrm{s}(s)(x)a\bfx \mathrm{r}(s)(x)n(x)\delta (t - \tau \bfx \mathrm{s}(s)(x) - \tau \bfx \mathrm{r}(s)(x)) dx

with

ay(x) =
1

4\pi | x - y| and \tau y(x) = | x - y| .

Using the abbreviations

A(s, x) : = 16\pi 2a\bfx \mathrm{s}(s)(x)a\bfx \mathrm{r}(s)(x) =
1

| x\mathrm{s}(s) - x| | x - x\mathrm{r}(s)| 
and

\varphi (s, x) : = \tau \bfx \mathrm{s}(s)(x) + \tau \bfx \mathrm{r}(s)(x) = | x\mathrm{s}(s) - x| + | x - x\mathrm{r}(s)| ,

we define the operator

Fn(s, t) :=

\int 

R3
+

n(x)A(s, x)\delta (t - \varphi (s, x)) dx, (s, t) \in S0 \times (2\alpha ,\infty ).

Next, we integrate (2.4) two times with respect to t to get

Fn(s, t) = y(s, t)

with right-hand side

y(s, t) =  - 16\pi 2
\int t

0
(t - r)(u - \widetilde u)(r,x\mathrm{r}(s);x\mathrm{s}(s)) dr,(2.5)

which is known from the measurements and from the reference solution (2.3).D
ow

nl
oa

de
d 

12
/1

7/
20

 to
 1

30
.6

4.
11

.1
61

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IMAGING WITH THE ELLIPTIC RADON TRANSFORM IN 3D 2253

Note that F is a generalized Radon transform which integrates over open half ellipsoids

E(s, t) =
\bigl\{ 
x \in R3

+ | \varphi (s, x) = t
\bigr\} 
=
\bigl\{ 
x \in R3

+ | | x\mathrm{s}(s) - x| + | x - x\mathrm{r}(s)| = t
\bigr\} 
.

We refer to [21, Def. 2.1] for the definition of generalized Radon transforms. More details are
given in [10, sect. 3.1]. Moreover, F is a Fourier integral operator (see [14] for the definition),
which can be written as

Ff(s, t) =

\int 

R3
+

f(x)\delta (t - \varphi (s, x))A(s, x) dx(2.6)

=
1

2\pi 

\int 

R

\int 

R3
+

f(x)A(s, x)e\mathrm{i}\omega (t - \varphi (s,x)) dx d\omega 

for f \in C\infty 
c (R3

+). The functions (s, t, x, \omega ) \mapsto \rightarrow 1
2\pi A(s, x) for (s, t, x, \omega ) \in S0\times (2\alpha ,\infty )\times R3

+\times R
and (s, t, x, \omega ) \mapsto \rightarrow \omega (t - \varphi (s, x)) are the symbol and the phase of F , respectively.

3. Imaging. To the best of our knowledge there is no formula known to reconstruct n
directly from the elliptic means g = Fn in case \alpha > 0. Therefore, we define the imaging
operator

\Lambda :=  - \Delta \partial 3F
\ast \psi F,(3.1)

which was introduced in [22] for \alpha = 0 based on an inversion formula of [1]. So, instead of n we
are able to reconstruct at least \Lambda n from g. Here, \Delta is the Laplace operator, \partial 3 the derivative
in third space direction (downward), and \psi is a function in C\infty 

c (S0 \times (2\alpha ,\infty )). Further, F \ast 

is dual to F and given by

F \ast g(x) =
\int 

S0\times (2\alpha ,\infty )
g(s, t)\delta (t - \varphi (s, x))A(s, x) d(s, t)(3.2)

=
1

2\pi 

\int 

R

\int 

S0\times (2\alpha ,\infty )
g(s, t)A(s, x)e\mathrm{i}\omega (t - \varphi (s,x)) d(s, t) d\omega 

for g \in C\infty 
c (S0\times (2\alpha ,\infty )) and x \in R3

+. The cutoff function \psi is needed to have a well-defined
composition of F \ast with F as F : \scrE \prime (R3

+) \rightarrow \scrD \prime (S0 \times (2\alpha ,\infty )) and F \ast : \scrE \prime (S0 \times (2\alpha ,\infty )) \rightarrow 
\scrD \prime (R3

+). Our \Lambda is a special case of imaging operators investigated in [12]. Moreover, it is
a pseudodifferential operator of order 1 [12, Thm. 3.3], which makes it useful for imaging
purposes as we explain in the following section.

3.1. Pseudodifferential operators and microlocal analysis. Our theoretical results are
based on the theory of pseudodifferential operators and their microlocal properties. The
following basic concepts can be found in many textbooks; we refer, e.g., to [20].

Definition 3.1 (pseudodifferential symbol). Let d \in N and X \subseteq Rd be open. A symbol of
order m \in R is a function p = p(x, \xi ) \in C\infty (X \times Rd) satisfying, for every compact set K \subseteq X
and for each pair of multi-indices \alpha , \beta there exists a constant C = C(K, \alpha , \beta ) such that, for
all x \in K and all \xi \in Rd,D
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2254 GRATHWOHL, KUNSTMANN, QUINTO, AND RIEDER

\bigm| \bigm| \bigm| D\alpha 
\xi D

\beta 
xp(x, \xi )

\bigm| \bigm| \bigm| \leq C(1 + | \xi | )m - | \alpha | .

The set of symbols of order m on X is denoted by Sm(X).
A symbol p \in Sm(X) is microlocally elliptic of order m at (x0, \xi 0) \in X \times Rd\setminus \{ 0\} if there

are an open neighborhood U of x0 in X, a conic neighborhood V of \xi 0 in Rd\setminus \{ 0\} , and constants
M > 0 and C > 0 such that

| p(x, \xi )| \geq C(1 + | \xi | )m

for all x \in U and all \xi \in V with | \xi | \geq M .

Note that Sm(X) is the standard symbol class of H\"ormander [14, Def. 1.1.1].

Definition 3.2 (pseudodifferential operator). Let X \subseteq Rd be open and m \in R. Then, the
linear operator P : \scrD (X) \rightarrow \scrE (X) is a pseudodifferential operator of order m if there is a
pseudodifferential symbol p of order m such that for all f \in \scrD (X),

Pf(y) =

\int 

Rd

\int 

X
e\mathrm{i}(y - x)\cdot \xi p(x, \xi )f(x) dx d\xi .

The function p is called the full symbol of the operator P . The principal symbol \sigma (P ) of P
is the equivalence class of p in the quotient space Sm(X)/Sm - 1(X).

The operator P is microlocally elliptic if its symbol is microlocally elliptic.

Please note that the integral defining P in the above definition exists as an oscillatory
integral and represents a distribution in general [14, Chap. I]. Further, any pseudodifferential
operator can be extended as an operator mapping \scrE \prime (X) continuously into \scrD \prime (X). We tacitly
rely on this extension throughout the paper.

Definition 3.3. A function f : Rd \rightarrow C is rapidly decaying at infinity on the cone V \subseteq Rd

if for every N \in N there is a constant C = C(N) > 0 such that

| f(\xi )| \leq C(1 + | \xi | ) - N

for all \xi \in V .

Definition 3.4. Let \Omega \subseteq Rd be open. A distribution u \in \scrD \prime (\Omega ) is microlocally C\infty at
(x0, \xi 0) \in \Omega \times Rd\setminus \{ 0\} if for some \phi \in C\infty 

c (\Omega ) with \phi (x0) \not = 0 and some conic neighborhood V

of \xi 0 in Rd\setminus \{ 0\} , the Fourier transform \widehat \phi u is rapidly decaying on V .

As an image carries most of its information content at singularities, we are interested in
characterizing their location and direction. Those are collected in the wave front set of a
distribution u:

WF(u) = \{ (x, \xi ) \in \Omega \times Rd \setminus \{ 0\} | u is not microlocally C\infty at (x, \xi )\} .(3.3)

Theorem 3.5 (pseudolocal property). Let u \in \scrE \prime (\Omega ). If P is a pseudodifferential operator,
it holds that

WF(Pu) \subseteq WF(u).D
ow
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IMAGING WITH THE ELLIPTIC RADON TRANSFORM IN 3D 2255

If P is microlocally elliptic at (x0, \xi 0) \in \Omega \times Rd, then

(x0, \xi 0) \in WF(u) if and only if (x0, \xi 0) \in WF(Pu).

If P is microlocally elliptic at every (x, \xi ) \in \Omega \times Rd, then we even have

WF(Pu) = WF(u).

Next, we refine the concept of wave front sets of a distribution by a microlocalization of
Hs in lieu of C\infty . A distribution u \in \scrD \prime (\Omega ) is microlocally Hr at (x0, \xi 0) \in \Omega \times Rd\setminus \{ 0\} if for
some neighborhood U of x0 in \Omega and some conic neighborhood V of \xi 0 in Rd\setminus \{ 0\} we have

\int 

V
| \widehat \phi u(\xi )| 2(1 + | \xi | 2)r d\xi <\infty 

for all \phi \in C\infty 
c (U). Now, for r \in R, the Hr-wave front set of u is

WFr(u) = \{ (x, \xi ) \in \Omega \times Rd \setminus \{ 0\} | u is not microlocally Hr at (x, \xi )\} .

Wave front sets and Hr-wave front sets are connected via WF(u) = cl
\bigl( 
\cup r\in R WFr(u)

\bigr) 
.

Theorem 3.6. Let P be a pseudodifferential operator of order m. If P is microlocally elliptic
at (x0, \xi 0), we have

(x0, \xi 0) \in WFr(u) if and only if (x0, \xi 0) \in WFr - m(Pu)

for u \in \scrE \prime (\Omega ) and r \in R.

We now provide a classification of operators' effects on singularities.

Definition 3.7. Let \Omega be an open subset of Rd and let P : \scrE \prime (\Omega ) \rightarrow \scrD \prime (\Omega ) be continuous and
linear.

Let u \in \scrE \prime (\Omega ) and (x, \xi ) \in WF(u). Then, (x, \xi ) is a visible singularity of u with respect to
P (visible singularity) if (x, \xi ) \in WF(Pu). On the other hand, (x, \xi ) is an invisible singularity
of u with respect to P (invisible singularity) if (x, \xi ) /\in WF(Pu).

If (y, \eta ) \in Rd \times Rd \setminus \{ 0\} , then (y, \eta ) is a (nonsmooth) artifact in Pu if (y, \eta ) \in WF(Pu)
but (y, \eta ) /\in WF(u).

Let P be a pseudodifferential operator. By Theorem 3.5, P generates no artifacts and, if
P is microlocally elliptic at any pair in \Omega \times Rd, then all singularities are visible.

This description of singularities and artifacts is well-defined theoretically but there can be
issues applying it in practice. For example, visible singularities might be in WF(Pu) but the
values of the reconstruction at the singularity could be so close to those in the surrounding
area that they are effectively not visible in the reconstruction Pu.

In practice, regularization can smooth reconstructions, so nonsmooth artifacts can be
smoothed; that is, they are C\infty . Nevertheless, they can still appear as visual artifacts (e.g.,
additional streaks) in the reconstruction.D
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3.2. The symbols of \bfitF \ast \bfitpsi \bfitF and \Lambda . To determine the top order symbol of \Lambda , we inves-
tigate the normal operator

(F \ast \psi Fn)(x)(3.4)

=
1

2\pi 

\int 

R3
+

\int 

R

\int 

R2

\psi (s, \varphi (s, x))A(s, x)A(s, y)n(y)e\mathrm{i}\omega (\varphi (s,x) - \varphi (s,y)) ds d\omega dy

for n \in C\infty 
c (R3

+) and x \in R3
+.

Theorem 3.8. The wave front set WF(F \ast \psi Fu) satisfies

WF(F \ast \psi Fu) \subseteq \{ (x, \xi ;x, \xi ) \in (R3
+ \times R3 \setminus \{ 0\} )\times (R3

+ \times R3 \setminus \{ 0\} ) | 
there exists s \in S0 and \omega \not = 0 such that \xi = \omega \nabla x\varphi (s, x)\} \circ WF(u)

for u \in \scrE \prime (R3
+). Here, the operation \circ denotes the usual composition of general relations.

One proves Theorem 3.8 analogously to Theorem 4 of [15]. A detailed proof can be found
in [10, Thm. 3.15].

In [12, Thm. 3.5] we proved explicit representations of the top order symbol for a class
of operators that includes \Lambda , and thus Theorem 3.9 below is a special case. However, the
proof is rather technical and requires deep knowledge of measure theory and differential ge-
ometry. Here, we lay out a different path, which is confined to the theory of pseudodifferential
operators. We adapt and extend ideas of [2].

For technical reasons we need to modify F \ast \psi F as well as \Lambda : for \delta > 0 define \zeta \delta \in 
C\infty (R3

+,R) by

\zeta \delta (y) = 1 if y3 \geq 2\delta and \zeta \delta (y) = 0 if y3 < \delta .

Then, we set

F \ast \psi F\delta := F \ast \psi F\zeta \delta and \Lambda \delta := \Lambda \zeta \delta =  - \Delta \partial 3F
\ast \psi F\delta .

In view of (3.4) we have

(F \ast \psi F\delta n)(x)(3.5)

=
1

2\pi 

\int 

R3
+

\int 

R

\int 

R2

\psi (s, \varphi (s, x))A(s, x)A(s, y)\zeta \delta (y)n(y)e
\mathrm{i}\omega (\varphi (s,x) - \varphi (s,y)) ds d\omega dy.

Since n is compactly supported in R3
+, we have \Lambda \delta n = \Lambda n for \delta sufficiently small. Of course,

the size of \delta depends on n.
We are now ready to present the top order symbol \Lambda \delta .

Theorem 3.9. The operator \Lambda \delta is a sum of a pseudodifferential operator and a smoothing
operator.1

1A smoothing operator maps all compactly supported distributions to C\infty functions. For the study of
singularities, those operators can be neglected.D
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IMAGING WITH THE ELLIPTIC RADON TRANSFORM IN 3D 2257

Let (x, \xi ) \in R3
+ \times R3 with \xi 3 \not = 0. If there exist s \in S0 and \omega \in R\setminus \{ 0\} such that

\xi = \omega \nabla x\varphi (s, x), then

\sigma (\Lambda \delta )(x, \xi ) = (2\pi )5i\xi 3| \xi | 2
\psi (s(x, \xi ), \varphi (s(x, \xi ), x))A(s(x, \xi ), x)2\zeta \delta (x)

| \omega (x, \xi )| 2| B(s(x, \xi ), x)| .(3.6)

Here,

B(s(x, \xi ), x) = det

\left( 
 

[\nabla x\varphi ](s(x, \xi ), x)
\top 

[\partial s1\nabla x\varphi ](s(x, \xi ), x)
\top 

[\partial s2\nabla x\varphi ](s(x, \xi ), x)
\top 

\right) 
 ,(3.7)

\omega (x, \xi ) =
\xi 3| x\mathrm{s}(s(x, \xi )) - x| | x - x\mathrm{r}(s(x, \xi ))| 

x3(| x\mathrm{s}(s(x, \xi )) - x| + | x - x\mathrm{r}(s(x, \xi ))| )
,(3.8)

and

s1(x, \xi ) = x1  - 
\xi 1
\xi 3
x3,

s2(x, \xi ) =

\left\{ 
  
  
x2  - 1

2
\xi 3
\xi 2

\Biggl( \Bigl( 
\xi 22 - \xi 21
\xi 23

 - 1
\Bigr) 
x3 +

\sqrt{} 
x23

\Bigl( 
\xi 21+\xi 22
\xi 23

+ 1
\Bigr) 2

+ 4\alpha 2 \xi 
2
2

\xi 23

\Biggr) 
for \xi 2 \not = 0,

x2 for \xi 2 = 0.

If there is no s \in S0 satisfying \xi = \omega \nabla x\varphi (s, x) for some \omega \in R\setminus \{ 0\} , we have \sigma (\Lambda \delta ) = 0.
Moreover, for (x, \xi ) \in R3

+ \times R3 \setminus \{ 0\} with \xi 3 = 0 the top order symbol \sigma (\Lambda \delta ) vanishes as well.

Proof. We only sketch the main steps and refer to [10, Thm. 3.21] for the full proof.
First, we apply the transformation \widetilde s = s\omega to the integral in (3.5). So, we obtain a

representation of F \ast \psi F\delta as a Fourier integral operator depending on x, y, and the phase
variable (\widetilde s, \omega ). Next, we employ the fact that an operator is smoothing if it vanishes in
a conic neighborhood of a certain set (see [24, Prop. 2.1b]). In case of F \ast \psi F\delta this set is
characterized by the diagonal x = y. Therefore, for an \varepsilon > 0 we introduce the cutoff function
\widehat \zeta \varepsilon \in C\infty (R3

+ \times R3
+,R) with 0 \leq \widehat \zeta \varepsilon \leq 1,

\widehat \zeta \varepsilon (x, y) = 1 if | x - y| < \varepsilon and \widehat \zeta \varepsilon (x, y) = 0 if | x - y| > 2\varepsilon .

Using this function, we split F \ast \psi F\delta into a sum of a smoothing operator and an operator
which, by [24, Thm. 19.2], turns out to be a pseudodifferential operator if \varepsilon is sufficiently
small. Then, we perform the transformation \xi = \omega \nabla x\varphi (\widetilde s, \omega , x), expand the phase function in
a Taylor polynomial about x, and introduce several different smooth cutoff functions to show
the required assumptions. Finally, we apply expansion (2.1.4) of [14].

3.3. Microlocal properties. To understand how our imaging operator \Lambda maps, empha-
sizes, or deemphasizes singularities, we now analyze its top order symbol.

We introduce the ratios

p := p(\xi ) =
\xi 1
\xi 3

and q := q(\xi ) =
\xi 2
\xi 3D
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2258 GRATHWOHL, KUNSTMANN, QUINTO, AND RIEDER

for \xi \in R3 with \xi 3 \not = 0 and rewrite \sigma (\Lambda \delta ) in terms of x, \xi 3, p, and q. We find that

\biggl\{ 
(p, q) \in R2 | \exists \xi \in R3, \xi 3 \not = 0, p =

\xi 1
\xi 3
, q =

\xi 2
\xi 3

\biggr\} 
= R2.

Hence, we consider (p, q) \in R2 in the following. By Theorem 3.9 we get s(p, q, x) = (s1(p, q, x),
s2(p, q, x)) with

s1(p, q, x) = x1  - px3 and s2(p, q, x) = x2  - x3Q

\biggl( 
p, q,

\alpha 

x3

\biggr) 

for (p, q) \in R2 and x \in R3
+ where

Q(p, q, \lambda ) :=

\Biggl\{ 
1
2q

\Bigl( 
q2  - p2  - 1 +

\sqrt{} 
(p2 + q2 + 1)2 + 4\lambda 2q2

\Bigr) 
for q \not = 0,

0 for q = 0,

for (p, q) \in R2 and \lambda > 0. Note that s2 is smooth on its domain of definition [10, Rem. 3.13].
Further,

D+ := D+(p, q, x) := | x - x\mathrm{s}(s(p, q, x))| = x3

\sqrt{} \biggl( 
Q

\biggl( 
p, q,

\alpha 

x3

\biggr) 
+
\alpha 

x3

\biggr) 2

+ p2 + 1

and analogously

D - := D - (p, q, x) = x3

\sqrt{} \biggl( 
Q

\biggl( 
p, q,

\alpha 

x3

\biggr) 
 - \alpha 

x3

\biggr) 2

+ p2 + 1.

With these abbreviations we have

A(p, q, x) := A(s(p, q, x), x) =
1

D+(p, q, x)

1

D - (p, q, x)

and

\psi (p, q, x) := \psi (s(p, q, x), \varphi (s(p, q, x), x)) = D+(p, q, x) +D - (p, q, x).

By (3.8),

\omega (p, q, x, \xi 3) =
\xi 3
x3

D+(p, q, x) +D - (p, q, x)
D+(p, q, x)D - (p, q, x)

.

From (3.7) we obtain

B(s, x) = x3

\Biggl( 
1

| x\mathrm{s}(s) - x| +
1

| x - x\mathrm{r}(s)| 

\Biggr) \Biggl( 
1

| x\mathrm{s}(s) - x| 2 +
1

| x - x\mathrm{r}(s)| 2

\Biggr) 

\Biggl( 
1 +

x - x\mathrm{s}(s)

| x\mathrm{s}(s) - x| \cdot 
x - x\mathrm{r}(s)

| x - x\mathrm{r}(s)| 

\Biggr) 
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IMAGING WITH THE ELLIPTIC RADON TRANSFORM IN 3D 2259

yielding

B(p, q, x) = x3

\Biggl( 
1

D+(p, q, x)
+

1

D - (p, q, x)

\Biggr) \Biggl( 
1

D2
+(p, q, x)

+
1

D2
 - (p, q, x)

\Biggr) 

\left( 
  1 +

\Bigl( 
px3, x3Q

\Bigl( 
p, q, \alpha 

x3

\Bigr) 
+ \alpha , x3

\Bigr) \top 

D+(p, q, x)
\cdot 

\Bigl( 
px3, x3Q

\Bigl( 
p, q, \alpha 

x3

\Bigr) 
 - \alpha , x3

\Bigr) \top 

D - (p, q, x)

\right) 
  .

In our numerical examples of section 5 below we will only consider functions n with supports
a fixed distance away from the surface. This condition is also satisfied in geophysical appli-
cations. As a consequence, we need not and we do not distinguish any longer between the
operators \Lambda and \Lambda \delta .

Proposition 3.10. Let (y, \eta ) \in R3
+ \times R3\setminus \{ 0\} and define

C(y) :=
\bigl\{ 
\xi \in R3 | \xi 3 \not = 0, \psi (s(y, \xi ), \varphi (s(y, \xi ), y)) > 0

\bigr\} 
.

If \eta \in C(y), then \Lambda is microlocally elliptic of order 1 at (y, \eta ).
Further, \Lambda is smoothing at (x, \xi ) \in R3

+ \times R3 \setminus \{ 0\} with \xi /\in C(x).

Proposition 3.10 can be used to determine visible and invisible singularities with respect
to \Lambda . Let u \in \scrE \prime (Rd

+) with (y, \eta ) \in WF(u). If \eta \in C(y), then (y, \eta ) is a visible singularity

of u with respect to \Lambda , and if \eta /\in C(x), then (y, \eta ) will be an invisible singularity of u with
respect to \Lambda .

Proof of Proposition 3.10. Let \eta \in C(y). We define m := \eta 1/\eta 3 and n := \eta 2/\eta 3, which is
possible as \eta 3 is nonzero. Further, the cutoff function \psi in the definition of the set C(y) is
continuous. Thus, there exist \delta > 0 and r > 0 such that we have

Br(y) \subseteq R3
+ and \psi (p, q, x) > 0

for p \in B\delta (m), q \in B\delta (n), and x \in Br(y).
In case of \eta 3 > 0, we define

V\delta (\eta ) :=
\Bigl\{ 
(\lambda m, \lambda n, \lambda )\top \in R3 | m - \delta \leq m \leq m+ \delta , n - \delta \leq n \leq n+ \delta , \lambda \geq 0

\Bigr\} 
,

and for \eta 3 < 0 we consider

V\delta (\eta ) :=
\Bigl\{ 
( - \lambda m, - \lambda n, - \lambda )\top \in R3 | m - \delta \leq m \leq m+ \delta , n - \delta \leq n \leq n+ \delta , \lambda \geq 0

\Bigr\} 
.

In both cases, V\delta (\eta ) is a conic neighborhood of \eta .
In the beginning of this section we have seen that nearly all terms of the symbol depend

solely on the two ratios p and q. Hence, we introduce the set

M :=

\biggl\{ 
(p, q, x) \in R\times R\times R3

+ | 

there exists \xi \in V\delta (\eta )\setminus \{ 0\} , p = \xi 1/\xi 3, q = \xi 2/\xi 3 and x \in Br(y)

\biggr\} 

=
\Bigl\{ 
(p, q, x) \in R\times R\times R3

+ | m - \delta \leq p \leq m+ \delta , n - \delta \leq q \leq n+ \delta , and x \in Br(y)
\Bigr\} 
,

which is obviously closed and bounded and thus a compact subset of R5.
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2260 GRATHWOHL, KUNSTMANN, QUINTO, AND RIEDER

According to Theorem 3.9 we have

\sigma (F \ast \psi F ) =
(2\pi )5(D+(p, q, x) +D - (p, q, x))2\psi (s(p, q, x), \varphi (s(p, q, x), x))x23

D+(p, q, x)4D - (p, q, x)4| B(p, q, x)| 
1

\xi 23

for (p, q, x) \in M and \xi 3 such that \xi \in V\delta (\eta )\setminus \{ 0\} holds. The map

G : M \ni (p, q, x) \mapsto \rightarrow 
\bigm| \bigm| \bigm| \bigm| 
(2\pi )5(D+(p, q, x) +D - (p, q, x))2\psi (s(p, q, x), \varphi (s(p, q, x), x))x23

D+(p, q, x)4D - (p, q, x)4| B(p, q, x)| 

\bigm| \bigm| \bigm| \bigm| 

is continuous and attains its positive minimum on M :

NV\delta (\eta ),r := min
(p,q,x)\in M

G(p, q, x) > 0.

Thus,

| \sigma (F \ast \psi F )(x, \xi )| = | \sigma (F \ast \psi F )(p, q, x, \xi 3)| \geq NV\delta (\eta ),r
1

\xi 23

and accordingly

| \sigma (\Lambda )(x, \xi )| = | \sigma ( - \Delta \partial 3F
\ast \psi F )(x, \xi )| \geq NV\delta (\eta ),r

| \xi | 

for x \in Br(y) and \xi \in V\delta (\eta )\setminus \{ 0\} . Finally,

| \sigma (\Lambda )(x, \xi )| \geq 1

2
NV\delta (\eta ),r(1 + | \xi | ) = C\delta ,\eta ,r(1 + | \xi | )

with C\delta ,\eta ,r := 1
2NV\delta (\eta ),r for x \in Br(y) and \xi \in V\delta (\eta ) with | \xi | \geq 1. Hence, \Lambda is microlocally

elliptic of order 1 at (y, \eta ).
The second statement can be validated using Remark 3.3 of [22].

3.4. Modification of the reconstruction operator. Recall that we identify both \Lambda and
\Lambda \delta . The following two results are immediate corollaries of Theorem 3.9.

Corollary 3.11. For zero offset, \alpha = 0, we have that

\sigma (\Lambda )(x, \xi ) =
16\pi 5\xi 3| \xi 3| \psi 

\Bigl( 
x1  - \xi 1

\xi 3
x3, x2  - \xi 2

\xi 3
x3, 2| \xi | x3

\xi 3

\Bigr) 

x23| \xi | 

for x \in R3
+ and \xi \in R3\setminus \{ 0\} with \xi 3 \not = 0. Further, \sigma (\Lambda )(x, \xi ) = 0 for x \in R3

+ and \xi \in R3\setminus \{ 0\} 
with \xi 3 = 0.

Proof. This follows in a straightforward way by evaluating the right-hand side of (3.6) for
\alpha = 0.

Remark 3.12. In this remark we comment on the effect of C(x) on the recoverable part
of the wave front set in case \alpha = 0. Assume that \psi is positive on S0 \times (t - , t+) where
S0 = (a1, b1)\times (a2, b2), a1 < b1, a2 < b2, and 0 < t - < t+. Then, \xi \in C(x) if and only if

xi  - bi
x3

\leq \xi i
\xi 3

\leq xi  - ai
x3

, i \in \{ 1, 2\} ; t - 
2x3

\leq 
\sqrt{} 
\xi 21
\xi 23

+
\xi 22
\xi 23

+ 1 \leq t+
2x3
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IMAGING WITH THE ELLIPTIC RADON TRANSFORM IN 3D 2261

With increasing depth only elements (x, \xi ) of the wave front set can be recovered with dom-
inant vertical directions \xi 3. Also its horizontal position (x1, x2) (relative to S0) affects the
recovery of (x, \xi ) as an element of the wave front set: For a fixed depth, if (x1, x2) is far from
S0, then the horizontal components \xi 1 and \xi 2 will need to be dominant (and t+ will need to
be sufficiently large, of course).

Analogous statements hold for \alpha > 0 because the geometry of the ellipsoids that determine
visible singularities are similar to spheres.

Corollary 3.13. Let (x, \xi ) \in R3
+ \times R3 with \xi 3 \not = 0. Then,

\sigma (\Lambda )(x, \xi ) \sim 1

\alpha 2
for \xi 2 \not = 0 and \sigma (\Lambda )(x, \xi ) \sim 1

\alpha 
for \xi 2 = 0

where ``\sim "" denotes asymptotic equality for \alpha \rightarrow \infty .

Proof. First, we start with \xi 2 \not = 0. We separately consider the two cases that \xi 2 and \xi 3
have the same and opposite signs. For each case we obtain limits of \omega , B, and \alpha A as \alpha \rightarrow \infty .
From this we can deduce that \alpha 2\sigma (\Lambda )(x, \xi ) has a limit as well for \alpha \rightarrow \infty . The necessary
calculations are lengthy and tedious; see [10, Cor. 3.29] for full details.

If \xi 2 = 0, then a direct calculation yields

\sigma (\Lambda )(x, \xi ) =
16\pi 5| \xi | \psi 

\Bigl( 
x1  - \xi 1

\xi 3
, x2, \varphi 

\Bigl( 
x1  - \xi 1

\xi 3
, x2, x

\Bigr) \Bigr) 

x23\xi 3

\sqrt{} 
\alpha 2

x2
3
+

\xi 21
\xi 23

+ 1
\Bigl( 
\xi 21
\xi 23

+ 1
\Bigr) ,

which behaves like 1/\alpha .

Hence, the ellipticity of \Lambda deteriorates for large \alpha 2/x3 and for large x3/\alpha .
Based on the observations of the last two corollaries, we modify \Lambda introducing

\Lambda \mathrm{m}\mathrm{o}\mathrm{d},0 :=  - \Delta \partial 3MF \ast \psi F,(3.9)

\Lambda \mathrm{m}\mathrm{o}\mathrm{d},i :=  - \Delta \partial 3(M + \alpha i Id)F \ast \psi F for i \in \{ 1, 2\} ,(3.10)

where M is the multiplication operator by x23. Their top order symbols are

\sigma (\Lambda \mathrm{m}\mathrm{o}\mathrm{d},0)(x, \xi ) = x23 \sigma (\Lambda )(x, \xi ), \sigma (\Lambda \mathrm{m}\mathrm{o}\mathrm{d},i)(x, \xi ) = (x23 + \alpha i)\sigma (\Lambda )(x, \xi ) for i \in \{ 1, 2\} .

The microlocal ellipticity of the latter two remains unaffected to some extent for large \alpha 2/x3
and large x3/\alpha . Furthermore, Proposition 3.10 holds unchanged for the three new operators.

4. Approximate inverse and reconstruction kernels. Our numerical algorithm to com-
pute \Lambda n from the data y given in (2.5) is based on the regularization scheme of approximate
inverse [16] because the structure of \Lambda and its modifications fit perfectly. Instead of \Lambda n we
will recover a smoothed version \Lambda n  \star e where e is a mollifier, that is, a smooth approximation
of the Dirac distribution.

We work with the following family of mollifiers [11]: For p \in R3
+ and \gamma , k > 0 let

ep,\gamma ,k(x) = C\gamma ,k

\Biggl\{ \bigl( 
\gamma 2  - | x - p| 2

\bigr) k
, | x - p| < \gamma ,

0, | x - p| \geq \gamma ,
x \in R3

+,
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2262 GRATHWOHL, KUNSTMANN, QUINTO, AND RIEDER

with the normalization constant

C\gamma ,k =

\Biggl( \int 

B\gamma (p)

\bigl( 
\gamma 2  - | x - p| 2

\bigr) k
dx

\Biggr)  - 1

=
\Gamma (k + 5/2)

\pi 3/2\gamma 2k+3\Gamma (k + 1)
.

The region of integration is B\gamma (p), the ball of radius \gamma about p. We have supp ep,\gamma ,k = B\gamma (p)
and

\int 
R3 ep,\gamma ,k(x) dx = 1. Thus, ep,\gamma ,k \rightarrow \delta ( \cdot  - p) for \gamma \rightarrow 0. Here, the parameter \gamma is a

scaling/regularization parameter and k determines the smoothness of ep,\gamma ,k.
We approximate \Lambda n at p for n \in \scrE \prime (R3

+) now by

L\gamma n(p) := \langle \Lambda n, ep,\gamma ,k\rangle = \langle  - \Delta \partial 3F
\ast \psi Fn, ep,\gamma ,k\rangle = \langle \psi Fn, F\partial 3\Delta ep,\gamma ,k\rangle ,(4.1)

where \langle \cdot , \cdot \rangle denotes the usual extension of the L2 inner product.
Next, we replace Fn by the data y stated in (2.5) and obtain

L\gamma n(p) = \langle \psi y, rp,\gamma ,k\rangle =
\int 

S0\times (2\alpha ,\infty )
\psi (s, t)y(s, t) rp,\gamma ,k(s, t) d(s, t)

with the reconstruction kernel

rp,\gamma ,k := F\partial 3\Delta ep,\gamma ,k,

which is independent of the data and needs to be precomputed. In what follows, let m3 be
the monomial function m3(x) = x3 for x \in R3.

Lemma 4.1. Let \gamma > 0 and k \geq 3. With \widetilde ep,\gamma ,k = ep,\gamma ,k/C\gamma ,k we have

rp,\gamma ,k(s, t) = 4k(k  - 1)C\gamma ,k

\Bigl( 
5F
\bigl( 
m3(\cdot  - p) \widetilde ep,\gamma ,k - 2

\bigr) 

 - 2(k  - 2)F
\bigl( 
m3(\cdot  - p) | \cdot  - p| 2 \widetilde ep,\gamma ,k - 3

\bigr) \Bigr) 
(s, t)

for (s, t) \in S0 \times (2\alpha ,\infty ).

Proof. A straightforward calculation yields first

\Delta \widetilde ep,\gamma ,k(x) =  - 6k
\bigl( 
\gamma 2  - | x - p| 2

\bigr) k - 1
+ 4k(k  - 1)| x - p| 2

\bigl( 
\gamma 2  - | x - p| 2

\bigr) k - 2
\chi B\gamma (p)(x)

and then

\partial 3\Delta \widetilde ep,\gamma ,k(x) =
\Bigl( 
20k(k  - 1)(x3  - p3)

\bigl( 
\gamma 2  - | x - p| 2

\bigr) k - 2

 - 8k(k  - 1)(k  - 2)(x3  - p3)| x - p| 2
\bigl( 
\gamma 2  - | x - p| 2

\bigr) k - 3
\Bigr) 
\chi B\gamma (p)(x).

The assertion follows from ep,\gamma ,k = C\gamma ,k\widetilde ep,\gamma ,k.
Analogously, we define the approximations

L\gamma ,\mathrm{m}\mathrm{o}\mathrm{d},in(p) := \langle \Lambda \mathrm{m}\mathrm{o}\mathrm{d},in, ep,\gamma ,k\rangle = \langle \psi Fn, rp,\gamma ,k,\mathrm{m}\mathrm{o}\mathrm{d},i\rangle for i \in \{ 0, 1, 2\} (4.2)

with the corresponding kernels

rp,\gamma ,k,\mathrm{m}\mathrm{o}\mathrm{d},0 := FM\partial 3\Delta ep,\gamma ,k and rp,\gamma ,k,\mathrm{m}\mathrm{o}\mathrm{d},i := F (M + \alpha i Id)\partial 3\Delta ep,\gamma ,k, i \in \{ 1, 2\} .D
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IMAGING WITH THE ELLIPTIC RADON TRANSFORM IN 3D 2263

Corollary 4.2. Let \gamma > 0, k \geq 3, and \widetilde ep,\gamma ,k be as in Lemma 4.1. Then, for (s, t) \in 
S0 \times (2\alpha ,\infty ),

rp,\gamma ,k,\mathrm{m}\mathrm{o}\mathrm{d},0(s, t) = 4k(k  - 1)C\gamma ,k

\Bigl( 
5F
\bigl( 
m3(\cdot  - p)m2

3 \widetilde ep,\gamma ,k - 2

\bigr) 

 - 2(k  - 2)F
\bigl( 
m3(\cdot  - p)m2

3 | \cdot  - p| 2 \widetilde ep,\gamma ,k - 3

\bigr) \Bigr) 
(s, t)

and
rp,\gamma ,k,\mathrm{m}\mathrm{o}\mathrm{d},i(s, t) = rp,\gamma ,k,\mathrm{m}\mathrm{o}\mathrm{d},0(s, t) + \alpha i rp,\gamma ,k(s, t), i \in \{ 1, 2\} .

4.1. The elliptic Radon transform of a characteristic function supported in a ball. For
the computation of the reconstruction kernels according to the above lemma and corollary we
have to apply F to functions which are supported in a ball Br(P ) for P = (p1, p2, p3) \in R3

+

and 0 < r < p3.
Let n \in L2(R3

+) with supp(n) \subseteq Br(P ). Using the ellipsoids of the Radon transform, this
situation is illustrated in Figure 1, where n vanishes outside the ball Br(P ).

To calculate Fn, we first shift the coordinate system (x1, x2, x3) such that (s1, s2, 0)
\top is

the new origin. Afterward, we rotate the system in such a way that P lies in the x\prime 2 - x\prime 3-plane
in the coordinate system (x\prime 1, x

\prime 
2, x

\prime 
3). This rotation R is given by the following matrix:

R =

\left( 
 

cos(\beta ) 0  - sin(\beta )
0 1 0

sin(\beta ) 0 cos(\beta )

\right) 
 , \beta = arctan((p1  - s1)/p3).

Using the notation s := (s, 0)\top = (s1, s2, 0)
\top , we calculate

Fn(s, t) =

\int 

R3
+

n(x)A(s, x)\delta (t - \varphi (s, x)) dx =

\int 

R3

n(x)A(s, x)\chi Br(P )(x)\delta (t - \varphi (s, x)) dx

=

\int 

R3

n(R - 1x+ s)A((0, 0), x)\chi Br(P \prime )(x)\delta (t - \varphi ((0, 0), x)) dx,

x2

x3

x1

(s1, s2, 0)
>

xs xr

Br(P )

Figure 1. The given situation for several travel times t, respectively. Each travel time t is associated with
one open half ellipsoid for fixed s \in S0.D
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x1

x2

x3

S = (s1, s2, 0)
>

x∗1

x∗3

x′1

x′2 = x∗2

x′3

P

Qβ

β

Figure 2. The shift into the coordinate system (x\ast 1, x
\ast 
2, x

\ast 
3), and afterward, the rotation into the new

coordinate system (x\prime 1, x
\prime 
2, x

\prime 
3) such that (s1, s2, 0)

\top is the origin and P lies in the x\prime 2-x
\prime 
3-plane. Here, the point

Q is given by (0, p\prime 2, 0)
\top .

where

P \prime = (0, p\prime 2, p
\prime 
3) = R(P  - s) =

\left( 
 0, p2  - s2,

p3

cos
\Bigl( 
arctan

\Bigl( 
p1 - s1
p3

\Bigr) \Bigr) 

\right) 
 

\top 

.

The last component p\prime 3 of P \prime is calculated with the help of two trigonometric relations in a
suitable right triangle in the x\prime 2 = p\prime 2-plane; see Figure 2. Next, we introduce the prolate
spheroidal coordinates in R3, which are realized by x = x(s, t, \phi , \theta ) with components

x1 = s1 +

\sqrt{} 
1

4
t2  - \alpha 2 sin(\phi ) cos(\theta ),

x2 = s2 +
1

2
t cos(\phi ),(4.3)

x3 =

\sqrt{} 
1

4
t2  - \alpha 2 sin(\phi ) sin(\theta ),

for t > 2\alpha , \phi \in (0, \pi ), and \theta \in (0, 2\pi ). These coordinates fit to prolate spheroids, i.e., ro-
tational ellipsoids with two half axes having the same length and a longer third one, which
is the rotational axis. Such ellipsoids are just given by t = \varphi (s, x) for x \in R3. The variable
t is the travel time, the angle \theta is the rotational angle, and the foci are (s1, s2  - \alpha , 0)\top and
(s1, s2 + \alpha , 0)\top . The different angles of \theta are arranged concentrically, whereas the angles \phi 
are located in hyperbolic orbits.

Since we consider the situation in the new coordinate system (x\prime 1, x
\prime 
2, x

\prime 
3), we set s1 = s2 = 0

and so the ellipsoids we consider have the two foci (0, - \alpha , 0)\top and (0, \alpha , 0)\top . Hence, we write
x = x(0, t, \phi , \theta ) = x(t, \phi , \theta ) and obtain

Fn(s, t) =
1

2

\int \theta \mathrm{m}\mathrm{a}\mathrm{x}

\theta \mathrm{m}\mathrm{i}\mathrm{n}

\int \phi (\theta )\mathrm{m}\mathrm{a}\mathrm{x}

\phi (\theta )\mathrm{m}\mathrm{i}\mathrm{n}

n(R - 1x(t, \phi , \theta ) + s)\chi Br(P \prime )(x(t, \phi , \theta )) sin(\phi ) d\phi d\theta ,(4.4)
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IMAGING WITH THE ELLIPTIC RADON TRANSFORM IN 3D 2265

where \theta \mathrm{m}\mathrm{i}\mathrm{n} and \theta \mathrm{m}\mathrm{a}\mathrm{x} are defined by

\theta \mathrm{m}\mathrm{i}\mathrm{n} /\mathrm{m}\mathrm{a}\mathrm{x} = \theta \mathrm{m}\mathrm{i}\mathrm{n} /\mathrm{m}\mathrm{a}\mathrm{x}(t) := min /max\{ \theta \in [0, 2\pi ) | x(t, \phi , \theta ) \in Br(P \prime ), \phi \in [0, \pi )\} 

for fixed t \in (2\alpha ,\infty ). Further, \phi (\theta )\mathrm{m}\mathrm{i}\mathrm{n} and \phi (\theta )\mathrm{m}\mathrm{a}\mathrm{x} are given by

\phi (\theta )\mathrm{m}\mathrm{i}\mathrm{n} /\mathrm{m}\mathrm{a}\mathrm{x} = \phi (\theta , t)\mathrm{m}\mathrm{i}\mathrm{n} /\mathrm{m}\mathrm{a}\mathrm{x} := min /max\{ \phi \in [0, \pi ) | x(t, \phi , \theta ) \in Br(P \prime )\} 

for fixed \theta \in (\theta \mathrm{m}\mathrm{i}\mathrm{n}, \theta \mathrm{m}\mathrm{a}\mathrm{x}) and t \in (2\alpha ,\infty ).
Before we go into further details regarding these four angles, we limit the interval (2\alpha ,\infty )

of the travel time t. In the new coordinate system the considered ellipsoids have the two foci
(0, - \alpha , 0)\top and (0, \alpha , 0)\top . As in the original situation illustrated in Figure 1, these ellipsoids
intersect Br(P ) only for travel times t in a bounded interval. The minimal and maximal values
are

T\mathrm{m}\mathrm{i}\mathrm{n} := min
y\in C

\Bigl( 
| (0, - \alpha , 0)\top  - y| + | y  - (0, \alpha , 0)\top | 

\Bigr) 

and

T\mathrm{m}\mathrm{a}\mathrm{x} := max
y\in C

\Bigl( 
| (0, - \alpha , 0)\top  - y| + | y  - (0, \alpha , 0)\top | 

\Bigr) 
,

where C is the circle which is the intersection of the x\prime 2  - x\prime 3-plane with the boundary of the
ball Br(P

\prime ). So, we have Fn(s, t) = 0 for s \in S0 and t \leq T\mathrm{m}\mathrm{i}\mathrm{n} or t \geq T\mathrm{m}\mathrm{a}\mathrm{x}. All further details
can be found in [10, sect. 4.2.4].

Now, we sketch how to obtain the four angles limiting the integrals. In case of \theta \mathrm{m}\mathrm{i}\mathrm{n} and
\theta \mathrm{m}\mathrm{a}\mathrm{x} we consider the plane x2 = p\prime 2. We are thus in a two-dimensional setting, in which \theta \mathrm{m}\mathrm{i}\mathrm{n}

and \theta \mathrm{m}\mathrm{a}\mathrm{x} are the two angles of \theta in prolate spheroidal coordinates enclosing the associated
cross section of the ball Br(P

\prime ). An illustration is given in the left image of Figure 3. For
the calculation of \theta \mathrm{m}\mathrm{i}\mathrm{n} and \theta \mathrm{m}\mathrm{a}\mathrm{x} we determine the angle \vargamma \mathrm{m}\mathrm{a}\mathrm{x} marked in Figure 3 and use the
symmetry with respect to \theta = \pi /2; see [10, sect. 4.2.3] for exhaustive explanations.

x′1 = 0-plane
θ = π

2
P ′

Q

θmin

θmax

ϑmax

x′2

x′3

φ(θ)max

φ(θ)min

φ = π

φ = 0

φ = π
2

r

r

P ′
Q

Figure 3. Left: An illustration of \theta \mathrm{m}\mathrm{i}\mathrm{n} and \theta \mathrm{m}\mathrm{a}\mathrm{x} in the x\prime 2 = p\prime 2-plane. Right: The angles \phi (\theta )\mathrm{m}\mathrm{i}\mathrm{n} and
\phi (\theta )\mathrm{m}\mathrm{a}\mathrm{x} marked in the x\prime 1 = 0-plane from a bird's eye view.D
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2266 GRATHWOHL, KUNSTMANN, QUINTO, AND RIEDER

To get \phi (\theta )\mathrm{m}\mathrm{i}\mathrm{n} and \phi (\theta )\mathrm{m}\mathrm{a}\mathrm{x}, we fix \theta \in [\theta \mathrm{m}\mathrm{i}\mathrm{n}, \theta \mathrm{m}\mathrm{a}\mathrm{x}]. The angles \phi (\theta )\mathrm{m}\mathrm{i}\mathrm{n} and \phi (\theta )\mathrm{m}\mathrm{a}\mathrm{x} are
given by the minimal and maximal angles of \phi corresponding to the points on \partial Br(P

\prime ) for
fixed \theta \in (\theta \mathrm{m}\mathrm{i}\mathrm{n}, \theta \mathrm{m}\mathrm{a}\mathrm{x}) as illustrated in the right image of Figure 3. Thus, we have to solve the
equation

r2 = | P \prime  - x(t, \phi (\theta ), \theta )| 2

for \phi (\theta ) in our new coordinate system (x\prime 1, x
\prime 
2, x

\prime 
3). By the definition of the prolate spheroidal

coordinates this equation has exactly two solutions \phi (\theta ) in [0, \pi ). Next, we insert these
coordinates setting s1 = s2 = 0 in (4.3) and get, using the substitution z = cos(\phi (\theta )), the
following identity:

r2 = (p\prime 2)
2 + (p\prime 3)

2 +
1

4
t2  - \alpha 2(1 - z2) - p\prime 2tz  - p\prime 3

\sqrt{} 
t2  - 4\alpha 2

\sqrt{} 
1 - z2 sin(\theta ).

Solving this equation and resubstitution yield two solutions z1 and z2 in [ - 1, 1]. Without loss
of generality, we obtain

\phi (\theta )\mathrm{m}\mathrm{i}\mathrm{n} = arccos(z1) and \phi (\theta )\mathrm{m}\mathrm{a}\mathrm{x} = arccos(z2)

with \phi (\theta )\mathrm{m}\mathrm{i}\mathrm{n} < \phi (\theta )\mathrm{m}\mathrm{a}\mathrm{x}. In our implementation we obtain z1 and z2 approximately by New-
ton's method.

4.2. The elliptic Radon transform of the characteristic function of a half space. For our
numerical experiments in the next section we provide Fn where n is the characteristic function
of a half space, i.e., n = \chi \{ x\in R3

+ | x3\geq l\} for some l > 0. We directly work in prolate spheroidal

coordinates (4.3), this time with arbitrary s1, s2 and restricted to R3
+, i.e., t \in (2\alpha ,\infty ),

\phi \in [0, \pi ), and \theta \in [0, \pi ). Hence, by x = x(s, t, \phi , \theta ),

Fn(s, t) =
1

2

\int \theta \mathrm{m}\mathrm{a}\mathrm{x}

\theta \mathrm{m}\mathrm{i}\mathrm{n}

\int \phi (\theta )\mathrm{m}\mathrm{a}\mathrm{x}

\phi (\theta )\mathrm{m}\mathrm{i}\mathrm{n}

n(x(s, t, \phi , \theta )) sin(\phi ) d\phi d\theta 

for (s, t) \in S0 \times (2\alpha ,\infty ) with

\theta \mathrm{m}\mathrm{i}\mathrm{n} /\mathrm{m}\mathrm{a}\mathrm{x} = \theta \mathrm{m}\mathrm{i}\mathrm{n} /\mathrm{m}\mathrm{a}\mathrm{x}(s, t) := min /max\{ \theta \in [0, \pi ) | x(s, t, \phi , \theta ) \in supp(n), \phi \in [0, \pi )\} 

and

\phi (\theta )\mathrm{m}\mathrm{i}\mathrm{n} /\mathrm{m}\mathrm{a}\mathrm{x} := \phi (\theta )\mathrm{m}\mathrm{i}\mathrm{n} /\mathrm{m}\mathrm{a}\mathrm{x}(s, t) := min /max\{ \phi \in [0, \pi ) | x(s, t, \phi , \theta ) \in supp(n)\} .

We have n(x(s, t, \phi , \theta )) = 1 for \theta \in (\theta \mathrm{m}\mathrm{i}\mathrm{n}, \theta \mathrm{m}\mathrm{a}\mathrm{x}) and \phi (\theta ) \in (\phi (\theta )\mathrm{m}\mathrm{i}\mathrm{n}, \phi (\theta )\mathrm{m}\mathrm{a}\mathrm{x}). Otherwise,
n(x(s, t, \phi , \theta )) = 0. Therefore,

Fn(s, t) =
1

2

\int \theta \mathrm{m}\mathrm{a}\mathrm{x}

\theta \mathrm{m}\mathrm{i}\mathrm{n}

\int \phi (\theta )\mathrm{m}\mathrm{a}\mathrm{x}

\phi (\theta )\mathrm{m}\mathrm{i}\mathrm{n}

sin(\phi ) d\phi d\theta , (s, t) \in S0 \times (2\alpha ,\infty ).(4.5)

We obtain the four required angles from the points of intersection marked with a cross in
Figure 4. For \theta \mathrm{m}\mathrm{i}\mathrm{n} and \theta \mathrm{m}\mathrm{a}\mathrm{x} we consider the plane x2 = s2 where \phi = \pi /2 according to (4.3).

As x3 = l for the points in Figure 4, we need to solve l = x3 =
\sqrt{} 

1
4 t

2  - \alpha 2 sin(\theta ) for \theta yieldingD
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θ = 0 θ = π
(s1, 0)

>(s1 +
√

1
4
t2 + α2, 0)> (s1 −

√
1
4
t2 + α2, 0)>

θmaxθmin

φ = 0 φ = π
(s2, 0)

> (s2 − 1
2
t, 0)>(s2 +

1
2
t, 0)>

φ(θ∗)maxφ(θ∗)min

Figure 4. Left: The minimal and maximal possible angles for \theta illustrated in the x2 = s2-plane. Right: In
the \theta = \theta \ast -plane we consider the angles \phi (\theta \ast )\mathrm{m}\mathrm{i}\mathrm{n} and \phi (\theta \ast )\mathrm{m}\mathrm{a}\mathrm{x}, which are determined by the coordinates of the
two marked points.

\theta \mathrm{m}\mathrm{i}\mathrm{n} = arcsin

\left( 
 l\sqrt{} 

1
4 t

2  - \alpha 2

\right) 
 and \theta \mathrm{m}\mathrm{a}\mathrm{x} = \pi  - \theta \mathrm{m}\mathrm{i}\mathrm{n}.

Similar reasoning leads to \phi (\theta )\mathrm{m}\mathrm{i}\mathrm{n} and \phi (\theta )\mathrm{m}\mathrm{a}\mathrm{x} for \theta 
\ast \in [\theta \mathrm{m}\mathrm{i}\mathrm{n}, \theta \mathrm{m}\mathrm{a}\mathrm{x}]. We consider the plane \theta =

\theta \ast illustrated on the right in Figure 4. Here, the equation is l =
\sqrt{} 

1
4 t

2  - \alpha 2 sin(\phi (\theta \ast )) sin(\theta \ast ),
which is solved by

\phi (\theta \ast )\mathrm{m}\mathrm{i}\mathrm{n} = arcsin

\left( 
 l\sqrt{} 

1
4 t

2  - \alpha 2 sin(\theta \ast )

\right) 
 and \phi (\theta \ast )\mathrm{m}\mathrm{a}\mathrm{x} = \pi  - \phi (\theta \ast )\mathrm{m}\mathrm{i}\mathrm{n}.

If the travel time t is too small, then the ellipsoids do not intersect the half space. The
limiting travel time is given by T\mathrm{m}\mathrm{i}\mathrm{n} = min\{ x\in R3

+ | \varphi (s,x)=t\} (| x\mathrm{s}(s) - x| + | x - x\mathrm{r}(s)| ). Obviously,

the minimum is attained at x = (s1, s2, l) with minimal value T\mathrm{m}\mathrm{i}\mathrm{n} = 2
\surd 
\alpha 2 + l2. Thus,

Fn(s, t) = 0 for t \leq T\mathrm{m}\mathrm{i}\mathrm{n} and s \in S0.

4.3. Computation of the reconstruction kernels. By the representation of rp,\gamma ,3 in Lemma
4.1 and the results of section 4.1 we have

rp,\gamma ,3(s, t)

= C\gamma ,3
1

2

\int \theta \mathrm{m}\mathrm{a}\mathrm{x}

\theta \mathrm{m}\mathrm{i}\mathrm{n}

\int \phi (\theta )\mathrm{m}\mathrm{a}\mathrm{x}

\phi (\theta )\mathrm{m}\mathrm{i}\mathrm{n}

\Bigl( 
120\gamma 2

\Bigl( 
[R - 1x(t, \phi , \theta ) + (s1, s2, 0)

\top ]3  - p3

\Bigr) 

 - 168
\Bigl( 
[R - 1x(t, \phi , \theta ) + (s1, s2, 0)

\top ]3  - p3

\Bigr) \bigm| \bigm| \bigm| R - 1x(t, \phi , \theta ) + (s1, s2, 0)
\top  - p| 2

\Bigr) 

\times \chi B\gamma (p\prime )(x(t, \phi , \theta )) sin(\phi ) d\phi d\theta 

=
315

64\pi \gamma 9
1

2

\int \theta \mathrm{m}\mathrm{a}\mathrm{x}

\theta \mathrm{m}\mathrm{i}\mathrm{n}

\int \phi (\theta )\mathrm{m}\mathrm{a}\mathrm{x}

\phi (\theta )\mathrm{m}\mathrm{i}\mathrm{n}

\Biggl( 
120\gamma 2( - sin(\beta ) cos(\theta ) + cos(\beta ) sin(\theta ))

\sqrt{} 
1

4
t2  - \alpha 2 sin2(\phi )

 - 120\gamma 2p3 sin(\phi )

 - 168( - sin(\beta ) cos(\theta ) + cos(\beta ) sin(\theta ))

\sqrt{} 
1

4
t2  - \alpha 2| x(t, \phi , \theta ) - p\prime | 2 sin2(\phi )

+ 168p3| x(t, \phi , \theta ) - p\prime | 2 sin(\phi )
\Biggr) 
\chi B\gamma (p\prime )(x(t, \phi , \theta )) d\phi d\theta 
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for (s, t) \in S0 \times (T\mathrm{m}\mathrm{i}\mathrm{n}, T\mathrm{m}\mathrm{a}\mathrm{x}). Further,

| x(t, \phi , \theta ) - p\prime | 2 = (a+ b sin(\phi ))2 + (c+ d cos(\phi ))2 + (e+ f sin(\phi ))2,(4.6)

where

a =  - p\prime 1 = 0, b =

\sqrt{} 
1

4
t2  - \alpha 2 cos(\theta ), c =  - p\prime 2 =  - p2 + s2,

d =
1

2
t, e =  - p\prime 3 =  - p3

cos
\bigl( 
arctan

\bigl( p1 - s1
p3

\bigr) \bigr) , f =

\sqrt{} 
1

4
t2  - \alpha 2 sin(\theta ),

for t \in (T\mathrm{m}\mathrm{i}\mathrm{n}, T\mathrm{m}\mathrm{a}\mathrm{x}), \phi \in [0, \pi ), and \theta \in [0, 2\pi ). Hence, to compute numerical values for rp,\gamma ,3,
we need the antiderivatives of the following functions:

\phi \mapsto \rightarrow sin2(\phi ), \phi \mapsto \rightarrow (a+ b sin(\phi ))2 + (c+ d cos(\phi ))2 + (e+ f sin(\phi ))2 sin2(\phi ),

\phi \mapsto \rightarrow sin(\phi ), \phi \mapsto \rightarrow (a+ b sin(\phi ))2 + (c+ d cos(\phi ))2 + (e+ f sin(\phi ))2 sin(\phi ).

As these four functions are trigonometric polynomials in \phi , their antiderivatives exist in closed
form. We found analytic expressions by a computer algebra system and imported them in our
code.

Analogously,

rp,\gamma ,3,\mathrm{m}\mathrm{o}\mathrm{d},0(s, t)

=
315

64\pi \gamma 9
1

2

\int \theta \mathrm{m}\mathrm{a}\mathrm{x}

\theta \mathrm{m}\mathrm{i}\mathrm{n}

\int \phi (\theta )\mathrm{m}\mathrm{a}\mathrm{x}

\phi (\theta )\mathrm{m}\mathrm{i}\mathrm{n}

\Biggl( 
120\gamma 2( - sin(\beta ) cos(\theta ) + cos(\beta ) sin(\theta ))3

\times 
\Biggl( \sqrt{} 

1

4
t2  - \alpha 2

\Biggr) 3

sin4(\phi )

 - 120\gamma 2p3( - sin(\beta ) cos(\theta ) + cos(\beta ) sin(\theta ))2

\Biggl( \sqrt{} 
1

4
t2  - \alpha 2

\Biggr) 2

sin3(\phi )

 - 168( - sin(\beta ) cos(\theta ) + cos(\beta ) sin(\theta ))3

\Biggl( \sqrt{} 
1

4
t2  - \alpha 2

\Biggr) 3

| x(t, \phi , \theta ) - p\prime | 2 sin4(\phi )

+ 168p3( - sin(\beta ) cos(\theta ) + cos(\beta ) sin(\theta ))2

\Biggl( \sqrt{} 
1

4
t2  - \alpha 2

\Biggr) 2

| x(t, \phi , \theta ) - p\prime | 2 sin3(\phi )
\Biggr) 

\times \chi B\gamma (p\prime )(x(t, \phi , \theta )) d\phi d\theta .

In view of (4.6) we now need the antiderivatives of

\phi \mapsto \rightarrow sin4(\phi ), \phi \mapsto \rightarrow (a+ b sin(\phi ))2 + (c+ d cos(\phi ))2 + (e+ f sin(\phi ))2 sin4(\phi ),

\phi \mapsto \rightarrow sin3(\phi ), \phi \mapsto \rightarrow (a+ b sin(\phi ))2 + (c+ d cos(\phi ))2 + (e+ f sin(\phi ))2 sin3(\phi ),

which we obtain analytically as before.D
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Knowing rp,\gamma ,3 and rp,\gamma ,3,\mathrm{m}\mathrm{o}\mathrm{d},0 means knowing rp,\gamma ,k,\mathrm{m}\mathrm{o}\mathrm{d},1 and rp,\gamma ,k,\mathrm{m}\mathrm{o}\mathrm{d},2 as well due to
Corollary 4.2. All in all, we have the explicit expressions of the different reconstruction
kernels at a point (s, t) \in S0 \times (2\alpha ,\infty ) depending on the limiting angles \theta \mathrm{m}\mathrm{i}\mathrm{n}, \theta \mathrm{m}\mathrm{a}\mathrm{x}, \phi \mathrm{m}\mathrm{i}\mathrm{n}(\theta ),
and \phi \mathrm{m}\mathrm{a}\mathrm{x}(\theta ) and the travel times T\mathrm{m}\mathrm{i}\mathrm{n} and T\mathrm{m}\mathrm{a}\mathrm{x}.

5. Numerical experiments. For the numerical examples we have to evaluate integrals of
the form

\widetilde L\gamma n(p) = \langle \psi y, \widetilde rp,\gamma ,3\rangle =
\int 

S0\times (2\alpha ,\infty )
\psi (s, t)y(s, t)\widetilde rp,\gamma ,3(s, t) d(s, t)

for p \in R3
+ where y is the given data and \widetilde rp,\gamma ,3 represents one of the kernels belonging

to the four imaging operators \Lambda , \Lambda \mathrm{m}\mathrm{o}\mathrm{d},i, i \in \{ 0, 1, 2\} . Further, the cutoff function \psi \in 
C\infty 
c (S0 \times (2\alpha ,\infty )) is taken from [22, sect. 5]: For S > 0 and T > T > 0 we set

\psi (s, t) = \psi (s1, s2, t) = \Psi 1(s1)\Psi 1(s2)\Psi 2(t),(5.1)

where

\Psi 1(s) =

\left\{ 
  
  

1 for | s| < S,

h(| s| , S) for S \leq | s| \leq S + 1,

0 for S + 1 < | s| ,

and

\Psi 2(t) =

\left\{ 
       
       

0 for t \leq T ,

g(t, T ) for T < t < 2T ,

1 for 2T \leq t \leq T ,

h(t, T ) for T < t < T + 1,

0 for T + 1 \leq t.

Using

f(r) =

\Biggl\{ 
exp( - 1

r ) for 0 < r,

0 for r \leq 0,

the functions g and h are defined as follows:

g(t, T ) =
f( t

T  - 1)

f( t
T  - 1) + f(2 - t

T )
, h(t, T ) =

f(T + 1 - t)

f(T + 1 - t) + f(t - T  - 1
2)
.

Then,

supp(\psi ) \subseteq [ - S  - 1, S + 1]\times [T , T + 1] and \psi | 
[ - S,S]\times [2T,T ]

= 1.

In our numerical experiments we assume to know the data y at the uniformly distributed

values (s
(i)
1 , s

(j)
2 , t(k)) \in [ - s\mathrm{m}\mathrm{a}\mathrm{x}, s\mathrm{m}\mathrm{a}\mathrm{x}]

2 \times [t\mathrm{m}\mathrm{i}\mathrm{n}, t\mathrm{m}\mathrm{a}\mathrm{x}], i, j \in \{ 1, . . . Ns\} , k \in \{ 1, . . . , Nt\} , whereD
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s\mathrm{m}\mathrm{a}\mathrm{x} > 0, t\mathrm{m}\mathrm{a}\mathrm{x} > t\mathrm{m}\mathrm{i}\mathrm{n} > 2\alpha , and Ns, Nt \in N. The respective step sizes are hs = 2s\mathrm{m}\mathrm{a}\mathrm{x}/Ns

and ht = (t\mathrm{m}\mathrm{a}\mathrm{x}  - t\mathrm{m}\mathrm{i}\mathrm{n})/Nt. Further, S = s\mathrm{m}\mathrm{a}\mathrm{x}  - 1, T = t\mathrm{m}\mathrm{i}\mathrm{n}, and T = t\mathrm{m}\mathrm{a}\mathrm{x}  - 1.

Since the kernel vanishes for travel times below T\mathrm{m}\mathrm{i}\mathrm{n} = T\mathrm{m}\mathrm{i}\mathrm{n}(s
(i)
1 , s

(j)
2 , \gamma , p) and above

T\mathrm{m}\mathrm{a}\mathrm{x} = T\mathrm{m}\mathrm{a}\mathrm{x}(s
(i)
1 , s

(j)
2 , \gamma , p) (see section 4.1), we can restrict the t(k)'s to the interval

\scrT i,j(\gamma , p) :=
\Bigl( 
T\mathrm{m}\mathrm{i}\mathrm{n}

\Bigl( 
s
(i)
1 , s

(j)
2 , \gamma 

\Bigr) 
, T\mathrm{m}\mathrm{a}\mathrm{x}

\Bigl( 
s
(i)
1 , s

(j)
2 , \gamma 

\Bigr) \Bigr) 
.

Thus, we approximate \widetilde L\gamma straightforwardly by the quadrature rule

Q \widetilde L\gamma n(p) := hth
2
s

Ns\sum 

i,j=1

\sum 

t(k)\in \scrT i,j(\gamma ,p)
\psi 
\Bigl( 
s
(i)
1 , s

(j)
2 , t(k)

\Bigr) 
y
\Bigl( 
s
(i)
1 , s

(j)
2 , t(k)

\Bigr) 
(5.2)

\times \widetilde rp,\gamma ,3
\Bigl( 
s
(i)
1 , s

(j)
2 , t(k)

\Bigr) 
.

In order not to overload the notation, we refrain from specifying all parameters on which Q
depends. Below we will write QL\gamma and QL\gamma ,\mathrm{m}\mathrm{o}\mathrm{d},i, i \in \{ 0, 1, 2\} , to indicate which operator
(kernel) is actually used in (5.2); compare (4.1) and (4.2).

5.1. Reconstructions from consistent data. For the first set of numerical experiments
we choose the function n to be reconstructed as

n = \chi B2(0,0,4)  - \chi B1(0,0,4) + \chi B1.5(3,0,5) + \chi \{ x3\geq 6.5\} ;

see Figure 5. We generate the data y numerically by evaluating Fn as we have demonstrated
in the previous section.

First, we discuss which features of n we expect to see in \widetilde L\gamma n. This discussion applies

to all four instances of \widetilde L\gamma as all underlying imaging operators enjoy the same order and the

x1

x3

−2 0 2 4

2

4

6

x2 = 0

Figure 5. Cross section of the function n for x2 = 0. On the darker blue area, where the two large circles
overlap, n is equal to 2 and on the light blue area to 1, and off the blue areas it is 0. The singularities marked
in red are not emphasized independent of the choice of S0 and \psi . This is because the third component of their
normal directions is zero (see Theorem 3.9).D
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IMAGING WITH THE ELLIPTIC RADON TRANSFORM IN 3D 2271

same decisive microlocal properties. Indeed, let \widetilde \Lambda \in \{ \Lambda ,\Lambda \mathrm{m}\mathrm{o}\mathrm{d},i | i \in \{ 0, 1, 2\} \} . Then, \widetilde \Lambda is
microlocally elliptic of order 1 at (x\ast , \xi \ast ) \in R3

+ \times R3\setminus \{ 0\} if

\xi \ast \in C(x\ast ) = \{ \xi \in R3 | \xi 3 \not = 0, \psi (s(x\ast , \xi ), \varphi (s(x\ast , \xi ), x\ast )) > 0\} 
(see Proposition 3.10). Hence, by Theorem 3.6,

(x\ast , \xi \ast ) \in WF - 1/2(\widetilde \Lambda n) for (x\ast , \xi \ast ) \in WF(n) = WF1/2(n).(5.3)

This means that if the third component of the normal \xi \ast at an element x\ast of the singular
support of n does not vanish and if \psi (x\ast ) > 0, then the Sobolev smoothness of \widetilde \Lambda n(x\ast ) drops
by one order in direction \xi \ast . More precisely, the smoothness decreases from H1/2 to H - 1/2.

Recall that

WF(\widetilde \Lambda n) \subseteq WF(F \ast \psi Fn)(5.4)

by the pseudolocal property of Theorem 3.5. Further, (x, \xi ) \in WF(F \ast \psi Fn) only if there
exists s \in S0 and \omega \not = 0 such that \xi = \omega \nabla x\varphi (s, x); see Theorem 3.8. Since the set S0 is
bounded in applications, there will be pairs (x, \xi ) for which no s \in S0 and \omega \not = 0 exist. These
singularities and those for which \xi \not \in C(x) (see Proposition 3.10 and Remark 3.12) will not be
preserved; they are invisible singularities with respect to \widetilde \Lambda (see Definition 3.7). For instance,
the red points in Figure 5 are invisible for any choice of S0 and \psi .

In what follows, we provide the approximations QL\gamma n, QL\gamma ,\mathrm{m}\mathrm{o}\mathrm{d},0n, and QL\gamma ,\mathrm{m}\mathrm{o}\mathrm{d},2n. To
be able to compare the results, we consider the same setting with two offsets \alpha = 1 and \alpha = 10.
Further, we choose t\mathrm{m}\mathrm{i}\mathrm{n} = 2\alpha + 0.1, t\mathrm{m}\mathrm{a}\mathrm{x} = t\mathrm{m}\mathrm{i}\mathrm{n} + 17, s\mathrm{m}\mathrm{a}\mathrm{x} = 10, and Ns = Nt = 600. Thus,
the data are integral values of n over 216,000,000 ellipsoids. From this data the reconstruction
is evaluated in the cross section [ - 2.5, 5]\times \{ 0\} \times [1.5, 7] at uniformly distributed points where
Nx1 = 135 and Nx3 = 99 values are used for the first and third coordinates, respectively.
Finally, we use the trapezoidal rule to numerically compute the integrals with respect to \theta in
(4.4) and (4.5) and also in the reconstruction kernels (section 4.3). The numbers of uniformly
distributed integration nodes are 201 for (4.4), 16 for (4.5), and 50 for the kernels.

Figure 6 displays the reconstructions with respect to \Lambda from (3.10). We recover all pre-
dicted visible singularities, i.e., all singularities are imaged except for the ones at the outermost
points of the balls. Nevertheless, in case of \alpha = 1 singularities closer to the surface are more
emphasized than the ones further away. For \alpha = 10 we make a different observation: the
reconstructed intensity/contrast2 of the singularities is nearly independent of the distance to
the surface.

We defined the first modified reconstruction operator \Lambda \mathrm{m}\mathrm{o}\mathrm{d},0 in (3.9) to compensate the
behavior of the top order symbol of \Lambda for small values of \alpha compared to x3. The results are in
Figure 7. In comparison to the reconstructions in Figure 6 the intensity of the singularities for
\alpha = 1 is significantly more uniform and more independent of their x3-coordinate. However, in
case of \alpha = 10 the contrast of the reconstructed singularities is less uniform than with \Lambda . It
now increases with depth. These observations are in complete agreement with our theoretical
considerations leading to the definition of \Lambda \mathrm{m}\mathrm{o}\mathrm{d},0 (see section 3.4).

2By the intensity or contrast of the reconstruction of a singularity (x, \xi ) \in WF(n) we understand the

number max\{ | Q \widetilde L\gamma n(x)  - Q \widetilde L\gamma n(p)| : p is a pixel in B\gamma (x)\} where \widetilde L\gamma denotes the imaging operator which is
actually used. For an adequate choice of \gamma see Remark 5.2.D
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Figure 6. Cross sections QL\gamma n(\cdot , 0, \cdot ) for \Lambda from (3.1). They differ in the offset \alpha and the regularization
parameter \gamma , which depends on the offset. In case of \alpha = 1 we have \gamma = 0.2, for \alpha = 10 it is \gamma = 0.3.

To achieve further improvements in case \alpha is large compared to x3, we introduced the
operators \Lambda \mathrm{m}\mathrm{o}\mathrm{d},1 and \Lambda \mathrm{m}\mathrm{o}\mathrm{d},2; see (3.10). The approximation QL\gamma ,\mathrm{m}\mathrm{o}\mathrm{d},1n differs only slightly
from those obtained by using QL\gamma ,\mathrm{m}\mathrm{o}\mathrm{d},0n, thus they are not included here; we refer to [10,
Fig. 5.18]. Figure 8 displays cross sections of QL\gamma ,\mathrm{m}\mathrm{o}\mathrm{d},2n. As expected, adding the operator
\alpha 2\Lambda to \Lambda \mathrm{m}\mathrm{o}\mathrm{d},0 guarantees that the reconstructed contrast of singularities is independent of
their depth coordinates, especially for \alpha 2/x3 large (image on the bottom of Figure 8).

To give an impression on the three-dimensional nature of our setting, we added two further
cross sections with x2-coordinates different from 0. In Figure 9 we present QL\gamma ,\mathrm{m}\mathrm{o}\mathrm{d},0n\ast , whereD
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Figure 7. Cross sections QL\gamma ,\mathrm{m}\mathrm{o}\mathrm{d},0n(\cdot , 0, \cdot ) for \Lambda \mathrm{m}\mathrm{o}\mathrm{d},0 from (3.9). Top: \alpha = 1 and \gamma = 0.2; bottom:
\alpha = 10 and \gamma = 0.3.

n\ast = n  - \chi \{ x3\geq 6.5\} , that is, n\ast only consists of the characteristic functions of the balls. All
parameters entering Q are chosen similarly as before.

Remark 5.1. In each of Figures 6--9, we see artifact curves that seem to come tangentially
out of the location of the invisible singularities (red dots in Figure 5). A rough graph of
the artifact curves shows that they seem to be along integration surfaces E(s, t) for (s, t) in
the boundary of the data set and for which the surface E(s, t) is tangent to a boundary of
the object. Limited data artifacts occur for the spherical transform along spheres tangent to
object singularities and in the boundary of the data set [9] (see also [18]). Although thoseD
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Figure 8. Cross section QL\gamma ,\mathrm{m}\mathrm{o}\mathrm{d},2(\cdot , 0, \cdot ) for \Lambda \mathrm{m}\mathrm{o}\mathrm{d},2 from (3.10). Top: \alpha = 1 and \gamma = 0.2; bottom: \alpha = 10
and \gamma = 0.3.

results are for a different transform, they do suggest that some artifacts in Figures 6--9 are
limited data artifacts.

One observes a second type of artifact, too, that is not tangent to a boundary of the object.
If one compares the top image in Figures 6--8 with the top image of Figure 9 (that does not
include a half space starting at x3 = 6.5), one sees clearly that there are artifacts that seem to
be independent of the disks and occur or are emphasized only when the half space is included.
This was confirmed by reconstructions including just the half space and just the balls, and
this could be the type of artifact coined ``object-independent"" in [5, Thm. 5.2]. In addition,D
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Figure 9. Cross sections QL0.2,\mathrm{m}\mathrm{o}\mathrm{d},0n\ast (\cdot , p2, \cdot ) for \Lambda \mathrm{m}\mathrm{o}\mathrm{d},2 from (3.10) with \alpha = 1. Top: p2 = 0.75; bottom:
p2 = 1.

some streaks and other image degradation could occur for numerical reasons. Some of these
numerical effects are described and named ``endpoint artifacts"" in [4, sect. 5.7]. However,
they have not been analyzed rigorously, microlocally, and such analysis will appear in future
work.

Finally, we point out that these artifacts can be suppressed by using a cutoff in s and t
which gradually decreases to zero. This is described for the spherical transform in [9] and
similar comments apply here.D
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Figure 10. Cross section QL0.4n(\cdot , 0, \cdot ) with \Lambda from (3.1). The offset of the data differs randomly in
[1.75, 2.25] for each source/receiver pair, whereas the offset in Q is identically 2.

In the next experiment we simulate a situation which very likely occurs in field measure-
ments: the offset is not known exactly and differs slightly from one source/receiver pair to
the next. In generating the data we therefore draw a different \alpha for each source/receiver pair
randomly and uniformly distributed from [1.75, 2.25]. The reconstruction, however, is done
with the mean offset 2, that is, we set \alpha = 2 in the reconstruction kernel used in Q (for the
values of the other parameters of Q see [10, sect. 5.3.2]). The result in Figure 10 is a bit blurry
but the singular support is still clearly recognizable.

Remark 5.2. So far we have not commented on how we selected the scaling/regularization
parameter \gamma , which depends on the discretization step sizes in Q, number of measurements,
noise level, and offset. Finding a useful \gamma is a delicate task indeed. Our explanations and
ideas from [11, Rem. 4.1] apply correspondingly.

5.2. Reconstructions using data from the wave equation. In the previous experiments
we generated data with the same numerical scheme used to evaluate the reconstruction kernels.
Here we provide data by solving the acoustic wave equation numerically. Thus, we avoid
committing an inverse crime and additionally incorporate the modeling/linearization error;
see section 2.

For generating the data y as in (2.5) we solve the acoustic wave equations (2.1) and (2.3) by
the PySIT software [13] in the cuboid [0.1, 0.8]\times [0.1, 1.0]\times [0.1, 0.8] with absorbing boundary
conditions using perfectly matched layers. The discretization step size is 0.01 and on top of
the cuboid 13 \times 35 source and receiver pairs are positioned at x\mathrm{s}(s) = (s1, s2  - \alpha , 0.1)\top and
x\mathrm{r}(s) = (s1, s2 + \alpha , 0.1)\top with s1 \in \{ 0.15 + 0.05i | i \in \{ 0, . . . , 12\} \} , s2 \in \{ 0.125 + 0.025j | j \in 
\{ 0, . . . , 35\} \} , and \alpha = 0.025. For the travel time t we take 1709 points between t\mathrm{m}\mathrm{i}\mathrm{n} = 0.1 and
t\mathrm{m}\mathrm{a}\mathrm{x} = 2 into account. Further, the speed of sound \nu in this experiment isD

ow
nl

oa
de

d 
12

/1
7/

20
 to

 1
30

.6
4.

11
.1

61
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IMAGING WITH THE ELLIPTIC RADON TRANSFORM IN 3D 2277
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Figure 11. An illustration of the speed of sound \nu .

\nu (x) =

\Biggl\{ 
1 if x3 \leq 0.1 sin(2\pi x2) cos(2\pi x1) + 0.5,

1.5 if x3 > 0.1 sin(2\pi x2) cos(2\pi x1) + 0.5,

which simulates two different materials; see Figure 11. The temporal impulse at time t = 0,
that is, the source is modeled by a scaled and truncated Gaussian.

Figure 12 shows on the left four cross sections of the interface we want to reconstruct.
All singularities that appear have a nonvanishing third component in their normal directions,
so we expect to see them all in the corresponding reconstructions on the right, which are
obtained from (5.2) using the kernel of \Lambda 0.07 with \Lambda from (3.1) (the used cutoff function is an
adapted version of (5.1)).

In all reconstructed cross sections, the singular support, which is the boundary between
the two different material layers, is reconstructed as a relatively thick curve. This is due to a
lack of data, more precisely, due to a large sampling rate for Fn which restricts from below
the smallest detail which is represented in the data; see, e.g., [17, Chap. III].

Further, the reconstructed singularities near to the left boundary of the cuboid are less
visible than the ones near to the right. The reason is that on the left the first receiver is
farther away from the boundary.

If we compare the two cross sections x1 = 0.1 and x1 = 0.5, we notice that all reconstructed
singularities in case of x1 = 0.5 have nearly the same intensity, whereas for x1 = 0.1 there are
big differences. This effect is due to location of the cross sections inside the cuboid. There
are more sources and receivers in the middle of the cuboid than at the boundary as there are
no pairs of sources and receivers in front of it, i.e., for x1 < 0.1.

At last, we remark that in all four cross sections the contrast of the singularities at
the boundaries depends on how the interface hits the boundary. By Theorem 3.8 and the
consequences of Proposition 3.10 (see (5.3) and (5.4), for instance), the imaging operator
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Figure 12. Ground truth (left) and the corresponding reconstructions QL0.07n with \Lambda from (3.1).D
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preserves a singularity of n only if there is an ellipse being integrated over which is tangent
to that singularity.

Remark 5.3. In [11, sect. 4.2] we included a numerical experiment, in two dimensions
though, which takes a further modeling error into account: the required reference solution
of the wave equation is not computed with the constant sound speed 1 but with a spatially
varying sound speed. This works remarkably well.
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