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Abstract. The three-dimensional elliptic Radon transform (eRT) averages distributions over ellipsoids of rev-
olution. It thus serves as a linear model in seismic imaging where one wants to recover the earth’s
interior from reflected wave fields. As there is no inversion formula known for the eRT, approxi-
mate formulas have to be used. In this paper we suggest several of those, microlocally analyze their
properties, and provide and implement an adapted algorithm whose performance we test by diverse
numerical experiments. Our previous results of [Inverse Problems, 34 (2018), 014002, 114001] are
thus generalized to three space dimensions.
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1. Introduction. The elliptic Radon transform F' serves as a model in seismic imaging
when sources and receivers are offset by a constant vector and linearization has been performed
about a constant background sound speed. One is led to solve the linear equation Fn =y
where y represents preprocessed measurements of the reflected acoustic wave fields and n
represents the high frequency content of the searched-for true speed of sound. As there is no
inversion formula known in this geometric setting, one has to find, study, and implement more
general approximate inversion schemes.

For instance, in Kirchhoff migration, the classical inversion scheme of geophysics, one
applies a kind of convolution operator K followed by a dual transform (generalized backpro-
jection) F! to the data to obtain F¥*Ky. Instead of n we thus recover F*K Fn. The imaging
operator FYK F is the sum of a low pass filter (partial identity) and a smoothing operator; see
[3]. Consequently, some of the features of n are indeed visible in F¥K Fn.

Another approach consists of applying F**, the formal L2-adjoint (backprojection), yielding
the normal operator F*yF as imaging operator (¢ is a smooth cutoff function needed for
technical reasons; see start of section 3 below). Imaging properties of F*¢F in different
settings have been analyzed by many authors including [7, 8, 19, 23, 25].
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In our two previous papers [11, 12] (see also [22]) we have contributed to this research
twofold. First, we have augmented the normal operator by a properly supported pseudodiffer-
ential operator K of positive order so that K F*i)F enhances features (discontinuities) of n.
In contrast, the abovementioned two examples deliver rather smooth versions of n. Further,
we have microlocally analyzed these operators in two spatial dimensions to understand how
they map singularities. Using this knowledge, we have been able to construct K with useful
imaging properties. Second, also in two spatial dimensions, we have developed and imple-
mented a corresponding regularization scheme based on the approximate inverse [16]. The
present paper extends our two-dimensional results to three space dimensions. By no means
is this generalization trivial: the microlocal analysis is more involved and the implementation
of the numerical scheme poses additional challenges.

Our material is organized as follows. In the next section we briefly recall how the seismic
model with the elliptic Radon transform is obtained by linearizing the acoustic wave equation.
Then, we introduce our first imaging operator in section 3 and analyze it microlocally, which
leads us to define new operators with improved imaging properties. To give a somewhat
self-contained presentation, we provide basic concepts from microlocal analysis. Section 4 is
devoted to our numerical scheme where implementation issues are discussed in some detail.
Finally, we report and comment on numerical experiments not only to illustrate our microlocal
predictions (section 5.1) but also to test the robustness of the numerical scheme with respect
to noise in the offset and modeling error (section 5.2). Moreover, we discuss the formation
of artifacts appearing in the reconstructions. A sound microlocal explanation remains to be
given, though, in future research.

2. The forward operator. A well-established method to investigate the subsurface of the
earth is to generate pressure waves on the surface and measure their returning reflections.
For simplification we assume that no shear waves occur and that the earth has constant
mass density. Then, wave propagation with sound speed v is described by the acoustic wave
equation

1
v3(z)

(2.1) Ou(t, x;xs) — Aul(t, 1;x5) = d(z — x4)d(t)

for time ¢ > 0 at location # € R3 with source location xs. We augment (2.1) with vanishing
initial conditions

(2.2) u(0, -;x5) = du(0, - ;x5) =0

(interpreted in a distributional sense) since the environment is at rest before the wave is
excited. The task is to reconstruct the speed of sound v from the backscattered field u(t, x,; xs)
observed at a receiver point X, for (¢,x;;Xs) € [0, Tmax] X R X S, where Tiyax is the recording
time and R and S are the sets of receiver and source positions, respectively.

We consider the common offset scanning geometry where the distance of source to receiver
is a constant vector. This geometry is realized by

Xs = Xg(8) = (51,50 — @,0)"  and X, = x.(s) = (51,52 + @,0)"
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for a fixed offset o > 0 and (s1,s2) € Sg C R?, where Sy is a nonempty open, bounded, and
connected subset of R2.
To solve the inverse problem, we make the classical ansatz

1 1+n(x)
vi(z) 2
for x € R? with a constant and a priori known background velocity ¢, say, ¢ = 1, and a function
n being compactly supported in R := {z € R*|z3 > 0} (the z3-axis points downward). In
doing so we are seeking n instead of v. Physically the quantity n can be interpreted as a kind

of reflectivity, which captures the high frequency variations of v; see [4, sect. 3.2.1].
The solution @ of (2.1) and (2.2) for ¥ = ¢ = 1 is our reference solution:

(2.3) OXu(t, 13 x4(5)) — ATU(t, 75 %4(s)) = 0(x — x4(5))5(2).
We follow the lines of [6] and [26] to derive a linear equation for n. For further details see [10]

and [12].
By the Born approximation we derive the following representation of u — u:

(2.4) (u—u)(t,x,(5); xs(5))

=08 [ @)t 0 @)@t~ () = (@) o
+
with
1

= m and Ty(l’) = |1‘ — y|

ay(z)

Using the abbreviations

1

" [xs(s) — afle — xo(5)]

A(va) L= 16772axs(s)(x)axf(s)(x)
and

P(s,2) : = Tuy(5) (T) + Ty () () = [Xs(8) — 2] + |2 — x2(s)],
we define the operator

Fn(s,t) := / n(x)A(s,z)0(t — p(s,z))dz, (s,t) € Sp x (2a, 00).
&
Next, we integrate (2.4) two times with respect to t to get

Fn(s,t) = y(s,t)
with right-hand side

(2.5) y(s,t) = —167r2/0 (t—7r)(u—u)(r,x:(s);x5(s)) dr,

which is known from the measurements and from the reference solution (2.3).
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Note that F'is a generalized Radon transform which integrates over open half ellipsoids
E(s,t) ={z e R} |p(s,x) =t} = {z € R} | [xs(s) — | + |2 — x:(s)| =t} .

We refer to [21, Def. 2.1] for the definition of generalized Radon transforms. More details are
given in [10, sect. 3.1]. Moreover, F is a Fourier integral operator (see [14] for the definition),
which can be written as

(2.6) Ff(st) = f( )o(t — (s, 2))A(s, ) dx

/ F(2)A(s, )96 d d
Rd

for f € Cgo(Ri) The functions (s, t,z,w) +— %A(s, z) for (s,t,,w) € Spx (2a,00) x R3 x R
and (s,t,z,w) — w(t — (s, z)) are the symbol and the phase of F', respectively.

3. Imaging. To the best of our knowledge there is no formula known to reconstruct n
directly from the elliptic means ¢ = F'n in case a > 0. Therefore, we define the imaging
operator

(3.1) A = —AJ3F*)F,

which was introduced in [22] for o = 0 based on an inversion formula of [1]. So, instead of n we
are able to reconstruct at least An from g. Here, A is the Laplace operator, J3 the derivative
in third space direction (downward), and 1 is a function in C2°(Sy x (2a,00)). Further, F*
is dual to F' and given by

(3.2) Frg(e) = /S y )g(s 8)5(t — (s, 1)) A(s, 2) (s, 1)

/ / (5, 8) A(s, 2)e =22 (5. 1) du
So %X (2a,00)

for g € C°(Sp x (2a,00)) and x € R3.. The cutoff function 1 is needed to have a well-defined
composition of F* with F as F: &'(R3) — D'(Sy x (2a,00)) and F*: £'(Sy x (2a, 00)) —
D'(R3). Our A is a special case of imaging operators investigated in [12]. Moreover, it is
a pseudodifferential operator of order 1 [12, Thm. 3.3], which makes it useful for imaging
purposes as we explain in the following section.

3.1. Pseudodifferential operators and microlocal analysis. Our theoretical results are
based on the theory of pseudodifferential operators and their microlocal properties. The
following basic concepts can be found in many textbooks; we refer, e.g., to [20].

Definition 3.1 (pseudodifferential symbol). Let d € N and X C R? be open. A symbol of
order m € R is a function p = p(x,&) € C°(X x RY) satisfying, for every compact set K C X
and for each pair of multi-indices «, 8 there exists a constant C = C(K, a, 8) such that, for
all z € K and all € € RY,
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DgDlp(x, )| < C(1+ |y,

The set of symbols of order m on X is denoted by S™(X).

A symbol p € S™(X) is microlocally elliptic of order m at (xg,&) € X x RN{0} if there
are an open neighborhood U of g in X, a conic neighborhood V of & in R\{0}, and constants
M >0 and C > 0 such that

p(z, &)l = C(1+ €)™

forallx € U and all § € V with |{] > M.
Note that S™(X) is the standard symbol class of Hérmander [14, Def. 1.1.1].

Definition 3.2 (pseudodifferential operator). Let X C R? be open and m € R. Then, the
linear operator P: D(X) — £(X) is a pseudodifferential operator of order m if there is a
pseudodifferential symbol p of order m such that for all f € D(X),

P = [ [ 0o €)@ da s

The function p is called the full symbol of the operator P. The principal symbol o(P) of P
is the equivalence class of p in the quotient space S™(X)/S™ Y(X).
The operator P is microlocally elliptic if its symbol is microlocally elliptic.

Please note that the integral defining P in the above definition exists as an oscillatory
integral and represents a distribution in general [14, Chap. I]. Further, any pseudodifferential
operator can be extended as an operator mapping £'(X) continuously into D/(X). We tacitly
rely on this extension throughout the paper.

Definition 3.3. A function f: R* — C is rapidly decaying at infinity on the cone V C R¢
if for every N € N there is a constant C = C(N) > 0 such that

fQl<ca+igy™

foralle € V.

Definition 3.4. Let Q C R? be open. A distribution u € D'(Q) is microlocally C> at
(70, &) € Q x RA{0} if for some ¢ € C°(Q) with ¢(xg) # 0 and some conic neighborhood V

-

of & in RN{0}, the Fourier transform ¢u is rapidly decaying on V.

As an image carries most of its information content at singularities, we are interested in
characterizing their location and direction. Those are collected in the wave front set of a
distribution u:

(3.3) WF (u) = {(z,€) € Q x R?\ {0} | u is not microlocally C*° at (z,£)}.

Theorem 3.5 (pseudolocal property). Let u € E'(Q). If P is a pseudodifferential operator,
it holds that

WF(Pu) C WF(u).
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If P is microlocally elliptic at (zo,&) € Q x R?, then
(x0,&0) € WF(u) if and only if (z0,&) € WF(Pu).
If P is microlocally elliptic at every (x,&) € Q x RY, then we even have
WF(Pu) = WF(u).

Next, we refine the concept of wave front sets of a distribution by a microlocalization of
H? in lieu of C*®. A distribution v € D'(Q) is microlocally H™ at (z9,&) € Q x R\ {0} if for
some neighborhood U of xg in Q and some conic neighborhood V' of &y in R\ {0} we have

| e+ 1€Ry ds < o0
for all ¢ € C°(U). Now, for r € R, the H"-wave front set of u is
WE" (1) = {(z,€) € Q x R\ {0} | u is not microlocally H" at (x,&)}.

Wave front sets and H"-wave front sets are connected via WF(u) = cl( Urer WF" (u)).

Theorem 3.6. Let P be a pseudodifferential operator of order m. If P is microlocally elliptic
at (zg, &), we have

(z0,&0) € WE" (u) if and only if (x0,&) € WE™ " (Pu)

forue &' () and r € R.
We now provide a classification of operators’ effects on singularities.

Definition 3.7. Let Q be an open subset of R and let P: £'(Q) — D'(Q) be continuous and
linear.

Letu € E'(Q) and (x,&) € WF(u). Then, (z,§) is a visible singularity of u with respect to
P (visible singularity) if (x,&) € WEF(Pu). On the other hand, (x,£) is an invisible singularity
of u with respect to P (invisible singularity) if (z,§) ¢ WF(Pu).

If (y,n) € RY x RY\ {0}, then (y,n) is a (nonsmooth) artifact in Pu if (y,n) € WF(Pu)
but () ¢ WF(u).

Let P be a pseudodifferential operator. By Theorem 3.5, P generates no artifacts and, if
P is microlocally elliptic at any pair in § x R%, then all singularities are visible.

This description of singularities and artifacts is well-defined theoretically but there can be
issues applying it in practice. For example, visible singularities might be in WF(Pu) but the
values of the reconstruction at the singularity could be so close to those in the surrounding
area that they are effectively not visible in the reconstruction Pu.

In practice, regularization can smooth reconstructions, so nonsmooth artifacts can be
smoothed; that is, they are C°°. Nevertheless, they can still appear as visual artifacts (e.g.,
additional streaks) in the reconstruction.
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3.2. The symbols of F*1F and A. To determine the top order symbol of A, we inves-
tigate the normal operator

(3.4) (F*an

/Rs / Rﬂ’ 5,0(s,2)) A(s, ) A(s, y)n(y)e D=2 ds dw dy

for n € C°(R3) and z € R3.
Theorem 3.8. The wave front set WF(F*¢Fu) satisfies

WE(F*pFu) C {(z,&2,€) € (RL x R\ {0}) x (RL x R*\ {0}) |
there exists s € Sy and w # 0 such that & = wVzp(s,z)} o WF(u)

foru € El(Ri). Here, the operation o denotes the usual composition of general relations.

One proves Theorem 3.8 analogously to Theorem 4 of [15]. A detailed proof can be found
in [10, Thm. 3.15].

In [12, Thm. 3.5] we proved explicit representations of the top order symbol for a class
of operators that includes A, and thus Theorem 3.9 below is a special case. However, the
proof is rather technical and requires deep knowledge of measure theory and differential ge-
ometry. Here, we lay out a different path, which is confined to the theory of pseudodifferential
operators. We adapt and extend ideas of [2].

For technical reasons we need to modify F*i$F as well as A: for § > 0 define (5 €
C>(R3,R) by

Gly)=1 ifys>20 and Gy) =0 ifyz < 0.
Then, we set
F*Fs = F*yFC and  Ag = AC; = —Ad3F* F.
In view of (3.4) we have
(3.5) (F*z/JF(;n
=5 / [ 05,005,045, 2) A, 1) Gs ()00 s dy,

Since n is compactly supported in Ri, we have Agn = An for ¢ sufficiently small. Of course,
the size of § depends on n.
We are now ready to present the top order symbol As.

Theorem 3.9. The operator As is a sum of a pseudodifferential operator and a smoothing
opemtor.]

! A smoothing operator maps all compactly supported distributions to C'*° functions. For the study of
singularities, those operators can be neglected.
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Let (z,€) € RY x R® with & # 0. If there exist s € Sy and w € R\{0} such that
€ =wVzp(s,x), then

e 6 o e (8 p(5(2.). 2) Als(2, ). 2 w)
(3.6) (As)(x.€) = (@n)icsle] N .
Here,
Vgl (s(2. ). )T
(3.7) B(s(a,€),2) = det | [0, Vgl (5(2,6).2)T | .
OV a)(s(x, ). )T
o Gl(s(.8) — ol — % (s(.6)
38) (8 = (@ ) — 2] + 7 — a3z, O)])
and

1
Sl(xag) =T — T3,

&3

e (4 0) \/z<é%+f§ ) + 4028

T T3+ 4/x +1) +4a or 0,

sol, &) =4{ 0 2% ( g 3 3\ & g) Jores
T9 for & = 0.

If there is no s € Sy satisfying & = wVzp(s,z) for some w € R\{0}, we have o(As) = 0.
Moreover, for (z,£) € R3 x R3\ {0} with & = 0 the top order symbol o(As) vanishes as well.

Proof. We only sketch the main steps and refer to [10, Thm. 3.21] for the full proof.

First, we apply the transformation § = sw to the integral in (3.5). So, we obtain a
representation of F*iFs as a Fourier integral operator depending on x, y, and the phase
variable (5,w). Next, we employ the fact that an operator is smoothing if it vanishes in
a conic neighborhood of a certain set (see [24, Prop. 2.1b]). In case of F*¢Fjy this set is
characterized by the diagonal = y. Therefore, for an € > 0 we introduce the cutoff function
(. € C(R3 x R, R) with 0 < . < 1,

-~

CGlry)=1 iflz—y|l<e and Cz,y) =0 if [z —y| > 2.

Using this function, we split F*iFj into a sum of a smoothing operator and an operator
which, by [24, Thm. 19.2], turns out to be a pseudodifferential operator if ¢ is sufficiently
small. Then, we perform the transformation £ = wV (s, w, x), expand the phase function in
a Taylor polynomial about z, and introduce several different smooth cutoff functions to show
the required assumptions. Finally, we apply expansion (2.1.4) of [14]. [ |

3.3. Microlocal properties. To understand how our imaging operator A maps, empha-
sizes, or deemphasizes singularities, we now analyze its top order symbol.
We introduce the ratios

p::p@:? and ¢ = q(€)
3

_&
&3
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for £ € R3 with &3 # 0 and rewrite o(Ag) in terms of x, &3, p, and q. We find that

{(p’q)eRQ‘afeR?’, & # 0, pzé, q:&}:R?
&3 &3

Hence, we consider (p, ¢) € R? in the following. By Theorem 3.9 we get s(p, ¢, ) = (s1(p, ¢, z),
s2(p, ¢, x)) with

«
Sl(pv QVCC) =T — pr3 and 82(]), QVT) = T2 — .5[73@ <p7 q, l’g)

for (p,q) € R? and z € R3 where

Qp,q,\) =

%q(qQ—pQ—l—F\/(p2+q2+1)2+4)\2q2> for q # 0,
for ¢ = 0,

for (p,q) € R? and A > 0. Note that s is smooth on its domain of definition [10, Rem. 3.13].
Further,

2
Dy = Di(p q,7) = |z = xs(s(p, ¢, 7)) = 903\/(@ (p,qy a) + a> +p2+1

xs3 z3

and analogously

2
(0] (e}
D_:=D (p,q)= l‘s\/(@ <p,q, ) - ) +p2+1
I3 I3

With these abbreviations we have

A(p, g, z) == A(s(p,q, %), ) . !

B DJr(paq’$) D*(p7Q7$)

and

Y(p,q,x) == Y(s(p,q, ), 0(s(p, ¢, ), ) = Dy (p, q, ) + D_(p, q, ).
By (3.8),

(U(p q, 5):§£D+(p7Q7x)+D—(p7Q7x)
P S3 T3 D+(p7Q7‘r)D—(p7Q7x) .

From (3.7) we obtain
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yielding

B(p,q,z) = x ! + ! 1 + :
b,q, 3 D+(p, q,x) D_(p,q7x) D%_(p, q, $> DZ_(p; %x)

-
(pxs, 730 (p,q, %3) + a,xs) (pws,:st (p,q, x%) - a,ms)
1+ :
D+<p7Q7$) D—(p7Q7m)

T

In our numerical examples of section 5 below we will only consider functions n with supports
a fixed distance away from the surface. This condition is also satisfied in geophysical appli-
cations. As a consequence, we need not and we do not distinguish any longer between the
operators A and Ajy.

Proposition 3.10. Let (y,n) € R3 x R3\{0} and define

Cly) == {€ € R?|& # 0,9(s(y,6). ¢(s(y,€). ) > 0}
If n € C(y), then A is microlocally elliptic of order 1 at (y,n).

Further, A is smoothing at (z,€) € R3 x R3\ {0} with £ ¢ C(x).

Proposition 3.10 can be used to determine visible and invisible singularities with respect
to A. Let u € &'(R%) with (y,n) € WF(u). If n € C(y), then (y,n) is a visible singularity
of w with respect to A, and if n ¢ C(z), then (y,n) will be an invisible singularity of v with
respect to A.

Proof of Proposition 3.10. Let n € C(y). We define m := n1/n3 and @ := ny/n3, which is
possible as 13 is nonzero. Further, the cutoff function # in the definition of the set C(y) is
continuous. Thus, there exist § > 0 and r > 0 such that we have

B, (y) CR®  and #(p,q,x) >0

for p € Bs(m), q € Bs(m), and z € B,(y).
In case of n3 > 0, we define

Vs(n) := {()\m,)\n,)\)T€R3|m—5§m§m+5,ﬁ—6§n§ﬁ+5,)\20},
and for 13 < 0 we consider
Vs(n) :== {(—)\m,—)\n,—)\)TE]R3|m—5§m§m+5,ﬁ—5§n§ﬁ+5,)\20}.

In both cases, V5(n) is a conic neighborhood of 7.
In the beginning of this section we have seen that nearly all terms of the symbol depend
solely on the two ratios p and ¢. Hence, we introduce the set

M = {(p,q,x)GRXRXRi|

there exists £ € Vs(n)\{0}, p=¢&1/&3, ¢ =&2/&3 and z € Br(?/)}

:{(p,q,x)E]Rx]RxRi[m—égpgm—F&ﬁ—équﬁ—i—(S, andwEBr(y)},

which is obviously closed and bounded and thus a compact subset of R,
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According to Theorem 3.9 we have

e 212Dy (p, g, ) + D_(p, q,2))*Y(s(p, ¢, ), p(s(p, ¢, ), )73 1
o) = Dy (p,q,x)*D_(p,q,%)*|B(p, q, )| &2
for (p,q,z) € M and &3 such that & € Vi5(n)\{0} holds. The map
(2m)°(Dy(p,q, ) + D_(p, q,2))*Y(s(p, ¢, ), (s(p, ¢, ), x)) 3
D, (p,q,x)*D_(p,q,x)*|B(p, q,z)|

is continuous and attains its positive minimum on M:

G: M > (p,q,x) —

Nyy(o)r = " fiiféMG(p’ q,z) > 0.

Thus,

* * 1
o(F*F)(x,8)| = |o(F*YF)(p, q,2,83)] > Nvg(n),r?
3
and accordingly

o(A) (2, §)| = lo(=AdsF* ) F)(x, )| = Ny, [€]

for x € By(y) and & € Vs(n)\{0}. Finally,

o (A)(x, )| = Nv(;( r(L+[€]) = Conr(L+[€])

with Cs,y ., := %Nvé(n)’r for x € B,(y) and £ € Vs(n) with || > 1. Hence, A is microlocally
elliptic of order 1 at (y,n).
The second statement can be validated using Remark 3.3 of [22]. [ |

3.4. Modification of the reconstruction operator. Recall that we identify both A and
As. The following two results are immediate corollaries of Theorem 3.9.

Corollary 3.11. For zero offset, a = 0, we have that

1676 |calu (1 — S, w0 — L, 20€]22)
x3]§|

for x € R3 and & € R¥\{0} with & # 0. Further, o(A)(z,£) =0 for x € RY and £ € R*\{0}
with &3 = 0.

Proof. This follows in a straightforward way by evaluating the right-hand side of (3.6) for
a=0. |

a(A)(z,€) =

Remark 3.12. In this remark we comment on the effect of C(x) on the recoverable part
of the wave front set in case @ = 0. Assume that ¢ is positive on Sy x (t—,t4) where
S() = (al,bl) X (ag,bQ), a; < bl, as < bz, and 0 <t_ < t+. Then, f S C(x) if and only if

zi—bi _ & _ wi—a ie{1,2}; ;< i1+5£+1

x3 & xy 23 & & _2303'
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With increasing depth only elements (x, &) of the wave front set can be recovered with dom-
inant vertical directions £3. Also its horizontal position (z1,z2) (relative to Sy) affects the
recovery of (x,€) as an element of the wave front set: For a fixed depth, if (z1,z2) is far from
So, then the horizontal components & and & will need to be dominant (and ¢4 will need to
be sufficiently large, of course).

Analogous statements hold for a > 0 because the geometry of the ellipsoids that determine
visible singularities are similar to spheres.

Corollary 3.13. Let (z,&) € R3 x R® with & # 0. Then,

TM),6) ~ g for&#£0  and o(A)(wE)~ - for =0

where “~” denotes asymptotic equality for o — oo.

Proof. First, we start with & # 0. We separately consider the two cases that £ and &3
have the same and opposite signs. For each case we obtain limits of w, B, and a4 as a — oc.
From this we can deduce that a?c(A)(z,&) has a limit as well for & — oco. The necessary
calculations are lengthy and tedious; see [10, Cor. 3.29] for full details.

If & = 0, then a direct calculation yields

Ll Gt T g )

2 2
225 j—§+%+1<%+1>

which behaves like 1/a. [ ]

Hence, the ellipticity of A deteriorates for large a?/z3 and for large z3/c.
Based on the observations of the last two corollaries, we modify A introducing

(3.9) Anod,0 ' = —AMF*F,

(3.10) Amod,i i= —A03(M + o' IA)F*yF  for i € {1,2},

where M is the multiplication operator by x% Their top order symbols are
(Aot 0) (:€) = 230 (0)(,€), 0 (Amon ) (2,€) = (23 + a))o(A)(w,€)  for i € {1,2}.

The microlocal ellipticity of the latter two remains unaffected to some extent for large a?/x3
and large x3/a. Furthermore, Proposition 3.10 holds unchanged for the three new operators.

4. Approximate inverse and reconstruction kernels. Our numerical algorithm to com-
pute An from the data y given in (2.5) is based on the regularization scheme of approximate
inverse [16] because the structure of A and its modifications fit perfectly. Instead of An we
will recover a smoothed version An e where e is a mollifier, that is, a smooth approximation
of the Dirac distribution.

We work with the following family of mollifiers [11]: For p € R and v,k > 0 let

(= lz—pl?)*, |z —pl <. 3
epk(r) = Cyk r e R,
07 ’[E _p’ 2 v
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with the normalization constant

-1
I'(k+5/2)
vk (/Bw(p) (7 |z — p| ) 56) 73/242k+30 (k + 1)

The region of integration is B, (p), the ball of radius v about p. We have suppe, , » = B (p)
and [ps epyk(z)de = 1. Thus, e, — 0(- —p) for v — 0. Here, the parameter v is a
scaling/regularization parameter and k& determines the smoothness of e, , x.

We approximate An at p for n € & (Ri) now by

(4.1) Lyn(p) == (An,ep k) = (—AO3F YFn, e, i) = (VFn, FO3Aep 1),

where (-, -) denotes the usual extension of the L? inner product.
Next, we replace F'n by the data y stated in (2.5) and obtain

Lonle) = o ryn) = [ sy 0) (. ) s )

So %X (2a,00)

with the reconstruction kernel
Tp,’y,k = FaSAep’77k7

which is independent of the data and needs to be precomputed. In what follows, let mg be
the monomial function mz(z) = z3 for z € R3.

Lemma 4.1. Lety >0 and k > 3. With €y~ 1 = €p~1/Cr i we have
T’p7%k(s, t) = 4k(k - 1)Cw,k (5F(m3( - p) gp,’y,ka)
= 2(k = 2)F (m3(- = p) | - —p* Epps) ) (5:1)

for (s,t) € Sp x (2a,00).
Proof. A straightforward calculation yields first

~ k—1 k—2
Aey  k(x) = —6k (72 — |z — p[Z) +4k(k —1)|x — p\Q (72 — |z - p\Q) XB-Y(p)(x)

and then
03Aep k(1) = (QOk(k‘ —1)(x3 — p3) (72 — |z — ]o|2

= 8k(k = 1)(k = 2)(w5 — pa)le — b2 (42 = |2 = 1) ) x, (@),

)k—2

The assertion follows from e, , 1. = C, r€p k- [ |

Analogously, we define the approximations

(42) L'y,mod,in(p) = <Amod,in; ep,'y,k> = <an7 rp,'y,k,mod,i) for i € {Oa 1, 2}
with the corresponding kernels

Tprkmod,0 = FMO3Aep . and 7). kmod,i := F(M + ol Id)0sAep i, @ € {1,2}.
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Corollary 4.2. Let v > 0, k > 3, and €, be as in Lemma 4.1. Then, for (s,t) €
So X (2a, 00),

Pprkmodo(5:1) = 4k(k = 1)Co i (5F (mi(- = p) m3 &0 )
—2(k = 2)F (my(- — p)wd |- —p* G s) ) (5.1)

and
Tpy.kmod,i($, 1) = Tpykmod,0(S: 1) + ' rp 4 k(s,t), i € {1,2}.

4.1. The elliptic Radon transform of a characteristic function supported in a ball. For
the computation of the reconstruction kernels according to the above lemma and corollary we
have to apply F' to functions which are supported in a ball B,(P) for P = (p1,p2,p3) € Ri
and 0 < r < ps.

Let n € L?(R3) with supp(n) C B,(P). Using the ellipsoids of the Radon transform, this
situation is illustrated in Figure 1, where n vanishes outside the ball B, (P).

To calculate F'n, we first shift the coordinate system (z1,x2,23) such that (sq,s2,0)" is
the new origin. Afterward, we rotate the system in such a way that P lies in the z/, — z%-plane
in the coordinate system (2, x5, 25). This rotation R is given by the following matrix:

cos(f) 0 —sin(p)
R= 0 1 0 , B =arctan((p1 — s1)/p3).
sin(8) 0 cos(B)

Using the notation s := (5,0) " = (s1,52,0)", we calculate

Fn(s,t) = /Rgn(x)A(s,x)é(t —¢(s,x))dx = /R3n(x)A(s,x)xBT(p) (2)o(t — (s, z))dz

- /R n(R~z + ) A((0,0), )X, (¢ (1)3(t — 9((0,0), 7)) dz,

Figure 1. The given situation for several travel times t, respectively. Each travel time t is associated with
one open half ellipsoid for fized s € So.
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Figure 2. The shift into the coordinate system (x7,x3,x3), and afterward, the rotation into the new
coordinate system (xh,xh,x%) such that (s1,s2,0)" is the origin and P lies in the xh-a%-plane. Here, the point
Q is given by (0,p5,0)7.

where
T

D3

0,p2 — s2, —
cos (arctan (plstl))

P'= (0,]7/2,])%) = R(P - S) =

The last component pj of P’ is calculated with the help of two trigonometric relations in a
suitable right triangle in the af, = p)-plane; see Figure 2. Next, we introduce the prolate
spheroidal coordinates in R3, which are realized by = = (s, t, ¢, ) with components

1
1 =51+ 4/ Zt2 — a?sin(¢) cos(),

(4.3) To = 53+ %t cos(¢),

x3 =4/ itz — o2 sin(¢) sin(h),

for t > 2a, ¢ € (0,m), and € € (0,27). These coordinates fit to prolate spheroids, i.e., ro-
tational ellipsoids with two half axes having the same length and a longer third one, which
is the rotational axis. Such ellipsoids are just given by t = ¢(s,x) for z € R3. The variable
t is the travel time, the angle 6 is the rotational angle, and the foci are (s1,s2 — ,0)T and
(51,82 + ,0)". The different angles of @ are arranged concentrically, whereas the angles ¢
are located in hyperbolic orbits.

Since we consider the situation in the new coordinate system (2, 24, 25), we set 51 = s9 = 0
and so the ellipsoids we consider have the two foci (0, —a, 0) " and (0, , 0)". Hence, we write
x =x(0,t,¢,0) = z(t, $,0) and obtain

1 emax ¢(9)max 1
a0 Ful =g [ [ R, 0.0) 4 9, 0,000 sin(6) vl

min
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where 0, and 0,.x are defined by
gmin/max = amin/max(t) = min/max{9 € [07 27T) ‘ 1:(t7 b, 9) € BT(P,)v ¢ € [O)ﬂ-)}
for fixed t € (2a, 00). Further, ¢(6)min and ¢(0)max are given by

¢(0)min/max - ¢(9, t)min/max = min/max{¢ S [07 77) |1‘(t, ¢a 9) S BT(P/)}

for fixed 0 € (Omin, Omax) and t € (2a, 00).

Before we go into further details regarding these four angles, we limit the interval (2¢, 00)
of the travel time t. In the new coordinate system the considered ellipsoids have the two foci
(0, —,0) " and (0,c,0)". As in the original situation illustrated in Figure 1, these ellipsoids
intersect B, (P) only for travel times ¢ in a bounded interval. The minimal and maximal values
are

Tyi := min (y(o, —a,0)T =yl + |y — (0, a, O)T\)
yeC

and

Tmax = max (’(Oa —Q, O)T - y| + ‘y - (0,0é, O)T‘) ’
yeC

where C' is the circle which is the intersection of the z/, — z5-plane with the boundary of the
ball B,.(P’"). So, we have Fn(s,t) =0 for s € Sy and t < Tyin or ¢ > Tinax. All further details
can be found in [10, sect. 4.2.4].

Now, we sketch how to obtain the four angles limiting the integrals. In case of Oy, and
Omax We consider the plane zo = p),. We are thus in a two-dimensional setting, in which @iy
and Opnax are the two angles of 6 in prolate spheroidal coordinates enclosing the associated
cross section of the ball B,(P’). An illustration is given in the left image of Figure 3. For
the calculation of O and Oy We determine the angle ¥, marked in Figure 3 and use the
symmetry with respect to 6 = 7/2; see [10, sect. 4.2.3] for exhaustive explanations.

emin
o=m
(b(e)max
o=1 / ’
)
0= 'L/ P’ >
3\ . Q

¢(9)min

Ounat %] =0

Figure 3. Left: An illustration of Omin and Omax in the xb = ph-plane. Right: The angles &(0)min and
&(0)max marked in the x = 0-plane from a bird’s eye view.
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To get d(0)min and ¢(0)max, we fix 0 € [Omin, Omax]- The angles ¢(6)min and ¢(0)max are
given by the minimal and maximal angles of ¢ corresponding to the points on 9B, (P’) for
fixed 0 € (Ommin, Omax) as illustrated in the right image of Figure 3. Thus, we have to solve the
equation

= |P" —a(t,¢(0),0)|

for ¢() in our new coordinate system (z, x5, z%). By the definition of the prolate spheroidal
coordinates this equation has exactly two solutions ¢() in [0,7). Next, we insert these
coordinates setting s; = s2 = 0 in (4.3) and get, using the substitution z = cos(¢(6)), the
following identity:

1
2= () + () + J1° — 0P (1= 2) = phtz — phV/12 — 4021 — 22sin(0).

Solving this equation and resubstitution yield two solutions z; and 2z in [—1,1]. Without loss

of generality, we obtain

?(0)min = arccos(z1) and  @(f)max = arccos(zz)

with ¢(0)min < @(0)max- In our implementation we obtain z; and z, approximately by New-
ton’s method.

4.2. The elliptic Radon transform of the characteristic function of a half space. For our
numerical experiments in the next section we provide F'n where n is the characteristic function
of a half space, i.e., n = x {weRS |z5>1} for some [ > 0. We directly work in prolate spheroidal

coordinates (4.3), this time with arbitrary si,ss and restricted to R3, ie., t € (2a,00),
¢ €[0,m), and 0 € [0, 7). Hence, by z = z(s,t,¢,0),

/'max/ Jmax (s,t,¢,0))sin(¢) dp do

mln e)mln
for (s,t) € Sp x (2ar, 00) with
emin/max = emin/max(‘S?t) = min/max{ﬁ € [077T) |.’L’(S,t, ®, 0) € supp(n), ¢ € [Oaﬂ—)}

and

$(0)min / max = G(0)min /max (5, 1) = min /max{¢ € [0,7) [£(s,t,,0) € supp(n)}.

We have n(z(s,t,¢,0)) = 1 for 6 € (Omin, Imax) and ¢(0) € (¢(0)min, P(0)max). Otherwise,
n(x(s,t,¢,0)) = 0. Therefore,

Omax d’(e max
(4.5) / / sin(¢)dedf, (s,t) € Sp x (2a,0).

mln mln

We obtain the four required angles from the points of intersection marked with a cross in
Figure 4. For Oy, and Oy, we consider the plane zo = so where ¢ = 7/2 according to (4.3).

As x3 = [ for the points in Figure 4, we need to solve [ = xz3 = \/%tz — a?sin(0) for 0 yielding
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(s1+ /32 +a2,0)" (s1,0)7 (51— /22 +0a2,0)7 (2007 (52,0)7 (s2— 36,07

0=0 . » 0= ¢=0 - * o=

\ | \
\ / \ /
\ / \ /

oy s
SN / S SN S

Figure 4. Left: The minimal and mazimal possible angles for 0 illustrated in the x2 = sa-plane. Right: In
the 6 = 0" -plane we consider the angles (0" )min and ¢(0*)max, which are determined by the coordinates of the
two marked points.

l
Oin = arcsin | ———— and  Opax = ™ — Omin-
%tZ — a2
Similar reasoning leads to ¢(8)min and ¢(0)max for 6* € [Oiin, Omax]- We consider the plane 6 =
0* illustrated on the right in Figure 4. Here, the equation is I = /112 — a2 sin(¢(6*)) sin(6*),
which is solved by

l

\/ %tZ — a?sin(6%)

If the travel time ¢ is too small, then the ellipsoids do not intersect the half space. The
limiting travel time is given by Tinin = ming, cgs | o(s,2)=t} (|Xs(8) — 2| + [z —%:(5)]). Obviously,
the minimum is attained at x = (s1, s2,1) with minimal value Ty, = 2va? +12. Thus,
Fn(s,t) =0 for t < T,y and s € Sp.

d(0" )min = arcsin

and (z)(e*)max =T = ¢(9*)min~

4.3. Computation of the reconstruction kernels. By the representation of r, - 3 in Lemma
4.1 and the results of section 4.1 we have

Tpy,3(8,t)
=Cy35 / / 120’72([R711‘(t» $,0) + (s1,52,0) |3 —p3>

—168([ 2(t,6,0) + (51,52,0) Iy = ps )[R0 (t, 6,60) + (s1,52,0)" — pl?)
X X, ) (.6, 0))sin(@) dg df

gmax 9)max
= 513 / / (120”2(‘ sin(3)cos(0) + cos(8)sin(8)) 17 — ?sin(¢)
(0 min

mln

— 120~*p3 sin(¢)

— 168(— sin(3) cos(8) + cos(3) sin()) itQ — 2| z(t, ¢,0) — p'|? sin?(¢)

+168p3\w(t,¢,9)—p'IQSin(@)xB H (z(t, ¢, 0)) dpdo

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/17/20 to 130.64.11.161. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

2268 GRATHWOHL, KUNSTMANN, QUINTO, AND RIEDER

for (s,t) € So X (Tmin, Tmax)- Further,

(4.6) x(t, ¢,0) — p'|> = (a + bsin(¢))® + (¢ + dcos(¢))? + (e + [ sin(¢))?,
where
1
a=—p; =0, b= Zt2 — a2 cos(), c= —ph=—ps+ 9,
1 P3 /1 .
d= =t, e=—ph=— , =4/ =t2 — a?sin(h),
2 Ps cos (arctan (m)) / 4 ()
3

for t € (Thmin, Tmax), ¢ € [0,7), and 6 € [0,27). Hence, to compute numerical values for 7, - 3,
we need the antiderivatives of the following functions:

¢ — sin?(¢), ¢ (a+ bsin(p))? + (¢ + dcos(¢))? + (e + fsin(¢))? sin?(¢),
¢ — sin(¢), ¢ = (a+bsin(9))? + (¢ + dcos(9))? + (e + fsin(¢))?sin(¢).

As these four functions are trigonometric polynomials in ¢, their antiderivatives exist in closed
form. We found analytic expressions by a computer algebra system and imported them in our
code.

Analogously,

Tp,v,3,mod,0 (S, t)

515 1 / - / P0m (1902 (— sin(8) cos(8) + cos(8) sin(8)?
= = ’7 — S1n COSs COS Sin
647“"}/9 2 emin d)(@)

3
X ( iﬁ —a2> sin®(¢)

2
— 120~*p3(— sin(B) cos(f) + cos(3) sin(#))? ( th - a2> sin®(¢)

min

4

3
— 168(—sin(B) cos(#) + cos(B) sin(#))? ( itQ - a2> |lz(t, ¢,0) — p'|*sin(¢)

1

2
+ 168ps3(— sin(3) cos(#) 4 cos(B) sin(6))? < Zt2 - a2> z(t, ¢,0) — p'|? sin3(¢)>

X XB, () ((t, $,0)) dp do.
In view of (4.6) we now need the antiderivatives of

¢ — sin*(¢), ¢ — (a+bsin(p))? + (¢ + dcos(¢))? + (e + fsin(¢p))?sin(¢),
¢ — sin®(¢), ¢ (a+bsin(p))? + (¢ + dcos(4))? + (e + fsin(¢p))?sin(¢),

which we obtain analytically as before.
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Knowing 7y, 3 and 7}, 4 3 mod,0 means knowing 7, 4 k.mod,1 and 7p 4 k. mod,2 as well due to
Corollary 4.2. All in all, we have the explicit expressions of the different reconstruction
kernels at a point (s,t) € Sy X (2a, 00) depending on the limiting angles Oyin, Omax; Pmin(6),
and @max(0) and the travel times Tryin and Tiax.

5. Numerical experiments. For the numerical examples we have to evaluate integrals of
the form

Lyn(p) = Wy, Fp,’y,3> = /S @ ) ¢(8¢ t)y(87 t)?p,%3(87 t) d(87 t)

for p € R‘i where y is the given data and 7,,3 represents one of the kernels belonging
to the four imaging operators A, Amoai, ¢ € {0,1,2}. Further, the cutoff function ¢ €
C2(Sp x (2ar,0)) is taken from [22, sect. 5]: For S > 0 and T > T > 0 we set

(5.1) Y(s,t) = p(s1,52,t) = W1(s1)P1(s2)P2(t),
where
1 for |s| < S,
Uy (s) =< h(]s],S) for S<ls|<S+1,
0 for S+1<]s|,
and
(0 for t<T,
g(t,T) for T <t<2T,
Uy(t) =<1 for 2T <t <T,
h(t,T) for T<t<T+1,
L0 for T+1<t.
Using

f(r) = {exp(—rl,) for 0<m,

0 for r <0,

Pk - 1) _ [T+1-1)
T) = — h T)= — — .
9t.1) fE-D+F2- %) 1) JT+1-t)+f(t-T-3)
Then,
supp(v)) € [-S — 1,8+ 1] x [T, T +1] and ¢|[7§’§]X[2Lﬂ =1

In our numerical experiments we assume to know the data y at the uniformly distributed
values (sgl),séj),t(k)) € [~Smax; Smax)® X [tmin, tmax), 55 € {1,... N}, k € {1,..., N;}, where
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Smax > 0, tmax > tmin > 2a, and Ny, Ny € N. The respective step sizes are hy = 28max/Ns
and hy = (tmax — tmin)/Ne. Further, S = spmax — 1, T = timin, and T = tyax — 1.

Since the kernel vanishes for travel times below T, = min(sgi),sgj),% p) and above

Trnax = max(sgi), sgj),%p) (see section 4.1), we can restrict the t()’s to the interval

Tii(v,p) == (Tmin <3§i),sgj),7) s Tnax (sgi), séj),’y)) .

Thus, we approximate Ev straightforwardly by the quadrature rule

N
(5.2) Q Lyn(p) := hth? Z Z ¥ <s§i)7 sgj),t(’“)) y (39, ng) t(k)>

LI=L R ET, ;(v,p)

In order not to overload the notation, we refrain from specifying all parameters on which Q
depends. Below we will write Q L, and Q Ly mod,i, @ € {0,1,2}, to indicate which operator
(kernel) is actually used in (5.2); compare (4.1) and (4.2).

5.1. Reconstructions from consistent data. For the first set of numerical experiments
we choose the function n to be reconstructed as

N = XB,(0,0,4) — XB1(0,0,4) T XB1.5(3,0,5) T X{23>6.5}3

see Figure 5. We generate the data y numerically by evaluating F'n as we have demonstrated
in the previous section.

First, we discuss which features of n we expect to see in Zvn. This discussion applies
to all four instances of 57 as all underlying imaging operators enjoy the same order and the

-2 0 2 4 I
1 1 1 1 N
t t t t >
4 N
4 \
’ N X
" " \ (PR Ny
L N
41 ¢ ¢ A | .
\ \\ / 1! \
\\ ._ _7 o/ 3
N /" /
S s\ /
o \ 4
6 - N ’
______________ S——— e -
W
T3
.172—0

Figure 5. Cross section of the function n for xo = 0. On the darker blue area, where the two large circles
overlap, n is equal to 2 and on the light blue area to 1, and off the blue areas it is 0. The singularities marked
in red are not emphasized independent of the choice of So and 1. This is because the third component of their
normal directions is zero (see Theorem 3.9).
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same decisive microlocal properties. Indeed, let = {A, Apod,i | € {0,1,2}}. Then, A is
microlocally elliptic of order 1 at (z,,&) € RY x R¥\{0} if

£ €C(zs)={¢ € R |&5 # 0,9 (s(z4, ), p(s(4, ), 24)) > 0}
(see Proposition 3.10). Hence, by Theorem 3.6,

(5.3) (24,&) € WETV2(An)  for (z,,&) € WF(n) = WE2(n).

This means that if the third component of the normal &, at an element x, othhe singular

support of n does not vanish and if ¥)(x,) > 0, then the Sobolev smoothness of An(z,) drops

by one order in direction &,. More precisely, the smoothness decreases from H/2 to H1/2.
Recall that

(5.4) WEF(An) C WE(F*{Fn)

by the pseudolocal property of Theorem 3.5. Further, (x,£) € WF(F*yYFn) only if there
exists s € Sp and w # 0 such that £ = wV,p(s,x); see Theorem 3.8. Since the set Sy is
bounded in applications, there will be pairs (z, ) for which no s € Sy and w # 0 exist. These
singularities and those for which £ ¢ C(z) (see Proposition 3.10 and Remark 3.12) will not be
preserved; they are invisible singularities with respect to A (see Definition 3.7). For instance,
the red points in Figure 5 are invisible for any choice of Sy and .

In what follows, we provide the approximations Q Lyn, Q L med,0m, and Q Ly ynod,2n. To
be able to compare the results, we consider the same setting with two offsets & = 1 and a = 10.
Further, we choose tnin = 2a 4+ 0.1, tmax = tmin + 17, Smax = 10, and Ny = N; = 600. Thus,
the data are integral values of n over 216,000,000 ellipsoids. From this data the reconstruction
is evaluated in the cross section [—2.5,5] x {0} x [1.5, 7] at uniformly distributed points where
N;, = 135 and N,, = 99 values are used for the first and third coordinates, respectively.
Finally, we use the trapezoidal rule to numerically compute the integrals with respect to # in
(4.4) and (4.5) and also in the reconstruction kernels (section 4.3). The numbers of uniformly
distributed integration nodes are 201 for (4.4), 16 for (4.5), and 50 for the kernels.

Figure 6 displays the reconstructions with respect to A from (3.10). We recover all pre-
dicted visible singularities, i.e., all singularities are imaged except for the ones at the outermost
points of the balls. Nevertheless, in case of a = 1 singularities closer to the surface are more
emphasized than the ones further away. For a = 10 we make a different observation: the
reconstructed intensity/contrast® of the singularities is nearly independent of the distance to
the surface.

We defined the first modified reconstruction operator Apeq, in (3.9) to compensate the
behavior of the top order symbol of A for small values of & compared to x3. The results are in
Figure 7. In comparison to the reconstructions in Figure 6 the intensity of the singularities for
«a = 1 is significantly more uniform and more independent of their x3-coordinate. However, in
case of & = 10 the contrast of the reconstructed singularities is less uniform than with A. It
now increases with depth. These observations are in complete agreement with our theoretical
considerations leading to the definition of Apeq,0 (see section 3.4).

2By the intensity or contrast of the reconstruction of a singularity (z,¢) € WF(n) we understand the
number max{| Q Lyn(z) — Q Lyn(p)| : p is a pixel in B,(z)} where L. denotes the imaging operator which is
actually used. For an adequate choice of v see Remark 5.2.
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a=1

€3

€3
D ot =~ w [\

N

1

Figure 6. Cross sections Q Lyn(-,0,-) for A from (3.1). They differ in the offset o and the regularization
parameter vy, which depends on the offset. In case of a =1 we have v = 0.2, for a = 10 it is v = 0.3.

To achieve further improvements in case « is large compared to x3, we introduced the
operators Apyod,1 and Apod 2; see (3.10). The approximation Q Ly meq,1n differs only slightly
from those obtained by using Q L. mod,0n, thus they are not included here; we refer to [10,
Fig. 5.18]. Figure 8 displays cross sections of Q L moa,2n. As expected, adding the operator
a?A to Anod,0 guarantees that the reconstructed contrast of singularities is independent of
their depth coordinates, especially for a?/z3 large (image on the bottom of Figure 8).

To give an impression on the three-dimensional nature of our setting, we added two further
cross sections with xo-coordinates different from 0. In Figure 9 we present Q L~ mod, 07+, Where
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a=1

€3

—30

—100

€3
ot =~ w [N}

=]

Figure 7. Cross sections Q Ly mod,0n(+,0,) for Amoda,o from (3.9). Top: o = 1 and v = 0.2; bottom:
a =10 and v = 0.3.

Ns = M — X{az3>6.5), that is, n. only consists of the characteristic functions of the balls. All
parameters entering QQ are chosen similarly as before.

Remark 5.1. In each of Figures 6-9, we see artifact curves that seem to come tangentially
out of the location of the invisible singularities (red dots in Figure 5). A rough graph of
the artifact curves shows that they seem to be along integration surfaces E(s,t) for (s,t) in
the boundary of the data set and for which the surface E(s,t) is tangent to a boundary of
the object. Limited data artifacts occur for the spherical transform along spheres tangent to
object singularities and in the boundary of the data set [9] (see also [18]). Although those
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Figure 8. Cross section Q Ly moa,2(+,0,+) for Amoa,2 from (3.10). Top: a =1 and vy = 0.2; bottom: a =10
and v = 0.3.

results are for a different transform, they do suggest that some artifacts in Figures 6-9 are
limited data artifacts.

One observes a second type of artifact, too, that is not tangent to a boundary of the object.
If one compares the top image in Figures 6—8 with the top image of Figure 9 (that does not
include a half space starting at x3 = 6.5), one sees clearly that there are artifacts that seem to
be independent of the disks and occur or are emphasized only when the half space is included.
This was confirmed by reconstructions including just the half space and just the balls, and
this could be the type of artifact coined “object-independent” in [5, Thm. 5.2]. In addition,
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Figure 9. Cross sections Q Lo.2,mod,0mx(*, D2, *) for Amod,2 from (3.10) with o = 1. Top: pa = 0.75; bottom:
p2 = 1.

some streaks and other image degradation could occur for numerical reasons. Some of these
numerical effects are described and named “endpoint artifacts” in [4, sect. 5.7]. However,
they have not been analyzed rigorously, microlocally, and such analysis will appear in future
work.

Finally, we point out that these artifacts can be suppressed by using a cutoff in s and ¢
which gradually decreases to zero. This is described for the spherical transform in [9] and
similar comments apply here.
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(data,random S [175, 225]

2 .,

&

Figure 10. Cross section Q Lo.an(-,0,-) with A from (3.1). The offset of the data differs randomly in
[1.75,2.25] for each source/receiver pair, whereas the offset in Q is identically 2.

In the next experiment we simulate a situation which very likely occurs in field measure-
ments: the offset is not known exactly and differs slightly from one source/receiver pair to
the next. In generating the data we therefore draw a different « for each source/receiver pair
randomly and uniformly distributed from [1.75,2.25]. The reconstruction, however, is done
with the mean offset 2, that is, we set a = 2 in the reconstruction kernel used in Q (for the
values of the other parameters of Q) see [10, sect. 5.3.2]). The result in Figure 10 is a bit blurry
but the singular support is still clearly recognizable.

Remark 5.2. So far we have not commented on how we selected the scaling/regularization
parameter 7, which depends on the discretization step sizes in Q, number of measurements,
noise level, and offset. Finding a useful v is a delicate task indeed. Our explanations and
ideas from [11, Rem. 4.1] apply correspondingly.

5.2. Reconstructions using data from the wave equation. In the previous experiments
we generated data with the same numerical scheme used to evaluate the reconstruction kernels.
Here we provide data by solving the acoustic wave equation numerically. Thus, we avoid
committing an inverse crime and additionally incorporate the modeling/linearization error;
see section 2.

For generating the data y as in (2.5) we solve the acoustic wave equations (2.1) and (2.3) by
the PySIT software [13] in the cuboid [0.1,0.8] x [0.1,1.0] x [0.1, 0.8] with absorbing boundary
conditions using perfectly matched layers. The discretization step size is 0.01 and on top of
the cuboid 13 x 35 source and receiver pairs are positioned at xs(s) = (s1,52 — a,0.1)" and
x:(8) = (51,82 + @,0.1) " with sy € {0.15+0.05i |i € {0,...,12}}, s2 € {0.125 + 0.025; | j €
{0,...,35}}, and @ = 0.025. For the travel time ¢ we take 1709 points between ¢, = 0.1 and
tmax = 2 into account. Further, the speed of sound v in this experiment is
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0.55
0.5
oe)
8
0.45
Figure 11. An illustration of the speed of sound v.
(@) 1 if 3 < 0.1sin(27x2) cos(2wz1) + 0.5,
v\r) =
1.5 if 3 > 0.1sin(2722) cos(2wx1) 4 0.5,

which simulates two different materials; see Figure 11. The temporal impulse at time ¢ = 0,
that is, the source is modeled by a scaled and truncated Gaussian.

Figure 12 shows on the left four cross sections of the interface we want to reconstruct.
All singularities that appear have a nonvanishing third component in their normal directions,
so we expect to see them all in the corresponding reconstructions on the right, which are
obtained from (5.2) using the kernel of Ag g7 with A from (3.1) (the used cutoff function is an
adapted version of (5.1)).

In all reconstructed cross sections, the singular support, which is the boundary between
the two different material layers, is reconstructed as a relatively thick curve. This is due to a
lack of data, more precisely, due to a large sampling rate for F'n which restricts from below
the smallest detail which is represented in the data; see, e.g., [17, Chap. III].

Further, the reconstructed singularities near to the left boundary of the cuboid are less
visible than the ones near to the right. The reason is that on the left the first receiver is
farther away from the boundary.

If we compare the two cross sections 1 = 0.1 and 1 = 0.5, we notice that all reconstructed
singularities in case of 1 = 0.5 have nearly the same intensity, whereas for 1 = 0.1 there are
big differences. This effect is due to location of the cross sections inside the cuboid. There
are more sources and receivers in the middle of the cuboid than at the boundary as there are
no pairs of sources and receivers in front of it, i.e., for z; < 0.1.

At last, we remark that in all four cross sections the contrast of the singularities at
the boundaries depends on how the interface hits the boundary. By Theorem 3.8 and the
consequences of Proposition 3.10 (see (5.3) and (5.4), for instance), the imaging operator
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Figure 12. Ground truth (left) and the corresponding reconstructions Q Lo.orn with A from (3.1).
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preserves a singularity of n only if there is an ellipse being integrated over which is tangent
to that singularity.

Remark 5.3. In [11, sect. 4.2] we included a numerical experiment, in two dimensions
though, which takes a further modeling error into account: the required reference solution
of the wave equation is not computed with the constant sound speed 1 but with a spatially
varying sound speed. This works remarkably well.
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