

The Shelf Circulation of the Bellingshausen Sea

L. M. Schulze Chretien¹, A. F. Thompson², M. M. Flexas², K. Speer³, N. Swaim¹, R. Oelerich⁴, X. Ruan⁵, R. Schubert³, C. LoBuglio¹

¹Marine Science Research Institute, Department of Biology and Marine Science, Jacksonville University, Jacksonville, Florida

²Environmental Science and Engineering, California Institute of Technology, Pasadena, California

³Geophysical Fluid Dynamics Institute, Department of Earth, Ocean, and Atmospheric Science, Florida

⁴State University, Tallahassee, Florida

⁵Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology,

¹⁰¹¹¹²⁴Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom.

Key Points:

- Warm Circumpolar Deep Water is transported onto the Bellingshausen Sea shelf along the eastern side of the Belgica and Latady Troughs.
- Meltwater leaves the region towards the west and is exported from the shelf along the western sides of the troughs, with parts of the Latady meltwater recirculating into the Belgica Trough.
- Observations indicate heat transport onto the shelf that is comparable with other regions, as well as a possible pathway connecting the West Antarctic Peninsula with the Amundsen Sea via the Bellingshausen Sea.

Corresponding author: Lena M. Schulze Chretien, lschulz2@ju.edu, Marine Science Research Institute, Department of Biology and Marine Science, Jacksonville University

22 **Abstract**

23 Over recent decades, the West Antarctic Ice Sheet has experienced rapid thinning of float-
 24 ing ice shelves as well as retreating grounding lines across its marine-terminating glaciers.
 25 The transport of warm Circumpolar Deep Water (CDW) onto the continental shelf, ex-
 26 tensively documented in the West Antarctic Peninsula (WAP) and the Amundsen Sea,
 27 has been identified as the key process for inducing these changes. The Bellingshausen
 28 Sea sits between the WAP and the Amundsen Sea and has exhibited similar rates of ice
 29 shelf thinning, yet remains remarkably under-studied compared to regions to the east
 30 and west. We present observations collected from a hydrographic survey of the Bellingshausen
 31 Sea continental shelf completed in early 2019. Using a combination of CTD, lowered ADCP
 32 observations, as well as measurements from ocean gliders, we show that submarine troughs
 33 provide topographically-steered pathways for CDW from the shelf break towards deep
 34 embayments and ultimately under floating ice shelves. Warm, modified CDW enters the
 35 shelf at the deepest part of the Belgica Trough and flows onshore along the eastern side
 36 of the trough. Modification of these poleward-flowing waters can be detected both at the
 37 western edge of the Latady and Belgica Troughs. Modified waters from the Latady Trough
 38 recirculate in the Belgica Trough, whereas modified waters leave the Bellingshausen Sea
 39 and flow west upon leaving the Belgica Trough. Our results show that this region is a
 40 critical part of the larger West Antarctic circulation system, linking the WAP and the
 41 Amundsen Sea.

42 **1 Introduction**

43 Oceanic processes in the Southern Ocean and along the Antarctic margins influence cli-
 44 mate change on a global scale. The Southern Ocean has persistently warmed over the
 45 last century (Gille, 2008), which has been accompanied by an increase in heat content
 46 of the West Antarctic continental shelf (Schmidtko et al., 2014) and increased glacial melt
 47 rates over the past decade (Pritchard et al., 2012). The thinning of floating ice shelves
 48 along most of West Antarctica, including in the Bellingshausen Sea, is one of the most
 49 dramatic signals of a changing climate (Cook & Vaughan, 2010; Paolo et al., 2015). This
 50 melting, which has been attributed to basal melt where warm ocean waters are deliv-
 51 ered to the glaciers (Pritchard et al., 2012), is also associated with the retreat of ground-
 52 ing lines (Rignot et al., 2014) and the acceleration of ice sheet flow (Joughin et al., 2002).
 53 The rate of ice loss of the West Antarctic Ice Sheet (WAIS) is now estimated to be three
 54 times as large as it was in the 1990's (IMBIE, 2018). From 1989 – 2000 to 1999 – 2009
 55 the thinning of glaciers increased by 200% (from 50 ± 14 Gt/yr to 166 ± 18 Gt/yr) and
 56 by an additional 150% from 1999 – 2009 to 2009 – 2017 ($166 \pm$ Gt/yr to 252 ± 26 Gt/yr)
 57 (Rignot et al., 2019). During the latest decade, mass loss was dominated by the Amund-
 58 sen and Bellingshausen Sea sectors, contributing more than 60% of the total mass loss.

59 Documenting changes to those components of the ocean circulation that are responsi-
 60 ble for basal melt is critical for accurate predictions of the future evolution of the WAIS.
 61 Yet, this remains challenging for a number of reasons. First, the circulation of the Antarc-
 62 tic margins depends on the large-scale flow of the Antarctic Circumpolar Current (ACC),
 63 the major polar gyres, a rich boundary current system over the continental slope (Pena-
 64 Molino et al., 2016; Thompson et al., 2018), and intricate shelf circulations steered by
 65 complex bathymetry. Furthermore, due to the lack of observations, it is difficult to as-
 66 certain changes from an uncertain baseline circulation strength and structure. The Belling-
 67 shausen Sea (BellS), the focus of this study, is at the confluence of a number of differ-
 68 ent circulation elements of varying scales and dynamics but has remained nearly unob-
 69 served.

70 South of the Polar Front, the penetration of warm Circumpolar Deep Water (CDW), and
 71 in particular its ability to access the Western Antarctic Peninsula (WAP) continental
 72 slope, is controlled by the boundary between the southern ACC Front and the Antarc-

73 tic Slope Current (ASC) (Jacobs, 1991; Whitworth et al., 1998). The southern bound-
 74 ary of the ACC flows to the northeast over the continental slope along the western side
 75 of the Antarctic Peninsula (Moffat & Meredith, 2018). In the absence of major topographic
 76 barriers, warm deep water flowing onto the shelf will eventually interact with marine-
 77 terminating ice sheets and contribute to basal melting. Along the WAP, CDW flows onto
 78 the shelf nearly unrestricted, apparently largely through coherent eddies (Moffat et al.,
 79 2008; Couto et al., 2017).

80 Farther to the west, in the Amundsen Sea, both observational (Walker et al., 2013) and
 81 numerical (Nakayama et al., 2013) evidence exists for a westward-flowing ASC near the
 82 shelf break. This indicates that a significant reorganization of the frontal structure over
 83 the continental slope occurs in the BellS sector, where this flow is largely absent, but the
 84 processes that determine this transition have not previously been described (Thompson
 85 et al., 2020).

86 All ice sheets found along the coast of the BellS have experienced considerable volume
 87 loss (Paolo et al., 2015; Rignot et al., 2019) and increased basal melt in the last decades
 88 (Rignot et al., 2013, 2019). Ice shelves in the eastern BellS, including the Wilkins Ice
 89 Shelf, George VI Ice Shelf, and Strange Ice Shelf, have been documented in the past (Jenkins
 90 & Jacobs, 2008; Padman et al., 2012), but the circulation and dynamics that influence
 91 the ice shelves in the western part of the BellS are not well known. The Venable Ice Shelf,
 92 for example, is a smaller glacier by area, but has shown basal melt rates that are higher
 93 than the melt rates of any of the other ice sheets in the region (Rignot et al., 2013; Paolo
 94 et al., 2015).

95 The presence of warm CDW on the BellS shelf was first identified by Talbot (1988), and
 96 was explained by the absence of near-freezing, high-saline water associated with the for-
 97 mation of deep water masses. The exchange of CDW across the shelf break is topographically-
 98 localized at glacially-carved troughs throughout West Antarctica (Dinniman & Klinck,
 99 2004; Moffat et al., 2008; Savidge & Amft, 2009). The BellS has two major troughs, the
 100 Belgica and Latady, located to the west and east, respectively. Within the Belgica Trough,
 101 a cyclonic circulation was inferred by Zhang et al. (2016), using data from instrumented
 102 seals and a Gade line analysis (Gade, 1979), with CDW being carried onshore along the
 103 eastern side of the trough and meltwater carried offshore along the western side of the
 104 trough. The circulation in the Latady Trough was not discussed, and this region's con-
 105 tribution to heat transport towards the BellS ice shelves remains unconstrained.

106 Coupled ice-ocean simulations carried out by Assmann et al. (2005) found the region to
 107 be dominated by a large-scale cyclonic circulation, although the model did not resolve
 108 circulation features in individual troughs. A strong coastal current formed the south-
 109 ern edge of this cyclonic circulation, extending from the BellS into the Amundsen Sea.
 110 The presence of a coastal current was also found by Holland et al. (2010) originating along
 111 the WAP, flowing southward into the BellS. The same study also suggests that the BellS
 112 experiences much weaker seasonal and interannual variability due to its location at the
 113 eastern edge of the Amundsen Sea low pressure system. Numerical models further sug-
 114 gest an important role for the exchange of water properties and tracers between the var-
 115 ious seas of West Antarctica. In particular, Nakayama et al. (2014) suggests that basal
 116 melting in the BellS can be a driving force in the freshening of the Ross Sea, a source
 117 region of deep water formation. Model studies also show that both the Belgica and Latady
 118 Troughs are likely important for exchange between the shelf break and the ice shelves
 119 (Nakayama et al., 2017).

120 Comparatively little is known about the pathways and fate of the meltwater that is added
 121 to the ocean from the accelerated melting of glaciers. A freshening of the polar seas around
 122 Antarctica has been found in models as well as observations and coincides with the in-
 123 creased ice shelf mass loss (Schmidtko et al., 2014; Rye et al., 2014; Richardson et al.,
 124 2005; Swart & Fyfe, 2013). The vertical distribution of this meltwater in the water col-

umn and its impact on shelf and larger-scale circulation remains uncertain. Most observations suggest that the freshening has a subsurface signature, often up to several hundred meters depth, consistent with the outflow from the base of the ice shelves (Jenkins & Jacobs, 2008; Biddle et al., 2017; Loose et al., 2009; Kim, 2016). However, glacial melt can also be redistributed within the water column by mixing processes, including those related to strong hydrographic fronts that develop at the ice shelf face (Naveira-Garabato et al., 2017). The depth and density classes over which glacial melt is found in the BellS suggest an important role for meltwater as a buoyancy driving mechanism of an overturning circulation (Savidge & Amft, 2009; Moffat et al., 2008; Ruan et al., 2020).

In austral summer 2018 – 19 the TABASCO¹ (NBP19-01) research cruise set out with the goal to observe the evolution of the ASC and to describe the circulation and shelf properties of the BellS. These hydrographic and velocity observations allow us to provide the first observational estimates of heat and meltwater fluxes in this region. As is shown below, the magnitudes are comparable to those in the better-studied Amundsen Sea. During the TABASCO cruise 56 CTD stations were occupied, and two gliders were deployed in the Bellingshausen Sea (**Figure 1**), which are used in this study to describe the circulation on the shelf and its possible connections to the ASC. Data and methods are introduced in Section 2; water mass properties, velocities, meltwater fractions and heat transports on the shelf are analyzed in Section 3. Section 4 discusses these results in the context of numerical solutions of regional shelf circulation, and a summary is presented in Section 5.

2 Data and Methods

2.1 NBP1901 Cruise data

We present observations collected aboard the R/V Nathaniel B. Palmer as part of the TABASCO (NBP19-01) research cruise in December 2018 – January 2019. During the cruise, 56 temperature and salinity (CTD) profiles were collected in the Bellingshausen Sea between 27 December, 2018 and 8 January, 2019. The stations were organized into a series of transects, two of which spanned the continental slope and shelf break with the remainder located over the continental shelf (**Figure 1**). Water samples were collected at each station, and the salinity was calibrated using a Guildline PortaSal 8410A. Velocity measurements were collected at each station using a RDI Workhorse Sentinel downward-looking Lowered Acoustic Doppler Current profiler (LADCP). The LADCP was configured to record velocity in 8 m bins and processing involved the use of both the hydrographic data and shipboard ADCP data, following Thurnherr et al. (2010). CTD data was acquired using a SBE-11+ (V2) deck unit, two SBE3plus temperature sensors (accuracy 0.001°C), two SBE4C conductivity sensors (accuracy 0.0003 S m⁻¹), and two SBE43 dissolved oxygen sensors (accuracy of 2% of saturation). All data were processed following the guidelines laid out in McTaggart et al. (2010). The hydrographic data is used to analyze the temperature and density distributions, as well as to calculate meltwater fractions contained in the water column. We calculate the geostrophic velocities, which are referenced to the de-tided LADCP data. Details of data processing are provided in the TABASCO project cruise report (<https://gps.caltech.edu/~andrewt/publications/TABASCO.pdf>).

In addition to the ship-based measurements, two ocean gliders, Seagliders, were deployed during the cruise. The first glider (SG621) was deployed on 27 December, 2018, offshore of the shelf break near Peter I Island (67.95°S, 52.88°W). We attempted to sample the continental slope and shelf break with this glider, but with limited success due to sea ice extent. Throughout its deployment, this glider sampled within the marginal ice zone, including some narrow filaments of open water surrounded by sea ice; these observations

¹ Transport of the Antarctic Peninsula & Bellingshausen Sea: Antarctic Slope Current Origins

will be reported in a subsequent study. The second glider (SG539) was deployed just offshore of the shelf break near Marguerite Trough on 19 January, 2019. After briefly sampling the mouth of Marguerite Trough, this glider moved south and sampled across the mouth of the Latady Trough. In this study, we make use of the last 106 dives collected by SG539 (**Figure 1**). The glider completed V-shaped dives to a depth of 1000 m or to within 15 m of the seafloor, if shallower than 1000 m. Surfacing locations were separated by roughly 4 km, and as little as 1 km when the glider was over the continental shelf. While diving, the glider collected measurements of temperature and salinity with a Seabird CTSail every 5 seconds, or roughly every 1 m. Measurements were then averaged in 10 m bins (www.byqueste.com/toolbox.html). Due to problems with the compass, no depth-averaged velocities were obtained. Due to the barotropic nature of the currents in this region (shown below) non-referenced geostrophic velocities are of limited use in calculating fluxes across the glider section.

186 2.2 Velocity corrections and transports

187 The LADCP data presented in this study was de-tided using tidal velocity output from
 188 the Circum-Antarctic Tidal Simulation (CATS2008), a high-resolution inverse model based
 189 on a uniform grid size of 4 km that includes cavities under the floating ice shelves (Padman
 190 et al., 2002). The model predicts tidal effects including surface heights, tidal current ve-
 191 locities and transports. In order to remove the tidal effects from the LADCP data, only
 192 the tidal current velocities in meridional and zonal direction are required. We used the
 193 predicted CATS2008 tidal velocities for S2 and M2 tides (in 10 minute intervals) aver-
 194 aged for each station, and removed them from the original LADCP data by subtraction.
 195 The tidal velocities in the BellS were relatively small (less than 5 cm s⁻¹), and did not
 196 qualitatively impact the LADCP data (**Figure A1**).

197 The combined use of the CTD and LADCP data allows for the calculation of geostrophic
 198 velocities. Geostrophic velocities are calculated from the hydrography for each station
 199 pair and referenced to the LADCP data. The LADCP data is averaged and rotated to
 200 be along/across each station pair. The geostrophic velocities are then referenced to the
 201 rotated LADCP data using a least square fit. The resulting velocities are used to cal-
 202 culate the total transports of water and heat. While volume transports can be calculated
 203 from the LADCP data alone, this only provides a snapshot of the velocity field. Volume
 204 transports calculated from LADCP-referenced geostrophic velocities are more likely to
 205 provide a synoptic view, at least for the baroclinic component of the flow. We use the
 206 referenced geostrophic velocities for the heat transport calculations.

207 The heat transport Q_h was calculated at each station as:

$$208 Q_h = \rho C_p \int \int v (\theta - \theta_f) \, dx \, dz, \quad (1)$$

209 where C_p is the specific heat capacity of sea water, calculated for each profile, ρ is the
 210 neutral density of each profile, θ is the measured potential temperature, θ_f is the freez-
 211 ing point temperature (a function of both salinity and pressure), v is the velocity per-
 212 pendicular to the section, and the integrals are taken in the vertical over the depth of
 the profile (dz) and in the horizontal along the section (dx).

213 The heat content of the CDW layer is calculated as:

$$214 Q_l = C_p \int_{z_{-H}}^{z_{\theta=1.1^{\circ}C}} \rho \theta \, dz \quad (2)$$

215 where C_p is the specific heat capacity of sea water, calculated for the CDW layer. The
 216 CDW layer is defined as temperatures that are warmer than 1.1°C. ρ is the neutral den-
 sity of the CDW layer and θ the measured potential temperature of the same layer. This

217 is calculated for each profile and then integrated over the depth of the CDW layer (z_H
 218 – $z\theta=1.1^\circ C$.

219 2.3 Meltwater calculations

220 Meltwater fractions are calculated using the Gade line analysis (Gade, 1979), also dis-
 221 cussed in Jenkins & Jacobs (2008) and Biddle et al. (2017). The approach relies on the
 222 end members of three water masses that dominate shelf properties: the subsurface tem-
 223 perature maximum of Circumpolar Deep Water (CDW), the subsurface temperature min-
 224 imum of Winter Water (WW) and glacial meltwater (MW) (**Figure 2a**). Water prop-
 225 erties that lie along a straight line between CDW and WW end members are assumed
 226 to have 0% meltwater, although we acknowledge that end member properties can be in-
 227 fluenced by either local or remote mixing of distinct properties; the reader is referred to
 228 Biddle et al. (2017) for a detailed discussion of these issues. The introduction of MW
 229 leads to fresher properties with a maximum meltwater fraction determined by the inter-
 230 section of the MW-CDW mixing line with the freezing line (**Figure 2b**). In general, wa-
 231 ter properties are a combination of all three end members, CDW, WW and MW. This
 232 analysis breaks down near the surface where Antarctic Surface Water (AASW) is strongly
 233 influenced by surface heat and freshwater fluxes.

234 The properties of the MW endpoint applied in this analysis, $S = 0$ and $\theta = -89^\circ C$,
 235 are based on Jenkins & Jacobs (2008). The properties of CDW and WW endpoints, on
 236 the other hand, are determined individually for each profile, ensuring that the meltwa-
 237 ter fractions only involve waters between the local maximum (CDW) and minimum (WW)
 238 potential temperatures at each station. A limitation of this approach is that local WW
 239 and CDW properties may be influenced by MW, and therefore our approach tends to
 240 underestimate MW content. Applying shelf-averaged properties for WW and CDW end
 241 members did not significantly modify the patterns or spatial distribution of glacial melt-
 242 water (not shown), which is consistent with Biddle et al. (2017).

243 3 Results

244 3.1 Water mass distribution

245 Water masses over the Bellingshausen Sea continental shelf are distributed in a two-layer
 246 configuration (**Figure 2a** and **Figure 3**). The upper layer contains Antarctic Surface
 247 Water (AASW, $\gamma^n < \gamma_{\theta_{min}}^n$) and Winter Water (WW, $\theta = \theta_{min}$; Mosby (1934)). The
 248 lower layer consists of Modified Circumpolar Deep Water present in several degrees of
 249 modification (MCDW, $28.00 > \gamma^n > 28.27$, $\theta < 1.5^\circ C$; Whitworth et al. (1998)). The
 250 permanent pycnocline separates WW from MCDW. In this section, we refer explicitly
 251 to MCDW and identify the various temperature and salinity properties found over the
 252 shelf. However, in the other sections of this manuscript, we refer to all warm subsurface
 253 shelf water as CDW, for simplicity.

254 The warmest (least modified) MCDW ($\theta > 1.4^\circ C$) is found at the shelf break, at the
 255 eastern side of the Latady Trough (300 m – 400 m deep) (**Figure 3a**). MCDW of $\theta >$
 256 $1.2^\circ C$ is found over the entire Latady Trough, and over the eastern side of the Belgica
 257 Trough. The local temperature maximum is generally found ≈ 200 m above the bottom
 258 (trough depth 650 m), indicating offshore MCDW flows topographically unconstrained
 259 onto the shelf. Above MCDW, AASW and WW occupy the upper 200 m in the Belgica
 260 Trough and Latady Trough. While WW on the eastern side of the Latady Trough is capped
 261 by relatively warm AASW ($\approx -0.4^\circ C$), surface waters over the rest of the continental shelf
 262 were relatively cold ($< -1.4^\circ C$) during the TABASCO occupation. The temperature min-
 263 imum of the WW lies between 50 m and 100 m. There is tilting of the permanent py-
 264 cnocline across the Belgica Trough (about 300 m deep at the western side of the trough
 265 vs. 100 m deep at the eastern side) that would be in agreement with a cyclonic, baro-

266 clinic circulation inside Belgica Trough. The permanent pycnocline shows a doming structure
 267 in the Belgica and Latady Troughs in the mid-shelf transect (**Figure 3b**), indicating
 268 a general clockwise or cyclonic circulation inside these troughs.

269 An analysis of the temperature/salinity properties at the MCDW core (**Figure 4**) provides
 270 insight into the circulation of the Belgica and Latady Troughs. Less Modified CDW
 271 properties are observed over the eastern side of the Latady Trough (dark brown stations
 272 in panel **d**), extending southwards along $\sim 80^{\circ}\text{W}$ (light brown stations in panels **c, d**).
 273 The relatively colder MCDW over the mid-shelf Latady Trough (green stations in panel
 274 **c**) suggest upstream modification takes place before this water is directed back offshore
 275 along the ridge that separates Latady and Belgica Troughs. The coldest MCDW (1.25°C ,
 276 dark green in panel **d**) is found at the shelf break, at the westernmost edge of the Latady
 277 Trough, concluding the clockwise circulation inside Latady Trough.

278 In Belgica Trough, relatively warm MCDW is found at the center of the Trough (1.30°C ;
 279 light brown stations in panel **a**). MCDW with particularly elevated θ and S values, corresponding
 280 to direct offshore CDW intrusions, are found over the eastern side of the Belgica Trough (dark
 281 brown stations in panel **b**). This less-modified MCDW encounters the more-modified MCDW,
 282 overflowing from the Latady Trough (green, in panels **a, c**), on its way onshore. Closer to the
 283 coast, strong modifications occur near the Venable Ice Shelf (magenta stations in panel **a**), giving
 284 rise to a colder and fresher version of MCDW that preserves these characteristics as it flows
 285 away from the ice shelf and back towards the shelf break along the western side of the trough
 286 (blue stations in panel **a**).

287 Winter water properties also show interesting modifications (**Figure 5**). In Latady Trough,
 288 the WW Θ_{min} is most eroded at the shelf break (panel **d**). Colder WW (-1.8°C) is found
 289 inside Latady Trough, and over the western side of Belgica Trough (panels **b, c**). The
 290 coldest and saltiest WW, close to freezing point (-1.85°C), is found at the western side
 291 of Belgica trough (blue stations, panel **a**). The high salinity of these waters with respect
 292 to WW measured upstream close to Venable Ice Shelf (magenta stations, panel **a**) suggests
 293 the influence of local sea ice formation processes. Influence in salinity from MCDW
 294 is, in principle, ruled out because these stations present similar θ - S properties in MCDW
 295 (**Figure 2a**).

296 3.2 Velocities

297 The temperature and salinity distributions presented in section 3.1 are complemented
 298 by information about the circulation gained from the LADCP measurements. Together,
 299 these show a consistent picture of warmer CDW flowing onto the continental shelf and
 300 towards the Bells ice shelves in both the Belgica and Latady Troughs and an offshore
 301 flow of the colder modified waters.

302 A striking feature of the circulation is its strong barotropic character, especially near the
 303 continental shelf break. The shelf-break section across the Belgica Trough (**Figure 6a**)
 304 indicates that the core of warmest water is associated with an onshore flow peaking of
 305 nearly 15 cm s^{-1} (St 17 – 20). The onshore flow is strongest in the center of the Belgica
 306 Trough, which is collocated with the maximum depth of the trough. The onshore flow
 307 is sandwiched between two strong cores of offshore flow. To the east, there is a strong
 308 ($> 15 \text{ cm s}^{-1}$) flow found over the eastern slope of the Belgica Trough (St 20 – 22). This
 309 outflow is associated with a lateral gradient in temperature at $\sim 400 \text{ m}$ depth, suggesting
 310 that the outflow originates from the Latady Trough. The complicated and shallow
 311 bathymetry near the boundary between the mouths of the Belgica and Latady Troughs
 312 likely focuses and strengthens the outflow here. On the western side of the Belgica Trough
 313 (St 11 – 17), there is a net outflow that is weaker as compared to the eastern side, yet
 314 is also confined to narrow boundary currents.

315 Unfortunately, the measurements collected by the glider at the mouth of the Latady Trough
 316 did not include accurate depth-averaged currents. Due to the barotropic nature of the
 317 flow, it is difficult to infer the circulation here. However, from hydrographic properties,
 318 there is an indication of onshore flow at the very eastern edge of the Latady Trough, which
 319 could be due to flow across the shelf break or due to a southern extension of the ACC
 320 across the shelf break.

321 The mid-shelf section that spans the Belgica and Latady Troughs, (**Figure 6b**), indi-
 322 cates that the flow is weaker than at the shelf break, with all observed velocities less than
 323 10 cm s^{-1} . Across this mid-shelf section, the flow is organized into a single region of in-
 324 flow and outflow in each trough. In both troughs, the inflow is confined to the eastern
 325 side and the outflow is located on the western side, consistent with the cyclonic circu-
 326 lation inferred by Zhang et al. (2016). The velocity structure in the Latady Trough has
 327 a more baroclinic structure than in the Belgica Trough, with stronger flows occurring
 328 below $\sim 300 \text{ m}$ depth.

329 A near-shore hydrographic section was collected at the face of the Venable Ice Shelf, con-
 330 sisting of four stations. The depth-averaged flow from these stations shows a strong off-
 331 shore velocity moving away from the ice shelf along the topographic saddle separating
 332 the Eltanin Basin to the east and a deeper basin to the west in front of Venable Ice Shelf
 333 (**Figure 6c**).

344 Due to the barotropic nature of the flow in the troughs, referencing geostrophic veloc-
 345 ities to either the Shipboard ADCP or Lowered ADCP data is essential for estimating
 346 the magnitude of the geostrophic transport. One difference between the geostrophic ve-
 347 locities and the velocities derived from the LADCP is that the onshore flow is bottom-
 348 intensified in the latter (**Figure A2b,c**). The referenced geostrophic velocities also show
 349 less structure on the western side of the Belgica Trough, such that all of the flow is off-
 350 shore to the west of the maximum trough depth. The regions of narrow onshore and off-
 351 shore flow in the LADCP data may indicate a coherent eddy or may be related to tem-
 352 poral variability that largely influences the barotropic component of the flow.

353 In the following sections we show that the picture of coherent cyclonic circulations that
 354 are steered by and confined within the BellS two major troughs is also consistent with
 355 meltwater and heat transport distributions, suggesting that these circulations are sup-
 356 ported by water mass transformation processes in the southern BellS.

347 3.3 Meltwater Distributions

348 Meltwater fractions over the continental shelf are summarized in **Figure 7** and MW frac-
 349 tions along the two sections across the continental slope are shown in **Figure 8**. To em-
 350 phasize the MW's contribution to water mass transformation, the ordinate is changed
 351 from depth to neutral density. Notably, all stations over the continental shelf are diag-
 352 nosed as having higher MW concentrations as compared to stations located over the con-
 353 tinental slope, except for those stations located shoreward of the 2000 m isobath on the
 354 western side of the BellS (**Figure 8a**).

355 For all CTD stations over the continental shelf, the $\gamma^n = 28.05 \text{ kg m}^{-3}$ neutral density
 356 surface, found roughly at 400 m depth, marks a sharp transition in MW fraction, with
 357 MW found almost exclusively above this boundary. The absence of MW in denser den-
 358 sity classes is in part enforced by our methodology (section 2.3), since the θ_{max} of each
 359 profile is assumed to be a pure end-member with no MW (Jenkins & Jacobs, 2008), but
 360 this transition still exists when using a shelf-wide definition of the CDW end member
 361 (not shown).

362 The largest MW fractions, peaking at 6 g kg^{-1} , are confined to the western edge of the
 363 Belgica Trough, found in both the shelf-break and mid-shelf sections (**Figure 7a**: St 11

– 12, **Figure 7d**: St 32 – 33). A second peak in MW is found at St 30 along the mid-shelf section in the Belgica Trough (**Figure 7e**), suggesting a flow of fresher water away from the coast both to the east and to the west of the shallow bathymetry located at 84°W, 72.5°S. At the mid-shelf section, the largest MW fractions are found between $\gamma^n = 27.85$ and 28.0 kg m^{-3} (at a depth of $\sim 250 \text{ m}$). Peak concentrations are found on slightly lighter density surfaces ($\gamma^n = 27.87 \text{ kg m}^{-3}$) at the shelf break as compared to the mid-shelf section ($\gamma^n = 27.95 \text{ kg m}^{-3}$). In general, MW fractions are lower on the eastern side of the Belgica Trough. This MW distribution is consistent with an onshore flow of warm CDW, flowing towards the coast along the eastern edge of the Belgica Trough, transforming into a glacially-modified version of CDW and flowing back towards the shelf break along the western side of the trough. Thus there is both a lateral cyclonic circulation and an overturning in density space.

An elevated MW fraction signal (4 g kg^{-1}) is found in a single cast on the eastern edge of the Belgica Trough (**Figure 7a**, St. 21), and on a denser isopycnal as compared to the western side ($\gamma^n = 28 \text{ kg m}^{-3}$ vs. $\gamma^n = 27.85 \text{ kg m}^{-3}$). This station coincides with the outflow of modified water leaving the Latady Trough (section 3.2). The glider section across the mouth of the Latady Trough also generally shows enhanced MW fractions on the western side (**Figure 7a**), including a strong positive MW anomaly near 300 km. The location of this anomaly is associated with a shallow sill that may focus the outflow here. In contrast, the region of CDW inflow in both the Belgica Trough (St. 17 – 20) and along the eastern side of the Latady Trough (St. 47 – 50) all have MW fractions less than 2 g kg^{-1} .

The short meridional section on the eastern side of the Latady Trough (**Figure 7d**) is of note because the MW fractions increase moving onshore. Furthermore, stations near the shelf break here show low amounts of MW and warmer temperatures. Despite evidence of a cyclonic circulation in the Latady Trough and little MW found at the shelf break, a MW fraction of over 3 g kg^{-1} is found on the eastern side of the trough along the mid-shelf section (**Figure 7e**, St 44 – 46). The core of this MW anomaly is on shallower density surfaces, $\gamma^n \approx 27.85$, than in the Belgica Trough. This enhanced MW concentration flowing towards the George VI ice shelf may indicate a southward extension of meltwater, derived from glacial run-off along the WAP, that has collected within the Antarctic Peninsula Coastal Current (APCC) and is delivered into the BellS (Moffat & Meredith, 2018).

A significant amount of MW (3 g kg^{-1}) is found across the meridional section separating the Belgica and Latady Troughs (**Figure 7c**). Together with the depth-averaged velocities at this station (**Figure 6**), this suggests an exchange of water properties between the two troughs that brings elevated MW fractions into the Belgica Trough where it joins the onshore flow. This may lead to higher meltwater fractions in the Belgica Trough and contribute to the modification of water properties that are flowing southward before they reach the coast. While the MW exiting the Latady Trough is found in shallower density classes than the on-shore moving CDW, the flow is largely barotropic and so may carry this MW back towards the coast leading to multiple modification events before leaving the BellS.

Finally, near the Venable Ice Shelf front, the peak MW concentration is found between the $\gamma^n = 27.95$ and 28.00 kg m^{-3} density surfaces, which corresponds to a depth of roughly 400 m (**Figure 7b**). The subsurface peak in MW is consistent with an outflow from the ice shelf cavity beneath the Venable Ice Shelf; the draft of the ice shelf is estimated to have an average depth of 280 m (Morlighem et al., 2019). This is the deepest isopycnal on which large MW fractions are found, suggesting that the MW core both shoals and becomes progressively lighter as it moves towards the shelf break (Zhang et al., 2016).

The combination of ice shelf melt and the topographically-steered circulation over the shelf leads to a dramatic difference in MW fractions over the continental slope on the

416 western and eastern extent of the BellS (**Figure 8**). The outflow of MW, accumulated
 417 broadly over the continental shelf of the BellS and potentially after interactions with mul-
 418 tiple ice shelves, is focused at the western edge of the Belgica Trough (**Figure 8a**), with
 419 MW fractions of 6 g kg^{-1} – nearly five times larger than the values found on the east-
 420 ern side of the BellS (**Figure 8b**). The elevated MW fraction is found in water as deep
 421 as 2000 m over the continental shelf, establishing a sharp front in MW, associated with
 422 the southern boundary of the ACC. The negative anomaly in MW fraction found at St.
 423 8 is likely evidence of a mesoscale eddy or filament advecting offshore water shoreward
 424 over the slope. The large MW fractions found at the western extent of the Belgica Trough
 425 are consistent with the meltwater distribution inferred from coarser hydrographic pro-
 426 files from instrumented seals by (Zhang et al., 2016) and may indicate that this region
 427 is the primary export site from the BellS.

428 Both the MW concentration and the vertical extent of the density classes that host this
 429 freshwater contribute to the total MW content. The MW distribution over the shelf (**Figure**
 430 **9**) is largely consistent with the hydrographic sections discussed above. The area in front
 431 of Venables Ice Shelf show the largest values, increasing towards the coast to 2.9 m of
 432 meltwater. MW content across the shelf-break and mid-shelf sections in both the Bel-
 433 gica and Latady Troughs are lower with around 0.9 – 1.3 m of meltwater. Strikingly, the
 434 MW content increases again at the shelf break in a narrow band of isobaths between 1000
 435 and 2000 m. Here we find as much as 2.3 m of meltwater in a much thicker (about 350
 436 – 450 m) layer. The elevated MW content here suggests that MW distributed broadly
 437 over the continental shelf is collected as the western edge of the BellS and delivered west-
 438 ward via the circulation over the continental slope.

439 3.4 Volume and heat transports

440 Volume and heat transports were calculated at the mouth of the Belgica Trough and at
 441 the mid-shelf section occupying the Belgica and Latady Troughs (**Figure 10**). A total
 442 of 6 Sv enter the Belgica Trough through the deepest part of the trough (**Figure 10a**
 443 middle panel, St 16 – 19), and a total of 6.6 Sv flow offshore over the rest of the section.
 444 The largest offshore transports are found close to the gap connecting Belgica to Latady
 445 Trough (3.6 Sv at St 20 – 22). The net transport across the mouth of the Belgica Trough
 446 is nearly closed (0.6 Sv net offshore transport).

447 Transports at the mid-shelf section are generally weaker than those at the shelf break
 448 section. A weak onshore flow of 0.6 Sv was measured at the deep station-pairs of the Latady
 449 Trough (**Figure 10b**, middle panel, St 44 – 46), suggesting we are likely missing a nar-
 450 row onshore current on the eastern side of the trough. As can be seen in the bathymet-
 451 ric profile (**Figure 10b**, top panel), the mid-shelf section was not properly closed; thick
 452 sea ice prevented the ship from closing the section across the Latady Trough. The off-
 453 shore flow on the western side of the Latady trough was of 1.6 Sv (**Figure 10b**, mid-
 454 panel). Roughly 2 Sv flow back onshore along the eastern side of the Belgica Trough,
 455 but only 0.6 Sv of transport flow back towards the shelf break on the western side of the
 456 trough. Such weak offshore flow measured on the western side of the Belgica Trough may
 457 indicate that a substantial part of water flows back towards the shelfbreak over the west-
 458 ernmost BellS continental shelf (not sampled here).

459 Integrating volume transport across both troughs (**Figure 10b**, middle panel), results
 460 in a net onshore transport of 1.3 Sv. This discrepancy may arise from not completely
 461 closing the Latady Trough, therefore missing a topographically steered circulation on the
 462 eastern side of Latady. By excluding station 45, at which the LADCP data recorded a
 463 strong southward flow, the imbalance is reduced to only 0.4 Sv (**Figure 10b**, broken
 464 line). Alternatively, the 1.3 Sv (onshore) imbalance could indicate that we are indeed
 465 missing a more distributed flow of water moving back towards the shelf break over the
 466 western shelf of the BellS.

467 The spatial distribution of heat fluxes follows a similar pattern. The largest magnitude
 468 heat transport occurs at the eastern side of the Belgica Trough (**Figure 10a**). In the
 469 Belgica Trough, a total of 0.9 TW enter along the bottom of the trough (stations 17 –
 470 19). The heat transport balances to +0.1 TW. At the mid-shelf section across the Bel-
 471 gica and Latady Troughs (**Figure 10c**), 0.5 TW enter along the eastern side of the Bel-
 472 gica Trough. About 70% of the offshore heat transport (0.3 TW) takes place along the
 473 western side of the Latady Trough (St 42 – 44). The net heat transport across the mid-
 474 shelf section of Latady and Belgica troughs, towards the ice shelves is 0.3 TW.

475 The thickness and heat content of the CDW layer at each station provide additional in-
 476 formation about the locations where the heat is transported onto the shelf and lost through
 477 a combination of interactions with ice shelf meltwater or via surface cooling. To estimate
 478 the thickness of the CDW layer we use a temperature threshold of 1.1°C (**Figure 11**).
 479 The thickness and heat content of the CDW layer is largest at the mouth of the Belgica
 480 Trough and at the eastern side of the Latady Trough. In the Latady Trough, the CDW
 481 thickness remains fairly constant (~ 325 m), but its heat content presents a zonal gra-
 482 dient, with more heat content on the eastern side of the trough. This suggests there is
 483 significant meltwater contribution from the BellS ice shelves in Latady Trough that sup-
 484 ports modification of CDW along its path towards shelf break.

485 At the connection between the two troughs, the CDW layer is thinner (~ 100 – 150 m)
 486 and the heat content is lower (0.6 GJ m $^{-2}$) than at the mouth of the Belgica Trough (1.5
 487 GJ m $^{-2}$). This confirms CDW recirculates around the Latady Trough before moving off-
 488 shore and into the Belgica Trough through the gap connecting the two troughs. In front
 489 of the Venable Ice Shelf, a few stations show a thick (> 150 m) yet significantly cold CDW
 490 layer. The western side of the Belgica Trough presents the thinnest CDW layer (~ 50
 491 – 75 m) with lowest heat content (0 – 0.2 GJ m $^{-2}$). This confirms the western side of the
 492 Belgica Trough as the major pathway for meltwater mixtures exiting the BellS towards
 493 the shelf break.

494 4 Discussion

495 4.1 Comparison to numerical models

496 The observations described above are the first to make quantitative estimates of the shelf
 497 circulation, and therefore the best point of comparison is with numerical simulations that
 498 include the regional circulation of West Antarctica. A prominent feature of the obser-
 499 vations is the delivery of warm water towards the BellS ice shelves as well as the deliv-
 500 ery of waters modified by glacial melt away from the shelves via narrow boundary cur-
 501 rents that are steered by the bathymetry and have a lateral scale of ~ 10 km. This puts
 502 a strong constraint on the horizontal resolution needed to accurately capture physical
 503 processes that are controlling the shelf circulation (St-Laurent et al., 2013; Stewart &
 504 Thompson, 2015). It is perhaps not surprising that early studies (e.g. Assmann et al.
 505 (2005); Holland et al. (2010)) only resolve a broad-scale cyclonic circulation that effec-
 506 tively spans the entire continental shelf. In particular, in Holland et al. (2010), the near-
 507 surface, two-dimensional stream function shows circulation extending from the WAP, well
 508 north of Marguerite Trough to the eastern boundary of the Amundsen Sea. At 200 m
 509 depth, their stream function shows more confinement to the Bellingshausen Sea. Holland
 510 et al. (2010) do not provide an estimate of the depth-integrated transport over the shelf,
 511 although the annual mean horizontal streamfucntion at 200 m peaks at roughly 5×10^3
 512 m 2 s $^{-1}$, which assumed to be uniform over an average depth of 500 m is equal to 2.5 Sv.
 513 This value is comparable to the maximum onshore transport calculated in the Belgica
 514 and Latady Troughs (section 3.4).

515 More recent modeling efforts have produced higher-resolution realizations of the BellS
 516 circulation and support the spatial variability in water properties apparent in our ob-

517 servations. In particular, Nakayama et al. (2014), analyzing output from a simulation
 518 with non-uniform grid spacing that reduces to less than 5 km over the continental shelf,
 519 presents distinct fates for glacial MW entering from ice shelves located in the western,
 520 central and eastern parts of the BellS. Following a decade of integration, the largest MW
 521 content is confined to the Belgica Trough. This suggests (i) the importance of melt from
 522 ice shelves found along the southern edge of Eltanin Bay that are directly connected to
 523 the Belgica Trough and (ii) the transfer of MW from the Latady Trough into the Bel-
 524 gica Trough before leaving the continental shelf. In this simulation, the MW is distributed
 525 broadly in the Belgica Trough, rather than being confined to the western edge. Indeed,
 526 the regions of largest MW content are found on the eastern side of Eltanin Bay, suggest-
 527 ing a pooling of MW arising from eastern ice shelves, such as George VI and Stange. While
 528 the exact position of inter-trough exchange (between Belgica and Latady) is difficult to
 529 discern from our limited observations, we do indeed see regions of enhanced flow between
 530 troughs in regions where the bathymetry is deep, for instance near stations 22 – 25 and
 531 34 – 37 (**Figure 6c**). While our glacial MW estimates peak in the western boundary of
 532 the Belgica and Latady Troughs, we also find elevated meltwater fractions spread across
 533 the same density surfaces. Thus, both models and observations are consistent with a sig-
 534 nificant degree of re-circulation over the shelf that may trap modified waters for up to
 535 decades, and would integrate changes in forcing, such as wind forcing at the shelf break,
 536 that might be active on shorter timescales (Walker et al., 2007; Jenkins et al., 2018). Mod-
 537 els, when tracking CDW with the help of tracers, seem to indicate a higher concentra-
 538 tion of CDW on the eastern side of the Latady Trough. This is confirmed by our obser-
 539 vations that show warm water in the same location.

540 The long-term fate of the glacial MW in Nakayama et al. (2014) is remarkable. Despite
 541 its broad distribution within the Belgica and Latady Troughs, upon delivery to the shelf
 542 break, the glacial MW predominantly flows westward; MW content is low over the con-
 543 tinental slope of the WAP. Again, this is consistent with our observations that show large
 544 differences in MW fraction on the cross-slope sections at the western and eastern edges
 545 of the BellS. Additionally, the westward pathways appears to be exclusively over the con-
 546 tinental slope, in part due to the extremely shallow bathymetry to the north of Abbott
 547 Ice Shelf. To our knowledge, there are no ship-based observations in this region of shal-
 548 low bathymetry, due to predominantly northerly winds producing packed sea ice con-
 549 ditions nearly year round. However, seal-based estimates of MW content was also low
 550 in this area (Zhang et al., 2016). Furthermore, experiments in which MW was only tracked
 551 from Abbott Ice Shelf showed limited distribution, confirming the relative impermeabil-
 552 ity of the shallow shelf region to lateral exchange (Nakayama et al., 2014). It remains
 553 an open question as to whether a narrow coastal current connects the southern BellS to
 554 the eastern Amundsen, perhaps even flowing under the Abbott Ice Shelf. However, even
 555 2 km resolution models may struggle to resolve this feature. Overall, our observations
 556 have confirmed a number of features that have been simulated in high-resolution mod-
 557 els of the BellS, and they highlight the importance of compact circulation features and
 558 topographic control on MW transport.

559 4.2 Comparison to the Amundsen Sea

560 In the Amundsen Sea, just like in the Bellingshausen Sea, basal melt is driven by CDW
 561 that enters the shelf via troughs (Webber et al., 2019; Dotto et al., 2019). The depth of
 562 the CDW in the Amundsen Sea (350 – 500 m) agrees with the depth observed in the Bellings-
 563 hausen Sea. While some studies have shown the inflow of the warm water to be baro-
 564 clinic (Arneborg et al., 2012; Wahlin et al., 2013) other direct velocity observations, on
 565 the other hand, show it to be barotropic (Kalen et al., 2015; Biddle et al., 2019) as ob-
 566 served for the Belgica Trough. The volume transport due to the flow on the shelf was
 567 found to be 1.5 Sv in the Amundsen Sea (Thurnherr et al., 2014) compared to a cumu-
 568 lative transport of 5 Sv towards the glaciers at our mid-shelf section. However, the net
 569 ocean heat transport in both regions are more comparable with 3.3 TW in the Amund-

570 sen Sea (Webber et al., 2019) and 0.7 TW in the Bellingshausen Sea. Furthermore, it
 571 is interesting to note, that MW is present across the entire continental shelf of the Amund-
 572 sen Sea, with strong outflow at the western sides of two troughs (Biddle et al., 2019).
 573 This is consistent with our findings of MW across the entire Bellingshausen Sea shelf and
 574 export pathways along the western sides of the Belgica and Latady Troughs. One no-
 575 table difference between the MW in the Amundsen and Bellingshausen is the larger amount
 576 in the former. In front of Thwaites glacier, meltwater in the water column accumulates
 577 to as much as 4.5 m, while they are a maximum of 2.9 m in the Bellingshausen Sea, in-
 578 front of the Venable glacier. However, our calculation does not include the top 200 m
 579 and in some locations MW fractions in the Amundsen Sea were found to be largest in
 580 the surface layer. In addition, measurements taken in front of George VI in 1994 suggest
 581 meltwater fractions of up to 20 g kg^{-1} at around 200 m with transports of up to 0.2 Sv.

582 4.3 Variability of the regional circulation

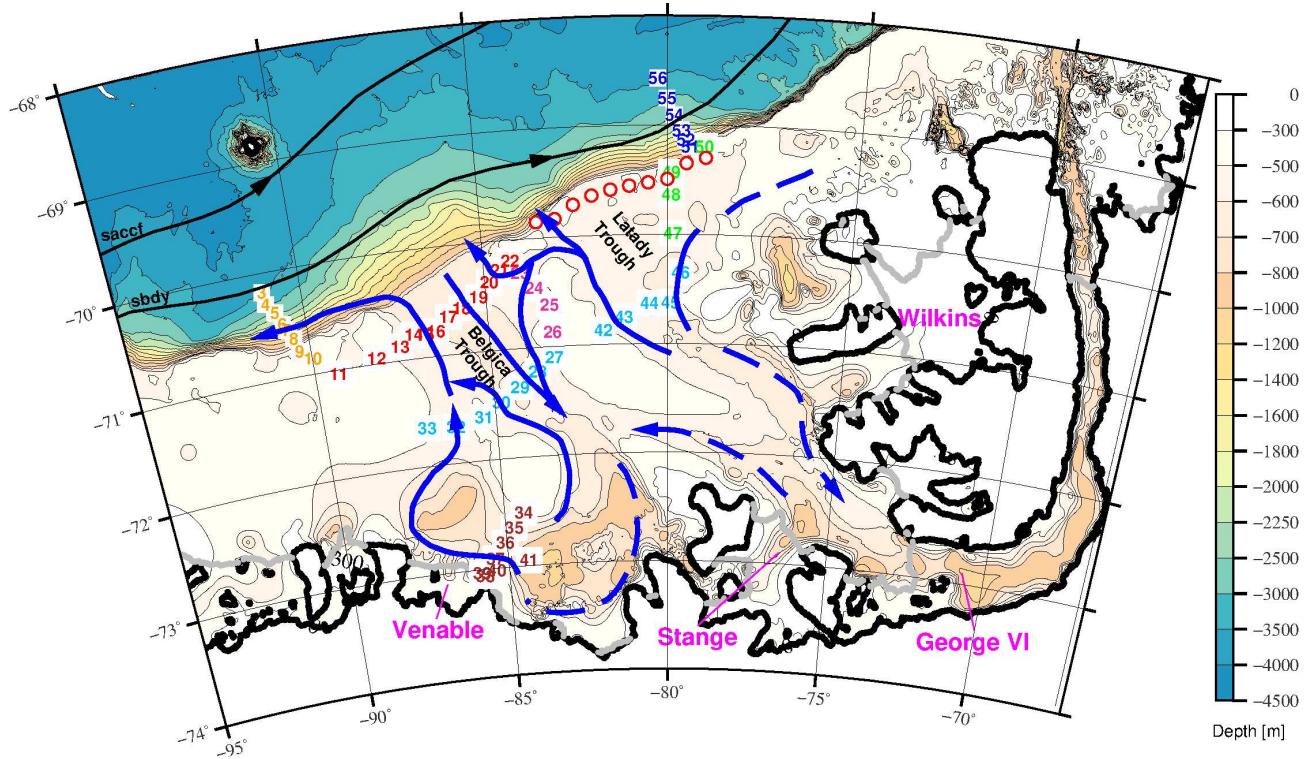
583 This study, along with Ruan et al. (2020), provides the first hydrographic overview of
 584 the entire BellS and suggests that this region plays a key role in integrating water mod-
 585 ification processes throughout West Antarctica. However, cautious interpretation of this
 586 data set is required due to our limited ability to assess temporal variability. On seasonal
 587 timescales, the numerical simulations of Mathiot et al. (2011) show that the frontal cir-
 588 culation over the shelf is susceptible to seasonal variability in the BellS, a result confirmed
 589 through observations by Armitage et al. (2018). Changes in the wind stress and wind
 590 stress curl will almost certainly modify both the properties of CDW and, perhaps more
 591 importantly, its thickness over the continental shelf, similar to variability observed in the
 592 Amundsen Sea (Dutrieux et al., 2014; Jenkins et al., 2018). Thus even comparing years
 593 when hydrographic data over the shelf is available (1994, 2007, 2019) - the focus of fu-
 594 ture work - is challenging because data were collected at different times of the year. Data
 595 collected by instrumented seals is a promising resource for analyzing interannual vari-
 596 ability, although this is hampered by the spatial heterogeneity in how the seals forage
 597 from year-to-year, i.e. they do not often return to the same spot. Nevertheless, integrat-
 598 ing these disparate data sets along with new remote sensing products (Armitage et al.,
 599 2018) should help to determine whether the BellS experiences similar shifts between warm
 600 and cold regimes that have been observed in the Amundsen Sea (Dutrieux et al., 2014;
 601 Jenkins et al., 2018).

602 Over longer timescales, however, there are features of the BellS that are distinct from
 603 the Amundsen and relevant for the evolution of the West Antarctic circulation. While
 604 the Belgica and likely the Latady Trough host an inflow of CDW focused in deep troughs,
 605 similar to the Amundsen, the eastern BellS supports the inflow of a much lighter and
 606 fresher water mass related to the southward flow of the APCC. This could influence the
 607 vertical stratification of BellS waters and impact air-sea exchange, and in particular heat
 608 loss, in the large polynyas of the BellS in ways that are distinct from the Amundsen. Fur-
 609 thermore, due to the shallow bathymetry to the west of the Belgica Trough, the outflow
 610 of modified waters is much more confined to the shelf break in the BellS (Thompson et
 611 al., 2020) as compared to the Amundsen (Nakayama et al., 2017). This, in turn, could
 612 play an important role in setting properties of the Antarctic Slope Current. This is par-
 613 ticularly important as the outflow from the BellS occurs at the confluence of the ACC's
 614 southern boundary and the eastern extent of the Ross Gyre, opening the possibility of
 615 the BellS circulation responding to more remote forcing, such as the strength of the Ross
 616 Gyre. Finally, the Amundsen and BellS may also influence the structure of the Ross Gyre
 617 through the export of MW from the shelves to the open ocean, hence providing a direct
 618 link to the deep water formation (Nakayama et al., 2018).

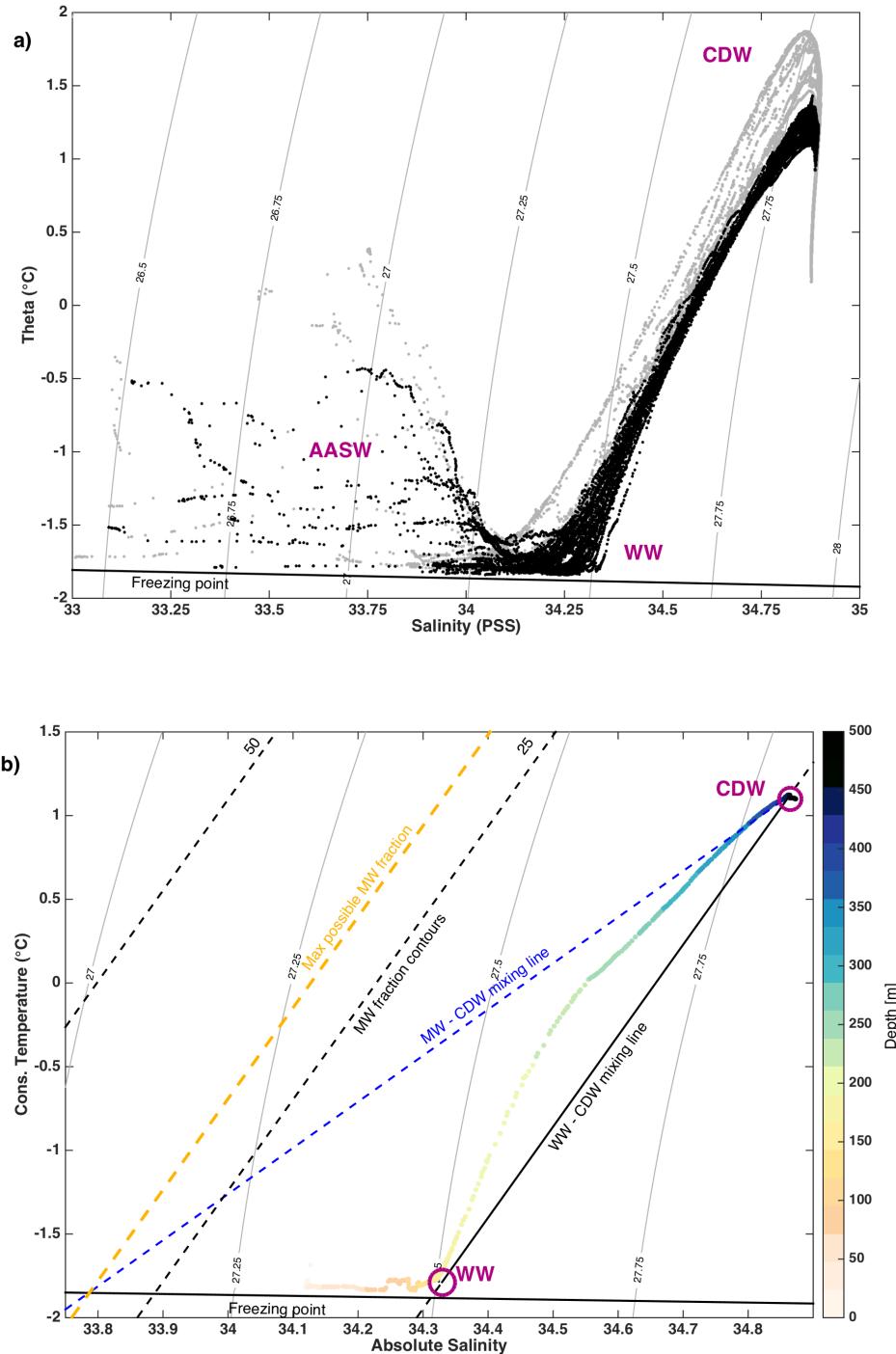
619

5 Summary

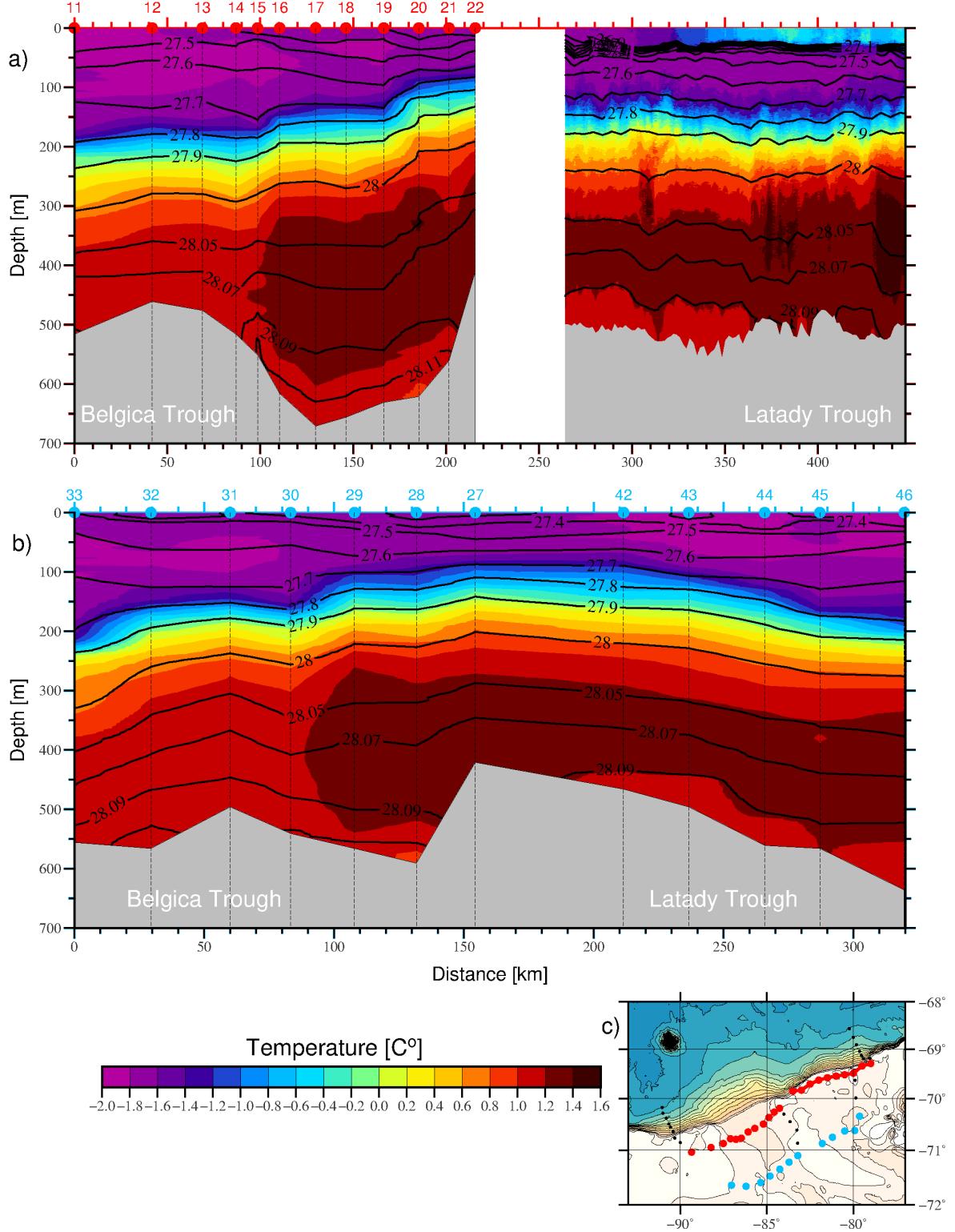
620 Data from the 2018–2019 NBP1901 cruise is used to investigate the circulation over the
 621 continental shelf of the Bellingshausen Sea and this region's role in linking flow features
 622 throughout West Antarctica. Flow through the BellS connects the West Antarctic Peninsula
 623 (**Figure 1**), where CDW on the continental shelf is warmest, to the Amundsen Sea
 624 where changes in the temperature of CDW has been most rapid (Schmidtko et al., 2014).
 625 Thus the circulation towards and away from floating ice shelves in the BellS will be crit-
 626 ical part of the response of the West Antarctic climate to continued warming of the South-
 627 ern Ocean. Relatively little is known about mechanistic controls on the BellS circula-
 628 tion features, in large part because dedicated observations in this region have been rare.
 629 A combination of ship-based and glider-based hydrography, along with lowered ADCP
 630 data, has provided a shelf-wide snapshot of this circulation as well as transports of heat
 631 and meltwater.

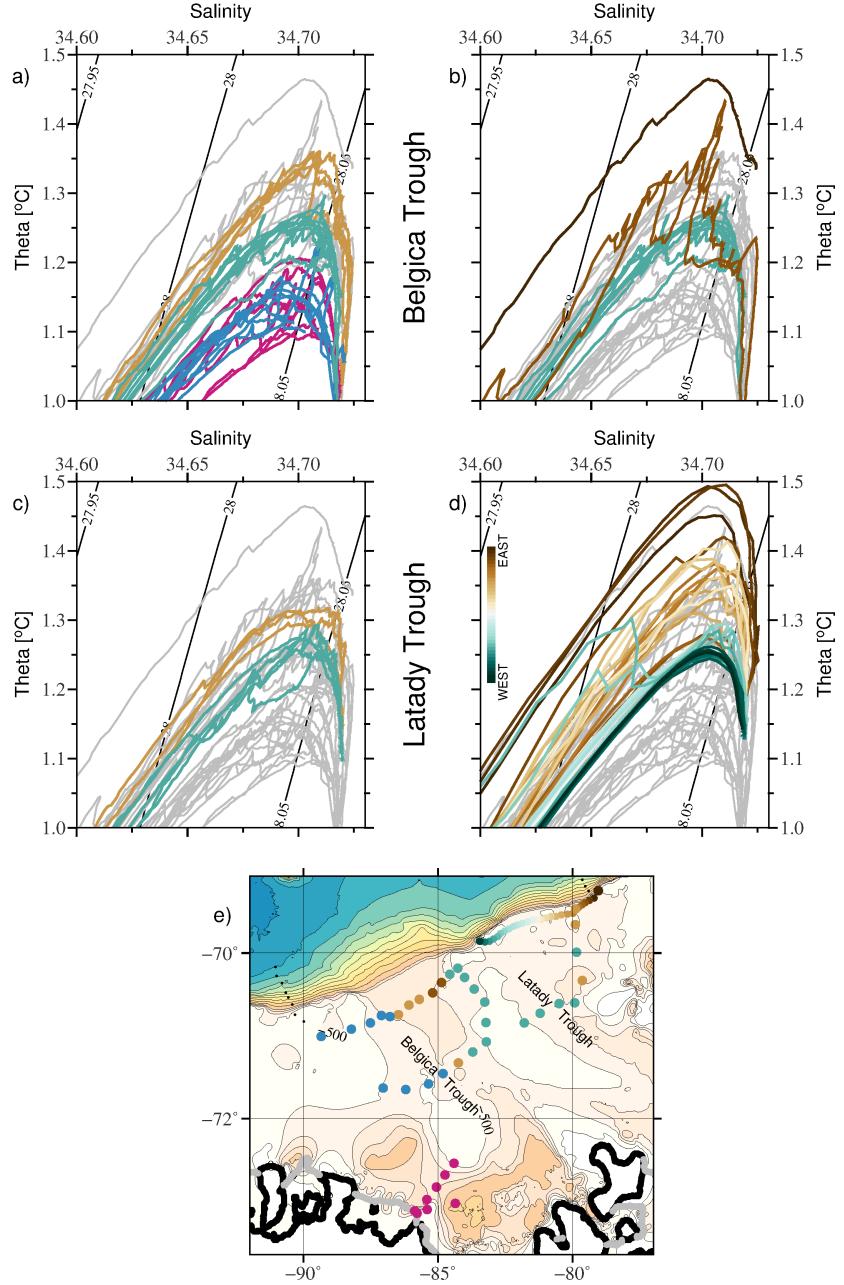

632 On the BellS shelf, warm CDW is found broadly below 300 m. The warmest CDW is
 633 found on the eastern side of the Latady Trough, and this water mass cools progressively
 634 from east to west across. There are multiple lines of evidence, including velocity fields,
 635 meltwater concentrations, and heat transport estimate that this cooling is indicative of
 636 modification through interaction with one or perhaps multiple ice shelves along the coast
 637 of the BellS. The signature of these modifications is most pronounced in water flowing
 638 offshore on the western edges of the two prominent troughs. This suggests that the ice
 639 shelf interactions support cyclonic lateral circulations in both the Belgica and Latady
 640 Troughs as well as an overturning in density space. This circulation is also consistent with
 641 the flow field diagnosed from geostrophy referenced to the LADCP data as well as the
 642 meltwater distributions. While the meltwater is broadly distributed over the shelf, melt-
 643 water fractions peak, with values up to 6 g kg^{-1} , on the western edge of each trough with
 644 smaller magnitudes MW on the eastern edges.

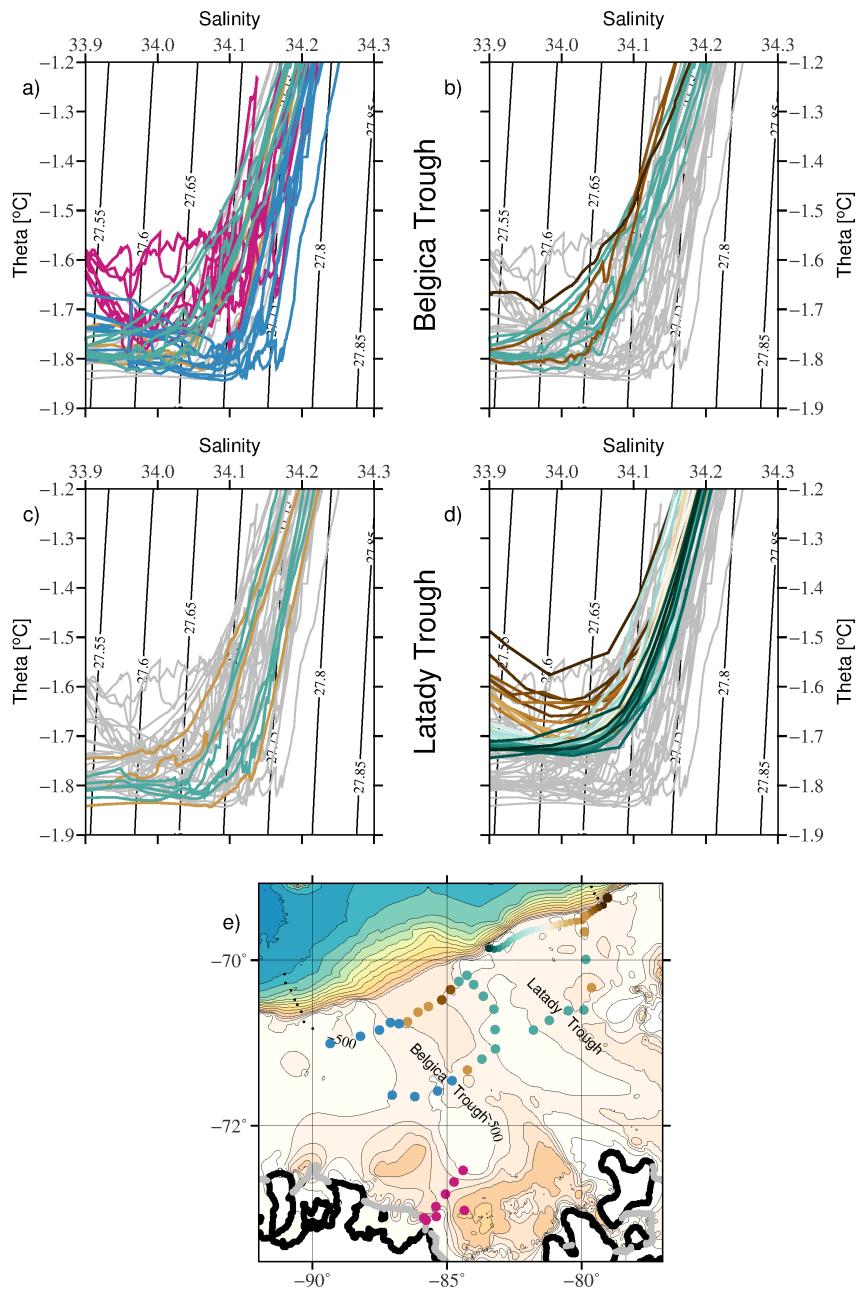
645 Despite providing a snapshot of the circulation structure, the transport is nearly closed
 646 across both our shelfbreak and mid-shelf section. The cumulative transport, compara-
 647 ble to a horizontal streamfunction, reaches a maximum values of roughly 2 Sv in each
 648 trough, comparable to the circulation strength in the Amundsen Sea. Due to the largely
 649 barotropic nature of the flow, we infer the baroclinic circulation, more closely linked to
 650 the overturning (Wahlin et al., 2013), to be much smaller. The largest heat transport
 651 occurs at the eastern side of both troughs, with 1.7 TW moving onto the shelf while about
 652 1 TW are leaving the area. The thickness of the CDW layer and its heat content also
 653 peak on the eastern side of each trough; the CDW layer is progressively eroded and cooled
 654 while circulating through the troughs.

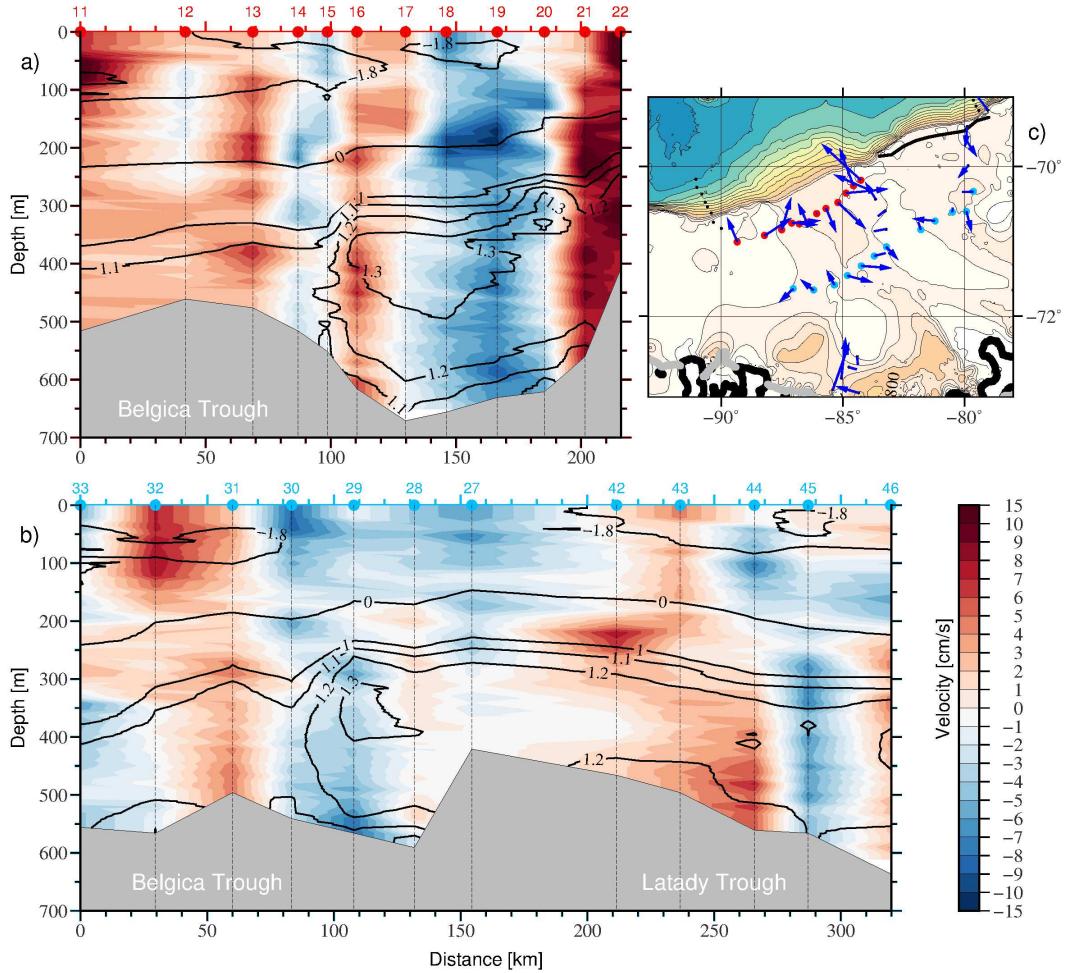

655 While these observations improve our understanding of the BellS circulation, open ques-
 656 tions remain. In particular, due to sea ice extent we were not able to close the eastern
 657 boundary of the Lataday Trough, and the origin of the water flowing into this trough
 658 remains unclear. Future observations are needed to assess the link between inflow to the
 659 BellS and the Antarctic Coastal Current as well as how this can influence ice-shelf melt
 660 rates (Hellmer et al., 2012; Moffat et al., 2008; Kim, 2016). The persistence of connec-
 661 tions between the WAP (east of the BellS shelf), the BellS shelf, and the Amundsen Sea
 662 (west of the BellS) remains uncertain. Such a connection would be a crucial piece in un-
 663 derstanding heat and meltwater transport throughout the region. Based on the large-
 664 scale cyclonic circulation over the West Antarctic shelf (Assmann et al., 2005; Holland
 665 et al., 2010), this connection would imply that processes over the BellS shelf are influ-
 666 enced by the dynamic Antarctic Peninsula to the east, while dynamics in the fast-changing
 667 Amundsen Sea may be influenced by upstream processes in the BellS. The latter rela-
 668 tionship is likely considering the evidence in these observations that meltwater exported
 669 from the BellS shelf is directed into a slope current that is directed towards the Amund-
 670 sen Sea.

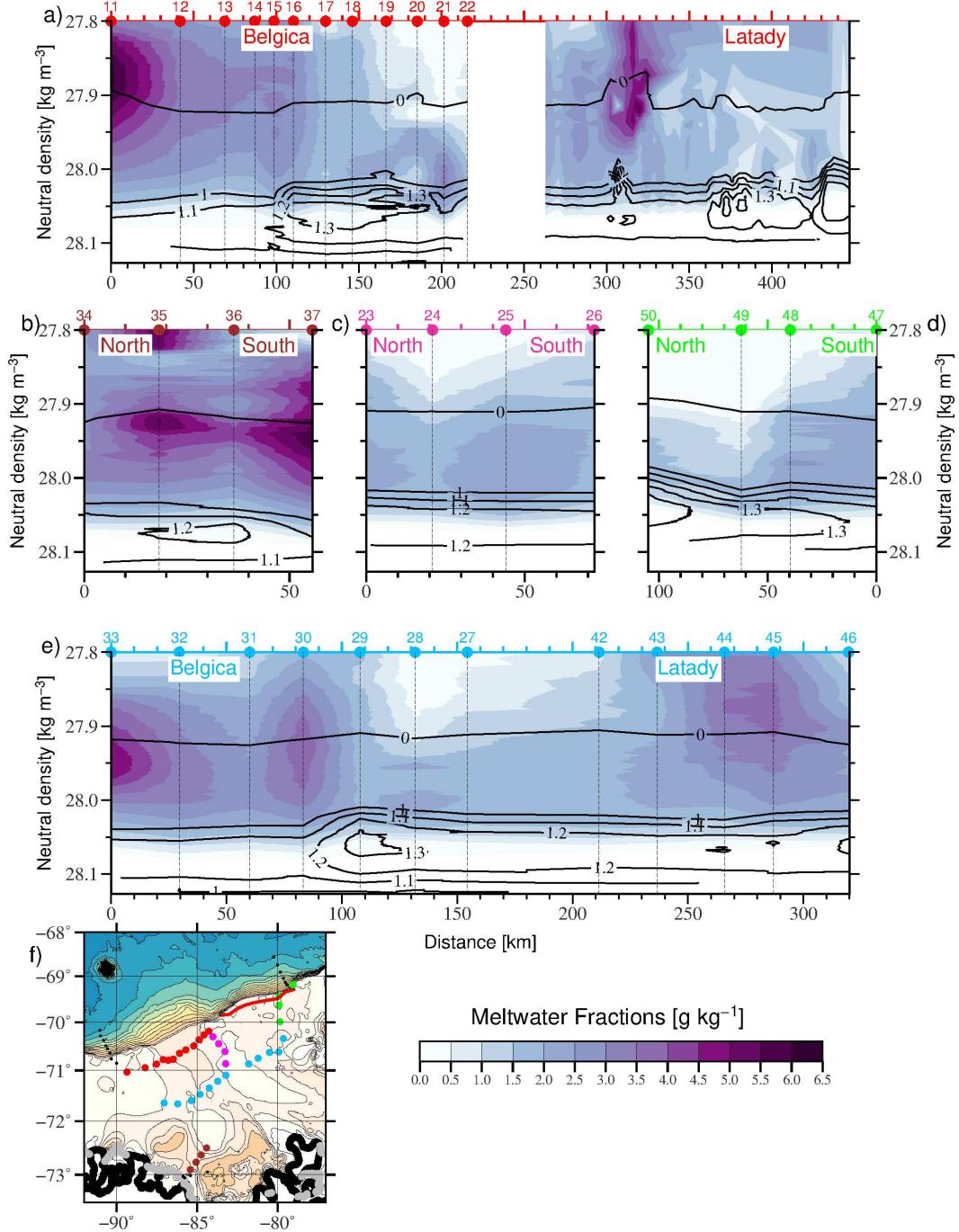
671 **Acknowledgments**

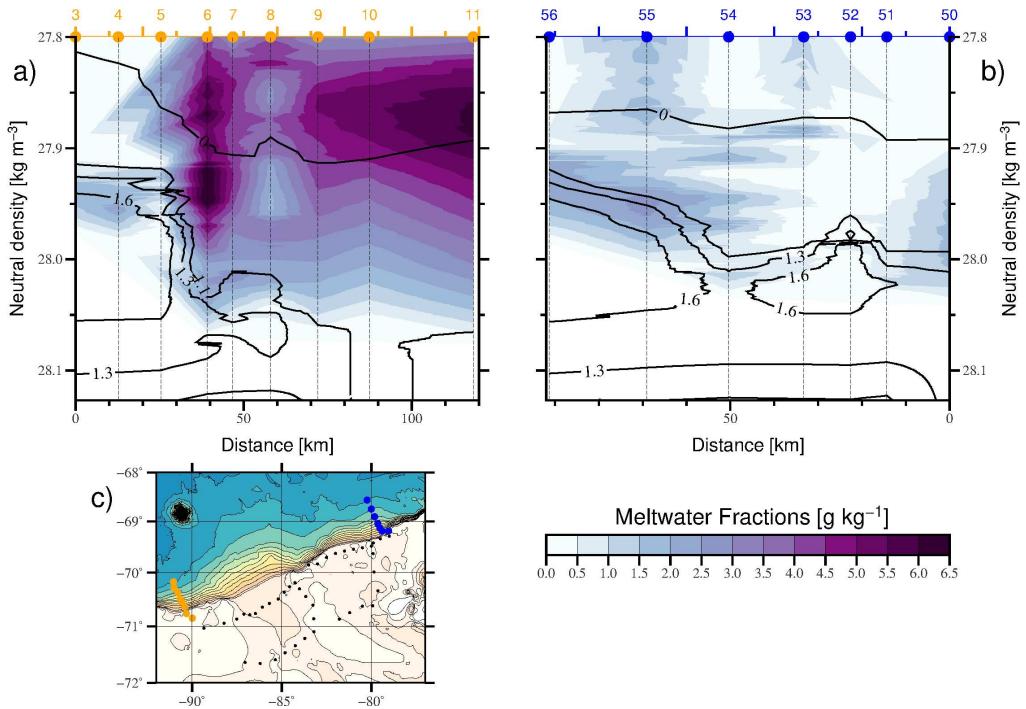

672 We acknowledge essential contributions from the captain and crew of the R/V Nathaniel
673 B. Palmer as well as the Antarctic Support Contract staff during NBP19-01. This work
674 was supported by the National Science Foundation. AFT, XR, and MF were supported
675 by NSF OPP-1644172 and the David and Lucille Packard Foundation. LSC, KS, NS, RS,
676 and CL were supported by NSF OPP-1643679. RO is supported by the COMPASS project
677 from the European Research Council under the European Union's Horizon 2020 research
678 and innovation program (grant agreement n° 741120).

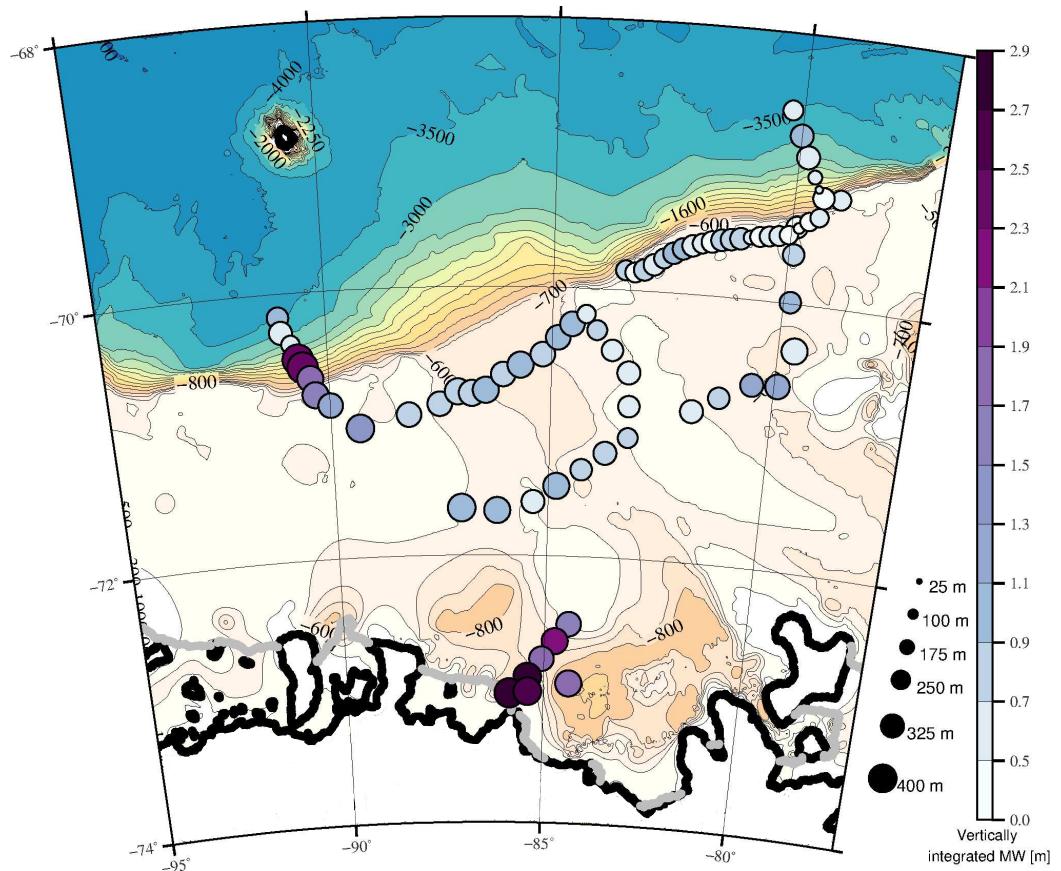

Figure 1. Bathymetry of the Bellingshausen Sea with CTD stations and a schematic of the circulation derived in this study. Bathymetry contours are shown in color (m). The black lines and arrows show the climatological positions of the southernmost fronts of the Antarctic Circumpolar Current (Orsi et al., 1999) (saccf = Southern Antarctic Circumpolar Current Front, sbdy = Southern Boundary). The coastline is indicated with a thick black line. The faces of the ice shelves are shown with a thick gray line; names of the ice shelves are given in pink. Bathymetry under the ice shelves has not been removed to provide a sense of the ice cavity shape. Conductivity-Temperature-Depth stations (number and location) are indicated in colors that are used throughout this study. The glider section is shown with red circles. A schematic of the circulation on the Bellingshausen Sea shelf is shown in blue arrows, where solid and dashed lines show, respectively, flows directly resolved by the observations and flow inferred from the property distributions over the shelf.

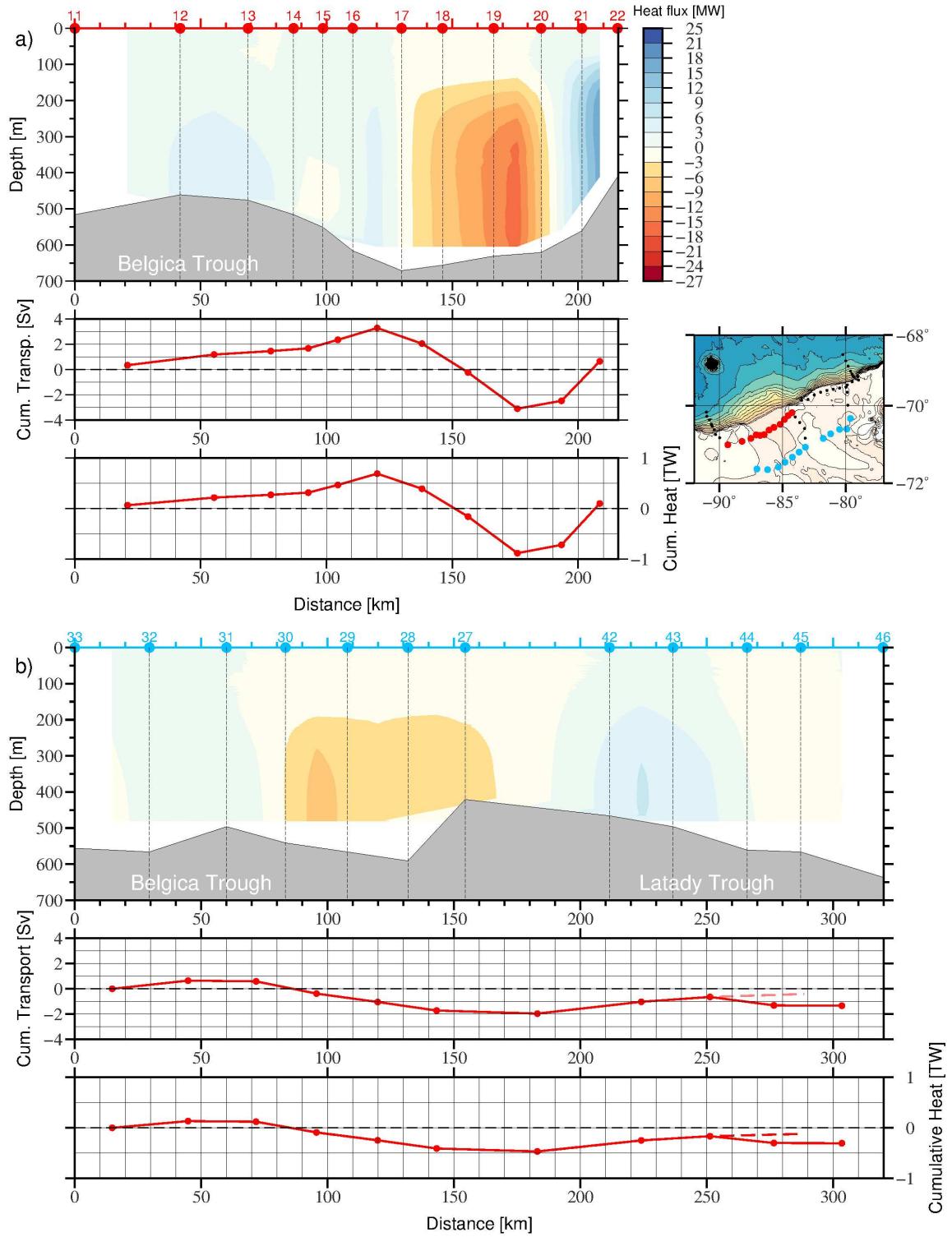

Figure 2. a) Temperature-Salinity (Θ -S) properties of all stations sampled on the BellS shelf (black) and across the slope (grey) from CTD and glider data. (b) Example of meltwater calculation for profile 11, where colored dots show the depth (m). Both a) and b) show potential density contours as well as the freezing point line (thick, black contour). Purple circles/labels show the location of the Antarctic Surface Water (AASW), Winter Water (WW) and Circumpolar Deep Water (CDW). In b) CDW and WW would mix along the solid black line. The broken blue line shows the characteristics of water that would be a mix of CDW and pure meltwater (i.e. salinity of zero, $\theta = -89^\circ\text{C}$). Black broken lines are the meltwater fraction (g/kg). The maximum possible meltwater fraction is given by the golden, broken line, set by the intersect of the MW - CDW mixing line. The θ /S properties of station 11 shown here have a large meltwater fraction between 250 – 600 m, where the dots fall along the MW - CDW mixing line.


Figure 3. Potential temperature sections spanning the Belgica and Latady Trough sections. The data are plotted as distance from the westernmost station versus depth. (a) Temperature section at the shelf break in the Belgica Trough (stations 11 – 22, left) and the Latady Trough from the glider (right). Black vertical lines indicate the location of the stations. Density is shown as black contours. Positions of glider dives are not shown since that data were smoothed and gridded before displaying. (b) Mid-shelf temperature section for Belgica (stations 33 – 27) and Latady (stations 42 – 46) Troughs. (c) Map of the station positions with red and blue dots corresponding to panels (a) and (b), respectively. Station numbers can be found in Figure 1.


Figure 4. Temperature and salinity properties of Circumpolar Deep Water (CDW) in the (a, b) Belgica and (c, d) Latady Troughs. In each panel, the T/S properties for all shelf stations (11 – 50) are shown in gray. In (a) stations in the Belgica Trough (St. 11 – 22, 27 – 33), the connection between the two Troughs (St. 23 – 26), and in front of the Glacier (St. 34 – 41) are color coded by their respective CDW class: violet for glacially modified CDW, blue for CDW that is moving towards the shelfbreak, green for CDW modified due to re-circulation on the shelf, and light brown for CDW originating from offshore. (b) shows the same as (a) but for stations with a mixture of modified and offshore CDW. (c) shows the same as a) but for CDW in the Latady trough. (d) show the profiles obtained from the Glider, color coded showing a transition of CDW from recirculated to offshore from west to east. All stations are shown on the map (e) in the color that represents their CDW.


Figure 5. Same as Figure 4, but for Winter Water.


Figure 6. LADCP velocity data for (a) the Belgica trough (shelfbreak) section and (b) the Belgica and Latady Trough (mid-shelf) section. Velocity estimates from the glider are not available. Velocities (cm s^{-1}) shown in each transect are rotated to be perpendicular to the section. Positive velocities (red) are directed offshore, negative velocities (blue) are directed on to the shelf. Temperature contours are shown in black. Panel (c) shows the depth-averaged velocities at each station from the LADCP data (blue arrows).


Figure 7. Meltwater fractions (g kg^{-1} , color) in the Belgica and Latady Troughs over-layed with temperature contours. The sections are shown in distance vs. density starting below 200 m. The upper 200 m are excluded from the figures to eliminate signals due to processes such as sea ice melt, rather than Glacial ice melt. The sections show distributions (a) at the shelf break across the Belgica Trough (stations 11 – 22) (left) and the Latady Trough (Glider data) (right), (b) near the Venable Ice shelf, (c) the region connecting the Belgica and Latady Troughs, (d) the eastern Latady Trough, and (e) the mid-shelf section spanning the Belgica (stations 33 – 27) and Latady Troughs (stations 43 – 46). All stations are color coded and shown on the map in panel (f).

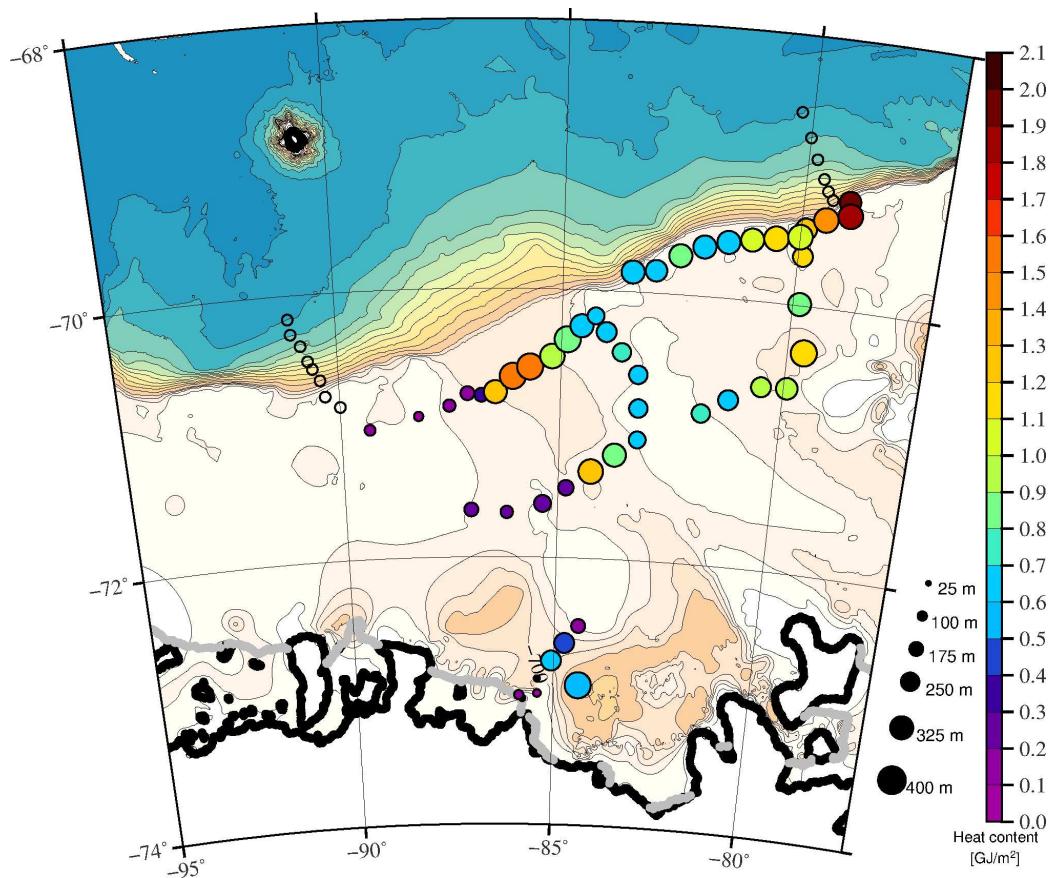
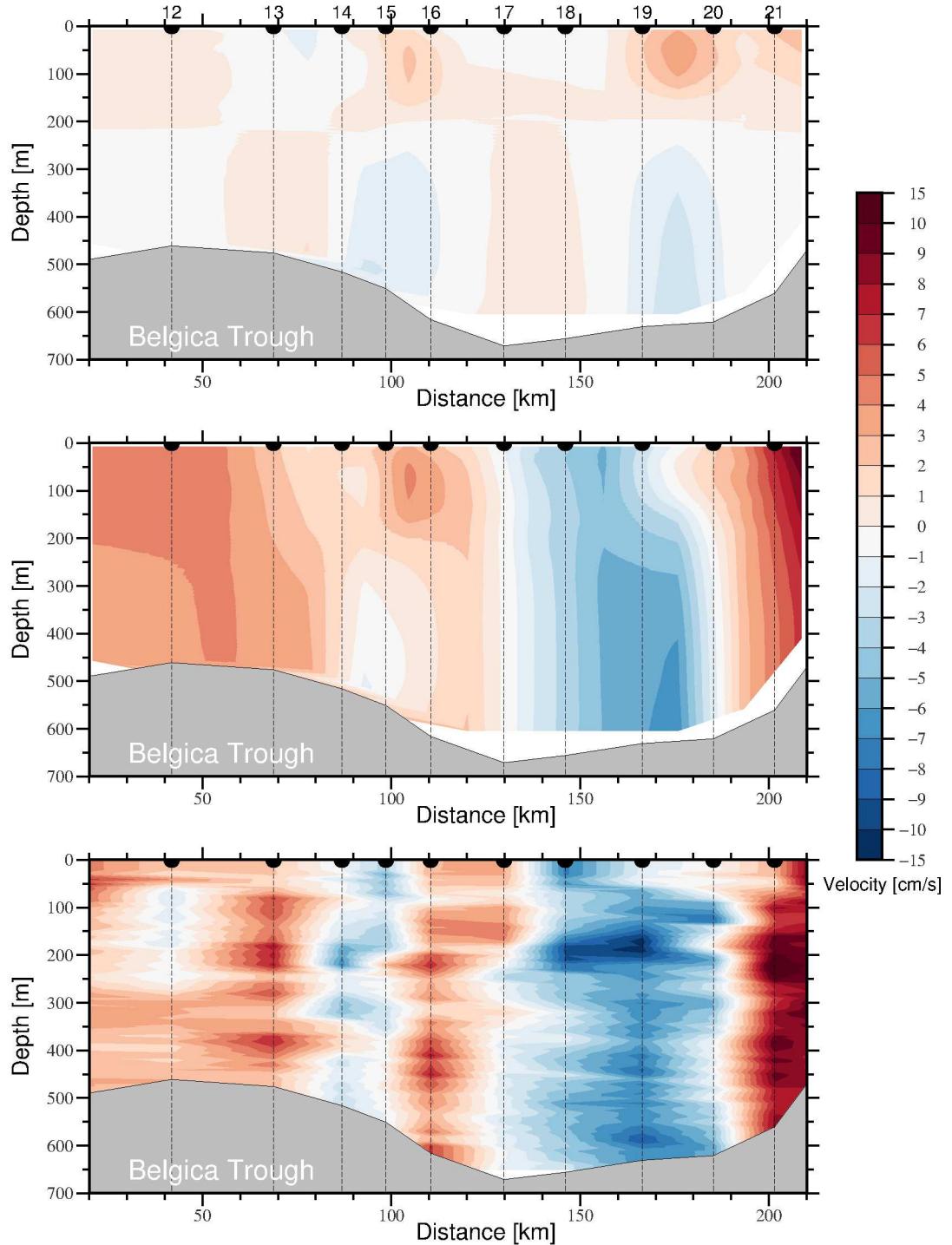

Figure 8. Meltwater fractions (g kg^{-1} , color) along the sections spanning the continental slope (a) west of the Belgica Trough and (b) east of the Latady Trough. The location of the sections is shown in the map in panel (c).

Figure 9. Map of meltwater distribution showing the thickness (m, size of circles) and vertically-integrated meltwater content (m, color) for each station. The thickness is calculated from water having a meltwater fraction greater than 1 g kg^{-1} . The bathymetry (m) is given in color as in Figure 1.

Figure 10. Transport estimates for the Belgica and Latady Troughs based on referenced geostrophic velocities. (a) Distribution of heat transport (MW) across the mouth of the Belgica Trough (color, stations 11 – 22), calculated as in equation (1). The panels below show the cumulative volume transport (Sv) and the cumulative heat flux (TW). (b) As in panel (a), but for the mid-shelf section that span the Belgica (stations 27–33) and the Latady (stations 42 – 46) Troughs. The inset map shows the location of the sections in panels (a, red) and (b, blue).


Figure 11. Map of heat distribution over the continental shelf showing this thickness of the CDW layer (m, size of circles) and the heat content (GJ m^{-2} , color) for each station. The CDW layer is defined as the part of the water column where temperatures exceed 1.1°C . The heat content of this layer is calculated using equation (2).

679

Appendix A Additional figures

Figure A1. Tidal contributions to the LADCP data. (a) Zonal and (b) meridional velocity of tidal flow at station 11 from CATS2008 (Padman et al., 2002), see discussion in section 2.2. (c) LADCP velocities and (d) de-tided LADCP velocities across the Belgica Trough (stations 11 – 22).

Figure A2. Flow across the Belgica Trough shelf-break section, stations 11 to 22. (a) Geostrophic velocity referenced to 300 m, roughly the top of the CDW layer. (b) Geostrophic velocity referenced to the LADCP data using a least squares fit across all depths?. c) Unreferenced velocity from LADCP data.

680 **References**

681 Armitage, T. W. K., Kwok, R., Thompson, A. F., & Cunningham, G. (2018).
 682 Dynamic topography and sea level anomalies of the Southern Ocean: Vari-
 683 ability and teleconnections. *J. Geophys. Res.*, *123*, 613 – 630. (doi:
 684 10.1002/2017JC013534)

685 Arneborg, L., Wählén, A. K., Björk, G., Liljebladh, B., & Orsi, A. (2012). Persistent
 686 inflow of warm water onto the central Amundsen shelf. *Nat. Geosci.*, *5*, 876–
 687 880. doi: 10.1038/ngeo1644

688 Assmann, K., Hellmer, H. H., & Jacobs, S. S. (2005). Amundsen Sea ice production
 689 and transport. *J. Geophys. Res.*, *110*, C12013.

690 Biddle, L. C., Heywood, K. J., Kaiser, J., & Jenkins, A. (2017). Glacial Meltwater
 691 identification in the Amundsen Sea. *J. of Phys. Oceanogr.*, *47*, 933–954.

692 Biddle, L. C., Loose, B., & Heywood, K. J. (2019). Upper ocean distribution of
 693 glacial meltwater in the amundsen sea, antarctica. *J. Geophys. Res.*, *124*, 6854
 694 – 6870. (doi:10.1029/2019JC015133)

695 Cook, A., & Vaughan, D. (2010). Overview of areal changes of the ice shelves on the
 696 Antarctic Peninsula over the past 50 years. *Cryosphere*, *4*, 77–98.

697 Couto, N., Martionson, D. G., Kohut, J., & Schofield, O. (2017). Distribution
 698 of Upper Circumpolar Deep Water on the warming continental shelf of the
 699 West Antarctic Peninsula. *J. Geophys. Res. Oceans*, *122*, 5306 – 5315.
 700 (doi:10.1002/2017JC012840)

701 Dinniman, M. S., & Klinck, J. M. (2004). A model study of circulation and cross-
 702 shelf exchange on the west Antarctic Peninsula continental shelf. *Deep Sea*
 703 *Res. Pt. II*, *51*(17-19), 2003–2022.

704 Dotto, T. S., Garabato, A. C. N., Bacon, S., Holland, P. R., Kimura, S., Firing,
 705 Y. L., ... Jenkins, A. (2019). Wind-driven processes controlling oceanic heat
 706 delivery to the Amundsen Sea, Antarctica. *J. Phys. Oceanogr.*, 2829 – 2849.

707 Dutrieux, P., Rydt, J. D., Jenkins, A., Holland, P., Ha, H. K., Lee, S. H., ...
 708 Schroeder, M. (2014). Strong sensitivity of Pine Island ice-shelf melting to
 709 climatic variability. *Science*, *343*, 174 – 178. (doi:10.1126/science.1244341)

710 Gade, H. G. (1979). Melting of ice in sea water: a primitive model with application
 711 to the Antarctic Ice Shelf and icebergs. *J. Phys. Oceanogr.*, *9*, 1890 – 198.

712 Gille, S. T. (2008). Decadal-scale temperature trends in the Southern Hemisphere
 713 ocean. *J. Climate*, *21*(18), 4749–4765.

714 Hellmer, H., Kauker, F., Timmermann, R., Determann, J., & Rae, J. (2012).
 715 Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redi-
 716 rected coastal current. *Nature*, *485*, 225 – 228.

717 Holland, P. R., Jenkins, A., & Holland, D. M. (2010). Ice and ocean processes in the
 718 Bellingshausen Sea, Antarctica. *J. Geophys. Res.*, *115*, C05020.

719 IMBIE. (2018). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. *Nature*,
 720 *558*, 219–222.

721 Jacobs, S. S. (1991). On the nature and significance of the Antarctic Slope Front.
 722 *Mar. Chem.*, *35*, 9–24.

723 Jenkins, A., & Jacobs, S. (2008). Circulation and melting beneath George VI
 724 Ice Shelf, Antarctica. *J. of Geophys. Res.*, *113*, C04013. doi: doi:10.1029/
 725 2007JC004449

726 Jenkins, A., Shoosmith, D., Dutrieux, P., Jacobs, S., Kim, T. W., Lee, S. H., ...
 727 Stammerjohn, S. (2018). West antarctic ice sheet retreat in the Amund-
 728 sen Sea driven by decadal oceanic variability. *Nature Geosci.*, *11*, 733 - 738.
 729 (doi:10.1038/s41561-018-0207-4)

730 Joughin, I., Tulaczyk, S., Bindschadler, R., & Price, S. (2002). Changes in West
 731 Antarctic ice stream velocities: observation and analysis. *J. Geophys. Res.*,
 732 *107*, 2289.

733 Kalen, O., Assmann, K. M., Wahlin, A. K., Ha, H., Kim, T. W., & Lee, S. (2015).
 734 Is the oceanic heat flux on the central Amundsen Sea shelf caused by

735 barotropic or baroclinic currents? *Deep-Sea Res. II*, 123, 7 – 15. (doi:
 736 10.1016/j.dsr2.2015.07.014)

737 Kim, I. (2016). The distribution of glacial meltwater in the Amundsen Sea, Antarctica. *J. Geophys. Res.*, 121, 1654–1666.

738 Loose, B., Schlosser, P., Smethie, W. M., & Jacobs, S. (2009). An optimized estimate of glacial melt from the Ross Ice Shelf using noble gases, stable isotopes and CFC transient tracers. *J. Geophys. Res.*, 114, C08007.

739 Mathiot, P., Goosse, H., Fichefet, T., Barnier, B., & Gallee, H. (2011). Modelling the seasonal variability of the Antarctic Slope Current. *Ocean Science, European Geoscience Union*, 7, 445 – 532. (doi: 10.5194/os-7-455-2011)

740 McTaggart, K. E., Johnson, G. C., Johnson, M. C., Delahoyde, F., & Swift, J. H.
 741 (2010). Notes on CTD/O data acquisition and processing using sea-bird hardware and software. *IOCCP Reports, Report No. 14*, ICPO Publication Series No. 134. (Version 1)

742 Moffat, C., Beardsley, R. C., Owens, B., & Van Lipzig, N. (2008). A first description of the Antarctic Peninsula Coastal Current. *Deep Sea Res. Part II*, 55, 277–
 743 293.

744 Moffat, C., & Meredith, M. (2018). Shelf-ocean exchange and hydrography west of the Antarctic Peninsula: a review. *Phil. Trans. Roy. Soc. A*, 376, 20170164.
 745 doi: 10.1098/rsta.2017.0164

746 Morlighem, M., et al. (2019). MEaSUREs BedMachine Antarctica, Version 1. *Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center*. doi: <https://doi.org/10.5067/C2GFER6PTOS4>

747 Mosby, H. (1934). The waters of the Atlantic Antarctic Ocean. *The Norwegian Antarctic Expeditions*, 1, 131.

748 Nakayama, Y., Menemenlis, D., Schodlok, M., & Rignot, E. (2017). Amundsen and Bellingshausen Seas simulation with optimized ocean, sea ice, and thermodynamic ice shelf model parameters. *J. Geophys. Res.*, 122, 6180–6195.

749 Nakayama, Y., Menemenlis, D., Zhang, H., Schodlok, M., & Rignot, E. (2018). Origin of Circumpolar Deep Water intruding onto the Amundsen and Bellingshausen Sea continental shelves. *Nature Commun.*, 9:3403, 1 – 9.

750 Nakayama, Y., Schröder, M., & Hellmer, H. H. (2013). From circumpolar deep water to the glacial meltwater plume on the eastern Amundsen shelf. *Deep Sea Res. Part I*, 77, 50–62.

751 Nakayama, Y., Timmermann, R., Rodehacke, C. B., Schröder, M., & Hellmer, H. H. (2014). Modeling the spreading of glacial meltwater from the Amundsen and Bellingshausen seas. *Geophys. Res. Lett.*, 41(22), 7942–7949.

752 Naveira-Garabato, A. C., Forryan, A., Dutrieux, P., Brannigan, L., Biddle, L. C., Heywood, K. J., ... S., K. (2017). Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf. *Nature*, 542, 219 – 222.
 753 (doi:10.1038/nature20825)

754 Orsi, A. H., Johnson, G. C., & Bullister, J. L. (1999). Circulation, mixing, and production of Antarctic Bottom Water. *Prog. in Oceanogr.*, 55 – 109.

755 Padman, L., Costa, D. P., Dinniman, M. S., Fricker, H. A., Goebel, M. E., Huckstadt, L. A., ... others (2012). Oceanic controls on the mass balance of Wilkins Ice Shelf, Antarctica. *J. Geophys. Res.*, 117. (C01010)

756 Padman, L., Fricker, H. A., R. Coleman, S. H., & Erofeeva, L. (2002). A new tide model for the Antarctic ice shelves and seas. *Annals of Glaciology*, 34, 247 – 254.

757 Paolo, F. S., Fricker, H. A., & Padman, L. (2015). Volume loss from Antarctic ice shelves is accelerating. *Science*, 348, 327–331.

758 Pena-Molino, B., McCartney, M. S., & Rintoul, S. (2016). Direct observations of the Antarctic Slope Current transport at 113°e. *J. Geophys. Res.*, 121, 7390 – 7407. (doi:10.1002/2015JC011594)

759 Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den

790 Broeke, M. R., & Padman, L. (2012, 04 26). Antarctic ice-sheet loss driven
 791 by basal melting of ice shelves. *Nature*, *484*(7395), 502–505. Retrieved from
 792 <http://dx.doi.org/10.1038/nature10968>

793 Richardson, G., Wadley, M. R., Heywood, K. J., Stevens, D. P., & Banks, H. T.
 794 (2005). Short-term climate response to a freshwater pulse in the Southern
 795 Ocean. *Geophys. Res. Lett.*, *32*, L03702.

796 Rignot, E., Jacobs, S., Mouginot, J., & Scheuchl, B. (2013). Ice-shelf melting around
 797 Antarctica. *Science*, *341*, 266–270.

798 Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., & Scheuchl, B. (2014).
 799 Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith,
 800 and Kohler glaciers, West Antarctica, from 1992 to 2011. *Geophys. Res. Lett.*,
 801 *41*, 3502–3509.

802 Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., &
 803 Morlighem, M. (2019). Four decades of Antarctic Ice Sheet mass balance from
 804 1979 – 2017. *PNAS*, 1095–1103.

805 Ruan, X., Speer, K., Thompson, A., & Schulze-Chretien, L. (2020). Ice-Shelf Melt-
 806 water Overturning Cell in the Bellingshausen Sea. *J. of Phys. Oceanogr.*, sub-
 807 mitted.

808 Rye, C. D., Naveira-Garabato, A. C., Holland, P. R., Meredith, M. P., Nurser,
 809 A. J. G., Hughes, C. W., ... Webb, D. J. (2014). Rapid sea-level rise along
 810 the Antarctic margins in response to increased glacial discharge. *Nat. Geosci.*,
 811 *7*, 732–735. (<https://doi.org/10.1038/ngeo2230>)

812 Savidge, D. K., & Amft, J. A. (2009). Circulation on the west Antarctic Peninsula
 813 derived from 6 years of shipboard adcp transects. *Deep Sea Res. Pt. I*, *56*,
 814 1633–1655.

815 Schmidtko, S., Heywood, K., Thompson, A., & Aoki, S. (2014). Multidecadal warm-
 816 ing of Antarctic waters. *Science*, *346*.

817 Stewart, A., & Thompson, A. (2015). Deep Water across the Antarctic shelf break.
 818 *Geophys. Res. Lett.*, *42*, 432–440.

819 St-Laurent, P., Klinck, J. M., & Dinniman, M. S. (2013). On the role of coastal
 820 troughs in the circulation of warm circumpolar deep water on Antarctic
 821 Shelves. *J. Phys. Oceanogr.*, *43*, 51 – 64. (doi: 10.1175/JPO-D-11-0237.1)

822 Swart, N. C., & Fyfe, J. C. (2013). The influence of recent Antarctic ice sheet re-
 823 treat on simulated sea ice area trends. *Geophys. Res. Lett.*, *40*, 4328–4332.

824 Talbot, M. H. (1988). Oceanic environment of George VI ice shelf, Antarctic Penin-
 825 sula. *Ann. Glaciol.*, *11*, 161–164.

826 Thompson, A., Schulze-Chretien, L., & Speer, K. (2020). Initiation of the Antarctic
 827 Slope Current in West Antarctica. *Geophys. Res. Lett.*, submitted.

828 Thompson, A., Stewart, A. L., Spence, P., & Heywood, K. J. (2018). The Antarc-
 829 tic Slope Current in a changing climate. *Reviews of Geophysics*, *56*, 741 – 770.
 830 (doi:10/1029/2018RG000624)

831 Thurnherr, A. M., Jacobs, S. S., Dutrieux, P., & Giulivi, C. F. (2014). Export and
 832 circulation of ice cavity water in Pine Island Bay. *J. Geophys. Res. Oceans*,
 833 *119*, 1754 – 1764. (doi: 10.1002/2013JC009307)

834 Thurnherr, A. M., Visbeck, M., Firing, E., King, B. A., Hummon, J. M., Krahmann,
 835 G., & Huber, B. (2010). A manual for acquiring Lowered Doppler Current
 836 Profiler data. *In The GO-SHIP Repeat Hydrography Manual: A Collection*
 837 *of Expert Reports and Guidelines, Version 1*, (eds E. M. Hood, C. L. Sabine
 838 and B. M. Sloyan, 21. (IOCCP Report Number 14; ICPO Publication Series
 839 Number 134))

840 Wahlin, A. K., Kalen, O., Arneborg, L., Bjrk, G., Carvajal, G., Ha, H. K., ...
 841 Stranne, C. (2013). Variability of warm deep water inflow in a submarine
 842 trough on the Amundsen Sea Shelf. *J. Phys. Oceanogr.*, *43*(10), 2054 – 2070.
 843 doi: 10.1175/JPO-D-12-0157.1

844 Walker, D. P., Brandon, M., Jenkins, A., Allen, J. T., Dowdeswell, J., &

Evans, J. (2007). Oceanic heat transport onto the Amundsen Sea shelf through a submarine glacial trough. *Geophys. Res. Lett.*, 34, L02602. (doi:10.1029/2006GL028154)

Walker, D. P., Jenkins, A., Assmann, K. M., Shoosmith, D. R., & Brandon, M. A. (2013). Oceanographic observations at the shelf break of the Amundsen Sea, Antarctica. *J. Geophys. Res.*, 118, 2906–2918.

Webber, B. G. M., Heywood, K. J., Stevens, D. P., & Assmann, K. M. (2019). The impact of overturning and horizontal circulation in Pine Island Trough on ice shelf melt in the eastern Amundsen Sea. *J. Phys. Oceanogr.*, 49(1), 63 – 83. doi: 10.1175/JPO-D-17-0213.1

Whitworth, T. I., Orsi, A. H., Kim, S.-J., Nowlin, W. D. J., & Locarnini, R. A. (1998). Water masses and mixing near the Antarctic Slope Front. In *Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin*, (eds S.S. Jacobs and R.F. Weiss). (doi:10.1029/AR07p0001)

Zhang, X., Thompson, A. F., Flexas, M., Roquet, F., & Bornemann, H. (2016). Circulation and meltwater distribution in the Bellingshausen Sea: from shelf break to coast. *Geophys. Res. Lett.*, 6402 – 6409. doi: 10.1002/2016GL068998