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Understanding ecological processes and predicting long-term dynamics are
ongoing challenges in ecology. To address these challenges, we suggest an
approach combining mathematical analyses and Bayesian hierarchical statistical
modeling with diverse data sources. Novel mathematical analysis of ecological
dynamics permits a process-based understanding of conditions under which
systems approach equilibrium, experience large oscillations, or persist in tran-
sient states. This understanding is improved by combining ecological models
with empirical observations from a variety of sources. Bayesian hierarchical
models explicitly couple process-based models and data, yielding probabilistic
quantification of model parameters, system characteristics, and associated
uncertainties. We outline relevant tools from dynamical analysis and hierarchical
modeling and argue for their integration, demonstrating the value of this synthetic
approach through a simple predator-prey example.

Opportunities Using Modern Ecological Data

A proliferation of large-scale observation networks, automated sensors, and citizen science initia-
tives (e.g., NEON, FLUXNET, eBird [1-3]) has resulted in vast quantities of data on environmental
factors, ecosystem properties, population and community dynamics, and species distributions,
among others. While not without their challenges [4], these data sources allow ecologists to
address research questions that were previously unapproachable, such as how ecological
processes interact across spatial and temporal scales. A major focus of this burgeoning research
has been on identifying relationships between patterns and processes, using either machine
learning techniques [5—7] or Bayesian hierarchical modeling (BHM) [8], to inform simple models
of ecological dynamics with empirical data [9,10]. Recent pushes towards using empirical data
to more accurately predict and forecast ecological responses have the potential to greatly
enhance understanding in a changing world [11-13]. Process-based models are also important
tools for understanding and prediction and they have a long history in ecology [14]. Here, we
propose to leverage mathematical tools and modern statistical methods alongside emerging
sources of novel and big data to maximize understanding and improve forecasts of ecological
dynamics.

Novel Insights from Dynamical Analysis of Ecological Systems

Process-based models are commonly employed to understand the behavior of ecological
systems under a variety of scenarios [15,16]. For example, to determine whether a population
will increase or decrease, we might construct a model describing the influence of growth and
mortality processes on changes in the population. Mathematical analysis of this model can
yield assessments of the influence of different parameters describing key biological processes
underlying population growth. Such dynamical analysis (see Glossary) presents an advantage
over post hoc approaches that examine variations in realized population growth rates. Compared

1090 Trends in Ecology & Evolution, December 2020, Vol. 35, No. 12
© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.tree.2020.08.006
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Increasing availability of data sets from
diverse sources over a range of spatial
and temporal scales presents an oppor-
tunity to address important research
questions, including how to efficiently
use such data to understand and predict
the dynamical behavior of ecological
systems.

Recent mathematical advances, stem-
ming from traditional dynamical analysis,
describe long-term system behavior
in relation to governing ecological
properties, allowing for the exploration of
short-term (transient) system behaviors.

Bayesian hierarchical models (BHMs)
facilitate the integration of multiple data
sources with theoretical models, provid-
ing great potential to improve under-
standing and predictions of ecological
dynamics when combined with mathe-
matical dynamical analysis.

Previous work with integral projection
models and integrated population
models also suggests that pairing
BHMs with process-based models can
yield novel ecological insights.
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with phenomenological methods, dynamical analysis leads to a deeper understanding of the
properties driving system behavior, by explicitly quantifying change in terms of underlying mech-
anisms (e.g., nutrient quality, birth rates, predation rates). Such techniques can also be employed
to predict qualitative characteristics of a system (e.g., whether it tends toward steady-state
equilibrium, oscillations, or chaotic fluctuations). Characterizing these outcomes is critically
important in conservation biology and can reveal conditions under which perturbations
(e.g., from environmental stochasticity or chronic anthropogenic disturbance) are likely to perma-
nently disrupt ecosystems.

Many dynamical analyses focus on long-term outcomes, such as a stable equilibrium, yet most
ecological systems do not complete their response to a perturbation before the next one occurs.
Moreover, a system’s ‘short-term’ behavior can be long lived [17], appearing stable before an
unexpected shift to a completely different state. Identifying this type of behavior is critical to
management because different intervention strategies are required for a system experiencing
transient behavior compared with a stable system [17]. However, the change in behavior might
not be apparent from time-series data prior to a state shift and, importantly, can occur in the
absence of any concurrent changes in driving variables (e.g., nutrient loads or temperature).
This dynamical behavior differs from the classical ‘tipping point” scenario where a regime shift
suddenly occurs as a result of a change in driving variables or system parameters [18], and iden-
tification of such behavior can be complicated by the fact that models are incapable of including
all variables that affect a system. In addition to describing these transient shifts, the dynamic prop-
erties of a system determine the prevalence of certain types of stochastically driven behavior
(e.g., cohort resonance [19]) or switching between stable states [20]. Quantifying these different
types of dynamic behavior yields estimates of the probability that a population or ecosystem is
less stable than it appears. Predicting probable behaviors is crucial for understanding ecological
processes and ecosystem responses to environmental change.

Mathematical Tools for Dynamical Analysis

A variety of quantities can be derived from model parameters and evaluated to determine the
potential dynamics of ecological systems. For example, the parameters of a matrix population
model may be of interest (e.g., the probability of transitioning between different age classes;
[21]), but derived quantities may be just as useful. The eigenvalues and eigenvectors of the matrix,
which are derived (calculated) from model parameters, give information about a population’s
long-term expected growth rate and stable age structure. Eigenvalues and eigenvectors are
often assessed in local stability analysis, a common method to identify parameter combina-
tions and initial conditions determining qualitative changes in model behaviors. System behavior
is often determined from the behavior of linear approximations of the system in the vicinity of an
equilibrium point (e.g., abundance of predators and prey, Box 1). Importantly, this means analysis
is limited to exploring the behavior of systems with only small perturbations around an equilibrium
point (where the linear approximation is appropriate). Furthermore, inferences could be mislead-
ing for highly nonlinear responses to perturbation [22]. Even if local stability analysis indicates
strong resilience and a stable equilibrium, a system might temporarily move away from its
equilibrium following a perturbation.

Persistent transient states are common and may differ substantially from long-term behaviors.
These differences can emerge from frequently used models, such as the Rosenzweig-MacArthur
predator—prey model (e.g., Box 1), without a change in parameter values. The reactivity of this
predator—prey system indicates its potential to experience increasing deviations away from its equi-
librium following a perturbation (Box 1). In systems with high maximum amplification, perturbations
often produce large proportional deviations from equilibrium [23]. Reactivity and maximum

Trends in Ecology & Evolution, December 2020, Vol. 35, No. 12

Cell

REVIEWS

8School of Informatics, Computing, and
Cyber Systems, Northern Arizona
University, Flagstaff, AZ, USA
"Department of Statistics, University of
Missouri, Columbia, MO, USA
8Depar’(ment of Environmental Studies,
University of California, Santa Cruz,
CA, USA

“Department of Integrative Biology,
Program in Ecology, Evolution, and
Behavior, Michigan State University,
East Lansing, MI, USA

*Correspondence:
amanda.laubmeier@ttu.edu
(A.N. Laubmeier).

1091




amplification are derived quantities that change with model parameters and changes in these
quantities do not directly align with changes in stability or resilience. Transient dynamics might
also occur after a disturbance marked by a change in driving variables. Although local stability anal-
ysis does not predict system behavior immediately following a change, knowledge of how stability
depends on model parameters can guide our expectations regarding transient behavior. For exam-
ple, following a bifurcation where a stable equilibrium disappears, the shape of the quasi-potential
surface [20] indicates if the system will linger in the vicinity of the former equilibrium [17].

Informing Dynamical Analysis with Ecological Data

Although dynamical analysis has predictive power, its accuracy is intrinsically linked to the quality
of the underlying model and associated parameter values. Environmental stochasticity or varia-
tion in parameter values might lead to amplification of disturbances [24] or differences in expected
dynamics. For example, varying parameter values in a differential equation model can determine
whether a monotonic or oscillating approach to a stable equilibrium is expected (Box 1). There-
fore, uncertainty in parameter values will lead to uncertainty about which dynamic behaviors
are most likely. This sensitivity is particularly important when considering nonlinear models or
processes beyond their stable equilibrium states. In theoretical studies, predictions might incor-
porate parameter values estimated from system observations (e.g., via statistical techniques
such as regression), measurements of underlying processes (e.g., empirical growth rates), or
rough biological reasoning (e.g., relative scales of parameters). Such methods can introduce
unquantified uncertainty in parameter estimates and likely do not take advantage of increasing
streams of ecological data. Conversely, approaches that effectively leverage ecological data
and statistical models to quantify uncertainty often do not take advantage of unique insights
provided by dynamical analysis. This shortcoming motivates this opinion paper.

In Figure 1, we illustrate how dynamical analysis and statistical methods can be combined to
obtain analytical descriptions of ecological processes with associated uncertainty, informed by
diverse data streams. To summarize, we propose analyzing process-based models (e.g., a differ-
ential equation model for predator—prey dynamics, Box 1) to derive biologically meaningful quan-
tities of interest from model parameters (e.g., conditions for stability). The dependencies and
outcomes of these models are integrated into statistical models conditioned on environmental
processes, model parameters, and observed data. Such statistical models can accommodate
various data sources [25], such as recent examples coupling diverse data with ecological models,

Box 1. Asymptotic Analysis of a Predator—Prey Model
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Glossary

Amplification envelope: the
combination of the largest possible
amplification of a perturbation and time
when it occurs.

Dynamical analysis: mathematical
analysis of a time-varying model to draw
conclusions about the behavior of the
underlying ecosystem.

Latent variable: processes, often time-
varying, that are not directly observable
and thus not explicitly known, but that
describe important (ecological) system
behavior.

Local stability analysis: determining
long-term trajectories of a modeled
system, dependent on model
parameters and initial states of the
ecosystem.

Parameter nonidentifiability: when a
parameter cannot be reliably estimated,
sometimes due to a lack of available
information or indistinguishable model
features, or where different
combinations of parameter values can
lead to the same posterior probability.
Quasi-potential surfaces: potential
and quasi-potential surfaces are
functions describing the amount of
‘work’ required to move from one state
to another.

Reactivity: the maximum amplification
rate of a disturbance, overall initial
perturbations, immediately following the
perturbation.

Resilience: an asymptotic
approximation of the decay rate of
perturbations to the linear system. The
larger the resilience, the faster
perturbations eventually decay.

The Rosenzweig-MacArthur model describes dynamics between prey with density-dependent population growth and a specialist predator with a saturating consumption

rate. A nondimensionalized version of this model for the numbers of prey n and predator p is given as:

an ( N n) np

a =" k) n+1

dp n
® ey )

i

where k is an aggregate quantity related to carrying capacity, a is an aggregate quantity representing the predation gains scaled by the prey growth rate, and m is the
density-independent death rate of the predator scaled by predation benefits. There is a unique positive equilibrium at n* = ;7. p* = (1 +n*)(1- ). Analysis of
eigenvalues for the linearized system near this equilibrium shows that the system is locally stable when % <n* <k.When these eigenvalues are real, the
population monotonically approaches the stable equilibrium (Figure 1A), but when the eigenvalues have imaginary parts, the population oscillates around the stable
equilibrium (Figure IB). These outcomes are determined by the relationship between a and m, and uncertainty in these parameters is important when determining
dynamics. Knowing the probability of different parameter values can determine possible dynamics in the system.

Neubert and Caswell [23] demonstrate that even when an equilibrium is stable, the reactivity of this system can change with model parameters. When the reactivity is low,

perturbations away from equiliorium quickly return to the stable value (Figure IC). When the reactivity is high, perturbations can result in long-lived oscillations with high amplitude
(Figure ID). Correctly identifying the reactivity of the system, which is calculated from model parameters, is therefore important to understanding system behavior.
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(B) Simulated data (a= 1.6, m = 0.3)
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Figure |. Predator and Prey Abundances for the Rosenzweig-MacArthur Model. For different values of a and m (where a is an aggregate quantity representing
the predation gains scaled by the prey growth rate and m is the density-independent death rate of the predator scaled by predation benefits), populations can exhibit a
monotonic approach to equilibrium (A), oscillations towards equilibrium (B, C), or long-lived oscillations in the presence of noise (D).

including integral projection models [26] and integrated population models (e.g., [27]). We
elaborate on this Bayesian approach to combining models and data in the next section, but
note that this type of inference provides a basis for understanding limitations in data (e.g., from
measurement error, sampling error, or missing data). Such limitations can inform design strate-
gies for future data collection to facilitate and improve inference in the presence of uncertainty.

Statistical Tools for Quantifying Uncertainty

When performing ecological prediction or inference using process-based models, it is crucial to
account for multiple sources of uncertainty. Ecological data may have significant measurement
uncertainty (e.g., detection probability in occupancy models) and might only be partially
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Figure 1. Schematic of Proposed Integration of Mathematical and Statistical Models to Gain Insight into
Ecological Dynamics. Process-based models, statistical models, and empirical data (top row) yield analytic
characterizations of the processes driving ecological change and statistical descriptions of uncertainty in model
parameters (middle row). These valuable results can inform one another, leading to improved ecological understanding
and predictive power (bottom row). For example, in Box 1 we consider a mechanistic model for a predator population p
consuming some prey n according to parameters a (aggregate quantity representing the predation gains scaled by the
prey growth rate) and m (density-independent death rate of the predator scaled by predation benefits). The statistical
model (see Box 2) describes how different variables affect observations of the population. In Box 3, we demonstrate the
results that emerge from integrating these descriptions.

observed. Additionally, many ecological phenomena are informed by data from multiple sources
(e.g., observations of population counts, survival, mortality, fecundity, or mark-recapture, etc.).
Incorporating multiple data sources can introduce substantial complexity into traditional
likelihood-based analyses, especially when combined with nonlinear dynamics [28]. Such
process-based modeling may stem from competing scientific theories, all of which are a simpilifi-
cation of reality. This introduces an additional source of uncertainty: process uncertainty
(e.g., influenced by demographic and environmental stochasticity). Furthermore, some parame-
ters associated with both the data and process models may also be the focus of inference. In
many cases, these parameters can be stochastic or influenced by covariates, which can intro-
duce parameter uncertainty (e.g., spatially varying, habitat-dependent carrying capacities in a
population growth model).

BHM is now widely used to effectively account for these various sources of uncertainty (Box 2;
see also [8,29,30]). In the context of dynamical analysis of ecological systems, a BHM approach
can be used to fit process-based models to available data for inferences of key model parame-
ters. The BHM framework draws upon probability rules to model conditional data components
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Box 2. Overview of the Bayesian Hierarchical Model (BHM) Approach Applied to Dynamic Ecological
Systems

A BHM provides a statistical framework for linking empirical data to process-based models. This is illustrated by graphical
models in Figure I, which give rise to a probabilistic expression of the BHM (see the supplemental information online),
including the joint posterior distribution of all unknowns (parameters, derived quantities, latent variables), enabling infer-
ence about system behavior while accounting for noise/error in the data.

Let D and 6 denote observed data and unknown parameter(s), respectively. In the nonhierarchical Bayesian model
(Figure 1A), the data (e.g., population counts) are treated as stochastic, arising from some sampling distribution conditional
on data-related parameters (8p; €.9., measurement error variances) and some estimated value. The estimated values
(e.g., predicted population counts) are given by the process model (M), conditional on process parameters (8p;
e.g., growth rate, carrying capacity). We can also obtain posteriors for derived quantities of interest (p; e.g., steady-state
population size) that may be deterministic functions of stochastic quantities (e.g., 8p, D).

In hierarchical extensions (Figure IB-D), the latent process (L; e.g., true population size) is observed with error (via D) and
imperfectly described by the process model (M). Here, D is conditional on the truth (L) and measurement error (quantified
by 8p). L varies stochastically around the modeled values, with process error (quantified by 8,) describing variability not
captured by M. A further extension (Figure IC) specifies hierarchical distributions for process parameters (8p; €.g., @ and
m in Box 1), which may vary by levels of different factors (e.g., genotype, site, population) modeled hierarchically around
global-level (e.g., species, region) parameters (@g). When applied to multiple data sources (Figure ID), the data (D4 and
D,; e.g., counts of a prey and predator, Box 1) are linked by a process model (M; e.g., pair of differential equations for
n and p, Box 1); the process parameters (8p) may be ‘grouped’ according to their relationship to different processes
(e.g., parameters solely related to prey or predator dynamics, or those that influence both).

(A)

— Stochastic relationship

== Deterministic relationship

--p Potential deterministic relationship O Stochastic quantity I:l Deterministic quantity
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Figure I. Graphical Representations for Relationships in Bayesian Models. The directional edges (arrows)
indicate conditional relationships among quantities (i.e., circle and square nodes) and whether these relationships are sto-
chastic or deterministic functions.

and latent variables linked to the process-based models (see the supplemental information on-
line). Hierarchical models are particularly valuable in ecological modeling, since many processes
and parameters of interest are only partially observed or latent, and hierarchical models can be
used to explicitly separate these from the observation processes. The BHM framework produces
a full, joint posterior distribution of all unknown quantities, which can be evaluated to obtain point
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estimates of parameters along with descriptions of uncertainty. It is then straightforward to obtain
the posterior distribution of analytically derived quantities that are explicit (or implicit) functions of
model parameters (e.g., eigenvalues, eigenvectors, and bifurcation points; Box 3). Additionally,

Box 3. Fitting and Transient Analysis of a Predator—Prey Model

For k = 1, we generated synthetic data for the Rosenzweig-MacArthur model (Box 1) and estimated a and m from the data (see Figure IC,D in Box 1). We use uniform
prior distributions and a simple Metropolis-Hastings algorithm to update the posterior distributions and Gelman-Rubin diagnostics indicate that the algorithm converges.
Please see the supplemental material online for R code to simulate the model and estimate parameters.

When a = 1.6 and m = 0.1, the system is expected to undergo damped oscillations in its approach to the equilibrium. However, in this part of parameter space the
system is also highly reactive and, when perturbed, it undergoes lengthy transient oscillations (Box 1). As a result, posteriors for a and the reactivity are wide and shifted
away from the true values (Figure I1A,B). Different reactivity values correspond to drastically different predictions about the qualitative behavior of the system’s transient
dynamics. Importantly, these possible outcomes would not be apparent from a point estimate of reactivity.

In contrast, when m = 0.3, the system still converges to the equilibrium via damped oscillations, although the oscillations are less pronounced. Due to a lower reactivity,
these oscillations do not grow or persist following a perturbation (Box 1). This leads to more precise posteriors for a and the reactivity (Figure IC,D). In this situation,
increasing m (dependent on predator mortality) reduces reactivity and permits a better understanding of a (dependent on predator—prey interactions). An understanding
of how the system’s reactivity responds to model parameters could guide an intentional management decision to improve estimates. Alternatively, an understanding of the
relationship between a and m in reactive regions could provide an informative prior to improve estimated posteriors (see Figure S1 in the supplemental information online).
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Figure |. Posterior Distributions for a (A,B) and System Reactivity (C,D) in the Rosenzweig-MacArthur Model, Using Data from Box 1. Simulated data
use the same value of a (a is an aggregate quantity representing the predation gains scaled by the prey growth rate) and two different values of m (m is the density-
independent death rate of the predator scaled by predation benefits). The prior distribution for a is plotted as a horizontal dashed line and there is no explicit prior
distribution for reactivity, which is derived from estimated parameters.
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distributional inference on these quantities provides an understanding of the appropriateness of
the underlying model, allowing for a scientific approach to model validation and selection.

Computational Challenges and Data Needs for Meaningful Analysis

The advantage of the BHM approach is that complexities in the data, ecological model, and
parameters are all accounted for in a tractable fashion. The immediate challenge in applying
BHM techniques to process-based models and diverse data streams is computational. These
challenges may be exacerbated by complex, nonlinear models, but they can typically be over-
come with efficient numerical sampling procedures. However, for large models with many state
variables and parameters, the estimation of the likelihood may be nontractable (curse of
dimensionality). In this case, so-called likelihood-free methods (e.g., approximate Bayesian
computation [29,31]) can improve results.

A less straightforward challenge in implementing a BHM approach arises from model complex-
ity and available data sources. Realistic models might incorporate many biological details at the
expense of tractability. The complexity of these details might not be conducive to mathematical
analysis or parameter estimation and parameter nonidentifiability can arise due to limited
data availability, uncertainty in observations, model insensitivity to certain parameters, or
model structure more generally. Furthermore, model parameterization can influence the ability
to estimate parameters and achieve convergence with BHMs. In some cases, it may be neces-
sary to reparameterize models to improve convergence and obtain identifiable parameter
estimates. A robust statistical framework and underlying process-based model will help identify
sources of prediction uncertainty and information gaps (e.g., uncertain estimates in a reactive
region; Box 3), which can be used to prioritize future data collection efforts (e.g., modifying
population death rates to move to a less reactive region; Box 3). Mismatches between theoret-
ical predictions and ongoing data collection, combined with an improved understanding of
underlying processes, might help pinpoint limitations of existing data sources and biological
assumptions.

Richer Parameter Models

An important consideration in applying an approach that marries process-based models,
dynamical analysis, and BHM statistical methods is whether meaningful analysis is possible
from estimated posterior distributions. Wide posteriors may be induced by multiple sources
of uncertainty, which can propagate through dynamical analysis and lead to imprecise
estimates. Flat or wide posteriors may result from parameter nonidentifiability (see earlier)
and inferences based on wide or flat posteriors will be noninformative. To remedy this, one
must limit the number of inferred parameters, consider informative priors for parameters
where such information is available, or reformulate the process-based model to reduce
nonidentifiability [32,33].

Even in cases where the posterior distribution is precise, ecological systems can still be greatly
influenced by varying external factors such as climatic or anthropogenic forcing. If these factors
are not incorporated into the model, then resulting predictions may be misleading or inaccurate.
Data on external factors can be directly accommodated within the BHM framework, often via mul-
tilevel models that specify submodels for parameters in the process-based model (e.g., [34]).
Modeling such parameters extends typical approaches to dynamical analysis, which often
neglect temporally varying parameters. One can also infer time-varying parameters to indirectly
account for the influence of external forcing factors on these parameters [35]. Importantly,
long-term monitoring of ecological systems and additional data sources will improve the viability
of the proposed, integrative approach and lead to more meaningful analysis.
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Concluding Remarks

We have outlined fundamental mathematical and statistical tools for studying ecological systems,
which are commonly employed independently of one another. For a simple example, we demon-
strated how dynamical analysis informed by robust statistical models, and vice versa, can
improve estimates of model parameters and characterizations of long-term behavior through
evaluation of derived quantities. Further integrating mathematical and statistical approaches to
ecological research can yield unprecedented understanding of the dynamical properties of
ecological systems and processes driving ecological change. However, to fully utilize these
tools together, researchers must continue to address the computational problems that arise
when working with complex models and integrating increasingly diverse and large datasets.
Careful evaluation of the conditions under which dynamical analysis is likely to produce fruitful
results can help researchers understand when to use such approaches with BHMs (see
Outstanding Questions). Exploring insight gained from the integration of dynamical analysis,
BHM statistical methods, and varied empirical datasets can lead to improved predictions of eco-
logical dynamics, particularly in the presence of uncertainty and unprecedented ecological
change.
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Outstanding Questions

Incorporating biological realism into
ecological models often increases
complexity (e.g., a greater number
of model parameters and/or state
variables), leading to a tradeoff be-
tween representing sufficient biologi-
cal detail and permitting tractable,
informative mathematical analysis.
How can researchers identify the
necessary details to incorporate into
such models? What indicators can
be used to verify that relevant details
have not been omitted from the math-
ematical model?

Nonidentifiable parameters may arise
from complex models. How can
researchers preserve the biological
meaning of key parameters contributing
to nonidentifiability? Common solutions
include incorporating different data
sources, using informative priors, or
replacing mechanistic processes with
time-varying, phenomenological param-
eters. In doing so, how can researchers
evaluate and control the influence of dif-
ferent data sets and assumptions on
the resulting analysis?

A priori analysis of model behavior over
the parameter space might indicate
that variation in some parameters
will have a limited effect on system
state, while others are important in
determining long-term behavior. How
can researchers leverage the integra-
tion of mathematical and statistical
models to identify informative data
sources or experiments and to under-
stand a priori the range of realistic
parameter values and biologically real-
istic covariation among parameters?
How can such information be used to
prioritize data collection in ecological
systems?
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