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cal disciplines, especially in macrosystems ecology.
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Data integration is a statistical modeling approach that incorporates multiple data sources within a unified analytical framework.
Macrosystems ecology - the study of ecological phenomena at broad scales, including interactions across scales - increasingly
employs data integration techniques to expand the spatiotemporal scope of research and inferences, increase the precision of
parameter estimates, and account for multiple sources of uncertainty in estimates of multiscale processes. We highlight four com-
mon analytical challenges to data integration in macrosystems ecology research: data scale mismatches, unbalanced data, sampling
biases, and model development and assessment. We explain each problem, discuss current approaches to address the issue, and
describe potential areas of research to overcome these hurdles. Use of data integration techniques has increased rapidly in recent
years, and given the inferential value of such approaches, we expect continued development and wider application across ecologi-
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ata integration, or the inclusion of multiple response-variable
A data sources within a single statistical modeling frame-
work, is a methodological approach that facilitates understand-
ing of complex and interacting processes (Schaub and Abadi
2011; Michener and Jones 2012). The use of data integration
(also referred to as integrated modeling, data assimilation, data
fusion, integrated analysis, inverse modeling, or ensemble esti-
mation) within ecology is rising steadily (Figure 1), reflecting
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In a nutshell:

o Understanding ecological processes across spatiotemporal
scales can be enhanced by using multiple, independent
data sources in a unified analysis via statistical data in-
tegration methods

o Although data integration can improve ecological infer-
ences, challenges can arise during analysis

o We review the most common statistical challenges related
to data integration in macrosystems ecology and discuss
ways in which they can be overcome

o We provide researchers with resources from the literature
to address issues that may arise during data integration
and highlight avenues of future research
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advancements in computational resources and dramatic
increases in the quantity of available data (LaDeau et al. 2017).
While integrated modeling techniques are revolutionizing how
analyses are conducted across an array of ecological systems,
data integration can be particularly advantageous in macrosys-
tems ecology. Macrosystems ecology is the study of ecological
patterns and processes at broad spatiotemporal scales and their
interactions with phenomena at other scales (Heffernan et al.
2014; Soranno et al. 2014; Fei et al. 2016). Some macroscale
questions can be addressed with a single source or type of data
and relatively simple statistics (eg spatial scaling patterns using
regression in macroecology; Brown and Maurer 1989). Yet many
broad- and multi-scale research questions require combining
disparate datasets, especially when the focus is on understanding
mechanistic processes (Levy et al. 2014; LaRue et al. 2021).

Data integration is an integral component of many investi-
gations in macrosystems ecology. Compared to geographically
or temporally restricted analyses, it can be challenging to esti-
mate ecological parameters at macroscales using only a single
data source because of interacting or nonlinear environmental,
climatic, and biological processes, as well as data limitations. In
macrosystems ecology, various data sources can provide infor-
mation on components of the study system that operate at dif-
ferent scales (eg Robinson et al. 2018; Itter et al. 2019). In
estimations of species distributions, for example, opportunistic
records (eg from iNaturalist or museum collections) can be
used to delineate the occurrence of individuals across a large
spatial extent, whereas smaller-scale mechanistic studies can
provide data on factors influencing density across gradients of
local variables (Figure 2). Similarly, in biogeochemical mode-
ling, eddy flux, field inventories, and remote-sensing data each
contain distinct information about potential pathways of car-
bon dioxide (CO,) exchange across local, regional, and even
continental scales (Keenan et al. 2012).
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Data integration challenges at macroscales

Beyond expanding the scale and scope of analysis (Isaac
et al. 2020), data integration techniques can provide a variety
of additional inferential benefits. By leveraging information
from multiple sources, data integration improves the accuracy,
and often the precision, of parameter estimates, enabling com-
prehensive assessments of processes underlying ecological
responses to environmental variability (Gotway and Young
2002; Fletcher et al. 2016; Grace et al. 2016). Integrating inde-
pendent datasets can also account for multiple sources of
uncertainty and error in parameter estimates (Schaub and
Abadi 2011; Keenan et al. 2013; Fithian et al. 2015), and allow
for estimation of parameters for which no explicit data are
available (ie improving parameter non-identifiability; see
Panel 1 for definitions of relevant terms). The approach for
data integration begins with construction of a model that
describes the ecological processes of interest. Likelihood func-
tions (Panel 1) are used to identify how each data source
informs parameters in the ecological process model. The indi-
vidual data sources are then linked to one another via parame-
ters that are informed by more than one dataset (Miller et al.
2019). For example, a model of leaf phenology might combine
data from ground-based phenocams with satellite imagery,
where the different data sources inform the same ecological
process model but have unique sampling errors (Viskari et al.
2015).

There is growing awareness and adoption of data integra-
tion techniques in macrosystems research, as well as in ecology
more broadly (Figure 1), but this methodological framework is
still relatively new. Although several recent papers have synthe-
sized data integration approaches (eg Zipkin and Saunders
2018; Miller et al. 2019; Isaac et al. 2020), none have focused on
describing the methodological challenges that ecologists
encounter when integrating disparate data sources, nor poten-
tial solutions for overcoming those difficulties. To address this,
we conducted a search of recently published peer-reviewed
journal articles to identify inferential impediments to data inte-
gration in macrosystems ecology (see WebPanel 1 for search
criteria). Nearly half (44%) of the articles that presented origi-
nal research integrated two or more datasets, while 20% of all
articles (ie research, commentaries, reviews) discussed inferen-
tial problems. The most common challenges were (in decreas-
ing order of frequency): (1) mismatches in spatial or temporal
scale of data sources, (2) differences in the quantity and/or
information content of data sources, (3) sampling biases, and
(4) optimization of model development and assessment. An
additional challenge that we identified - nonstationarity or
spatiotemporal variation in processes or covariate effects
(Panel 1) - is often overlooked but is described in detail in
Rollinson et al. (2021). Although these four challenges can
occur in analyses that integrate data at any scale, they tend to
be exacerbated in macrosystems ecology, where the geographic
scope is large and the data tend to be “big” (Levy et al. 2014).

The use of complex and computationally intensive analyti-
cal approaches is growing in macrosystems ecology, and con-
sequently development of technical skills has been identified
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Figure 1. A search of peer-reviewed publications (see WebPanel 1 for
search criteria) revealed that the use of data integration in ecological
research was uncommon from 1990-1999 but increased markedly over
the subsequent two decades (2000-2019).

as a key need for researchers in this field (Farrell et al. 2021).
With this in mind, we aim to increase awareness of potential
inferential pitfalls that ecologists may encounter when inte-
grating multiple data sources and present researchers with
resources that can help them avoid or ameliorate issues as they
arise. We recognize that logistical constraints, such as the pro-
cessing and/or management of datasets through data harmoni-
zation (a distinct informatics approach for combining similar
datasets that differ only in format or origin) and computa-
tional limitations, can also hinder macrosystems ecology.
However, we focus on statistical and modeling challenges of
data integration because logistical issues have been recognized
and discussed in greater depth previously (eg Riegg et al. 2014;
LaDeau et al. 2017). In the following sections, we review the
four inferential challenges listed above by providing a general
description of each problem, discussing how the problem
manifests in macrosystems ecology, and offering current and
potential approaches to address and resolve the issue. Although
these data integration challenges can be interrelated, leading to
trade-offs in modeling decisions, each are presented inde-
pendently for clarity. We conclude by highlighting key steps
and resources that can help researchers identify and overcome
data integration challenges (WebTable 1).

@ Resolving mismatches in spatial and temporal scales
of available data sources

A mismatch in the dimensions or resolution of sample units
(ie grain) can arise when combining multiple data sources
that have been collected at different spatial and/or temporal
scales (Nguyen et al. 2014). Mismatches in grain are common
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Figure 2. Schematic diagram illustrating how various data sources (green rectangles) can
be used to parameterize models of ecological phenomena (ovals; linked with small green
arrows) within a macrosystems framework. The large colored arrows depict relationships
between ecological processes within and across scales. Using a population ecology exam-
ple, three interacting processes are highlighted, along with their corresponding data
sources (within the dashed polygon). Blank ovals are used to illustrate other, unnamed pro-
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Many individual sources are used to collect
data with the purpose of informing distinct pro-
cesses or dynamics of a system, often at local
scales, and therefore provide incomplete informa-
tion to address macrosystems questions. Merging
data sources that describe different components of
biological and/or physical processes, portions of
the geographic range of interest, or slices of a
longer time series can help address macrosystems
questions, but the grain and extent of data are
likely to vary across available sources (Miller et al.
2019; Schimel et al. 2019). For example, data on
breeding birds are available throughout North
America from numerous programs, including the
North American Breeding Bird Survey (BBS),
eBird, and other volunteer-led monitoring efforts,
but observations are reported on different spatial
scales for each of these programs (eg 0.25-mile
radius point counts every 0.5 miles along a 25-mile
permanent transect for BBS, checklist data with
variable survey area for eBird), and the time series
available varies considerably among the data
sources and across geographic areas (Pacifici et al.
2017; LaSorte et al. 2018).

Although mismatches in spatial and temporal
scales have only recently been recognized as

cesses. Adapted from Heffernan et al. (2014).

methodological challenges in ecological research,

when trying to relate remotely sensed data or geographic
information system (GIS) data layers (eg data aggregated
according to political units, such as human census and dis-
ease data) to each other or to field data, which tend to be
collected at fine spatial resolutions (Figure 3; Nguyen et al.
2012; Estes et al. 2018). Combining data without accounting
for scale mismatches (eg regridding a coarse resolution prod-
uct to a fine scale, interpolating point reference data to a
grid) can result in artificial inflation of the sample sizes of
one or more data sources, potentially resulting in biased
inferences or overstated precision (Gotway and Young 2002).

they have often been addressed in the statistical
literature through the use of “change of support” procedures
(Cressie 1996; Gotway and Young 2002). Change of support is
the process by which data are either up- or down-scaled to
achieve a single extent (overall geographic area or time period
of interest) and grain (Panel 1). In contrast to interpolation
and regridding approaches commonly used in GIS and similar
software, change of support models properly account for
uncertainties associated with changing scales (Cressie 1996).
While naive downscaling can artificially inflate sample sizes
(eg if 100 observations are interpolated to a 1000-point grid,
the effective sample size should still be 100), change of support

Panel 1. Glossary of terms related to data integration

Change of support: a class of techniques used to make inference
about a variable at a different spatiotemporal extent or grain from that
at which it was observed.

Information content: the extent to which data reduce uncertainty in
parameter estimates (eg large volumes of data may have relatively low
information content if there are strong temporal and/or spatial correla-
tions among observations).

Likelihood: function describing the probability of observing the sample
data, conditional on given parameter values from assumed probability
distributions.

Non-identifiability: one or more parameters in a model are not esti-
mable because of insufficient data or an overly complex model structure.

Nonstationarity: data that exhibit trends, cycles, or drift that result in
non-constant parameters (eg mean, variance, autocorrelation) over time
and/or space.

Structured data: data that are collected in a design-based framework,
usually to answer pre-defined research questions.

Unstructured data: data that are collected continuously or opportunis-
tically without a specific objective, typically occurring in higher volumes
than structured data.

Front Ecol Environ doi:10.1002/fee.2290
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models preserve information content. For
example, Itter et al. (2019) used a memory
function to align water deficiency data (col-
lected monthly) with defoliation and tree
growth observation data (collected annually)
to evaluate how tree growth responds to
stress from water limitations. Methodologi-
cal approaches to accommodate variable
spatial extents and grain in ecological data
have often been case-specific rather than
widely applicable (eg Zipkin et al. 2017; Farr
et al. 2020). Current work focused on devel-
oping a more general statistical toolbox for
handling change of support across data types
and spatiotemporal scales will help account
for inferential uncertainties and expand data
integration capabilities within macrosystems
ecology (Pacifici et al. 2019).

NASA/JPL-Caltech
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Figure 3. Studies in macrosystems ecology often integrate multiple data sources collected at
different spatiotemporal resolutions. Satellites, like (a) the US National Aeronautics and Space
Administration’s Terra satellite, usually measure the Earth’s surface and atmospheric proper-
ties at large spatial resolutions. Field data, such as that originating from (b) a weather data
buoy, are collected at localized spatial resolutions. Inferences from a model integrating multi-
ple data types can be more informative than inferences based on analyses of each data source
separately, yet successful integration requires approaches to reconcile the different sample
unit dimensions within each data source.

@ Addressing unbalanced data: uneven
quantities and information content

In the context of data integration, unbalanced data refers
to differences in the quantity (eg number of observations
or data points) or information content (Panel 1; eg infor-
mation-rich data from well-designed studies versus infor-
mation-poor opportunistic data) among two or more data
sources. If these differences are not accounted for, models
can produce estimates biased toward abundant data sources
regardless of their information content. For example, in
studies of population dynamics, recaptures of marked indi-
viduals can result in precise estimates of species’ survival
probabilities, whereas cryptic behaviors of breeding individ-
uals may limit data on productivity, potentially biasing
estimates of reproductive output and ultimately of population
growth rates (eg Campbell et al. 2018).

The issue of unbalanced data is particularly acute in mac-
rosystems ecology, where the large scale of interest frequently
leads to uneven quantities of data across space and time or
among sources and/or components in ecological models (Levy
et al. 2014). Macrosystems research frequently relies on
unstructured data sources (Panel 1; eg opportunistic “inciden-
tal sightings” represented in museum collections or reported on
iNaturalist) and on automated data sensors (eg eddy covari-
ance, stream gauges, cameras, soundscapes, sap flux, aquatic
buoys, radio telemetry). Compared to structured data (Panel 1;
that is, data collected using standardized methods with the goal
of addressing a specific research question), unstructured data
tend to be plentiful even though they are typically of lower
inferential value, providing less information per observation
for parameter estimation. Similarly, automated sensors can
produce a wealth of information over relatively short time peri-
ods and overwhelm field data collected manually (Williams
et al. 2009; Figure 4). As a result, models that use a combination

of sensor data and field data can produce model fits dominated
by high-volume sensor data (Richardson et al. 2010).

Although data integration can expand the spatiotemporal
scope of research, differences in data quantity and information
content may affect the structure and complexity of the ecolog-
ical process model (eg by assuming that mechanistic processes
or covariate relationships are constant across space). Conduct-
ing preliminary analyses of independent data sources prior to
integration can help identify geographic locations, temporal
periods, and/or mechanistic processes in which unbalanced
data could lead to biases in inferences (Kéry and Schaub 2011;
Kuikka et al. 2014). Common approaches to address issues of
unbalanced data, such as subsampling or down-weighting the
larger dataset, are typically ad hoc and may lead to different
conclusions based on subjective choices during model devel-
opment (Maunder and Piner 2017). However, recently devel-
oped methods to weight public science data according to
observer expertise (and therefore to selectively down-weight
available data) have led to improved model fit and predictive
performance (Johnston et al. 2018). More objective approaches
focus on modeling factors that inflate the information content
of high-volume data, such as autocorrelation in time and
space, as well as systematic observation errors (Dietze 2017).
Formally modeling biases within statistical likelihoods also
appears to be a promising approach (Fer et al. 2018) and is an
active area of research.

@ Accounting for sampling biases in one or more data
source(s)

Data at any scale reflect the methods used to select sample
units (eg site-selection bias) and collect individual measure-
ments (eg observation error). Site-selection biases occur when
sample units are not selected randomly from pre-defined strata
or when selected units fail to adequately represent the
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Figure 4. Merging information sources with varying quantities of data, such as those collected
from automated and field-based approaches, is common in macrosystems ecology. Automated
data like (a) flux tower measurements are collected nearly continuously in vast quantities,
whereas (b) field-sampled data tend to be collected less frequently, resulting in sample sizes
an order of magnitude smaller. A model integrating various data sources can provide a more
complete picture of ecosystem processes as compared to independent analyses, yet success-
ful integration requires that inferences be based on the information content of the data sources

and not solely on the quantity of observations.

EF Zipkin et al.

available, the source of bias (selection of
sample units versus observation biases), and
the extent or severity of the problem. For
instance, when sample units are selected
preferentially based on environmental fea-
tures or other variables that correlate with
the process of interest, biases can be reduced
by including model components to describe
the site-selection process (Diggle et al. 2010;
Conn et al. 2017). Incorporation of spatially
correlated random effects can also improve
inferences (Hefley et al. 2017). Similarly, a
state-space (ie hierarchical) framework that
models the biological or physical process of
interest separate from the processes used to
collect data (eg de Valpine and Hilborn
2005) can account for observation biases

Battelle/NEON

geographic area of interest. Observation biases occur when
data are collected or recorded with error (eg imperfect detec-
tion by observers or instrumental noise in sensors). Although
these sampling issues can materialize in analyses of a single
dataset, they are likely to be more problematic in integrated
analyses because biases in individual datasets can result in
cumulative errors and uncertainties. Failure to account for
sampling biases or errors can yield estimates that are overly
precise and potentially misleading (Albert et al. 2010).

Although observation errors are likely to occur at similar
rates across data collected at both local and broad scales, sam-
pling biases resulting from inadequate or nonrandom site-selec-
tion may be more prevalent in data integration analyses at
macrosystem scales. Limited resources and logistical constraints
often prevent implementation of probabilistic sampling designs
(eg stratified random sampling) at regional to continental
scales. For example, macrosystems ecology increasingly uses
data from volunteer-based (public science) monitoring projects
to describe ecological phenomena at large spatial scales (Sulli-
van et al. 2014; LaSorte et al. 2018; Saunders et al. 2019b). Such
programs can provide vast amounts of data to inform species
distributions, relative abundance, and phenology, but collection
efforts are often focused near urban areas, roads, or other loca-
tions with high human population densities (Figure 5; Bird et al.
2014). Similarly, the recent development of regional- and conti-
nental-scale research networks has facilitated the growth of
macrosystems ecology through the collection of detailed and
systematic data that can be used to inform models of geophysi-
cal and biological processes at large spatial scales. Yet models
that incorporate these data need to account for nonrandom
sampling, given that locations often reflect both the prioritiza-
tion of particular ecoregions and logistical constraints (Keller
et al. 2008). Within multi-scaled research, bias introduced at
one scale via nonrandom sampling may be unintentionally
propagated to inferences at other scales (Gelfand et al. 2012).

A wide array of strategies have been proposed to account
for sampling biases, depending on the amount and type of data

and differences in sampling efforts among
data sources, and/or be used to account for specific types of
observation error mechanistically (eg Schaub and Abadi
2011). Finally, explorations of available data, independently
and together, can help determine how to amend the design of
ongoing data collection efforts to limit biases in model infer-
ences or identify where and when to implement probabilistic
sampling to collect auxiliary data.

@ Optimizing model development and assessment when
incorporating multiple data sources

Balancing the complexity and realism of models with the
data necessary to parameterize such models is an ongoing
challenge in ecological research. Integrating data sources
that are collected on different components of a system (eg
various biological or physical processes, subsets of a geo-
graphic range) allows researchers to better understand spatial
or temporal variation in ecological processes or mechanisms
that underlie ecological patterns. However, combining dis-
parate data sources to create increasingly complex models
may not always result in improved inferences if the necessary
assumptions are untenable or too restrictive, data on one
or more aspects of the system are severely limited, or the
model cannot be easily understood or applied to other eco-
logical systems. Assessing the quality of inferences, or how
well complex models fit both individual data sources and
a suite of integrated data sources, is an active area of research
(Besbeas and Morgan 2014; Carvalho et al. 2017).

Within macrosystems ecology, model fit may be hindered
by nonstationarity (Rollinson et al. 2021) and cross-scale inter-
actions (Figure 2), resulting in rejection of models that fit the
data well for some (but not all) geographic locations or time
periods or conversely, in acceptance of models with mediocre
overall fit that fail to characterize processes in any region or
time period well (Foody 2004). Moreover, standard approaches
to validate model fit may not be feasible for integrated mac-
rosystems analyses because of data limitations and/or logistical

Front Ecol Environ doi:10.1002/fee.2290
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Figure 5. Macrosystems data frequently come from sources with nonrandom sampling designs. For example, (a) survey locations used for butterfly moni-
toring by volunteers with the North American Butterfly Association (red circles) and state organizations (blue circles) are clustered near urban areas (shown
in gray for Ohio). Similarly, (b) opportunistic sightings of individual species — such as the eastern tailed-blue butterfly (Cupido comyntas), shown here on a
gravel drive — often occur near roads and urban centers. A model that integrates these data sources could produce dynamic estimates of species’ distri-
butions, yet successful integration requires accounting for incomplete and nonrandom sampling to ensure that estimates are not biased.

constraints. For example, cross-validation methods require
that some data (eg individual observations, random or geo-
graphically selected blocks of observations) be withheld from
analyses to evaluate model fit (Hooten and Hobbs 2015; Rob-
erts et al. 2017). In a macrosystems model that uses multiple
data sources, however, it may not be clear how to select obser-
vations among disparate data sources that inform multiple
ecological parameters.

In addition to challenges in assessing model fit, traditional
model and variable selection approaches (eg null hypothesis
testing, information-theoretic methods) may be insufficient
for integrated models (Besbeas and Morgan 2014), particularly
if the focus lies in evaluating the importance of various pro-
cesses and drivers across multiple scales (Grueber et al. 2011;
Levy et al. 2014). Model selection approaches often involve
comparing models that include or exclude a given variable
under the assumption that their effects on the response varia-
ble are independent. Within macrosystems ecology, however,
the effects of one variable may be influenced by or co-vary
with factors operating at different scales (eg Lawler and
Edwards 2006). Therefore, it may not be possible to isolate the
effects of a particular variable or “remove” one variable from a
model without disregarding important cross-scale interactions
that influence the broad-scale processes and patterns research-
ers seek to explain. Correlation among predictor variables that
vary in scale can result in the selection of a model that includes

spurious variables or excludes important predictors (Grueber
etal.2011).

Developing appropriate models using multiple data sources
is an iterative process that generally begins by building compo-
nents of the ecological process model separately to examine
convergence and model fit (Kuikka et al. 2014; Ketz et al.
2018). Simulated datasets, in conjunction with goodness-of-fit
discrepancy measures, can be used to compare estimated
parameter values with true data values to examine whether
model components systematically over- or under-predict
quantities of interest (Besbeas and Morgan 2014; Zipkin and
Saunders 2018). New approaches, such as multi-objective opti-
mization (Branke et al. 2008), in which model selection is
based on multiple criteria (Williams et al. 2019), may help
identify appropriate models for complex multi-scale systems.
Model selection choices should be based on data availability as
well as objectives, such as identifying factors that have the larg-
est effect on ecological processes of interest or minimizing
uncertainty of model predictions.

@ Conclusions and future directions

Data integration offers ecologists an opportunity to explore
complex, multi-scaled phenomena by combining available
information within a single analytical framework. Integrated
models improve estimation of ecological processes and
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patterns because they expand the amount and scope of data
available while explicitly accounting for multiple sources of
error and uncertainty. The use of multiple, independent data
sources can also reveal biases in parameter estimates that
are hidden in analyses based on a single dataset, thereby
improving the accuracy of inferences used to inform con-
servation and management efforts (Saunders et al. 2019a).
In addition, ecological forecasts benefit from data integration
as accurate predictions of future ecosystem states and pro-
cesses require the appropriate propagation of uncertainty
in parameter estimates, initial conditions, and future system
states (Dietze et al. 2018). However, issues remain in the
development, analysis, and interpretation of data integration
models, particularly within macrosystems ecology, given that
such analytical approaches are relatively new and often
incompatible with standard software packages. We highlight
statistical approaches from the literature to address common
integration problems (WebTable 1). As integration challenges
are often interdependent, approaches used to address one
issue can affect the options available to address other issues.
In many situations, more than one approach could reason-
ably be used to address integration issues, the most appro-
priate of which will depend on the specific data available,
the complete set of challenges, and the ecological system
and question(s) of interest.

Continued adoption and adaptation of formal approaches
from the statistical literature can expand the utility of data
integration analyses within ecological systems (eg Pacifici et al.
2019), and future research is likely to produce additional
methods to resolve integration challenges. In addition to the
techniques discussed in relation to the individual challenges
(WebTable 1), we recommend three general considerations to
help overcome analytical obstacles when integrating data at
macroscales. First, it is often useful to begin by assessing the
scope, grain, information content, and quantity of individual
data sources to evaluate the potential structure and feasibility
of an ecological model. This will identify the extent to which
data sources can individually inform model estimates and help
determine reasonable model complexity given available data.
Second, simulating data, as well as developing and evaluating
model components sequentially, can aid in determining
whether inferential challenges are likely to arise prior to full
model implementation. Data integration is often an iterative
process, where new challenges arise as data sources are added
or model structures are altered. Integrating data sources in
steps using “perfect” simulated data can help pinpoint poten-
tial problems and solutions early on and determine how real
datasets differ from simulated data. Finally, including random
effects in one or more components of an integrated model can
often ameliorate many of the inferential challenges discussed
here. Random effects can be used to account for differences in
the spatial and temporal extent of multiple data sources, incon-
sistencies in sampling effort and techniques, and variance in
ecological processes not explained by available covariates (eg
Pacifici et al. 2017).

EF Zipkin et al.

Macrosystems ecology is emerging as a valuable and
increasingly relevant field (McCallen et al. 2019) as society
faces multifaceted, interconnected, and cross-scaled pressures
from rapid and unprecedented global change (Dodds et al.
2021). Moreover, data integration analyses are primed to play
an important role within macrosystems ecology because of the
inherent need to combine data sources to obtain inferences at
regional to continental scales, and the sheer volume of data
that is available through automated and large-scale collection
programs (LaDeau et al. 2017). However, determining how
multiple, disparate sources of data can be used to address ques-
tions at macrosystem scales across spatial and temporal heter-
ogeneity can be complex. Despite these challenges, data
integration techniques have expanded the breadth of research
focused on patterns and mechanistic processes operating at
broad spatiotemporal scales (Isaac et al. 2020), and we expect
that the continued, rapid development of data integration tech-
niques will be crucial to advancing the growing field of mac-
rosystems ecology.
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Improved survival for an albino?

Dominated mostly by small scattered trees and a patchy can-
opy, savannas offer few places for bats to shelter. However,
within Brazil’s savanna ecoregion known as the Cerrado, riparian
forests and seasonal dry forests provide an exception. Most bat
species that naturally have white fur are associated with the habit of
roosting under tree leaves; incidentally, the bottoms of most tree
leaves are typically lighter in color than their tops. The bat pictured
here was captured in a gallery forest near the Aguas Emendadas
Ecological Station (Planaltina, Brazil) in 2007. To the best of our
knowledge, this is the first reported case of albinism not only for
Dermanura cinerea, a frugivorous bat species normally distin-
guished by gray fur, but also among other bats in the Brazilian
savanna. We believe that its white fur might better match the bottom

~\
color of the tree leaves in these forests, thereby offering greater
camouflage and potentially improving its chances of survival.
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