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Abstract
We present new joint reconstruction and regularization techniques inspired
by ideas in microlocal analysis and lambda tomography, for the simultaneous
reconstruction of the attenuation coefficient and electron density from x-ray
transmission (i.e., x-ray CT) and backscattered data (assumed to be primarily
Compton scattered). To demonstrate our theory and reconstruction methods,
we consider the ‘parallel line segment’ acquisition geometry of Webber J and
Miller E (2020 Inverse Problems 36 025007), which is motivated by system
architectures currently under development for airport security screening. We
first present a novel microlocal analysis of the parallel line geometry which
explains the nature of image artefacts when the attenuation coefficient and elec-
tron density are reconstructed separately. We next introduce a new joint recon-
struction scheme for low effective Z (atomic number) imaging (Z < 20) char-
acterized by a regularization strategy whose structure is derived from lambda
tomographyprinciples andmotivated directly by themicrolocal analytic results.
Finally we show the effectiveness of our method in combating noise and image
artefacts on simulated phantoms.

Keywords: joint reconstruction, lambda tomography,microlocal analysis, x-ray
CT, Compton scattering tomography
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1. Introduction

In this paper we introduce new joint reconstruction and regularization techniques based on
ideas in microlocal analysis and lambda tomography [13, 14] (see also [32] for related work).
We consider the simultaneous reconstruction of the attenuation coefficientμE and electron den-
sity ne from joint x-ray CT (transmission) and Compton scattered data, with particular focus
on the parallel line segment x-ray scanner displayed in figures 1 and 2. The acquisition geom-
etry in question is based on a new airport baggage scanner currently in development, and has
the ability to measure x-ray CT and Compton data simultaneously. The line segment geom-
etry was first considered in [54], where injectivity results are derived in Compton scattering
tomography (CST). We provide a stability analysis of the CST problem of [54] here, from a
microlocal perspective. The scanner depicted in figure 1 consists of a row of fixed, switched,
monochromatic fan beam sources (S), a row of detectors (DA) to measure the transmitted pho-
tons, and a second (slightly out of plane) row of detectors (DC) to measure Compton scatter.
The detectors are assumed to energy-resolved, a common assumption in CST [35, 41, 43, 51,
55], and the sources are fan-beam (in the plane) with opening angle π (so there is no restriction
due to cropped fan-beams).

The attenuation coefficient relates to the x-ray transmission data by the Beer–Lambert law,

log
(
I0
IA

)
=

∫
LμE dl [31, p 2] where IA is the photon intensity measured at the detector, I0 is

the initial source intensity and μE is the attenuation coefficient at energy E. Here L is a line
throughS andDA, with arcmeasure dl. Hence the transmission data determines a set of integrals
of μE over lines, and the problem of reconstructing μE is equivalent to inversion of the line
Radon transformwith limited data (e.g., [31, 33]). Note that we need not account for the energy
dependenceofμE in this case as the detectors are energy-resolved, and hence there are no issues
due to beam-hardening. See figure 1.

When the attenuation of the incoming and scattered rays is ignored, the Compton scattered
intensity in two-dimensions can be modelled as integrals of ne over toric sections [35, 51, 55]

IC =

∫
T
ne dt, (1.1)

where IC is the Compton scattered intensity measured at a point on DC. A toric section
T = C1 ∪ C2 is the union of two intersecting circles of the same radii (as displayed in figure 2),
and dt is the arc measure on T. The recovery of ne is equivalent to inversion of the toric section
Radon transform [34, 35, 51, 55]. See figure 2. See also [41, 43] for alternative reconstruc-
tion methods. We now discuss the approximationmade above to neglect the attenuative effects
from the CST model.When the attenuation effects are included, the inverse scattering problem
becomes nonlinear [42]. We choose to focus on the analysis of the idealised linear case here,
as this allows us to apply the well established theory on linear Fourier integral operators (FIO)
and microlocal analysis to derive expression for the image artefacts. Such analysis will likely
give valuable insight into the expected artefacts in the nonlinear case. The nonlinear models
and their inversion properties are left for future work.

The line and circular arcRadon transformswith full data, are known [30, 35] to have inverses
that are continuous in some range of Sobolev norms. Hence with adequate regularization we
can reconstruct an image free of artefacts. With limited data however [31, 51], the solution is
unstable and the imagewavefront set (see definition 2.2) is not recoveredstably in all directions.
We will see later in section 3 through simulation that such data limitations in the parallel line
geometry cause a blurring artefact over a cone in the reconstruction.Theremay also be nonlocal
artefacts specific to the geometry (as in [55]), which we shall discover later in section 3 in the
geometry of figure 2.
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Figure 1. Parallel line x-ray CT geometry. Here S, DC and DA denote the source and
detector rows. The length of the detector (and source) array is 2a. A cone CR ⊂ S1 is
highlighted in orange. We will refer to CR later for visualisation in section 4.

Figure 2. Parallel line CST geometry. S,DC andDA denote the source and detector rows.
The remaining labels are referenced in the main text. A cone CT ⊂ S1 is highlighted in
orange. Wewill refer toCT later for visualisation in section 3. Note that we have cropped
out part of the left side (left of O) of the scanner of figure 1 in this picture.

The main goal of this paper is to combine limited datasets in x-ray CT and CST with new
lambda tomography regularization techniques, to recover the image edges stably in all direc-
tions. We focus particularly on the geometry of figure 1. In lambda tomography the image
reconstruction is carried out by filtered backprojectionof the Radon projections,where the filter
is chosen to emphasize boundaries. This means that the jump singularities in the lambda recon-
struction have the same location and direction to those of the target function, but the smooth
parts are undetermined. A common choice of filter is a second derivative in the linear vari-
able [7, 43]. The application of the derivative filter emphasizes the singularities in the Radon
projections, and this is a key idea behind lambda tomography [13, 14, 52], and the microlocal
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view on lambda CT (e.g., [7, 39, 43]). The regularization penalty we propose aims to minimize
the difference ‖ dm

dsm R(μE − ne)‖L2(R×S1) for somem � 1, where R denotes the Radon line trans-
form. Therefore, with a full set of Radon projections, the lambda penalties enforce a similarity
in the locations and direction of the image singularities (edges) of μE and ne. Further dm

dsm R for
m � 1 is equivalent to taking m− 1/2 derivatives of the object (this operation is continuous
of positive order m− 1/2 in Sobolev scales), and hence its inverse is a smoothing operation,
which we expect to be of aid in combatting the measurement noise. In addition, the regular-
ized inverse problem we propose is linear (similarly to the Tikhonov regularized inverse [21, p
99]), which (among other benefits of linearity) allows for the fast application of iterative least
squares solvers in the solution.

The literature considers joint image reconstruction and regularization in for example, [1,
4, 6, 10–12, 19, 20, 40, 45–48, 50]. See also the special issue [3] for a more general review
of joint reconstruction techniques. In [12] the authors consider the joint reconstruction from
Positron emission tomography (PET) and magnetic resonance imaging (MRI) data and use a
parallel level set (PLS) prior for the joint regularization. The PLS approach (first introduced
in [10]) imposes soft constraints on the equality of the image gradient location and direction,
thus enforcing structural similarity in the image wavefront sets. This follows a similar intuition
to the ‘Nambu’ functionals of [48] and the ‘cross-gradient’ methods of [16, 17] in seismic
imaging, the latter of which specify hard constraints that the gradient cross products are zero
(i.e. parallel image gradients). The methods of [12] use linear and quadratic formulations of
PLS, denoted by linear PLS (LPLS) and quadratic PLS (QPLS). The LPLS method will be
a point of comparison with the proposed method. We choose to compare with LPLS as it is
shown to offer greater performance than QPLS in the experiments conducted in [12].

In [20] the authors consider a class of techniques in joint reconstruction and regularization,
including inversion through correspondencemapping,mutual information and joint total varia-
tion (JTV). In addition to LPLS, we will compare against JTV as the intuition of JTV is similar
to that of lambda regularization (and LPLS), in the sense that a structural similarity is enforced
in the image wavefronts. Similar to standard total variation (TV), which favours sparsity in the
(single) image gradient, the JTV penalties (first introduced in [45] for colour imaging) favour
sparsity in the joint gradient. Thus the image gradients are more likely to occur in the same
location and direction upon minimization of JTV. The JTV penalties also have generalizations
in colour imaging and vector-valued imaging [4].

In [54] the authors introduce a new toric section transform T in the geometry of figure 2.
Here explicit inversion formulae are derived, but the stability analysis is lacking. We aim to
address the stability of T in this work from a microlocal perspective. Through an analysis of
the canonical relations of T , we discover the existence of nonlocal artefacts in the inversion,
similarly to [55]. In [40] the joint reconstruction of μE and ne is considered in a pencil beam
scanner geometry. Here gradient descent solvers are applied to nonlinear objectives, derived
from the physical models, and a weighted, iterative Tikhonov type penalty is applied. The
works of [6] improve the wavefront set recovery in limited angle CT using a partially learned,
hybrid reconstruction scheme, which adopts ideas in microlocal analysis and neural networks.
The fusion with Compton data is not considered however. In our work we assume an equality
in the wavefront sets of ne and μE (in a similar vein to [47]), and we investigate the microlocal
advantages of combining Compton and transmission data, as such an analysis is lacking in the
literature.

The remainder of this paper is organized as follows. In section 2, we recall some definitions
and theorems frommicrolocal analysis. In section 3 we present a microlocal analysis of T and
explain the image artefacts in the ne reconstruction. Here we prove our main theorem (theorem
3.2), where we show that the canonical relation C of T is 2–1. This implies the existence
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of nonlocal image artefacts in a reconstruction from toric section integral data. Further we
find explicit expressions for the nonlocal artefacts and simulate these by applying the normal
operations T ∗T to a delta function. In section 4 we consider the microlocal artefacts from
x-ray (transmission) data. This yields a limited dataset for the Radon transform, whereby we
have knowledge the line integrals for all L which intersect S and DA (see figure 1). We use the
results in [5] to describe the resulting artefacts in the x-ray CT reconstruction. In section 5, we
detail our joint reconstruction method for the simultaneous reconstruction of μE and ne. Later
in section 5.4 we present simulated reconstructions of μE and ne using the proposed methods
and compare against JTV [20] and LPLS [12] from the literature. We also give a comparison
to a separate reconstruction using TV.

2. Microlocal definitions

We next provide some notation and definitions. Let X and Y be open subsets of Rn. Let D(X)
be the space of smooth functions compactly supported on X with the standard topology and
let D′(X) denote its dual space, the vector space of distributions on X. Let E(X) be the space
of all smooth functions on X with the standard topology and let E′(X) denote its dual space,
the vector space of distributions with compact support contained in X. Finally, let S(Rn) be the
space of Schwartz functions, that are rapidly decreasing at ∞ along with all derivatives. See
[44] for more information.

Definition 2.1 ([25, definition 7.1.1]). For a function f in the Schwartz space S(Rn), we
define the Fourier transform and its inverse as

F f (ξ) =
∫
Rn
e−ix·ξ f (x) dx, F−1 f (x) = (2π)−n

∫
Rn
eix·ξ f (ξ) dξ. (2.1)

We use the standard multi-index notation: if α = (α1,α2, . . . , αn) ∈ {0, 1, 2, . . .}n is a
multi-index and f is a function on Rn, then

∂α f =

(
∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xn

)αn

f .

If f is a function of (y, x,σ) then ∂α
y f and ∂

α
σ f are defined similarly.

We identify cotangent spaces on Euclidean spaces with the underlying Euclidean spaces, so
we identify T∗(X) with X × R

n.

If φ is a function of (y, x,σ) ∈ Y × X × R
N then we define dyφ =

(
∂φ
∂y1

, ∂φ
∂y2

, . . . , ∂φ
∂yn

)
, and

dxφ and dσφ are defined similarly. We let dφ =
(
dyφ, dxφ, dσφ

)
.

The singularities of a function and the directions in which they occur are described by the
wavefront set [9, p 16]:

Definition 2.2. Let X an open subset ofRn and let f be a distribution inD′(X). Let (x0, ξ0) ∈
X × (Rn\ {0}). Then f is smooth at x0 in direction ξ0 if there exists a neighbourhoodU of x0
and V of ξ0 such that for every φ ∈ D(U) and N ∈ R there exists a constant CN such that for
all ξ ∈ V

|F (φ f )(λξ)| � CN(1+ |λ|)−N. (2.2)

The pair (x0, ξ0) is in the wavefront set,WF( f ), if f is not smooth at x0 in direction ξ0.
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This definition follows the intuitive idea that the elements of WF( f ) are the point–normal
vector pairs above points of X where f has singularities. For example, if f is the charac-
teristic function of the unit ball in R

3, then its wavefront set is WF( f ) = {(x, tx) : x ∈ S2,
t 	= 0}, the set of points on a sphere paired with the corresponding normal vectors to the
sphere.

The wavefront set of a distribution on X is normally defined as a subset the cotangent
bundle T∗(X) so it is invariant under diffeomorphisms, but we will continue to identify
T∗(X) = X × R

n and consider WF( f ) as a subset of X × R
n\ {0}.

Definition 2.3 ([25, definition 7.8.1]). We define Sm(Y × X × R
N) to be the set of a ∈

E(Y × X × R
N) such that for every compact set K ⊂ Y× X and all multi-indices α, β, γ the

bound

∣∣∂γ
y∂

β
x ∂

α
σa(y, x,σ)

∣∣ � CK,α,β (1+ |σ|)m−|α|, (y, x) ∈ K, σ ∈ R
N ,

holds for some constant CK,α,β > 0. The elements of Sm are called symbols of order m.

Note that these symbols are sometimes denoted Sm1,0.

Definition 2.4 ([26, definition 21.2.15]).A functionφ = φ(y, x,σ) ∈ E(Y × X × R
N\ {0})

is a phase function if φ(y, x,λσ) = λφ(y, x,σ), ∀λ > 0 and dφ is nowhere zero. A phase func-
tion is clean if the critical set Σφ = {(y, x,σ) : dσφ(y, x,σ) = 0} is a smooth manifold with
tangent space defined by d (dσφ) = 0.

By the implicit function theorem the requirement for a phase function to be clean is satisfied
if d (dσφ) has constant rank.

Definition 2.5 ([26, definition 21.2.15] and [27, section 25.2]). Let X and Y be open subsets
of Rn. Let φ ∈ E

(
Y × X × R

N
)
be a clean phase function. In addition, we assume that φ is

nondegenerate in the following sense:

dy,σφ and dx,σφ are never zero.

The critical set of φ is

Σφ = {(y, x,σ) ∈ Y × X × R
N\ {0} : dσφ = 0}.

The canonical relation parametrised by φ is defined as

C =
{((

y, dyφ(y, x,σ)
)
; (x,−dxφ(y, x,σ))

)
: (y, x,σ) ∈ Σφ

}
, (2.3)

Definition 2.6. Let X and Y be open subsets of Rn. A Fourier integral operator (FIO)
of order m+ N/2− n/2 is an operator A :D(X)→D′(Y) with Schwartz kernel given by an
oscillatory integral of the form

KA(y, x) =
∫
RN

eiφ(y,x,σ)a(y, x,σ) dσ, (2.4)

where φ is a clean nondegenerate phase function and a ∈ Sm(Y × X × R
N) is a symbol. The

canonical relation of A is the canonical relation of φ defined in (2.3).

6
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This is a simplified version of the definition of FIO in [8, section 2.4] or [27, section 25.2] that
is suitable for our purposes since our phase functions are global. For general information about
FIOs see [8, 26, 27].

Definition 2.7. Let C ⊂ T∗(Y × X) be the canonical relation associated to the FIO A :
E′(X)→D′(Y). Then we let πL and πR denote the natural left- and right-projections of C,
πL : C → T∗(Y) and πR : C → T∗(X).

Becauseφ is nondegenerate, the projections do notmap to the zero section. If an FIOF satis-
fies our next definition, thenF∗F (orF∗φF ifF does not map to E′(Y)) is a pseudodifferential
operator [18, 37].

Definition 2.8. Let F : E′(X)→D′(Y) be an FIO with canonical relation C then F (or
C) satisfies the semi-global Bolker assumption if the natural projection πY : C → T∗(Y) is an
embedding (injective immersion).

3. Microlocal properties of translational Compton transforms

Herewe present a microlocal analysis of the toric section transform in the translational (parallel
line) scanning geometry. Through an analysis of two separate limited data problems for the
circle transform (where the integrals over circles with centres on a straight line are known) and
using microlocal analysis, we show that the canonical relation of the toric section transform
is 2–1. The analysis follows in a similar way to the work of [55]. We discuss the nonlocal
artefacts inherent to the toric section inversion in section 3.1, and then go on to explain the
artefacts due to limited data in section 3.2.

We first define our geometry and formulate the toric section transform of [54] in terms of δ
functions, before proving our main microlocal theory.

Let rm > 1 and define the set of points to be scanned as

X := {(x1, x2) ∈ R
2 : 2− rm < x2 < 1}.

Note that rm controls the depth of the scanning tunnel as in figures 1 and 2. Let

Y := (0,∞)× R

then for j = 1, 2, and (s, x0) ∈ Y, we define the circles Cj and their centres cj

r =
√
s2 + 1, c j(s, x0) = ((−1) js+ x0, 2)

Cj(s, x0) = {x ∈ R
2 : |x− c j(s, x0)|2 − s2 − 1 = 0}.

(3.1)

Note that r =
√
s2 + 1 is the radius of the circleCj. The union of the reflected circlesC1 ∪ C2 is

called a toric section. Let f ∈ L20(X) be the electron charge density. To define the toric section
transform we first introduce two circle transforms

T1 f (s, x0) =
∫
C1

fds, T2 f (s, x0) =
∫
C2

fds. (3.2)

Now we have the definition of the toric section transform [54]

T f (s, x0) =
∫
C1∪C2

fds = T1( f )(s, x0)+ T2( f )(s, x0) (3.3)

7
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where ds denotes the arc element on a circle and (s, x0) ∈ Y.
We express T in terms of delta functions as is done for the generalized Funk–Radon

transforms studied by Palamodov [36].

T f (s, x0) = T1 f (s, x0)+ T2 f (s, x0) = 2r
2∑
j=1

∫
R2
δ(|x− c j(s, x0)|2 − s2 − 1) f (x)dx

= 2r
2∑
j=1

∫ ∞

−∞

∫
R2
e−iσ(|x−((−1) js+x0,2)|2−s2−1) f (x)dx dσ. (3.4)

Note that the factor in front of the integrals comes about using the change of variables formula

and that T j f =
∫
δ
(
|x− c j(s, x0)| −

√
s2 + 1

)
f (x) dx. So the toric section transform is the

sum of two FIO’s with phase functions

φ j(s, x0, x, σ) = σ(|x− ((−1) js+ x0, 2)|2 − s2 − 1)

for j = 1, 2. Our distributions f are supported away from the intersection points of C1 and C2,
and hence we can consider the microlocal properties of T1 and T2 separately to describe the
microlocal properties of T .

Proposition 3.1. For j = 1, 2, the circle transform T j is an FIO or order −1/2 with
canonical relation

C j =
{((

s, x0, (−1) j−1σ(x1 − x0),−σ((−1) j−1s+ x1 − x0)
)
;
(
x,−σ(x− c j(s, x0))

))
:

(s, x0) ∈ Y, σ ∈ R\ {0} , x ∈ Cj(s, x0) ∩ {x2 < 1}} . (3.5)

Furthermore C j satisfies the semi-global Bolker assumption for j = 1, 2.

Proof. First, one can check that φj and T j both satisfy the restrictions in definition 2.6 so T j
is an FIO. Using this definition again and the fact that its symbol is order zero [37], one sees
that it has order−1/2.

A straightforward calculation using definition 2.5 shows that the canonical relation of T j is
as given in (3.5). Note that we have absorbed a factor of 2 into σ in this calculation. Global
coordinates on C j are given by

(s, x0, x1, σ) �→
(
s, x0, (−1) j−1σ(x1 − x0),−σ((−1) j−1s+ x1 − x0);

(x1, x2),−σ((x1, x2)− c j(s, x0))
)

where

x2 = 2−
√
s2 + 1− (x1 − (x0 + (−1) js))2 (3.6)

because x2 < 1. Recall that cj is given in (3.1).
We now show that C j satisfies the semiglobal Bolker assumption by finding a smooth inverse

in these coordinates to the projection ΠL : C j → T∗(Y). Let λ = (s, x0, τ1, τ2) ∈ ΠL
(
C j
)
. We

solve for x1 and σ in the equation ΠL(s, x0, x1, σ) = λ. Then, s and x0 are known as are

τ1 = (−1) j−1σ(x1 − x0) τ2 = −σ((−1) j−1s+ x1 − x0). (3.7)

8
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A straightforward linear algebra exercise shows that the unique solutions for σ and x1 are

σ =
(−1) jτ2 − τ1

s
, x1 =

sτ1
(−1) jτ1 − τ2

+ x0 (3.8)

This gives a smooth inverse to ΠL on the image ΠL

(
C j
)
and finishes the proof. �

Because C j satisfies the Bolker assumption, the composition C∗
j ◦ C j ⊂ Δ, where Δ is the

diagonal in T∗(X). Hence in a reconstruction from circular integral data with centres on a line
we would not expect to see image artefacts for functions supported in x − 2 > 0 unless one
uses a sharp cutoff on the data.

The canonical relation C of T can be written as the disjoint union C = C1 ∪ C2 since
(C1(s, x0) ∩ C2(s, x0)) ∩ supp( f ) = ∅ for any (s, x0) ∈ Y.

For convenience, we will sometimes label the coordinate x0 in (3.6) as (x0)1 it is associated
with C1 and (x0)2 if it is associated with C2.
Theorem 3.2. For j = 1, 2, the projection πR : C j → T∗(X) is bijective onto the set

D = {(x, ξ) ∈ T∗(X) : ξ2 	= 0} . (3.9)

In addition, πR : C → T∗(X) is two-to one onto D.

Proof. Let μ = (x; ξ) ∈ T∗(X)\ {0} and let x = (x1, x2) and ξ = (ξ1, ξ2). If μ ∈ πR(C j) for
either j = 1 or j = 2, then ξ2 	= 0 by (3.5) since x2 < 2. For the rest of the proof, assume μ is
in the set D given by (3.9).

We will now describe the preimage of μ in C j. The covector μ is conormal to a unique
circle centred on x2 = 2, and its centre is on the line through x and parallel ξ. If the centre has
coordinates (c, 2), then a calculation shows that c is given by

c = c(x, ξ) = x1 −
ξ1(x2 − 2)

ξ2
. (3.10)

Using this calculation, one sees that the radius of the circle and coordinate s are given by

r = r(x, ξ) =
(2− x2) |ξ|

|ξ2|
, s = s(x, ξ) =

√
r2 − 1 (3.11)

and the coordinate (x0) j is given by

(x0) j = (x0) j(x, ξ) = x1 +
ξ1(2− x2)

ξ2
+ (−1) j−1s for j = 1, 2. (3.12)

A straightforward calculation shows that

σ = σ(x, ξ) =
−ξ2

2− x2
. (3.13)

This gives the coordinates (3.6) on C j and shows that πR : C j → D is injective with smooth
inverse.

Now, we consider the projection from C. Given (x, ξ) ∈ D, our calculations show that the
preimage in C, in coordinates (3.6) is given by two distinct points

(s(x, ξ), (x0) j(x, ξ), x1, σ(x, ξ)) for j = 1, 2.

The coordinates are given by (3.11)–(3.13) respectively. �

9
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The abstract adjoint T t
j cannot be composed with Ti for i = 1, 2, because the support of

Ti f can be unbounded in r, even for f ∈ E′(X) and T t
j is not defined for such distributions.

Therefore, we introduce a smooth cutoff function. Choose rM > 2 and let ψ(s) be a smooth

compactly supported function equal to one for s ∈
[
1,
√
1− r2M

]
and define

T ∗
j g = T t

j (ψg) (3.14)

for all g ∈ D′(Y) because our bound on r introduces a bound on x0 so the integral is over a
bounded set for each x ∈ X.

3.1. The nonlocal artefacts

Now, we can state our next theorem, which describes the artefacts that can be added to the
reconstruction using the normal operator, T ∗T .

Theorem 3.3. If f ∈ E′(X) then

WF
(
T ∗T f

)
⊂ (WF( f ) ∩ D) ∪ Λ12( f ) ∪ Λ21( f ) (3.15)

where D is given by (3.9), and the sets Λij are given for (x, ξ) ∈ D by

Λi j( f ) = {λi j(x, ξ) : (x, ξ) ∈ WF( f ) ∩ D} (3.16)

where the functions λ12 and λ21 are given by (3.19) and (3.20) respectively. Note that the
functions λij are defined for only some (x, ξ) ∈ D and singularities at other points do not
generate artefacts.

Therefore, T ∗T recovers most singularities of f, as indicated in the first term in (3.15), but
it adds two sets of nonlocal singularities, as given by Λ12( f ) and Λ21( f ). Note that, even if T ∗

j

and T j are both elliptic above a covector (x, ξ), artefacts caused by other points could mask
singularities of f that ‘should’ be visible in T ∗T f .

Proof. Let f ∈ E′(X). By the Hörmander–Sato lemma [25, theorem 8.2.13]. We have the
expansion

WF(T ∗T ( f )) ⊂
(
C∗ ◦ C

)
◦WF( f )

=
[
(C∗

1 ◦ C1) ∪ (C∗
2 ◦ C2)

]
◦WF( f ) ∪

(
C∗
2 ◦ C1

)
◦WF( f ) ∪

(
C∗
1 ◦ C2

)
◦WF( f )

(3.17)

The first term in brackets in (3.17) is {(x, ξ; x, ξ) : (x, ξ) ∈ D} ◦WF( f ) = WF( f ) ∩ D. This
proves the first part of the inclusion (3.15).

We now analyse the other two terms to define the functions λij and finish the proof. Let
(x, ξ) ∈ WF( f ) ∩D. First, consider λ12(x, ξ) = C∗

2 ◦ C1 ◦ (x, ξ).3 Using the calculations in the
proof of theorem 3.2 one sees that C1 ◦ (x, ξ) is given by

(s, x0, τ1, τ2) where s = s(x, ξ) =

√
(2− x2)2|ξ|2

ξ22
− 1

x0 = (x0)1(x, ξ) = x1 +
ξ1(2− x2)

ξ2
+ s σ = σ(x, ξ) =

−ξ2
2− x2

τ1 = σ(x1 − x0) τ2 = −σ(s+ x1 − x0)

(3.18)

3 For convenience, we will abbreviate the set theoretic composition Ci ◦ {(x, ξ)} by Ci ◦ (x, ξ).

10
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where we have taken these from the proof of theorem 3.2. To find C∗
2 ◦ C1 ◦ (x, ξ) we calculate

the composition of the covector described in (3.18) with C∗
2 . Note that the values of x0 and s

are the same in both calculations and are given by (3.18). After using (3.8) and that ξ1(2−x2)
ξ2

=
x0 − s− x1, one sees that

λ12(x, ξ) = ((y1, y2),η) where

y1 = y1(x, ξ) =
s(x1 − x0)

2(x1 − x0)+ s
+ x0

y2 = y2(x, ξ) = 2−

√
(2− x2)2|ξ|2

ξ22
− (y1 − (x0 + s))2

η =

(
−2ξ1 −

sξ2
2− x2

)
(y− c2(s(x, ξ)(x0)1(x, ξ)))

(3.19)

where x0 = (x0)1(x, ξ) and s = s(x, ξ) are given in (3.18) and η is calculated using the
expression (3.8) with j = 2.

Note that the function λ12 is defined for only some (x, ξ) ∈ D; for example if the argument
for the square root defining y2(x, ξ) is negative, then y2(x, ξ) is not defined and the point (x, ξ)
will not generate artefacts in Λ12.

A similar calculation shows for (y,η) ∈ D that

λ21(y,η) = ((x1, x2), ξ) where

x1 = x1(y,η) =
s(y1 − x0)

−2(y1 − x0)+ s
+ x0

x2 = x2(y,η) = 2−
√
s2(y,η)+ 1− (x1 − (x0 − s))2

ξ =

(
2η1 −

sη2
2− y2

)
(x− c1(s(y,η), (x0)2(y,η)))

(3.20)

where

s = s(y,η) =

√
(2− y2)2|η|2

η22
− 1 x0 = (x0)2(y,η) = y1 +

η1(2− y2)
η2

− s.

Note that the function λ21 is not defined for all (y,η) ∈ D, and other points (y,η) do not
generate artefacts. This is for the same reason as for λ12. �
Remark 3.4. The artefacts caused by a singularity of f are as strong as the reconstruction
of that singularity. To see this, first note that each T ∗

j Ti smooths of order one in Sobolev scale
since it an FIO of order−1 [24, theorem 4.3.1].

The visible singularities in the reconstruction come from the compositions T ∗
1 T1 and T ∗

2 T2
since these are pseudodifferential operators of order −1. The artefacts come from the ‘cross’
compositions T ∗

2 T1 and T ∗
1 T2, and they are FIO of order −1. Therefore, since the terms that

preserve the real singularities of f, T ∗
i Ti, i = 1, 2, are also of order −1, T ∗T smooths each

singularity of f by one order in Sobolev scale and the composition T ∗
2 T1 (corresponding to the

artefact λ12, if defined at this covector) can create an artefact from that singularity that are also
one order smoother than that singularity, and similarly with the composition T ∗

1 T2.
Second, our results are valid, not only for the normal operator T ∗T but for any filtered

backprojectionmethod T ∗PT where P is a pseudodifferential operator. This is true since pseu-
dodifferential operators have canonical relation Δ and they do not move singularities, so our

11
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microlocal calculations are the same. If P has order k, then T ∗PT decreases the Sobolev order
of each singularity of f by order (k− 1) in Sobolev norm and can create an artefact from that
singularity of the same order.

3.2. Artefacts for T ∗T due to limited data

In practice we do not have access to T f (s, x0) for all s ∈ (0,∞) (or r ∈ (1,∞)) and x0 ∈ R,
and will have knowledge of x0 ∈ (−a, a) and r ∈ (1, rM) for some a > 0 (see figures 1 and 2)
and maximum radius rM > 1.

We now evaluate which wavefront directions (x, ξ) will be visible from this limited data.
Let us consider the pair (x, ξ) ∈ C2(s, x0)× S1 and let β be the angle of ξ from the vertical as
depicted in figure 2. Then c2(s, x0) = ((2− x2)tan β + x1, 2) and

|x− c2(s, x0)|2 = r2 =⇒ (1+ tan2 β)(2− x2)2 = r2 =⇒ tan β =

√
r2

(2− x2)2
− 1.

Let βm = βm(x) ∈ (0, π/2) be defined by

tan βm =

√
r2M

(2− x2)2
− 1 (3.21)

(noting that we only consider x such that 1 > x2 > 2− rM). Then the maximum directional
coverage of the singularities (wavefront set) at a given x ∈ X which are resolved by the
Compton data are described by the open cone of ξ ∈ S1

CT = {±(sin β,− cos β) :−βm < β < βm}, (3.22)

and the opening angle of the cone depends on the depth of x (i.e. x2). See figure 2. The cone
CT illustrated corresponds to the case when β = βm.

In all of our numerical experiments, we set the tunnel height as rm − 1 = 6 and the detector
line width is 2a = 8. We let rM > rm be large enough to penetrate the entire scanning tun-
nel (up to the line {x2 = 2− rm} as highlighted in figures 1 and 2), so as to imply a unique
reconstruction [55]. Specifically we set the maximum radius rM = 9 and simulate T (r, x0)
for r ∈ {1+ 0.02j : 1 � j � 400} and x0 ∈ {−4+ 0.04j : 1 � j � 200}. Further the densities
considered are represented on [−2, 2]× [−3, 1] (200× 200 pixel grid) in the reconstructions
shown. The machine design considered is such that for any x ∈ [−2, 2]× [−1.5, 1] we have
the maximal directional coverage in CT allowed for the limited r < rM (see figure 7). With
the exception of the horizontal bar phantom depicted in figure 14, all objects considered for
reconstruction are approximately in this region.

To demonstrate the artefacts, we apply a discrete form of T ∗T to a delta function. We have
the expansion

T ∗T = (T1 + T2)∗(T1 + T2) = T ∗
1 T1 + T ∗

2 T2 + T ∗
1 T2 + T ∗

2 T1. (3.23)

Using equations (3.18)–(3.20) one can show for g ∈ L2(Y) that the backprojection operators
T ∗
j , j = 1, 2 can be written

T ∗
j g(x) =

∫ βm

−βm

g
(√

r2 − 1, x1 + (−1) j−1
√
r2 − 1+ r sin β

)∣∣∣∣
r=

(2−x2)
cos β

dβ. (3.24)
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Note that we are not restricting x0 to [−a, a] but we are restricting s to
(
0,
√
r2M − 1

)
, and

hence the cutoff function ψ of equation (3.14) is equal to one on the bounds of integration.
Now, let f be a delta function at y. We calculate the artefacts

T ∗
1 T2 f (x) 	= 0 ⇐⇒ ∃β ∈ [−βm, βm] s.t. |y− c2(s, x0)| = r, (3.25)

where r = 2−x2
cos β , s =

√
r2 − 1 and x0 = x1 + s+ r sin β. Similarly

T ∗
2 T1 f (x) 	= 0 ⇐⇒ ∃β ∈ [−βm, βm] s.t. |y− c1(s, x0)| = r, (3.26)

where r = 2−x2
cos β

, s =
√
r2 − 1 and x0 = x1 − s+ r sin β. Hence the only contributions to the

backprojection from T ∗
1 T2 and T ∗

2 T1 are on the following sets:

S12 = {x : ∃β ∈ [−βm, βm] s.t. |y− c2(s, x0)| = r} (3.27)

where r = 2−x2
cos β

and x0 = x1 + s+ r sin β and

S21 = {x : ∃β ∈ [−βm, βm] s.t. |y− c1(s, x0)| = r}. (3.28)

where r = 2−x2
cos β

and x0 = x1 − s+ r sin β. This means that allΛij artefacts will be in these sets.
Note that besides the Λij artefacts shown in figures 4(e) and (f) there are limited data artefacts
caused by circles meeting y of radius rM (figures 4(a)–(c)) and these are of higher strength in
Sobolev norm.

To simulate a δ function discretely we assign a value of one to nine neighbouring pixels in
a 200–200 grid (which will represent [−2, 2]× [−3, 1]) and set all other pixel values to zero.
Letting our discrete delta function be denoted by xδ , we approximate T ∗T δ ≈ AT Axδ, where
A is the discrete form of T . For comparison we show images of

(T ∗
1 T2 + T ∗

2 T1)δ ≈ (AT1A2 + AT2A1)xδ,

a characteristic function on the set S12 ∪ S21, and the artefacts induced byΛ12 and Λ21. Here Aj
is the discrete formof T j, for j = 1, 2. See figure 3. For example, in figure 3(b) we see a butterfly
wing type artefact in (AT1A1 + AT2A2)xδ . This is due to the limited r and x0 data inherent to
our acquisition geometry (there are unresolved wavefront directions). In the (AT1A2 + AT1A2)xδ
image of figure 3(c) we see artefacts appearing on the set S12 ∪ S21 as shown in figure 3(d).
This is as predicted by our theory. The artefacts induced by the Λij in this case lie outside the
scanning region ([−2, 2]× [−3, 1]), and hence they are not observed in the reconstruction. See
figures 3(e) and (f). In figure 4 the artefact curves intersect [−2, 2]× [−3, 1] in the top left and
right-hand corners respectively. See figures 4(e) and (f). In this case the artefacts are observed
faintly in the reconstructions (their magnitude is small compared to the delta function), and it
is unclear whether they align with our predictions.

To show the artefacts induced by the Λij more clearly, we repeat the analysis above using

filtered backprojection, and a second derivative filter Φ = d2

dr2 . That is we show images of
T ∗ΦT δ. Note thatΦ is applied in the variable r (the torus radius). The application of derivative
filters is a common idea in lambda tomography [13, 14], and is known to highlight the image
contours (singularities or edges) in the reconstruction [43, theorem 3.5]. See figure 5. As the
artefacts induced by Λij appeared to be largely outside the scanning region ([−2, 2]× [−3, 1])
in our previous simulations, we have increased the scanning region size to [−3, 3]× [−4, 2], to
showmore the effects of theΛij in the observed reconstruction. HereΦ suppresses the artefacts
due to limited data, and the Λij artefacts appear as additional contours in the reconstruction.

13



Inverse Problems 36 (2020) 074002 J Webber et al

Figure 3. T ∗T δ (the δ function is centred at O = (0,−1)) images with the predicted
artefacts due to the limited data backprojection (on S12 ∪ S21) and those induced by Λ12
and Λ21. (A) T ∗T δ. (B) (T ∗

1 T1 + T ∗
2 T2)δ. (C) (T ∗

1 T2 + T ∗
2 T1)δ. (D) χS12∪S21 . (E) Λij

artefacts. (F) Λij artefacts on [−2, 2]× [−3, 1].

The observed artefacts appear most clearly in figures 5(b) and (e), and align exactly with our
predictions in figures 5(c) and (f).

Remark 3.5. With precise knowledge of the locations of the artefacts induced by the Λij we
can assist in the design of the proposed parallel line scanner. That is we can choose a, rM and
the scanning tunnel size to minimize the presence of the nonlocal artefacts in the reconstruction
(i.e., those from Λij( f )). Such advice would be of benefit to our industrial partners in airport
screening to remove the concern for nonlocal artefacts in the image reconstruction of baggage.
Indeed the machine dimensions we have chosen seem to be suitable as the artefacts appear
largely outside the reconstruction space (see figures 3 and 4).

4. The transmission artefacts

The detector row DC collects Compton (back) scattered data, which determines T f (s, x0) for
a range of s and x0, where f = ne is the electron charge density. The forward detector arrayDA

collects transmission (standard x-ray CT) data, which determine a set of straight line integrals
over the attenuation coefficient f = μE, for some photon energy E. The data is limited to the
set of lines which intersect S (the source array) and DA. This limited data can cause artefacts
in the x-ray reconstruction, and we will analyse these artefacts using the theory in [5]. Let
Ls,θ = {x ∈ R

2 : x ·Θ = s} be the line parameterized by a rotation θ ∈ [0, π] and a directed
distance from the origin s ∈ R. Here Θ = (cos θ, sin θ) and Ls,θ is the line containing sΘ and
perpendicular to Θ.
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Figure 4. T ∗T δ (the δ function is centred at (0, 0.9)) images with the predicted artefacts
due to the limited data backprojection (on S12 ∪ S21) and those induced by Λ12 and Λ21.
(A) T ∗T δ. (B) (T ∗

1 T1 + T ∗
2 T2)δ. (C)(T ∗

1 T2 + T ∗
2 T1)δ. (D) χS12∪S21 . (E)Λij artefacts. (F)

Λij artefacts on [−2, 2]× [−3, 1].

In the scanning geometry of this article, the set S of x-ray transmitters is the segment between
(−4, 3) and (4, 3) and the set of x-ray detectors, DA, is the segment between (−4,−5) and
(4,−5) as in figure 1. For this reason, the cutoff in the sinogram space is described by the set

H = {(s, θ) ∈ R× [−π/2, π/2] : Ls,θ ∩ S 	= ∅ and Ls,θ ∩ DA 	= ∅}. (4.1)

The characteristic function of H appears as a skewed diamond shape in sinogram space.
To illustrate the added artefacts inherent in this incomplete data problem, we simulate

reconstructions of delta functions with transmission CT data onH. That is, we apply the back-
projection operator R∗

LRL to δ functions, where RLf denotes Rf for (s, θ) ∈ H. See figure 6. By
the theory in [5], artefacts caused by the incomplete data occur on lines Ls,θ for (s, θ) in the
boundary ofH. Each delta function in figure 6 is at a point (t,−1) for some twith 0 < t < 2, so
the lines that meet the support of the delta function, (t,−1) that are in the boundary of H must
also contain either (4, 3) or (4,−5). This is true because S and DA are mirror images about the
line y = −1 and t ∈ (0, 2).

Furthermore, by symmetry (the δ functions are on the centre line of the scanning region),
these artefact lines will be reflections of each other in the vertical line x1 = t. This is illustrated
in our reconstructions in figure 6. The opening angle of the cone in the delta reconstructions
decreases (fewer wavefront set directions are stably resolved) as we translate δ to the right on
the line x1 = −1.

Example 4.1. We nowuse these ideas to analyse the visible wavefront directions for the joint
problem. Let S = [−4, 4]× [−5, 3] be the square between S and DA and let O = (0,−1), the
centre of S. We consider wavefronts at points (x1, x2) ∈ [−2, 2]× [−3, 1] which is a square
centred at O and the region in which our simulated reconstructions are done.
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Figure 5. T ∗ΦT δ and (T ∗
1 ΦT2 + T ∗

2 ΦT1)δ images with the predicted artefacts induced
by Λ12 and Λ21. We give examples for two δ function locations. Location 1 is (0, 0.85)
and location 2 is (−2.8, 0.9). (A) T ∗ΦT δ (location 1). (B) (T ∗

1 ΦT2 + T ∗
2 ΦT1)δ. (C) Λij

artefacts. (D) T ∗ΦT δ (location 2). (E) (T ∗
1 ΦT2 + T ∗

2 ΦT1)δ. (F) Λij artefacts.

Figure 6. RTLRLδ(t,−1) images at varying δ function translations along the line x2 = −1.

By (4.1), lines in the data set must intersect both S andDA, so lines throughO in the data set
are all lines throughO that are more vertical than the diagonals of S. Because visible wavefront
directions are normal to lines in the x-ray CT data set [38], the wavefront directions which are
resolved lie in the horizontal open cone between normals to these diagonals. Therefore, they
are in the cone

CR = {±(cos α, sin α) :−π/4 < α < π/4},

which is shown in figure 1.
An analysis of the singularities that are visible by the Compton data was done in section 3.2.

For the pointO, the angle defined by (3.21) gives βm = 1.23 and the cone of visible directions
given by (3.22) is the vertical cone with angles from the vertical between−βm and βm since the
parameter rM = 9. A calculation shows that 2(π/4+ βm) > π and this implies CR ∪ CT = S1

and we have a full resolution of the image singularities at O.
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Figure 7. Picture of the range of wavefront directions that are visible at points in
[−2, 2]× [−3, 1] from the joint data. Angles are measured from 0◦ = no coverage to
360◦ = full coverage. We let Γ denote the solid light-colored (yellow) region (roughly
the top 3/4 of the figure) in which all wavefront directions are recovered.

However, for points near the bottom x2 = −3, there are invisible singularities that are not
visible from either the Compton or x-ray data. For example, the vertical direction (0, 1) is not
normal to any circle in the Compton data set at any point (0, x2) for x2 ∈ [−2.5,−3]. Figure 7
shows the points for which all wavefront directions are visible at those points (yellow color-
roughly for points (x1, x2) for x2 > −2) and near the bottom of the reconstruction region, there
are more missing directions.

5. A joint reconstruction approach and results

In this section we detail our joint reconstruction scheme and lambda tomography regularization
technique, and show the effectiveness of our methods in combatting the artefacts observed and
predicted by our microlocal theory. We first explain the physical relationship between μE and
ne, which will be needed later in the formulation of our regularized inverse problem.

5.1. Relating μE and ne

The attenuation coefficient and electron density satisfy the formula [53, p 36]

μE(Z) = ne(Z)σE(Z), (5.1)

where σE denotes the electron cross section, at energy E. Here Z denotes the effective atomic
number. In the proposed application in airport baggage screening (among many other appli-
cations such as medical CT) we are typically interested in the materials with low effective Z.
Hence we consider the materials with Z < 20 in this paper. For large enough E and Z < 20,
σE(Z) is approximately constant as a function of Z. Equivalently μE and nE are approximately
proportional for low Z and high E by equation (5.1). See figure 8. We see a strong correlation
between ne and μE when E = 100 keV and Z < 20, and even more so when E is increased to
E = 1 MeV. The sample of materials considered consists of 153 compounds (e.g. wax, soap,

17



Inverse Problems 36 (2020) 074002 J Webber et al

Figure 8. Scatter plot of ne vs μE for E = 100 keV (left) and E = 1 MeV (right), for 153
compounds with effective Z < 20 taken from the NIST [28] database. The correlation is
R = 0.93 (left) and R = 0.98 (right).

salt, sugar, the elements) taken from the NIST database [29]. In this case σE ≈ ν for some
ν ∈ R is approximately constant and we have μE ≈ νne. For a given energy E, ν is the slope
of the straight line fit as in figure 8. Throughout the rest of this paper, we set ν as the slope of
the straight line in the left hand of figure 8 (i.e. ν ≈ 0.57), and present reconstructions of μE
for E = 100 keV.

5.2. Lambda regularization; the idea

In sections 3 and 4 we discovered that the RLμE and T ne data provide complementary infor-
mation regarding the detection and resolution of edges in an image. More specifically the line
integral data resolved singularities in an open cone CR with central axis x1 and the toric section
integral data resolved singularities in a cone CT with central axis x2. So the overlapping cones
CR ∪ CT give a greater coverage of S1 than when considered separately. In figures 3, 4 and
6, this theory was later verified through reconstructions of a delta functions by (un)filtered
backprojection.

For a further example, let us consider amore complicated phantom than a delta function, one
which is akin to densities considered later for testing our joint reconstruction and lambda reg-
ularization method. In figure 9 we have presented reconstructions of an image phantom f (with
no noise) from RLf (transmission data—middle figure) using FBP, and from T f (Compton
data—right figure) by an application of T ∗ d2

dr2
(a contour reconstruction). In the reconstruc-

tion from Compton data, we see that the image singularities are well resolved in the vertical
direction (x2), and conversely in the horizontal direction (x1) in the reconstruction from trans-
mission data. In the middle picture (reconstruction from RL), the visible singularities of the
object are tangent to lines in the data set (normal wavefront set) and the artefacts are along
lines at the end of the data set that are tangent to boundaries of the objects. In the right-hand
reconstruction from Compton data, the visible boundaries are tangent to circles in the data set
and the streaks are along circles at the end of the data set. Note that the visible boundaries in
each picture complement each other and together, image the full objects. This is all as predicted
by the theory of sections 3 and 4 (and is consistent with the theory in [5, 15]) and highlights
the complementary nature of the Compton and transmission data in their ability to detect and
resolve singularities.
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Figure 9. Image phantom f (left), a reconstruction from RLf using FBP (middle) and
T ∗ d2

dr2
T f (right).

Given the complementary edge resolution capabilities of RLμE and T ne, and given the
approximate linear relationship between μE and ne, we can devise a joint linear least squares
reconstruction scheme with the aim to recover the image singularities stably in all directions
in the ne and μE images simultaneously. To this end we employ ideas in lambda tomography
and microlocal analysis (figure 10).

Let f ∈ E(Rn) and let R f (s, θ) = R fθ(s)=
∫
Ls,θ

fdl denote the hyperplane Radon transform
of f, where Ls,θ is as defined in section 4. The Radon projections Rfθ detect singularities in f in
the directionΘ = (cos θ, sin θ) (i.e. the elements (x,Θ) ∈ WF( f )). Applying a derivative filter
dm

dsm Rθ, for some m � 1, increases the strength of the singularities in the Θ direction by order
m in Sobolev scale. Given f , g ∈ E(Rn), we aim to enforce a similarity in WF( f ) and WF(g)
through the addition of the penalty term ‖ dm

dsm R( f − g)‖L2(R×S1) to the least squares solution.
Note that we are integrating over all directions in S1 to enforce a full directional similarity
in WF( f ) and WF(g). Specifically in our case f = μE, g = ne and we aim to minimize the
quadratic functional

argmin
μE ,ne

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

wRL 0
0 T

α

[
dm

dsm
R − ν

dm

dsm
R

]
⎞
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(
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)
−

⎛
⎝wb1

b2
0

⎞
⎠
∥∥∥∥∥∥∥∥

2

2

, (5.2)

where RL denotes a discrete, limited data Radon operator,R is the discrete form of the full data
Radon operator, T is the discrete form of the toric section transform, b1 is known transmission
data and b2 is the Compton scattered data. Here α is a regularization parameter which controls
the level of similarity in the image wavefront sets. The lambda regularizers enforce the soft
constraint that μE = νne (since dm

dsm R f = 0 ⇐⇒ f = 0 for f ∈ L2c(X)), but with emphasis on
the location, direction and magnitude of the image singularities in the comparison. Further we
expect the lambda regularizers to have a smoothing effect given the nature of dm

dsm R as a differ-
ential operator (i.e. the inverse is a smoothing operation). Hence we expect α to also act as a
smoothing parameter. The weightingw = ‖T ‖2/‖RL‖2 is included so as to give equal weight-
ing to the transmission and scattering datasets in the inversion. We denote the joint recon-
struction method using lambda tomography regularizers as ‘JLAM’. A common choice for m
in lambda tomography applications is m = 2 [7, 43] (hence the name ‘lambda regularizers’).
With complete x-ray data, the application of a Lambda term yields thisR∗ d2

ds2R f = −4π
√
−Δ f

[31, example 9], so the singularities of f are preserved and emphasized by order 1 in Sobolev
scale, so they will dominate the lambda reconstruction. Hence choosingm = 2 is sufficient for
a full recovery of the image singularities. Since the singularities are dominant in the lambda
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Figure 10. Top row—simple density (left) and attenuation (right) phantoms. Bottom
row—complex density (left) and attenuation (right) phantoms. The associated materials
are labelled in each case.

term, they are matched accurately in (5.2). Indeed we have already seen the effectiveness of
such a filtering approach in recovering the image contours earlier in the right-hand of figure 9.
We find that setting m = 2 here works well as a regularizer on synthetic image phantoms and
simulated data with added pseudo random noise, as we shall now demonstrate. We note that
the derivative filters form 	= 2 are also worth exploration but we leave such analysis for future
work.

5.3. Proposed testing and comparison to the literature

To test our reconstruction method, we first consider two test phantoms, one simple and one
complex (as in [55]). See figure 11. The phantoms considered are supported on Γ, the region in
figure 7 in which there is full wavefront coverage from joint x-ray and Compton scattered data.
The simple density phantom consists of a polyvinyl chloride (PVC) cuboid and an aluminium
sphere with an approximate density ratio of 1:2 (PVC:Al). The complex density phantom con-
sists of a water ellipsoid, a sulphur ellipsoid, a calcium sulphate (CaSO4) right-angled-triangle
and a thin film of titanium dioxide (TiO2) in the shape of a cross. The density ratio of the mate-
rials which compose the complex phantom is approximately 1:2:3:4 (H2O:S:CaSO4 : TiO2).
The density values used are those of figure 8 taken from the NIST database [28], and the back-
ground densities (≈ 0) were set to the density of dry air (near sea level). The corresponding
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Figure 11. Simple phantom reconstructions, noise level η = 0.1. Comparison of meth-
ods TV, JLAM, JTV and LPLS.

attenuation coefficient phantoms are simulated similarly. The materials considered are widely
used in practice. For example CaSO4 is used in the production of plaster of Paris and stucco (a
common construction material) [57], and TiO2 is used in the making of decorative thin films
(e.g. topaz) and in pigmentation [56, p 15].
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To simulate data we set

b =

(
b1
b2

)
=

(
RLμE
T ne,

)
(5.3)

and add a Gaussian noise

bη = b+ η‖b‖2
vG√
l
, (5.4)

for some noise level η, where l is the length of b and vG is a vector of length l of draws from
N (0, 1). For comparison we present separate reconstructions of μE and ne using total variation
(TV regularizers). That is we will find

argmin
μE

‖RLμE − b1‖22 + αTV(μE) (5.5)

to reconstruct μE and

argmin
ne

‖T ne − b2‖22 + αTV(ne) (5.6)

for ne, where TV( f ) = ‖∇f‖1 and α > 0 is a regularization parameter. We will denote this
method as ‘TV’. In addition we present reconstructions using the state-of-the-art joint recon-
struction and regularization techniques from the literature, namely the joint total variation
(JTV) methods of [20] and the linear parallel level sets (LPLS) methods of [12]. To implement
JTV we minimize

argmin
μE ,ne

∥∥∥∥
(
wRL 0
0 T

)(
μE
ne

)
−
(
wb1
b2

)∥∥∥∥
2

2

+ αJTVβ(μE, ne), (5.7)

where w = ‖T ‖2/‖RL‖2 as before, and

JTVβ(μE, ne) =
∫
[−2,2]×[−3,1]

(
‖∇μE(x)‖22 + ‖∇ne(x)‖22 + β2

) 1
2 dx, (5.8)

where β > 0 is an additional hyperparameter included so that the gradient of JTVβ is defined
at zero. This allows one to apply techniques in smooth optimization to solve (5.7).

To implement LPLS we minimize

argmin
μE ,ne

∥∥∥∥
(
wRL 0
0 T

)(
μE
ne

)
−
(
wb1
b2

)∥∥∥∥
2

2

+ αLPLSβ(μE, ne), (5.9)

where

LPLSβ(μE, ne) =
∫
[−2,2]×[−3,1]

‖∇μE(x)‖β‖∇ne(x)‖β − |∇μE(x) · ∇ne(x)|β2 dx, (5.10)

where |x|β =
√
|x|2 + β2 and ‖x‖β =

√
‖x‖22 + β2 for β > 0. The JTV and LPLS penalties

seek to impose soft constraints on the equality of the image wavefront sets of μE and ne. For
example setting β = 0 in the calculation of LPLSβ yields

LPLSβ(μE, ne) = ‖∇μE‖2‖∇ne‖2 − |∇μE · ∇ne| = ‖∇μE‖2‖∇ne‖2(1− | cosθ|), (5.11)

where θ is the angle between∇ne and∇μE. Hence (5.11) is minimized for the gradients which
are parallel (i.e. when θ = 0, π), and thus using LPLSβ as regularization serves to enforce
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equality in the image gradient direction and location (i.e. when LPLSβ is small, the gradient
directions are approximately equal).

We wish to stress that the comparison with JTV and LPLS is included purely to illustrate
the potential advantages (and disadvantages) of the lambda regularizers when compared to the
state-of-the-art regularization techniques. Namely is the improvement in image quality due
to joint data, lambda regularizers or are they both beneficial? We are not claiming a state-of-
the-art performance using JLAM, but our results show JLAM has good performance, and it is
numerically easier to implement, requiring only least squares solvers. There are two hyperpa-
rameters (α andβ) to be tuned in order to implement JTV andLPLS, which is more numerically
intensive (e.g. using cross validation) in contrast to JLAM with only one hyperparameter (α).
Moreover the LPLS objective is non-convex [12, appendix A], and hence there are potential
local minima to contend with, which is not an issue with JLAM, being a simple quadratic
objective.

To minimize (5.2), we store the discrete forms of RL, R and T as sparse matrices and apply
the conjugate gradient least squares (CGLS) solvers of [22, 23] (specifically the ‘IRnnfcgls’
code) with non-negativity constraints (since the physical quantities ne and μE are known a pri-
ori to be nonnegative). To solve equations (5.5) and (5.6) we apply the heuristic least squares
solvers of [22, 23] (specifically the ‘IRhtv’ code) with TV penalties and non-negativity con-
straints. To solve (5.7) and (5.9) we apply the codes of [12], modified so as to suit a Gaussian
noise model (a Poisson model is used in [12, equation 3]). The relative reconstruction error ε is
calculated as ε = ‖x− y‖2/‖x‖2, where x is the ground truth image and y is the reconstruction.
For all methods compared against we simulate data and added noise as in equations (5.3) and
(5.4), and the noise level added for each simulation is η = 0.1 (10% noise). We choose α for
each method such that ε is minimized for a noise level of η = 0.1. That is we are comparing
the best possible performance of each method. We set β for JTV and LPLS to the values used
on the ‘lines2’ data set of [12]. We do not tune β to the best performance (as with α) so as to
give fair comparison between TV, JLAM, JTV and LPLS. After the optimal hyperparameters
were selected, we performed 100 runs of TV, JLAM, JTV and LPLS on both phantoms for
100 randomly selected sets of materials. That is, for 100 randomly chosen sets of values from
figure 8 and the NIST database, with the NIST values corresponding to the nonzero parts of
the phantoms. We present the mean (με) and standard deviation (σε) relative errors over 100
runs in the left-hand of tables 2 and 4 for the simple and complex phantom respectively. The
results are given in the form ε± = με ± σε for each method. In addition to the relative error
ε, we also provide metrics to measure the structural accuracy of the results. Specifically we
will compare F-scores on the image gradient and support, as is done in [2, 49]. The gradient
F-score [2] measures the wavefront set reconstruction accuracy, and the support F-score [49, p
5] (see DICE score) is a measure of the geometric accuracy. That is, the support F-score checks
whether the reconstructed phantoms are the correct shape and size. The F-score takes values
on [0, 1]. For this metric, values close to one indicate higher performance, and conversely for
values close to zero. Similarly to ε, we present the F-scores of the randomized tests in the form
F± = μF ± σF, where μF and σF are the mean and standard deviation F-scores respectively.
In all tables, the support F-scores are labelled by supp(ne) and supp(μE), and by∇ne and∇μE
for the gradient F-scores.

5.4. Results and discussion

See figure 11 for image reconstructions of the simple phantom using TV, JLAM, JTV and
LPLS, and see table 1 for the corresponding ε and F-score values. See table 2 for the ε± and
F± values calculated over 100 randomized simple phantom reconstructions. For the complex
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Table 1. Simple phantom ε and F-score comparison using TV, JLAM, JTV and LPLS.

ε TV JLAM JTV LPLS

ne 0.26 0.14 0.05 0.03
μE 0.40 0.15 0.05 0.03

F-score TV JLAM JTV LPLS

supp(ne) 0.81 0.99 0.99 ∼1
∇ne 0.76 0.87 0.82 0.87
supp(μE) 0.78 ∼1 ∼1 ∼1
∇μE 0.49 0.87 0.82 0.86

Table 2. Randomized simple phantom ε± and F± comparison over 100 runs
using JLAM, JTV and LPLS.

ε± JLAM JTV LPLS

ne 0.15 ± 0.01 0.05 ± 0.005 0.06 ± 0.002
μE 0.16 ± 0.02 0.05 ± 0.005 0.06 ± 0.03

F± JLAM JTV LPLS

supp(ne) 0.99 ± 0.01 0.99 ± 0.004 ∼1 ± 0.005
∇ne 0.86 ± 0.01 0.84 ± 0.02 0.86 ± 0.04
supp(μE) 0.98 ± 0.04 0.99 ± 0.005 ∼1 ± 0.005
∇μE 0.86 ± 0.01 0.85 ± 0.02 0.87 ± 0.04

phantom, see figure 12 for image reconstructions, and table 3 for the ε and F-score values. See
table 4 for ε± and F±. In the separate reconstruction of ne (using method TV) we see a blurring
of the ground truth image edges (wavefront directions) in the horizontal direction and there are
artefacts in the reconstruction due to limited data, as predicted by our microlocal theory. In the
TV reconstruction of μE we see a similar effect, but in this case we fail to resolve the wavefront
directions in the vertical direction due to limited line integral data. This is as predicted by the
theory of section 4 and [5]. In section 3 we discovered the existence also of nonlocal artefacts
in the ne reconstruction, which were induced by the mappings λij. However these were found
to lie largely outside the imaging space unless the singularity in question (x, ξ) ∈ WF(ne) were
such that x is close to the detector array (see figures 3 and 4). Hence why we do not see the
effects of the λij in the phantom reconstructions, as the phantoms are bounded sufficiently away
from the detector array. The added regularization may smooth out such artefacts also, which
was found to be the case in [55].

Using the joint reconstruction methods (i.e. JLAM, JTV and LPLS) we see a large reduc-
tion in the image artefacts in ne and μE, since with joint data we are able to stably resolve the
image singularities in all directions. The improvement in ε and the F-score is also significant,
particularly in the μE reconstruction. Thus it seems that the joint data is the greater contributor
(over the regularization) to the improvement in the image quality, as the approaches with joint
data each perform well. Upon comparison of JLAM, JTV and LPLS, the ε metrics are signif-
icantly improved when using JTV and LPLS over JLAM, but the image quality and F-scores
are highly comparable. This indicates that, while the noise in the reconstruction is higher using
JLAM, the recovery of the image edges and support is similar using JLAM, JTV and JLAM.
As theorized, the lambda regularizers were successful in preserving the wavefront sets of μE
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Figure 12. Complex phantom reconstructions, noise level η = 0.1. Comparison of
methods TV, JLAM, JTV and LPLS.
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Table 3. Complex phantom ε and F-score comparison using TV, JLAM, JTV and
LPLS.

ε TV JLAM JTV LPLS

ne 0.36 0.24 0.16 0.09
μE 0.63 0.30 0.19 0.13

F-score TV JLAM JTV LPLS

supp(ne) 0.78 0.98 0.97 0.99
∇ne 0.73 0.83 0.84 0.84
supp(μE) 0.65 0.94 0.98 0.99
∇μE 0.39 0.83 0.84 0.85

Table 4. Randomized complex phantom ε± and F± comparison over 100 runs using
JLAM, JTV and LPLS.

ε± JLAM JTV LPLS

ne 0.25 ± 0.02 0.13 ± 0.03 0.13 ± 0.03
μE 0.31 ± 0.03 0.16 ± 0.02 0.17 ± 0.04

F± JLAM JTV LPLS

supp(ne) 0.98 ± 0.01 0.98 ± 0.005 0.99 ± 0.004
∇ne 0.76 ± 0.06 0.78 ± 0.05 0.75 ± 0.05
supp(μE) 0.90 ± 0.06 0.96 ± 0.03 0.98 ± 0.007
∇μE 0.73 ± 0.07 0.77 ± 0.05 0.74 ± 0.05

Figure 13. Horizontal Al bar density (left) and attenuation (right) phantoms.

and ne. However there is a distortion present in the nonzero parts of the JLAM reconstruction.
This is the most notable difference in JLAM and JTV/LPMS, and is likely the cause of the
ε discrepancy. So while the edge preservation and geometric accuracy of JLAM is of a high
quality (and this was our goal), the smoothing properties of JLAM are not up to par with the
state-of-the-art currently. We note however that the JTV and LPLS objectives are nonlinear
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Figure 14. Horizontal bar phantom reconstructions, noise level η = 0.1. Comparison of
methods TV, JLAM, JTV and LPLS.
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Table 5. Al bar phantom ε and F-score comparison using TV, JLAM, JTV and LPLS.

ε TV JLAM JTV LPLS

ne 0.28 0.09 0.04 0.02
μE 0.68 0.11 0.09 0.07

F-score TV JLAM JTV LPLS

supp(ne) 0.71 0.99 ∼1 ∼1
∇ne 0.64 0.82 0.79 0.83
supp(μE) 0.54 ∼1 ∼1 ∼1
∇μE 0.53 0.82 0.80 0.90

Table 6. Randomized bar phantom ε± and F± comparison over all NIST materials
considered (153 runs) using JLAM, JTV and LPLS.

ε± JLAM JTV LPLS

ne 0.10 ± 0.02 0.04 ± 0.004 0.03 ± 0.02
μE 0.12 ± 0.03 0.12 ± 0.03 0.08 ± 0.03

F± JLAM JTV LPLS

supp(ne) 0.99 ± 0.02 ∼1 ± 0.003 ∼1 ± 0.001
∇ne 0.83 ± 0.02 0.79 ± 0.02 0.84 ± 0.02
supp(μE) 0.98 ± 0.06 0.99 ± 0.02 ∼1 ± 0.008
∇μE 0.81 ± 0.03 0.77 ± 0.02 0.85 ± 0.02

(with LPLS also non-convex) and require significant additional machinery (e.g. in the imple-
mentation of the code of [12] used here) in the inversion when compared to JLAM, which is a
straight forward implementation of linear least squares solvers.

5.5. Reconstructions with limited data

The simple and complex phantoms considered thus far are supported within Γ (the yellow
region of figure 7) so as to allow for a full wavefront coverage in the reconstruction. To investi-
gate what happens when the object is supported outside of Γ, we present additional reconstruc-
tions of an aluminium bar phantomwith support towards the bottom (close to x2 = −3) of the
reconstruction space. See figure 13. In this casewe have limited data and the full wavefront cov-
erage is not available with the combined x-ray and Compton data sets. Image reconstructions of
the Al bar phantom are presented in figure 14, and the corresponding ε and F-score values are
displayed in table 5. See table 4 for the ε± and F± values corresponding to the randomized bar
phantom reconstructions. In this case ε± and F± were calculated from reconstructions of 153
bar phantoms (we used 100 runs previously), replacing the Al density value of figure 13 with
one of each NIST value considered (153 in total). The reconstruction processes and hyperpa-
rameter selection applied here were exactly the same as for the simple and complex phantom.
In this case we see artefacts in the Compton reconstruction along curveswhich follow the shape
of the boundary of Γ, and the x-ray artefacts constitute a vertical blurring as before. The ε error
when using JLAM, JTV and LPLS is more comparable in this example (compared to tables 1
and 3), particularly in the case of the μE phantom. The image quality and F-scores are again
similar as with the simple and complex phantom examples. All joint reconstruction methods
were successful in removing the image artefacts observed in the separate reconstructions, and
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thus can offer satisfactory image quality under the constraints of limited data. However this is
only a single test of the capabilities of JLAM, JTV and LPLS with limited data and we leave
future work to conclude such analysis (table 6).

6. Conclusions and further work

Here we have introduced a new joint reconstruction method ‘JLAM’ for low effective Z imag-
ing (Z < 20), based on ideas in lambda tomography. We considered primarily the ‘parallel
line segment’ geometry of [54], which is motivated by system architectures for airport security
screening applications. In section 3 we gave a microlocal analysis of the toric section transform
T , which was first proposed in [54] for a CST problem. Explicit expressions were provided for
the microlocal artefacts and verified through simulation. Section 4 explained the x-ray CT arte-
facts using the theory of [5]. Following the theory of sections 3 and 4, we detailed the JLAM
algorithm in section 5. Here we conducted simulation testing and compared JLAM to separate
reconstructions using TV, and to the nonlinear joint inversion methods, JTV [20] and LPLS
[12] from the literature. The joint inversion methods considered (i.e. JLAM, JTV and LPLS)
were successful in preserving the image contours in the reconstruction, as predicted. However
the smoothing applied by JLAM was not as effective as JTV and LPLS, and we saw a dis-
tortion in the JLAM reconstruction (see figures 11 and 12). JTV and LPLS were thus shown
to offer better performance than JLAM, with LPLS producing the best results overall. The
advantages of JLAM over JTV and LPLS are in the fast, linear inversion, and the reduction in
tuning parameters (one for JLAM, two for JTV/LPLS). Given the linearity of JLAM, the ideas
of JTV and LPLS can be easily integrated with lambda regularization to modify the objectives
of the literature and improve further the edge resolution of the reconstruction. To preserve the
linearity of JLAM we could also combine JLAM with a Tikhonov regularizer. This may help
smooth out the distortion observed in the JLAM reconstruction.We leave such ideas for future
work.
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Appendix A. Generating the plots of figure 8

The generation of the plots of figure 8 is explained in more detail here. We will explain the
generation of the plot for E = 100 keV. Refer to figure A1. We first plotted μE for E = 100
keV against ne for all materials in the NIST database [28] with effective Z less than 20. This is
the left-hand plot of figure A1. The set of materials with effective Z < 20 was

Zeff = {Z : σE(Z) < σE(20),E = 100 keV},
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Figure A1. Scatter plot with outlier and origin points included (left, R = 0.98), scatter
plot with the outlier removed and origin points included, the origin points highlighted
by an orange circle (middle, R = 0.95), and the scatter plot of figure 8 with outliers and
origin points removed (right, R = 0.93).

where σE is the electron cross section. We noticed a large outlier (coal, or amorphous carbon)
which corrupts the correlation in our favour, and hence we chose to remove the material from
consideration in simulation. The outlier is highlighted in the left hand plot. After the outlier was
removed we noticed a number of materials located at the origin (with negligible attenuation
coefficient and density, such as air) in the middle scatter plot of figure A1. As such materials
again bias the correlation and plot standard deviation in our favour, these were removed to
produce the left hand plot of figure 8 in the right-hand of figure A1. The same points were
removed in the generation of the right-hand plot of figure 8 also, for E = 1 MeV.
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