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1 Introduction

1.1 Overview

Consider the moduli space A, of principally polarized abelian varieties of dimension ¢ in characteristic p > 0. It
contains the open Torelli locus 7., which is the image of the moduli space My of smooth genus g curves under

the Torelli morphism. The generic point of 7 is contained in the ordinary locus of Ay, meaning that the only
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slopes of the Newton polygon of a generic curve of genus g are 0 and 1. This was first proven by Miller for p odd
[26, Proposition 1] using a computation of the Hasse-Witt matrix for hyperelliptic curves and by Koblitz for
all p [16, Theorem 5, page 145] by a deformation theory argument. Faber and Van der Geer [11, Theorem 2.3]
generalized the argument of Koblitz to prove, in particular, that 7, intersects the non-ordinary locus of Ay A

short description of this paper is that we generalize these results for A, to many Shimura varieties of PEL-type.

More generally, A, can be stratified by Newton polygon. For a symmetric Newton polygon v of height 2g,
in most cases it is not known whether the stratum A,[v] intersects T, or, equivalently, whether there exists a
smooth curve of genus ¢ in characteristic p whose Jacobian has Newton polygon v. This question is answered

only when v is close to ordinary, meaning that the codimension of A,[v] in A, is small.

In this paper, we develop a framework to study Newton polygons of Jacobians of p,,-covers of the projective
line P! for an integer m > 2. This generalizes work of Bouw [5] who studied the p-ranks of Jacobians of fi,,-
covers. As an application, we find numerous infinite sequences of Newton polygons for Jacobians of smooth
curves which were not previously known to occur. Most of these arise in an unlikely intersection of the open
Torelli locus 7 with the Newton polygon strata of A, in the sense that the codimension of the Newton stratum

in A, is strictly greater than the dimension of M, Definition 8.2.

In essence, our strategy is to replace the system of moduli spaces A, by inductive systems of PEL-type
Shimura varieties. Each Hurwitz space of p,,-covers of P! determines a unitary Shimura variety Sh associated
with the group algebra of u,,, as constructed by Deligne-Mostow [8]. The Torelli morphism maps the Hurwitz

space to the Shimura variety, but the codimension of the image grows quadratically with g.

This allows us to tackle the question of which Newton polygons occur for p,,-covers from two sides. First,
the structure of the Shimura variety places restrictions on the Newton polygon. By work of Kottwitz [17, 19],
Wedhorn [36], Viehmann-Wedhorn [34], and Hamacher [14], the Newton polygon stratification of the modulo
p reduction of Sh is well understood in terms of its signature type and the congruence class of p modulo m.
There is a combinatorial description of the most generic Newton polygon u on Sh, which is called the p-ordinary

Newton polygon Definition 2.5, Section 2.6.1.

Second, using the boundary of the Hurwitz space, we can produce p,,-covers of singular curves with
prescribed Newton polygons. Under an admissible condition Definition 3.3, these singular curves can be deformed
to smooth curves which are p,,-covers of P!. The main problem is to show that this can be done without
changing the Newton polygon. This problem disappears if the Newton polygon of the singular curve is the p-
ordinary Newton polygon on Sh. In Theorem 4.5, we show that this happens exactly when a balanced condition
Definition 4.2 is satisfied. In Theorem 6.11, we prove a more powerful result that we can deform to a fu,,-cover

of smooth curves without changing the Newton polygon under a controlled condition Definition 6.3.

By combining these two perspectives, we prove that the intersection of the Newton polygon stratum Sh[v]
with the open Torelli locus is non-trivial when v is close to p-ordinary, for infinitely many Shimura varieties

Sh of PEL-type, see Sections 4.3 and 6.4. To do this, we find systems of Hurwitz spaces of p,,-covers of P! for
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which the admissible, balanced, and controlled conditions, together with an expected codimension condition on
the Newton polygon strata, can be verified inductively.

The base cases we use involve cyclic covers of P! branched at 3 points or the 20 special families found by
Moonen [28]. As an application of our method, we also prove that all Newton polygon strata on Moonen’s 20

special families intersect the open Torelli locus (if p >> 0 in the supersingular cases) Corollary 7.2.

1.2 Comparison with other work

In 2005, Oort proposed the following conjecture.

Conjecture 1.1. ([30, Conjecture 8.5.7]) For i = 1,2, let g; € Z>1 and let v; be a symmetric Newton polygon
appearing on 7. Write g = g1 + g2. Let v be the amalgamate sum of 1 and 1 as defined in Section 2.2. Then

v appears on 7. O

Theorems 4.5 and 6.11 show that Oort’s conjecture has an affirmative answer in many cases. Our results
provide the first extensive numerical support for this conjecture. They also provide theoretical support by
verifying that many unlikely intersections of the Torelli locus and the Newton polygon strata occur. However,
these results are not sufficient for us to judge whether Oort’s conjecture is true in general.

The results in Section 4 can be viewed as a generalization of Bouw’s work [5] about the intersection of 7
with the stratum of maximal p-rank in a PEL-type Shimura variety. For most families of p,,-covers and most
congruence classes of p modulo m, the maximal p-rank does not determine the Newton polygon.

We use clutching morphisms to study the boundary of Hurwitz spaces. This technique was also used to
study the intersection of 7> with the p-rank stratification of A, in [11, Theorem 2.3]; also [2], [13], [3].

The results in Section 6 generalize Pries’ work [31, Theorem 6.4], which states that if a Newton polygon v
occurs on M, with the expected codimension, then the Newton polygon v & (0,1)™ occurs on Mg, with the
expected codimension for n € Zx>;. However, the expected codimension condition is difficult to verify for most

Newton polygons v.

1.3 Outline of paper and sample result

In Section 2, we review key background about Hurwitz spaces, PEL-type Shimura varieties, and Newton polygon
stratifications. In Section 3, we analyze the image of a clutching morphism & on a pair of u,,-covers of P'.

In Section 4, we study whether the open Torelli locus 7. intersects the y-ordinary Newton polygon stratum
Shlu], see Definition 2.5, inside the Shimura variety Sh. The first main result Theorem 4.5 provides a method
to leverage information about this question from lower to higher genus. Under a balanced condition on the
signatures Definition 4.2, we verify that the intersection of 7, and Shlu] is non-trivial, for a varying family of
Shimura varieties (Proposition 4.4, which we prove in Section 5).

The most powerful results in the paper are in Section 6, where we study the intersection of the open Torelli

locus T°

, with the non p-ordinary Newton polygon strata inside the Shimura variety Sh. Theorem 6.11 also
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provides a method to leverage information from lower to higher genus. Under an additional controlled condition
on the signatures Definition 6.3, we determine the codimension of the Newton polygon strata for a varying
family of Shimura varieties (Proposition 6.8).

In Sections 4.3 and 6.4, we find situations where Theorems 4.5 and 6.11 can be implemented recursively,
infinitely many times, which yields smooth curves with arbitrarily large genera and prescribed Newton polygons
which were not previously known to occur. We do this by constructing suitable infinite clutching systems of
PEL-type Shimura varieties which satisfy the admissible, balanced, (and controlled) conditions at every level.

For example, we prove:

Theorem 1.2 (Special case of Corollary 4.9). Let v = (m, N,a) be a monodromy datum as in Definition 2.1.
Let p be a prime such that p { m. Let u be the p-ordinary Newton polygon associated to 7 as in Definition 2.5.
Suppose there exists a p,-cover of P! defined over F,, with monodromy datum + and Newton polygon u.*! Then,

for any n € Z>1, there exists a smooth curve over Eg with Newton polygon v, = u™ @ (0, 1)(7"*1)("*1).1‘2 O

For a symmetric Newton polygon v of height 2¢, the open Torelli locus has an unlikely intersection with
the Newton polygon stratum A,[v] in Ay if there exists a smooth curve of genus g with Newton polygon v and
if dim(M,) < codim(A4[v], A,), Definition 8.2. In Section 8, we study the asymptotic of codim(Ag4[v], A,) for
the Newton polygons v appearing in Sections 4.3 and 6.4. We verify that most of our inductive systems produce

unlikely intersections once g is sufficiently large, for most congruence classes of p modulo m.

1.4 Applications

In Corollary 7.2 in Section 7, we prove that all the Newton polygons for the Shimura varieties associated to the
20 special families in [28, Table 1] occur for smooth curves in the family.

In Section 9, we construct explicit infinite sequences of Newton polygons that occur at odd primes
for smooth curves which demonstrate unlikely intersections. For example, by Theorem 1.2 applied to v =

(m,3,(1,1,m — 2)), we prove:

Application 1.3. (Proposition 9.2) Let m € Z~1 be odd and h = (m — 1)/2. Let p be a prime, p { 2m, such that
the order f of p in (Z/mZ)* is even and p//? = —1 mod m. For n € Z>, there exists a fi,,-cover C' — P! defined
over F,, where C'is a smooth curve of genus g = h(3n — 2) with Newton polygon v/, = (1/2,1/2)"" @ (0,1)2M=1.
If n > 34/h, then Jac(C) lies in the unlikely intersection 7> N Ay[v]. O

The slopes of the Newton polygon v/, in Application 1.3 are 1/2 with multiplicity 2hn and 0 and 1 each

with multiplicity 2h(n — 1). For the reader familiar with the Dieudonné-Manin classification, this means that

the p-divisible group of Jac(C) is isogenous to G’l”j @ G%ﬁ(nfl) @ Gfi)("fl).l'?’

1.1See Proposition 4.6 for cases when this condition is satisfied.
1-2The slopes of v, are the slopes of u (with multiplicity scaled by n) and 0 and 1 each with multiplicity (m — 1)(n — 1).
1-31n this description, the multiplicity of the slope 1/2 is twice the multiplicity of G1,1 in the p-divisible group.
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In Corollary 9.4, we apply Application 1.3 when m = 3 to verify, for p = 2 mod 3 and g € Z>, there exists
a smooth curve of genus g defined over E, whose Newton polygon only has slopes {0,1/2,1} and the multiplicity
of slope 1/2 is at least 2|g/3|. To our knowledge, this is the first time for any odd prime p that a sequence of
smooth curves has been produced for every g € Z>1 such that the multiplicity of the slope 1/2 in the Newton

polygon grows linearly in g.

2 Notations and Preliminaries

More details on this section can be found in [22, Sections 2,3] and [28, Sections 2,3].

2.1 The group algebra of m-th roots of unity

Let m,d € Z>1. Let piy, := pm(C) denote the group of m-th roots of unity in C. Let Ky be the d-th cyclotomic
field over Q. Let Q[um] denote the group algebra of i, over Q. Then Q[u.,] = Hd‘m K4. We endow Q[p,,] with
the involution * induced by the inverse map on fi,,, i.e., (* := (! for all { € fu,.

Set T := Homg(Q[m],C). If W is a Q[um] ®g C-module, we write W = @,c7 W, where W, denotes the
subspace of W on which a ® 1 € Q[um,] ®g C acts as 7(a). We fix an identification T = Z/mZ by defining, for
all n € Z/mZ,

T () :=¢", for all ¢ € pip,.

Let m > 1. For p { m, we identify 7 = Homg(Q[um], Qp"), where Q3" is the maximal unramified extension
of Q, in an algebraic closure. There is a natural action of the Frobenius ¢ on 7, defined by 7 — 77 :=c o T.

Let O be the set of all o-orbits o in 7.

2.2 Newton polygons

Let X be an abelian scheme defined over the algebraic closure F of F,. Then there is a finite field Fo/F,,

an abelian scheme Xy /Fo, and ¢ € Z>1, such that X ~ X, xg, F and the action of ot on H!

eris(Xo/W (Fo)) is
linear; here W (IFy) denotes the Witt vector ring of Fy. The Newton polygon v(X) of X is the multi-set of rational

numbers A such that £\ are the valuations at p of the eigenvalues of of acting on H}.. (Xo/W (Fy)); the Newton

cris
polygon does not depend on the choice of (Fg, Xo, £).

The p-rank of X is the multiplicity of the slope 0 in v(X); it equals dimg, (Hom(u,, X)).

If v; and vy are two Newton polygons, the amalgamate sum vy @ vs is the disjoint union of the multi-sets
v, and . We denote by v the amalgamate sum of d copies of v.

The Newton polygon v(X) is typically drawn as a lower convex polygon, with slopes A occurring with
multiplicity m), where m) denotes the multiplicity of A in the multi-set. The Newton polygon of a g-dimensional
abelian variety is symmetric, with endpoints (0,0) and (2g, g), integral break points, and slopes in QN [0, 1].

For convex polygons, we write vy > vy if v1, 19 share the same endpoints and v, lies below vs.
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We denote by ord the Newton polygon (0,1) and by ss the Newton polygon (1/2,1/2). For s,t € Z>1, with
s <t/2 and ged(s,t) = 1, we write (s/t, (t — s)/t) for the Newton polygon with slopes s/t and (¢t — s)/t, each
with multiplicity ¢.

Suppose Y is a semi-abelian scheme defined over F. Then Y is an extension of an abelian scheme X by a

torus T'; its Newton polygon is defined to be v(Y) := v(X) @ ord®, where e = dim(T).

2.3 Cyeclic covers of the projective line

Definition 2.1. Fix integers m > 2, N > 3 and an N-tuple of integers a = (a(1),...,a(N)). Then a is an inertia

type for m and v = (m, N, a) is a monodromy datum if

1. a(i) Z0mod m, for each i =1,... N,
2. ged(m, a(l),...,a(N)) =1,
3. >, a(i) =0 mod m.

For later applications, we sometimes consider a generalized monodromy datum, in which we allow a(i) =
0 mod m. In the case that a(i) = 0, we set ged(a(i), m) = m.

Two monodromy data (m, N,a) and (m', N',a’) are equivalent if m = m’, N = N’ and the images of a,da’
in (Z/mZ)N are in the same orbit under (Z/mZ)* x Sym .

For fixed m, we work over an irreducible scheme over Z[1/m, (). Let U C (A1) be the complement of the

weak diagonal. For each t = (¢(1),...,t(N)) € U, the equation

N .
v = L=t 1)

defines a p,,,-cover of the projective line. Let C be the smooth projective (relative) curve over U whose fiber at
each point ¢ is the normalization of the curve defined by (2.1). Consider the fi,,,-cover ¢ : C — P, defined by
the function z and the p,-action ¢ : p,,, — Aut(C) given by ¢({) - (z,y) = (z,( - y) for all { € p,.

For a closed point ¢t € U, the cover ¢; : C; — P! is a ju,,-cover, branched at N points ¢(1),...,¢(N) in P,
and with local monodromy a(i) at ¢(7). By the hypotheses on the monodromy datum, C; is a geometrically

irreducible curve of genus g, where

g=g(m.N,a) =1+ 5 (V= 2)m = 3" ged(a(i),m)). (2.2)
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Take W = H°(Cy, Q') and, under the identification 7 = Z/mZ, let f(r,) = dim(W.,.,). The signature type
of ¢ is defined as f = (f(71), ..., f(Tm-1)). By [28, Lemma 2.7, §3.2],

—14+ N (=) i 2 0 mod m

m

f(mn) = (2.3)

0 if n = 0 mod m.

where, for any = € R, (z) denotes the fractional part of x. The signature type of ¢ does not depend on ¢; it
determines and is uniquely determined by the inertia type, up to the action of Sym . The action of (Z/mZ)*

permutes the values f(7,,).

2.4 Hurwitz spaces

Let M, be the moduli space of smooth curves of genus g in characteristic p. Its Deligne-Mumford
compactification ﬂg is the moduli space of stable curves of genus g. For a Newton polygon v, let M,[v]
be the subspace whose points represent objects with Newton polygon v. We use analogous notation for other
moduli spaces.

We refer to [10] and [1, Section 2.2] for a more complete description of Hurwitz spaces for cyclic covers of
P1.21 Consider the moduli functor M, (resp. //\/lvu) on the category of schemes over Z[1/m, (,,]; its points
represent admissible stable p,,-covers (C'/U, ) of a genus 0 curve (resp. together with an ordering of the smooth
branch points and the choice of one ramified point above each of these). We use a superscript o to denote the
subspace of points for which C'is smooth. By [10, Theorem 3.2], see also [1, Lemma 2.2], M, (resp. Mum) is
a smooth proper Deligne-Mumford stack and ﬂzm (resp. //\/lvfbm) is open and dense within it.

For each irreducible component of ./’\/lvﬂm, the monodromy datum ~ = (m, N,a) of the py,-cover (C/U,¢)
is constant. Conversely, the substack Mzn of points representing pi,,-covers with monodromy datum -~ is
irreducible, [12, Corollary 7.5], [37, Corollary 4.2.3].

On M, , there is no ordering of the ramification points; so only the unordered multi-set @ =
{a(1),...,a(N)} is well-defined. The components of M, are indexed by 7 = (m, N,a). By [1, Lemma 2.4],

the forgetful morphism //\ZZ — MZ is étale and Galois.

Definition 2.2. 22 If v = (m, N, a) is a monodromy datum, let Z(vy) = Mlm and let Z(7y) be the reduced
image of //\/lvlm in ﬂg. We denote the subspace representing objects where C/U is smooth (resp. of compact
type?3, resp. stable) by

Z°(v) C Z°(y) € Z(y) and Z°(y) C Z°(7) C Z(7).

2-1The results we use from [1, Section 2.2] are true both when m is prime and when m is composite.

2:2This definition is slightly different from the one in our previous papers [23], [22].

2:3 A stable curve has compact type if its dual graph is a tree. The Jacobian of a stable curve C is a semi-abelian variety; also C has
compact type if and only if Jac(C) is an abelian variety.
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By definition, Z(7) is a reduced irreducible proper substack of Mg. It depends uniquely on the equivalence

class of 5. The forgetful morphism Z () — Z(v) is finite and hence it preserves the dimension of any substack.

Remark 2.3. Let v = (m, N’,d’) be a generalized monodromy datum. Assume that a’'(N’) =0 mod m and
a'(i) Z0mod m for 1 <i < N’. Consider the monodromy datum = (m, N’ —1,a), where a(i) = a'(¢) for
1<i< N —1.Then Z(v') = Z(7) and Z(v') = Z(7)1, where the subscript 1 indicates that the data includes

one marked point on the curve. The fibers of the morphism Z°(y') — Z°(y') are of pure dimension 1. O

2.5 Shimura varieties associated to monodromy data

Consider V := Q29 endowed with the standard symplectic form ¥ : V x V — Q and G := GSp(V, ¥), the group
of symplectic similitudes. Let (Gg, ) be the Siegel Shimura datum.
Fix x € Z°(y)(C) and let (J,0) denote the Jacobian of the curve represented by x together with its

principal polarization 6. Choose a symplectic similitude

a: (Hy(Je, Z),¢e) = (V, 0)

where 1y denotes the Riemannian form on H;(J7,,Q) corresponding to 6. Via «, the Q[u,,]-action on 7,
induces a Q[ ]-module structure on V', and the Hodge decomposition of Hy (7, C) induces a Q[p,] ®g C-linear
decomposition Ve =Vt o V.
We recall the PEL-type Shimura stack Sh(gim,f) given in [8]. The Shimura datum of Sh(u,,f) given by
(H,by) is defined as
H = GLgj,,, (V)N GSp(V, V),

and bs the H-orbit in {h € b | h factors through H} determined by the isomorphism class of the Q[u,,] ®q C-
module VT, ie., by the integers f(7) := dim¢c(V,"), for all 7 € 7. Under the identification 7 = Z/mZ, the
formula for §(7,,) is that given in (2.3).

For a Shimura variety Sh := Sh(H, b;) of PEL type, we use Sh* to denote the Baily-Borel (i.e., minimal)
compactification and Sh to denote a toroidal compactification (see [20]).

The Torelli morphism 7' : M{ — A, takes a curve of compact type to its Jacobian.

Definition 2.4. We say that Z¢(vy) is special if T(Z¢(y)) is open and closed in the PEL-type Shimura stack

Sh(pm, f) given in [8] (see [22, Section 3.3] for details). O

If N =3, then T'(Z¢()) is a point of A, representing an abelian variety with complex multiplication and is
thus special, [23, Lemma 3.1]. By [28, Theorem 3.6], if N > 4, then Z°(«) is special if and only if 7 is equivalent

to one of twenty examples in [28, Table 1].
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2.6 The Kottwitz set and the py-ordinary Newton polygon

Let p{m be a rational prime. Then the Shimura datum (H, b;) is unramified at p. We write Hg, for the fiber
of H at p, and py, for the conjugacy class of p-adic cocharacters i, associated with h € by.

Following [17]-[19], we denote by B(Hg,, ) the partially ordered set of u-admissible Hg,-isocrystal
structures on Vg, . By [34, Theorem 1.6] (see also [36]), B(Hg,, ttp) can be canonically identified with the set of
Newton polygons appearing on Sh(H, h).2* We sometimes write Sh := Sh(H, h) and B = B(Sh) := B(Hg,, py)-

Definition 2.5. The p-ordinary Newton polygon u := u,_orq is the unique maximal element (lowest Newton

polygon) of B(Hg,, fip)- O

An explicit formula for w is given below; (see also [22, Section 4.1-4.2]).

2.6.1 Formula for slopes and multiplicities

Let f be a signature type. Fix a o-orbit 0 in 7 as defined in Section 2.1. We recall the formulas from [28, Section
1.2.5] for the slopes and multiplicities of the o-component u (o) of the y-ordinary Newton polygon in terms of f,
following the notation in [9, Section 2.8], [22, Section 4.2].

With some abuse of notation, we replace 7 by T — {7} and the set of g-orbits O by O — {{79}} throughout
the paper. Let g(7) := dim¢(V;). As the integer g(7) depends only on the order of 7 in the additive group Z/mZ,

and thus only on the orbit 0 of 7, we sometimes write g(0) = g(7), for any/all 7 € 0.
Remark 2.6. For all 7 € T, dim¢ (V%) = dimg(V,7), and thus f(7) + f(7*) = g(7). O

Let s = s(0) be the number of distinct values of {f(7) | 7 € 0} in the range [1,g(0) — 1]. We write these
distinct values as

g(0) > E(1) > E(2) >--- > E(s) > 0.

Let E(0) := g(0) and E(s+ 1) := 0. Then u(0) has exactly s+ 1 distinct slopes, denoted by 0 < A(0) < A(1) <

<+ < A(s) < 1. For 0 <t <s, the (t+ 1)-st slope is

A0 = e () = () (24)
The slope A(t) occurs in u(0) with multiplicity
pONB)) = [0l (E(t) — B(t +1)). (2.5)

2-4More precisely, following [22, §4.3], a Newton polygon appearing on Sh(H, h) is a set {v(0)}oc o, where each v(0) is a multi-set of
slopes. On the other hand, following [34, §8.2], a Newton polygon attached to an element in B(H@p, g ) is its image under the Newton

map v : B(HQpaNh) - (X«(T)® Q)gom. Since we work with PEL-type Shimura varieties of types A and C, these two notions of
Newton polygon coincide. Indeed, up to center (note that the center does not affect the Newton polygon), Hg, = HueD H,, where
H, is the restriction of scalars of a unitary group, or GLy, or GSp,,. For such groups, one can check directly that these two notions
of Newton polygons are equivalent. Moreover, B(Hg,, ftp) can be identified with its image under v due to [34, (8.6)] and the fact

that an element in B(Hg,) (notation as in loc. cit. ) is determined by its image under the Newton map v and the Kottwitz map x.
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2.7 Geometry of the Newton polygon strata on Sh

For b € B, let Sh[b] := Sh(H, h)[b] denote the Newton polygon stratum for b in Sh. In other words, Sh[b] is
the locally closed substack of Sh parametrizing abelian schemes with Newton polygon b. By Hamacher [14,
Theorem 1.1, Corollary 3.12], based on the work of Chai [6], Mantovan [25], and Viehmann [33], and Kottwitz
[18, Section 8],2 on each irreducible component S of Sh, the substack S[b] is non-empty and equidimensional

and

codim(S[b], Sh) = length(b), (2.6)

where length(b) = max{n | there exists a chain b=1vy <wvy <--- <y, =u, v; € B}.

The Newton stratification extends to the toroidal and minimal compactifications Sh, Sh*. In [21, §3.3], the
authors studied the Newton stratification on compactifications of PEL-type Shimura varieties at good primes.
They proved in this case that all the Newton strata are so called well-positioned subschemes [21, Proposition
3.3.9]. In particular, by [21, Definition 2.2.1, Theorem 2.3.2], the set of Newton polygons on (each irreducible

component of) Sh is the same as that on Sh and, for any b € B,

codim(Sh[b], Sh) = codim(Sh[b], Sh). (2.7)

By the next remark, there exists a p,,-cover of smooth curves having monodromy datum + and p-ordinary

Newton polygon u if there exists such a cover of stable curves.

Lemma 2.7. The following are equivalent: Z°(vy)[u] is non-empty; Z°()[u] is open and dense in Z°(v); and

Z°()|u] is non-empty. O

Proof. This is clear because the Newton polygon is lower semi-continuous, Z¢(v) is irreducible, and Z°(y) is

open and dense in Z°(7). [ |

Remark 2.8. The Ekedahl-Oort type is also determined for many of the smooth curves in this paper. The
reason is that the p-ordinary Newton polygon stratum in these PEL-type Shimura varieties coincides with the
unique open Ekedahl-Oort stratum. Hence one may compute the Ekedahl-Oort type of these smooth curves

using [27, Section 1.2.3]. O

2:5Hamacher proved that Sh[b] is non-empty and equidimensional of expected dimension. Since Hecke translations preserve the
Newton polygon strata and act transitively on the irreducible components of Sh, we deduce the same result for S[b]. See [18,
Section 8] for a more detailed discussion.
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3 Clutching morphisms

3.1 Background

We study clutching morphisms, generalized to the context of curves that are u,,-covers of P!. The clutching

morphisms are the closed immersions [15, 3.9], for 1 <14 < g, as described below:

Kig—i : ﬂi;l X ﬂg—z’;l — ﬂg and A Iﬂg_lg — ﬂg.

Informally speaking, the morphism k; 4—; takes a curve of genus ¢ with a marked point and a curve of
genus g — 7 with a marked point and produces a singular curve by identifying the marked points in an ordinary
double point. By definition, the image of ; 4—; is the component A; of the boundary of M,, whose generic
point represents a stable curve that has two components, of genus i and g — i, intersecting in one point, which
is an ordinary double point.

In our context, we sometimes need to clutch together two curves at more than one point. By construction,
the dual graph of the resulting singular curve contains a cycle. Recall that a stable curve has compact type if its
dual graph is a tree. By definition, A¢ is the component of the boundary of M, whose points represent stable
curves that do not have compact type. Informally speaking, the morphism A takes a curve of genus g — 1 with
two marked points and produces a singular curve by identifying the marked points in an ordinary double point.
The image of X is the component Ag.

In this paper, we describe a clutching morphism, denoted , which shares attributes of both ; 4—; and A.
The input for & is a pair of cyclic covers of P! and the output is a singular curve which is a cover of a tree of
two projective lines. To provide greater flexibility, we include cases when the covers have different degrees and
when the two covers are clutched together at several points. As a result, a curve in the image of k is contained

in A; for some 1 < i < g and also may be contained in Ag.

Notation 3.1. Let 7 = (m, N,a) be a monodromy datum. For an integer d > 1, consider the induced datum

yf¢ = (dm, N,da), which we sometimes denote 7. [

If d > 1, then ' is not a monodromy datum because it does not satisfy the ged condition; this does not
cause any difficulties. Suppose ¢ : C — P! is a p,,,-cover with monodromy datum . Consider the induced curve
IndglmC, which consists of d copies of C, indexed by the cosets of i, C ttgm. From the induced action of g,
on Ind¥™C there is a figm-cover Ind¥™(¢) : Ind™C — P'; we say that it has induced datum ~!¢. The signature
type of Ind¥™(¢) is ffe = f o w4, where 74 : Z/dmZ — 7,/mZ denotes the natural projection. By (2.4) and (2.5),

the p-ordinary polygon of Sh(pgm,f'¢) is uf¢ = u?.

3.2 Numerical data and hypothesis (A)

Notation 3.2. Fix integers my,ma > 2, Ni, No > 3. Let mgz = lem(my, my). For ¢ =1,2: let d; = msz/m;;

let a; = (a;(1),...,a;(N;)) be such that v; = (m;, N;,q;) is a (generalized) monodromy datum; and let g; =
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g(mi, Ni,a;) as in (2.2). -

Definition 3.3. A pair of monodromy data v; = (mq, N1,a1), y2 = (ma2, Na, az) as in Notation 3.2 is admissible
if it satisfies

hypothesis(A) : dyai(Ny) + d2az(1) = 0 mod ms.

O

Notation 3.4. Assume hypothesis (A) for the pair 41,72. Set r1 = ged(mq,a1(N1)), and ry = ged(ma, az(1)).

Let ro = ged(rq, o) and let

€ =dydorg —dy —do + 1 and g3 = d1g1 + dags + €. (3.1)

Note that d17m = dare = di1dar since ged(dy, ds) = 1.

Definition 3.5. If 71,7, is an admissible pair of (generalized) monodromy data, we define v3 = (ms, N3, as)

by ms := lem(mq,ms), N3 := Ny + Ny — 2 and the N3-tuple a3 as

‘ dyaqy (i) for 1 <i < Ny —1,
as(i) :==
dg&g(i*N1+2) fOI‘Nl S’LSN1+N272

O

Lemma 3.6. The triple v3 from Definition 3.5 is a (generalized) monodromy datum. If ¢3 : C' — P! is a cover

with monodromy datum ~3, then the genus of C' is g3 as in (3.1). O

Proof. Most of the properties are immediate from Definition 2.1 and (2.2). The main point to
check is that ged(ms,as(1),...,a3(N3))=1. To see this, note that 1= ged(my,ai(l),...,a1(N7)) =
ged(my,a1(1),...,a1(Ny — 1)) because ). a1 (i) = 0 mod m;. So ged(ms, diai(1),...,dia;(Ny — 1)) = dy. Simi-
larly, ged(ms, a2(2), ..., a2(N2)) = do. Also ged(dy, d2) = 1 since m3 = lem(my, mo). Hence 1 is a Z-linear combi-

nation of d; and dy, and thus a Z-linear combination of m3, dya;(1),...,d1a; (N1 — 1),d2a2(2),...,dsaz(N2). B
The signature type for ¢3 is given in Definition 3.13, see Lemma 3.14.

Remark 3.7. A pair 71,72 of non-admissible monodromy data can be modified slightly to produce a pair v/, v

of admissible generalized monodromy data by marking an extra unramified fiber. Specifically, let

1. v = (m1, Ny + 1,a) with o} (i) = a1(i) for 1 <i < Ny, and a)(N; +1) = 0;

2. 44 = (mg, No + 1,a}) with a4(1) = 0 and a)(i) = ag(i — 1) for 2 < i < Ny + 1.

This does not change the geometry, because Z(v,) = Z(v;) for i = 1,2 by Remark 2.3. O
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3.3 Clutching morphisms for cyclic covers

Notation 3.8. Let 1 = (m1,N1,a1), ¥2 = (ma, Na,a2) be an admissible pair of monodromy data as in
Notation 3.2. Let 3 = (ms, N3, a3) be the monodromy datum from Definition 3.5. For i = 1,2, 3, let Z = Zv(vl)

be as in Definition 2.2. O

Recall that the points of Zﬁf represent fi,,,-covers C' — P! with monodromy datum ~3, where C is smooth.

The next result is well-understood but we could not find it stated in this level of generality in the literature.

Proposition 3.9. If hypothesis (A) (the admissible condition) is satisfied, there is a clutching morphism

K: Zl X ZQ — 23, and the image of x is in the complement of Zg’ in Zg. O

Proof. Fori= 1,2, let ¢; : C; — P! be the ji,,,-cover with N; ordered and labeled ,,,-orbits of points which is
represented by a point of Z The fact that these fi,,,-orbits are labeled comes from Section 2.4 since the moduli
data includes the choice of one ramified point in each ramified fiber. There is a natural inclusion i, C fims-
Let Cf = Ind;;%(C;) be the induced curve and let ¢! : CT — P! be the induced cover from Notation 3.1. It has
inertia type al-L =d;a; = (d;a;(1), ..., d;a;(N;)).

We define the morphism « on the pair (¢1, ¢2). Let Fy (resp. Fy) be the set of points of CI above t1(N7) (resp.
C’;r above t5(1)). Then #Fy = dir1 = diged(mq, a1(Ny)) and #F» = darg = deged(ma, az(1)). By hypothesis (A),
#F) = #F5. The inertia group at each point in F; (resp. F3) is the unique subgroup R of order mg/dir; in
tmg- In addition, the points of Fy (resp. F3) are labeled by the cosets of R in fiy,,. Let C3 be the curve whose
components are the d; components of C’I and the da components of Cg, formed by identifying each point in F}

with the point in F5 labeled by the same coset, in an ordinary double point.

Then Cs is a pm,-cover of a tree P of two projective lines. It has N3 labeled p,,,-orbits with inertia type
a3 and is thus represented by a point of Zg. The admissible condition in Definition 3.3 is exactly the (local)
admissible condition on the covers ¢J{ and (;5; at the ordinary double points formed by identifying each point of
Fy, with a point in Fy. By [10, 2.2], the pi,,,-cover C3 — P is in the boundary of Zg if and only if hypothesis
(A) is satisfied. u

The curve C5 constructed in the proof of Proposition 3.9 is a p,,-cover of type 73 and thus has arithmetic

genus g3 by Lemma 3.6.

Example 3.10. Let m; = 3 and mg = 2. For i = 1,2, let C; — P! be a ju,,,-cover. Assume a1(N;) = az(1) = 0.
The images below show: the induced curves CI and C’g, each with one labeled fiber with ms = 6 points; the

curve C3 constructed in the proof of Proposition 3.9; and the dual graph of C5 with € = 2.
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Proposition 3.11. The curve C3 constructed in the proof of Proposition 3.9 has Newton polygon
v(Cs) = v(C)" ®v(Cy)* @ ord". (3.2)
It has compact type if and only if € = 0. O

The term ord® can be viewed as the defect of v(C3). It measures the number of extra slopes of 0 and 1 that
arise when C3 does not have compact type. By Notation 3.4, ¢ = 0 if and only if rp = 1 and either d; =1 or

dy = 1.

Proof. By [24, Chapter 10, Proposition 1.15(b)], the toric rank of Cj5 is the Euler characteristic of its dual
graph. By construction, the dual graph of Cj is a bipartite graph, with d; (resp. dy) vertices in bijection with the
components of C’lT (resp. C’g ). In Cj, each of the components coming from C’;‘ intersects each of the components
coming from Cg in rg points. After removing dyda(rg — 1) edges from the dual graph, there is a unique edge
between each pair of vertices on opposite sides. After removing another (d; — 1)(dz2 — 1) edges from the dual
graph, it is a tree. Thus the Euler characteristic of the dual graph of Cs is dida(rg — 1) + (d1 — 1)(d2 — 1), which
equals €. In particular, C3 has compact type if and only if € = 0.

By [4, Section 9.2, Example 8], for some torus T of rank e, there is a short exact sequence

0 — T — Jac(C3) — Jac(C1)h @ Jac(Cy)? — 0.

Since dimp, (pp,T) = €, the Newton polygon of Jac(C3) is the amalgamate sum (Section 2.2) of the Newton
polygon of Jac(C)% @ Jac(Cq)® and ord®, which yields (3.2). [ |

3.4 The signature
We find the signature f3 for a cover with monodromy datum ~s.

Definition 3.12. Let d, R € Z>, with dR|m. For n € Z/mZ, we define d44r(n) :=1 if dRn =0 mod m and

dn # 0 mod m, and 04 4r(n) := 0 otherwise. O
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Equivalently, if 7 € T, then g4 4r(7) = 1 if the order of 7 in Z/mZ divides dR but not d, and d44r(7) =0

otherwise. Since dq,4r(7) only depends on the orbit o of 7, we also write d4,4r(0) := dq,qr(7), for any/all 7 € 0.

Definition 3.13. Let § := 6q.ary + 0dy ,dyds — 01,ds, fOr d = d1da. For n € Z/msZ — {0}, let

f3(Tn) = F1(7a) + §5(70) + 6(n). (3.3)

By definition, d(n) = 1 if didaron = 0 mod m3 and din # 0 mod ms and dan # 0 mod mg, and §(n) =0

otherwise.

Lemma 3.14. If ¢3 : C — P! is a cover with (generalized) monodromy datum 73, as defined in Definition 3.5,

then the signature type of Cs is fs. O

Proof. We use (2.3) to compute §3.3! If n = 0 mod my, then fJ{ (1) =0 and f3(7,) = fg(Tn) If n = 0 mod mo,

then f;(’]’n) =0 and f3(7m,) = ﬂ (tn). For n € Z/mg3Z, with n # 0 mod my and n # 0 mod mg, then

—ndia (N- —ndaas(1
(51 7) + 1) + () £ 1) — (o (7) + 1) = (—20nt)y | mndata(l),
ms ms
The right hand side is 0 or 1; it is 0 if and only if nd;a;(N1) = ndsaz(1) = 0 mod ms. |

3.5 Compatibility with Shimura variety setting

Notation 3.15. Fix an admissible pair v; = (m1, N1,a1), 72 = (ma, No,a2) of monodromy data as in
Notation 3.2. Consider the monodromy datum ~3 as in Definition 3.5. In particular, let msz = lem(my,ms)
and let f3 be as in Definition 3.13.

For each i =1,2,3, let Z;, := Z(my, N;,q;), and similarly Z?, Z‘, etc as in Definition 2.2. Let Sh; :=
Sh;(ftm,, fi) denote the Shimura substack of A, as in Section 2.5. Let &; be the universal abelian scheme
over Sh;, B; := B(Sh;) the set of Newton polygons of Sh;, and w; the u-ordinary Newton polygon in B; from
Definition 2.5. O

Via the Torelli map T, the clutching morphism & : Zlc X ZQC — 23 is compatible with a morphism into the
minimal compactification of the Shimura variety
Lo Shl X Sh2 — Sh;

3-1 Alternatively, one may deduce the formula for f3 geometrically since the extra term & records the Z/m3Z-action on the dual
graph of the curve Cs constructed in Proposition 3.9.
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where (X1, Xp) == XM @ X§2.32 If € = 0 then Im(:) lies in Shs and the reader may focus on this case; if € # 0,
then Im(¢) is contained in the boundary Sh} — Shj.

By Proposition 3.11, t(Shy[v1], Sha[vs]) € Shi (v @ 152 @ ord®), which yields:
Lemma 3.16. If v; € B;, then v{" © 1§ ® ord® € Bs. In particular, uz > uf* @ u4> @ ord". O

In Proposition 4.4, we give a necessary and sufficient condition on the pair of signature types (f1, f2) for the

equality uz = uf" @ ud* @ ord® to hold.

4 The Torelli locus and the p-ordinary locus of Shimura varieties

In this section, we prove theorems about the intersection of the open Torelli locus with the p-ordinary Newton
polygon stratum in a PEL-type Shimura variety. The main result, Theorem 4.5, provides a method to leverage
information from smaller dimension to larger dimension. This provides an inductive method to prove that the
open Torelli locus intersects the p-ordinary stratum for certain types of families.

In Section 4.3, we use the main theorem to establish the existence of smooth curves of arbitrarily large
genus with prescribed Newton polygon, see Corollary 4.7 to 4.10. For the base cases of the inductive method,

we can use any instances when the p-ordinary Newton polygon is known to occur (see Proposition 4.6).

Remark 4.1. The method in this section does not give results for every monodromy datum . For example,
it is not known whether the p-ordinary Newton polygon occurs on Z°(y) for all p = 3,5 mod 7 when v =
(7,4,(1,1,2,3)). In this case, f = (2,1,1,1,1,0), dim(Z°(v)) = 1, and dim(S(vy)) = 2. The three Newton polygons
on S(v) are (1/6,5/6), (1/3,2/3)?, and ss®, which all have p-rank 0. None of the degenerations for this family

satisfy hypothesis (B) as defined below. O

4.1 Hypothesis (B)

We fix an admissible pair v = (my,N1,a1), 2 = (mg, Na,as) of (generalized) monodromy data as in
Notation 3.2. We fix a prime p such that p{ms = lem(my, m2) and work over F,. Recall Notation 3.4 and

3.15. So d; = mg/m; and fj =f;om fori=1,2.

Definition 4.2. The pair of monodromy data 71,72 is balanced if, for each orbit 0 € T = Homg(Q[tms], C)

and all w, 7 € 0, the values of the induced signature types satisfy:

hypothesis(B) : if §](w) > f](7) then fi(w) > f5(7); if f}(w) > F3(7) then f}(w) > (7).

O

3-2An abelian variety of dimension less than g3 with p.,-action can be viewed as a point on the boundary of Shj as it comes from
the pure part of some semi-abelian variety of dimension g3 with p,,-action, which is a point on Shs. The image of the Torelli map
in the minimal compactification is determined by the Torelli map on the irreducible components of the curve and forgets the dual
graph structure.
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Remark 4.3. 1. If m; = mo, then hypothesis (B) is symmetric for the pair v, 7s.
2. If 1 = 79, then hypothesis (B) is automatically satisfied.
3. Hypothesis (B) depends (only) on the congruence of p modulo ms. If p = 1 mod mg, then each orbit o in
T has size one and hypothesis (B) is vacuously satisfied.
4. Let 3 be as in Definition 3.5. If the pair ;1,72 satisfies hypotheses (A) and (B), then ~;,73 satisfies
hypothesis (B) for ¢ = 1 and for ¢ = 2.

O

Proposition 4.4 below gives a geometric interpretation of hypothesis (B). From Notation 3.4, recall the

formula € = d1darg — di — do + 1.

Proposition 4.4. Let 71,72 be an admissible pair of monodromy data. Consider the monodromy datum -3
as in Definition 3.5. For 1 < i < 3, let u; be the p-ordinary Newton polygon of the Shimura variety Sh; as
in Definitions 2.5 and 3.15. Then the equality uz = ufl @ug2 @ ord® holds if and only if the pair ~y1,72 is
balanced. O

We postpone the proof of Proposition 4.4 to the independent Section 5.

4.2 A first main result

In this subsection, we assume that the pair 71, - is admissible and balanced, meaning that it satisfies hypotheses
(A) and (B) as in Definitions 3.3 and 4.2. Let 3 = (m3, N3, a3) and f3 be as in Definitions 3.5 and 3.13.

The next result provides a partial positive answer to Conjecture 1.1 when ¢ = 0.

Theorem 4.5. Let 1,72 be an admissible, balanced pair of monodromy data. If Z{[u1] and Z$[us] are both

non-empty, then Z35[us] is non-empty. O

Proof. By Lemma 3.6 and 3.14, the signature for the monodromy datum ~s is given in (3.3). By Proposition 4.4,
hypothesis (B) implies that us = u® & ud? & ord®. From the hypothesis, Z¢[u1] and Z$[uy] are both non-empty.
By Proposition 3.9, the image of & on Z{[uy] X Z[uy] is in Zs. By Proposition 3.11, the Newton polygon of a

curve C5 represented by a point in the image of x is given by v(C3) = ufl ® ugb @ ord®, which is uz. Thus Z3[ug]

is non-empty and applying Lemma 2.7 finishes the proof. [ |

4.3 Infinite clutching for p-ordinary

In this section, we find situations in which Theorem 4.5 can be implemented recursively, infinitely many times,
to verify the existence of smooth curves of arbitrarily large genus with prescribed Newton polygon. The required
input is a family (or a compatible pair of families) of cyclic covers of P! for which the u-ordinary Newton
polygon at a prime p is known to occur (see Proposition 4.6). Section 9 contains concrete implementations of

these results.
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4.3.1 Base cases

We recall instances when the the p-ordinary Newton polygon u is known to occur for the Jacobian of a (smooth)

curve in the family Z.
Proposition 4.6. The p-ordinary Newton polygon stratum Z(m, N, a)[u] is non-empty if either:

1. N=3;or
2. N >4 and (m, N, a) is equivalent to one of the twenty examples in [28, Table 1]; or
3. u is the only Newton polygon in B(Hg,, jtp) of maximum p-rank and either N =4 or p > m(N —3) or

p = +1 mod m.

Proof. 1. When N = 3, then Z is 0-dimensional and thus special as in Definition 2.4.
2. This is [22, Proposition 5.1].

3. For any monodromy datum vy = (m, N, a), define

5(7) = 3 min{j(r*)} = 3 #o- min{f(r) | 7 € o). (@.1)
TET 0O

By [5, Equation (1)], S(v) is an upper bound for the p-rank of curves in Z°(y). By [5, Theorem 6.1,
Propositions 7.7, 7.4, 7.8], if p > m(N —3) or N =4 or p =41 mod m, then there exists a p,-cover
C — P! defined over F,, with monodromy datum +, for which the p-rank of C' equals 3(7y). The p-rank is
the multiplicity of 1 as a slope of the Newton polygon. By the formulas (2.4) and (2.5) for the slopes and

multiplicities of the p-ordinary Newton polygon u = u(7y), the p-rank of u equals (). u

To determine the p-ordinary formula wu, we refer to the Shimura—Taniyama formula [32, Section 5] (see also
[23, Theorem 3.2]) when N = 3 and to [22, Section 6] and Section 10 for the special families of [28].

If p = —1 mod m, then all Newton polygons in B = B(Hg,, it5) have slopes in {0,1/2,1}. For 0 < f < g, the
unique symmetric Newton polygon of height g and p-rank f with slopes in {0,1/2,1} is ordf @ ss9~/. Hence, the
Newton polygons in B are uniquely determined by their p-ranks. For examples of families where the p-ordinary

Newton polygon is not ordinary, see [22, Section 7.2].

4.3.2 Adding slopes 0 and 1

By implementing Theorem 4.5 recursively, we obtain a method to increase the genus and the multiplicity of
the slopes 0 and 1 in the Newton polygon by the same amount. Because of this, in later results we will aim to

minimize the multiplicity of {0,1} in the Newton polygon.

Corollary 4.7. Let v = (m, N,a) be a monodromy datum. Assume that Z°(v)[u] is non-empty. Then for any
n in the semi-group of (Z,+) generated by {m —t: t | m}, there exists a ji,,-cover C — P! over F, where C is

a smooth curve with Newton polygon u & ord”. O
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Proof. For c€Zs; with ¢<m—1, let ¢t=gecd(m,c) and consider the monodromy datum =~ =
(m/t,3,(c/t,(m —c)/t,0)). Note g1(7) =0, and f1(7) =0, for all 7 € T.

Let v = (m, N + 1,a’), where a/(1) = 0, and o’ (i) = a(i — 1), for i = 2,..., N 4+ 1. By construction, the pair
71,72 is admissible and balanced. By Remark 2.3, Z°(y2)[u] is non-empty. Set az = (¢,m — ¢,a(1),...,a(N));
then v5 = (m, N + 2, a3) is the monodromy datum from Definition 3.5 for the pair 1, v2. By (3.1), e = m — t. By
Theorem 4.5, Z$ [ug] is non-empty, where uz = u @ ord™ !, The statement follows by iterating this construction,

letting ¢ vary. n

4.3.3 Single Induction

We consider inductive systems generated by a single monodromy datum ~;. The next result follows from the
observation that if the pair 1,7 is admissible and if Z{[u1] is non-empty, then all hypotheses of Theorem 4.5

are satisfied, and continue to be after iterations.

Corollary 4.8. Assume there exist 1 <14 < j < N such that a(i) + a(j) = 0 mod m.*! Let r = ged(a(i), m). If
Z°(7)[u] is non-empty, then there exists a smooth curve over F, with Newton polygon u™ & ord™ D=1 for

any n € Zx1. O

Proof. After reordering the branch points, we can suppose that i = 1, j = N. We define a sequence of families
Z*™ as follows: let Z*!' = Z; for n > 2, let Z*™ be the family constructed from the monodromy datum produced
by applying Definition 3.5 to the monodromy data of Z*("=1) and Z*'. For n € Z>1, the pair of monodromy
data for Z*™ and Z** satisfies hypotheses (A) and (B). Then u, := u” @ ord ™YY ig the y-ordinary Newton

polygon for Z*™. The statement follows by applying Theorem 4.5 repeatedly. n

The first hypothesis of Corollary 4.8 appears restrictive. However, from any monodromy datum -~ with
Z°(7)[u] non-empty, we can produce a new monodromy datum which satisfies this hypothesis by clutching with
a pmp-cover branched at only two points. As a result, Corollary 4.8 can be generalized to Corollary 4.9 which

holds in much greater generality, at the expense of making the defect slightly larger.

Corollary 4.9. Assume that Z°(v)[u] is non-empty and let ¢ be a positive divisor of m. Then there exists a

smooth curve over [, with Newton polygon u™ & ord™ "7t for any n € L. O

Proof. For t = m, consider the family Z*! with monodromy datum (m,N + 2,a’), where a’(i) = a(i) for
1<i<N,d(N+1)=d(N +2)=0. Then, the statement follows from Corollary 4.8 applied to Z*! for r = m.

For t < m, consider the family Z*! with monodromy datum (m, N + 2,a’), where a’(i) = a(i) for 1 <i < N,
a'(N +1) = tand a’(N + 2) = m — t. The p-ordinary polygon u’ of the associated Shimura variety is u @ ord™ "
By Corollary 4.7, (Z*1)°[u/] is non-empty. Then, the statement follows from Corollary 4.8 applied to Z*! for

r = t, by observing that (v')" & ord™ D=1 — yn gy opqmn—n—t+l, =

41 This condition implies that Z(v) intersects the boundary component Aq of My.
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4.3.4 Double Induction

We next consider inductive systems constructed from a pair of monodromy data satisfying hypotheses (A) and
(B). For clarity, we state Corollary 4.10 under the simplifying assumption m; = ms. Corollary 9.9 contains an

example of this result; it also applies to the pair of monodromy data in the proof of Corollary 9.7.

Corollary 4.10. Let v; and ~, be a pair of monodromy data with m; = mq satisfying hypotheses (A) and
(B). Let r = ged(m,a1(N1)) and recall Notation 3.15. Assume that Z{[ui] and Z$[us] are both non-empty.

m—1)+(r—1)

Then there exists a smooth curve over F, with Newton polygon u!* & u}? @& ord(™+m2=2) for any

nl,nQEZZL O

Proof. We apply Corollary 4.9 to the family Z; (resp. Z2) with ¢ = m. The result is a family Z;"! (resp.
Z3™2) of smooth curves with Newton polygon u* & ord™ ~D(Mm=1 (resp. 472 @ ord ™2~ V(M=) Since Z; and
Zy satisfy hypotheses (A) and (B), due to the construction in the proof of Corollary 4.9, Z;™ and Z,"* also

satisfy hypothesizes (A) and (B). The result then follows from Theorem 4.5. [ |

5 Hypothesis (B) and the p-ordinary Newton polygon

In this section, we prove Proposition 4.4, namely that hypothesis (B) for a pair of signatures (f1, f2) is a necessary
and sufficient condition for the associated Shimura variety Sh; x Shs to intersect the u-ordinary Newton polygon

stratum of Shjz. Recall that o is Frobenius and © is the set of orbits of o in 7.

Notation 5.1. For a g-orbit 0 € O, let p, be the prime of Q[u.,] above p associated with o and let |o] be the
size of the orbit. For each 7 € o0, the order of 7 in Z/mZ is constant and denoted e,; by definition, e, | m. Let

Q[Mm]pu denote the local field which is the completion of K., along the prime p,. O

Let X denote the universal abelian scheme over Sh = Sh(H, §)5!, and X[p™] the associated p-divisible
group scheme. Let 2 € Sh(F,) and consider the abelian variety X := X,. Let v = v(X) be the Newton polygon

of X. We omit the proof of the following.

Lemma 5.2. The Q[uy,]-action of X induces a Q[un,] ®g Qp-action on X[p>]. Thus it induces canonical

decompositions

X[p™] = €D X[p7] and v = P v(0),

0cO 0€O
where, for each 0 € O, the group scheme X[p3°] is a p-divisible Q[pim,], -module and v(o) = v(X[pg°]) is its

Newton polygon. O

For each v € B = B(Hy,, i), we write v(o) for its o-component, hence v = @ . v(0). For all v, € B,
note that v < v/ if and only if v(0) < v/(0), for all 0 € O.

By the next lemma, to prove Proposition 4.4, it suffices to consider each o-orbit 0 in 7 = Z/m3Z separately.

5-1or more generally the universal semi-abelian variety over its toroidal compactification,
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Lemma 5.3. With the same notation and assumption as in Proposition 4.4: the equality uz = uill @ ug2 @ ord®

is equivalent to the system of equalities, for every orbit o in T,
uz(0) = uf* (0) ® us?(0) ® ord®, (5.1)

where €, := |o] if e, is a divisor of dydarg but not a divisor of d; or da, and €, := 0 otherwise. O

Proof. Note that ¢ = dydsrg — di — ds + 1 is equal to the number of 7 € 7 whose order is a divisor of didsrg but
not a divisor of d; or do; recall ged(dy,ds) = 1. Thus € = ZoeD €0, and the statement follows from Lemma 5.2

and the discussion below the lemma. |

Proof of Proposition 4.4. Fix an orbit 0 in 7. For i = 1,2, let uj denote the p-ordinary Newton polygon
T

%

of Sh(ftms, f1). By definition, u! = u®, and u! (0) = ud*(0). That is, the Newton polygons u
T

7

(0) and w;(0) have
the same slopes, with the multiplicity of each slope in u,(0) being d; times its multiplicity in u;(0). Recall the

formulas for the slopes and multiplicities of u(0) from Section 2.6.1.

Reduction to a combinatorial problem. The formulas for the slopes and multiplicities rely only on the
signature type f viewed as a N-valued function on 7, and do not require § to be a signature associated with a
Shimura variety. We regard each signature type f as an N-valued function on o, and denote by u(0) the Newton
polygon defined by the data of slopes in (2.4) and multiplicities in (2.5).5-2 We use subscripts and superscripts
to identify various N-valued functions and their Newton polygons, for example, ﬂ and ui(o).

Proposition 4.4 follows from the claim below taking R = r¢, using Lemma 5.3.

Claim Let R be a positive integer which divides ged(mi,ms). Set § :=6qar + 6a, did, — 01,4y, With d:=
ms/ ged(my, ma) = dids and notations as in Definition 3.12; set €, := |0| if e, divides dR but not dy or da,
and €, := 0 otherwise. Define f := i +f}, + 8. Then the equality

us(0) = ul (0) ® ul(0) & ord® (5.2)

holds if and only if the pair f1,f2 satisfies hypothesis (B).

Reduction of claim to the case d = R =1 We first prove that if j3 = ﬂ + 0 then

us (o) = ul(0) @ ord®. (5.3)

5-2the integer g(o0) will be specified in each part of the proof.
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Note that the function §(7) is constant on o, with value §(0) equal to 1 if e, divides dR but not d; or da,
and to 0 otherwise. In particular, ¢, = Y _ (1), 6(0) = §(0*), and by Remark 2.6, g3(0) = g1 (0) +25(0).

If 6(0) =0, then g5(0) = gI(o), and f3(7) = ﬂ(T) for all 7 € 0. Hence, us(0) = uJ{(o) which agrees with
equality (5.3) for €, = 0.

If 6(0) = 1, then gs(0) = gi(0) + 2, and §3(r) = 1 (7) + 1 for all 7 € 0. In particular, gs(0) > f3() > 1, for all
T € 0. By (2.4) and (2.5), both 0 and 1 occur as slopes of u3(0), with multiplicity respectively p3(0) = p1(0) + |o]
and p3(1) = p1(1) + |o|. Each of the slopes A of u{(o), with A # 0,1, also occurs for uz(0), with multiplicity
p3(A) = p1(A). Thus us(0) = ul(0) ® ord®!, which agrees with equality (5.3) for €, = |o|.

Equality (5.3) is equivalent to the claim for fi(7) = 0, for all 7 € 0. Indeed, hypothesis (B) for the pair
(f1,0) holds trivially, and equality (5.2) for fs = fI + & specializes to (5.3).

By (5.3), we deduce that equality (5.2) holds if and only if it holds in the special case of d = R = 1, that
is if ug(0) = ul (0) + ul(0) when f5 = fI + f. By definition, hypothesis (B) holds for the pair (f],§}) if and only
if it holds for (ﬂ + 6, f;) Hence, without loss of generality, we may assume d = R =1 and f3 = f1 + f2. In this

case, g3(0) = g1(0) 4+ g2(0) by Remark 2.6 and the claim reduces to the following;:

Specialized claim: Assume f3 = §f1 + f2. Then, the equality
ug(0) = u1(0) @ uz(o). (5.4)

holds if and only if the pair f1,f2 satisfies hypothesis (B).

Converse direction: assume hypothesis (B) We shall prove that the equality (5.4) holds, by induction
on the integer s3 + 1, the number of distinct slopes of ugz(0). More precisely, we shall proceed as follows. First,

we shall establish the base case of induction, for s3 = 0. Next, we shall prove the equality of multiplicities

p3(A) = p1(A) + p2(N) (5.5)

for A = A\3(0) the first (smallest) slope of ugz(0). Then, we shall assume s3 > 1 and show that the inductive
hypothesis and equality (5.5) imply equality (5.4), which will complete the argument. In the induction process,

gi(0) remains unchanged.

Base case: Assume s3 = 0. Then, for all 7 € o, either f3(7) = g3(0) or f3(r) = 0. The equalities f3(7) =
fi(7) + f2(7) and gs(o) = g1(0) + g2(0) imply that f3(7) = gs(o) (resp. f3(7) = 0) if and only if fi(7) = g;(0)
(resp. fi(7) = 0) for both ¢ = 1,2. We deduce that both hypothesis (B) and (5.4) hold in this situation.

Equality (5.5) Fori=1,2,3, let E;(max) denote the maximal value of f; on 0. By definition, E;(max) is equal
to either E;(0) or E;(1). In the first case, A;(0) > 0; in the second case, A;(0) = 0. We claim that hypothesis (B)
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implies F5(max) = E;(max) + Fs(max). First, note that hypothesis (B) implies that, for w, 7 € o:

fs(w) = f3(7) if and only if §;(w) = f;(7) for both ¢ =1, 2. (5.6)

Fori=1,2,3,set S; = {7 € 0| f;(7) = E;(max)}. Then, property (5.6) implies that S3 = S; N Sa, which in
turn implies E5(max) = Fj(max) + FE3(max).

We claim that hypothesis (B) implies that S5 = S; for some i € {1,2}. Without loss of generality, assume
that Se properly contains Ss, and let 79 € So — S3. Then 75 ¢ S1. For any w € S1: f1(w) = Eq1(max) > f1 (7).
Thus, by hypothesis (B), f2(w) > f2(79) = E2(max). We deduce that f2(w) = E2(max), hence S; C Ss.

By the formulas for slopes (2.4), the equality S; = S3 implies that A1 (0) = A3(0), and the inclusion S; C S
implies A1(0) < A2(0) (and the equality holds if and only if Sy = Ss).

For ¢ = 1,2, 3, let E;(next) denote the maximal value of f; on 0 — S3. For ¢ = 1,3, E;(next) < E;(max); for
i =2, Fa(next) < Fs(max) and the equality holds if and only if Sy properly contains Ss.

As before by property (5.6), we deduce that hypothesis (B) implies Es(next) = Eq(next) + Ea(next).
By the formulas for multiplicities (2.5), the two identities, Es(max) = Ej(max)+ E3(max) and Es(next) =

E (next) + Ea(next), imply the desired equality (5.5).

Assume s3 > 1 Then the polygon uz(0) has at least two distinct slopes. Our plan is to introduce auxiliary
functions ?1 (T),?g (7) such that polygon us (o) for the function ?3(7) ::?1(7') +¥2 (7) has sg distinct slopes.

For i = 1,2, define }1(7') :=f;(7) for all T ¢ S3 and E(T) := E;(next) for 7 € S3. Note that ?2 = fo unless
So = S3. By definition, for i = 1,2, 3, Ei(max) = E;(next).

For ¢ = 1,3, and for i = 2 if Sy = S3, the polygon wu;(0) shares the same slopes as u;(0) except A;(0) which
no longer occurs. For each t = 2, ..., s;, the slope \;(¢) occurs in u;(0) with multiplicity equal to p;(A;(¢)); while
the slope A;(1) occurs in u;(0) with multiplicity p;(A;(0)) 4+ pi(Ai(1)). For ¢ = 2, if So # S3, then us(0) = uz(0).

Note that w3 has exactly s3 slopes. Hence, by the inductive hypothesis, we deduce that wuz(0) =
u1(0) @ uz(0). This identity, together with (5.5) and the above computation of p;(A;(1)), implies that ug(o) =

u1(0) ® uz(0).

Forward direction: assume (5.4) We shall prove that the pair (f1,f2) satisfies hypothesis (B), arguing by
contradiction. Supposing hypothesis (B) does not hold, we shall define auxiliary functions f,,f, obtained by
precomposing f1,f2 with a permutation of o, such that the Newton polygon %3(0) associated with the function
F3(7) := F1(7) + fo(7) is strictly above uz(0), i.e., W3(0) < uz(0). By the formulas for slopes and multiplicities
(2.4) and (2.5), we see that precomposing a function f with a permutation of o does not change the associated
polygon u(0). Hence, for i = 1,2 we deduce @;(0) = u;(0). On the other hand, by repeating the permutation

process, we eventually end up with a pair (f,,f,) which satisfies hypothesis (B) and by the above argument,
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hypothesis (B) implies that @ (0) ® uz(0) = us(0). Hence uz(0) = ui(0) ® ug(0), which equals uz(o) by (5.2)

and contradicts the conclusion that us(0) < us(0).

Contradict hypothesis (B) Thus, there exist wg, 79 € 0 such that

f2(wo) > f2(mo) and f1(wo) < f1(n0)-

Let y denote the permutation of o which switches wy and 79, and define f, (7) := f1(7(7)) and §,(7) := §2(7). Set
§3(7) == F1(7) + (7). Then, f5(7) = f3(7) except for 7 = wo,70. Note that f5(wo) > fa(wo), f3(n0) < fa(n0), and
f3(wo) > f3(10) (also, f3(m0) < fa(wo))-

We claim that u3(0) < us(0), meaning that u3(0) and ugz(0) share the same endpoints (this follows from
the equality g5(0) = g3(0)), and that @3 (o) lies strictly above us(0).

We first show that possibly after sharing the first several slopes, 3(0) admits a slope which is strictly larger
than the corresponding one in u3(0). Let us consider the value A = f4(wp). Note that A > f5(wo) > 0. If A = §3(7)
for some 7 € 0, say A = E5(t) for some ¢t € {0,...,s3}. Then by the formulas for slopes and multiplicities (2.4)
and (2.5), we deduce that the first ¢ slopes, and their multiplicities, of ug(0) and uz(0) agree, but the (¢ 4+ 1)-st
slope of 3(0) is strictly larger that the (¢ + 1)-st slope of uz(0). If f3(7) # A for all 7 € 0, let t € {0,...,s3} be
such that E5(t) > A > E5(t + 1). Thus the first ¢ slopes of uz(0) and uz(0) agree, and so do the multiplicities
of the first ¢ — 1 slopes, but the multiplicity of the ¢-th slope of us is strictly smaller than that of ug(o0).

By similar arguments for the subsequent slopes and multiplicities, @s(0) never drops strictly below us (o),

but it might (and often does) agree with us (o) for large slopes. u

6 The Torelli locus and the non p-ordinary locus of Shimura varieties

In this section, we study the intersection of the open Torelli locus with Newton polygon strata which are not
p-ordinary in PEL-type Shimura varieties. The main result, Theorem 6.11, provides a method to leverage
information from smaller dimension to larger dimension. This theorem is significantly more difficult than
Theorem 4.5; we add an extra condition to maintain control over the codimensions of the Newton polygon
strata. This is the first systematic result on this topic that we are aware of.

For applications, we find situations where we can apply Theorem 6.11 infinitely many times; from this, we
produce systems of infinitely many PEL-type Shimura varieties for which we can verify that the open Torelli

locus intersects non p-ordinary Newton polygon strata. See Corollary 6.14 to 6.16 and Section 9 for details.

Notation 6.1. Let v = (mq, N1,a1), 72 = (e, Na,a2) be an ordered pair of (generalized) monodromy data
which satisfies hypothesis (A). Assume that mj|mo. Set d :=mz/my and r := ged(mq,a1(N1)). Then, (3.1)

specializes to e = d(r — 1) and g3 = dg; + g2 + €. In particular, e = 0 if and only if r = 1. O

Remark 6.10 explains why we restrict to the case m|mao.
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6.1 Hypothesis (C)

To study the Newton polygons beyond the p-ordinary case, we introduce an extra hypothesis.

Definition 6.2. Given a Newton polygon v, the first slope A14¢(v) is the smallest slope of v and the last slope
Alast (V) is the largest slope of v. If v is symmetric with ¢ distinct slopes, the middle slope Apiq(v) is the L%lj—st

slope of v. ]

Definition 6.3. An ordered pair of monodromy data -1, 72 is controlled if the slopes of the p-ordinary Newton
polygons u; and ug satisfy:

hypothesis (C): for each orbit 0 € O, every slope of u1(0) is in the range [0, 1] \ (A1st(u2(0)), Aiast(u2(0))).
By convention, the condition in the previous line holds for o if w;(0) is empty for either i = 1,2. If a pair of

monodromy data is controlled, then we write u; < (c) u2. O

Remark 6.4. 1. Hypothesis (C) holds for o if either u;(0) has slopes in {0,1} or uz(0) is supersingular. In
particular, if v is ordinary or supersingular, then v < ¢y u.
2. If 0 = 0*, then hypothesis (C) holds for o if and only if A\,;q(u1(0)) < A1se(uz(0)).

3. If uq <<(C) us then uil <<(C) ug for all d € Zzl'

O
Remark 6.5. Let 71,72 be a pair of monodromy data as in Notation 6.1. By Section 2.6.1,
1 1
Atst(uz2(0)) = m#{T €0 |f2(7) = g2(0)} and Aigse(u2(0)) = W#{T €o|f(r) >0}
Hypothesis (C) holds for o if and only if there exists an integer E(o0) € [0, g1(0)] such that
#{r € o|fi(r) > E(0)} <#{r € 0| fa(r) = g2(0)}, and
#{r o |fi(r) = E(0)} = #{r € 0| fa(r) > 0}.
O

The next statement follows from Definition 6.3 and Remark 6.5.

Lemma 6.6. The following are equivalent: u <(¢y u; for each 0 € O, the Newton polygon u(0) has at most two
distinct slopes; and, for each o € O, there exists an integer F(o0) € [0, g(0)] such that f(7) € {0, E(0),g(0)} for

all 7 € o. O

Unlike hypothesis (B), hypothesis (C) does not behave well under induction in general. Lemma 6.7 identifies

two instances when it does. We omit the proof.

Lemma 6.7. 1. If uy <(¢) ug then uf © ord! <(c) ug, for any n,l € Z>;.
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2. If up <) uz and ug < () uz, then uj G uy® @ ord <(¢) ug, for any n,m,l € Z>1.

6.2 The significance of hypothesis (C)

Hypothesis (C) is sufficient to prove the geometric condition on the Newton polygon stratification in

Proposition 6.8 below. We use hypothesis (C) to prove the surjectivity of the map in (6.2).

Proposition 6.8. Let v, = (m1, N1,a1),72 = (ma, Na,a2) be an ordered pair of monodromy data as in
Notation 6.1. Assume the pair satisfies hypotheses (A), (B), and (C). Consider the monodromy datum -3

as in Definition 3.5. Then, for any Newton polygon vs € By,

codim(Shy[vs], Shy) = codim(Shs[ué @ vy @ ord€], Shs). (6.1)

The following lemma is a reformulation of Proposition 4.4.
Lemma 6.9. Hypothesis (B) is equivalent to the assumption that (6.1) holds for vs = us. O

In fact, the proof below shows that if hypothesis (B) does not hold, then (6.1) is false for all v, € Bs.

Proof of Proposition 6.8. For any Kottwitz set B and any v € B, let B(v) ={t € B |t > v}.

We first prove the case when e = 0. Consider the map ¥ : By — Bs, where t +— u{ @ t.

We first note that X is an order-preserving injection.%! Let ¢ € By. For each orbit 0 in O, let q; = ¢;(0) (resp.
qy = ¢}(0)) be the number of distinct slopes of u1(0) in [0, A5 (uz(0)] (resp. [Mast(u2(0)),1]). By hypothesis (C),
for the Newton polygon uf @ ¢, the first ¢; and the last ¢} slopes of u;(0)? @ t(0) are the slopes of u;(0)¢ with
the same multiplicities and the rest are the slopes of t(0) with the same multiplicities. So, if ¢ < ¢’ in By, then

ud ©t <u§ @t in Bz. In particular, the map ¥ induces an injection on the ordered sets
BQ(VQ) *)Bg(uil@l/g), tr—>uil@t (62)

By (2.6), to conclude, it suffices to prove that under hypotheses (B) and (C) the map in (6.2) is
also surjective. By Proposition 4.4, hypothesis (B) implies that uz = uf @ us. Hence, for a Newton polygon
v € Bz(uf @ 1), then uf ® vy < v < uz = uf @ uy. By the paragraph after Lemma 5.2,

Ul(U)d D 1/2(0) § ’U(O) < Ul(O)d D UQ(O).

6-1For convenience, we use hypothesis (C) to construct the order-preserving map (6.2); however, this part can be proved without
using this hypothesis.



Newton polygon stratification of the Torelli locus in PEL-type Shimura varieties 27

By hypothesis (C), the inequalities above imply that v(0) and wu;(0)¢ share the first ¢; and last ¢} slopes,
with the same multiplicities except for the g;-th slope (resp. ¢o-th slope) which may occur with higher multiplicity
in the former if u;(0) has slope g (ua(0)) (resp. Aast(u2(0))). We deduce that each v € Bs(ué @ 1s) is of the
form v = uf @ t for some t € By(v2); thus the map in (6.2) is surjective.

If € # 0, by (2.7), the same argument still applies, with u{ replaced by u{ & ord®. ]
Remark 6.10. Let v be a monodromy datum, of signature f. For d > 1, let 47 be the induced datum, of
signature §7, as in Notation 3.1. The map (:)' : B(f) — B(f!), v ~ v, is injective and order-preserving, but is
not surjective in general. If (-)T is not surjective, then, by (2.6), there exists v € B such that codim(Sh[v], Sh) #
codim(Sh'[v?], Sh). For example, if f = (1), and d = 2, this happens when v = (1/2,1/2). O
6.3 The second main result
The next result also provides a partial positive answer to Conjecture 1.1 when e = 0.

Theorem 6.11. Let 77,72 be an ordered pair of monodromy data as in Notation 6.1. Assume it satisfies
hypotheses (A), (B), and (C). Let e = d(r — 1). Consider the monodromy datum 3 from Definition 3.5. Let

Ve € By. If Z9[u1] and Z3[vs] are non-empty, and Z3[vs] contains an irreducible component I's such that

codim(T'e, Z5) = codim(Sha[vs], Sha), (6.3)

then Z3[ué @ vy @ ord] is non-empty and contains an irreducible component I's such that

codim(T's, Z3) = codim(Shs[u{ & v @ ord®], Shy).

O

Remark 6.12. As seen in Section 6.5, hypothesis (C) is not a necessary condition and it can occasionally be
removed. Specifically, Theorem 6.11 still holds with hypothesis (C) replaced by the weaker (but harder to verify)

assumption that (6.1) holds for the given non p-ordinary Newton polygon ve € Bs. O

Remark 6.13. If Z, is one of Moonen’s special families from [28] and Z3 2] is non-empty, then every irreducible

component of Z35[vs] satisfies the codimension condition (6.3). O

Proof of Theorem 6.11. By Remark 2.3, without loss of generality, we may assume that the inertia types
a1 and az contain no zero entries if r < m; and no zero entries other than a;(N1) = az(1) =0 if » = my. Set

1 := codim(Sha[ra], Sha). Recall the clutching morphism & : 21 X 22 — 23 from Proposition 3.9. Note that

We distinguish three cases: € =0, € # 0 and r < my, and € # 0 and r = m;.
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Assume e =0

Then (6.4) implies that

dim(Zs) = dim(Z) + dim(Z) 4+ 1 = dim(Z1) + dim(Z,) + 1. (6.5)

By Notation 3.4, g3 = dg; + g2 and the formula for f3 is in (3.3). The clutching morphism x is compatible
with the morphism ¢ :Sh; x Shy — Shz given by (X}, Xz) = X @ Xy, Since the map Z» — Z; is finite,
dim(Z;[v;]) = dim(Z;[v;)) for any v; € B;.

By Proposition 6.8, [ = codim(Shs[u? & 1], Shs). Let T'y denote the Zariski closure of the preimage of 'y
in Zg [2]. Apriori, fg may not be irreducible, in which case we replace it by one of its irreducible components.
Then dim(I's) = dim(Is).

Let W := k(Z1[u1], Zo[va]). Since W C Zs[u? & 1], then Zs[ué @ 1] is non-empty. By (6.5), x(Z1, Zs)
has codimension 1 in 23. In addition, W is an open and closed substack of the intersection of K(Zl,ég)
and Zg[U‘f@Vﬂ. By [35, page 614], every irreducible component of W has codimension at most 1 in the
irreducible component of Zs[u? @ 5] which contains it. Note that x(Z;[u1],I'2) is an irreducible component
of W. Let T's be the irreducible component of Zs[u? @ vy] which contains x(Z1[ui],T2). It follows that

codim(k(Z;[u1],T2),T'3) < 1. So

_ dim(Z;) 4 dim(Z,) — 1 if T's = k(Z1[u],T2),
dim(Z;) + dim(Z2) =1+ 1 otherwise.

On the other hand, for all b € Bs, by (2.6) and the de Jong—Oort purity theorem [7, Theorem 4.1], the
codimension of any irreducible component of Z3[b] in Z3 is no greater than length(b) = codim(Shs[b], Shs). For

b= u{ @ vy, by (6.5), this yields

dim(T'3) > dim(Z3) — [ = dim(Z;) + dim(Z,) + 1 — 1.

We deduce that codim(fg, Zg) = [ and that fg strictly contains /@(21 [ul],fg).

Let T's denote the image of fg via the forgetful map 23 — Z3. Define I's = T3 N Z3. To finish the proof,
we only need to show that I'3 is non-empty. Therefore, it suffices to show that fg is not contained in the image
of any other clutching map from Proposition 3.9. Since r = 1, by Proposition 3.11 the points in W represent

curves of compact type, thus fg N Z,f is non-empty.

To finish, we argue by contradiction; suppose fg is contained in the image of any of the other clutching maps
in Z% This would imply that all points of 5(21 [u1], fg) represent pi,,-covers of a curve of genus 0 comprised of

at least 3 projective lines. This is only possible if all points of either Zl [u1] or fg represent fi,,-covers of a curve
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of genus 0 comprised of at least 2 projective lines. This would imply that either Z{[u1] or s C Z3[v2] is empty,

which contradicts the hypotheses of the theorem.

Assume € 0 and r < my

By the same argument as when e =0, there exists an irreducible component f3 of Eg[u’f@yg @ ord®] of
codimension ! such that fg strictly contains /@(21 [ul],fg). To finish the proof, we only need to show that

I'5 is not contained in the boundary of M, . As before, T'5 is not contained in the image of any of the clutching

maps in Zﬁ Suppose that I'; is contained in the image of any of the clutching maps not in Zof By keeping
careful track of the toric rank, one can check that this implies that the points of either 21 [u] or fg represent

tm-covers of curves that are not of compact type. This would imply that either Z{[u1] or Ty C Z3[1] is empty,

which contradicts the hypotheses of the theorem.

Assume € £ 0 and r = my

By Remark 2.3, for i = 1,2, the fibers of the forgetful map f; : Zf — Z7? have pure dimension 1. Let f’g be an
irreducible component of the preimage via fy of I's; it is in Zg [2]. Let f’l be an irreducible component of the
preimage via f1 of Z9[us]; it is in Z9[uy]. Then dim(I'y) = dim(Iy) 4 1. Similarly, dim(I%)) = dim(Z;[us]) + 1.

Let T's be the irreducible component of Zs[ud & vy @ ord€] that contains the image x(I'},T%). As before,
dim(Ts) > dim(x(I,T4)) + 1. The rest of the proof follows in the same way as when r < my, by taking
I3 =T3NZ3, where I's is the image of fg via the forgetful map. To obtain the dimension inequality, note
that

dim(k(I,T%)) = 1 + dim(Z; [u1]) + 1 + dim(T2) = 2 + dim(Z,) + dim(Zs) — I,

where [ = codim(Shz[r2], She). In this case, dim(Z;) = N; — 4 for i = 1,2. By (6.4),

dim(Zs) = (N1 — 4) + (N — 4) + 3 = dim(Z;) + dim(Zs) + 3. (6.6)

On the other hand, by the de Jong—Oort purity theorem [7, Theorem 4.1],

dim(Ts) > dim(Zs) — | = dim(Z;) + dim(Z) + 3 — | = dim(k(T, T4)) + 1. n

6.4 Infinite clutching for non p-ordinary

This section is similar to Section 4.3, in that we find situations in which Theorem 6.11 can be implemented
recursively, infinitely many times, except that we now focus on non p-ordinary Newton polygons.

Let v = (m, N, a) be a monodromy datum and let v € B(7).

Corollary 6.14. (Extension of Corollary 4.7) Assume Z°(v)[v] is non-empty and contains an irreducible

component I' such that codim(I", Z¢(y)) = codim(Sh[v], Sh). Then for any n in the semi-group of (Z, +) generated
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by {m —t: t|m}, there exists a ji,,-cover C — P! over F,, where C is a smooth curve with Newton polygon

v @ ord”. O

Proof. Let v; be as in the proof of Corollary 4.7. Note that wu;(0) is empty for all 0. So the pair ~1, satisfies
hypothesis (C), in addition to (A) and (B). The proof is then the same as for Corollary 4.7, replacing Theorem 4.5

with Theorem 6.11. |

Corollary 6.15. (Extension of Corollaries 4.8 and 4.9) Let € = (n — 1)(r — 1) if there exist 1 < i < j < N such
that a(i) + a(j) =0mod m, and e = (n — 1)(m — 1) otherwise. Assume Z°(7)[v] is non-empty and contains
an irreducible component I' such that codim(I', Z¢(7)) = codim(Sh[v], Sh). Assume u <(cy u. Then for any

n € Z>1, there exists a smooth curve with Newton polygon u"~! & v & ord®. O

Proof. The result is true when n = 1 by hypothesis. For n > 2, we use Corollary 4.8 (resp. Corollary 4.9 with
t =m) to construct a family Z*"~! with Newton polygon u"~! @& ord™ 2= (resp. w1 @ ord P TH ML),
The pair of monodromy data of the families Z*"~! and Z satisfies hypotheses (A) and (B). Since u <(¢) u, by

Lemma 6.7 (1), the pair also satisfies hypothesis (C). Hence we conclude by Theorem 6.11. u

Corollary 6.16. With notation and hypotheses as in Corollary 4.10, assume furthermore that for some
v2 € B(v2), Z5[ve] is non-empty and contains an irreducible component I' such that codim(T",Z;) =
codim(Shy[vs], Shy). Also assume that u; <(c) uz and up <(cy uz. Then there exists a smooth curve with

Newton polygon uf' @ uj? ™ @ vy ® ord(Mitnz=2)(m—1)+(r—1) O

Proof. If no =1, we first apply Corollary 4.9 with ¢t =m to produce a family Z3 with Newton polygon
u @ ord™ VM1 Note that Zs and Z, satisfy hypotheses (A) and (B). Since uy <(c) uz2, by Lemma 6.7 (1),
Z3 and Zs also satisfy hypothesis (C). Applying Theorem 6.11 produces a smooth curve with Newton polygon
U By B ord(™—Dm=1)+(r—1)

For ng > 2, we apply Corollary 4.10 to produce a family Z; with Newton polygon uj' @ ugrl ®
ord(™+72=3)(m=1) Gince 4y < () uz and uy < (cy u2, by Lemma 6.7 (2), Z, and Z, satisfy hypotheses (A), (B),
and (C). Applying Remark 3.7, we produce generalized monodromy data for Z, and Z5 by marking an additional
unramified fiber. In this situation, the toric rank is ¢ = m — 1. Applying Theorem 6.11 to the generalized families

for Z, and Z5 completes the proof. [ |

Corollary 6.16 applies to the pair of monodromy data in the proof of Corollary 9.7.

6.5 An exceptional example

We give an example of a pair of monodromy data, and non p-ordinary Newton polygon v, satisfying hypotheses

(A) and (B), but not (C), for which (6.1) can be verified directly. Furthermore, as the Kottwitz set Bs has size

2, this example also shows that hypothesis (C) is sufficient but not necessary for Proposition 6.8 to hold.
Recall that ss is the Newton polygon (1/2,1/2).
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Proposition 6.17. If p = 7 mod 8 is sufficiently large, then there exists a smooth curve over R, of genus 9 with

Newton polygon ss” @ ord?. O

Proof. Let Zy = Z(8,4,(4,2,5,5)). Then Z5 is the special family M[15] in [28, Table 1], and the associated
Shimura variety Shy has signature type f2 = (1,1,0,0,2,0,1). At any prime p = 7 mod 8, the u-ordinary Newton
polygon is uy = ord? @ ss® and the basic Newton polygon is v = ss® [22, Section 6.2].

Let Zy = Z(4,3,(1,1,2)), which has signature (1,0,0). At any prime p = 7 mod 8, the p-ordinary Newton
polygon is u; = ss [23, Section 4, m = 4]. Then d = 2 and r = 2. By Section 3.1, the induced signature type is
f1 = (1,0,0,0,1,0,0).

The pair of monodromy data for Z; and Z5 satisfies hypothesis (A). Let p = 7 mod 8; then it also satisfies
hypothesis (B). For the orbit o = {1, 7}, by [22, Example 4.5], u1(0) has slopes 1/2 and us(0) has slopes 0 and
1. Thus the pair does not satisfy hypothesis (C).

The image of Zl X Zg under the clutching morphism lies in the family Zg of curves with monodromy datum
(8,5,(2,2,2,5,5)). The Shimura variety Shs has signature type f3 = (2,2,0,0,3,1,1) and its u-ordinary Newton
polygon is uz = u? ® ug ® ord? = ss° @ ord? by Proposition 4.4. By [22, Section 4.3], there is only one element
uz in B(Shs) which is strictly larger than ss” @ ord® = u? @ v @ ord®. From (2.6), we see that the codimension

of Shs[u; @ ve & 0rd2] in Shg is 1. Thus, we conclude by Remark 6.12 and Theorem 6.11. ]

7 Supersingular cases in Moonen’s table

In [28, Theorem 3.6], Moonen proved there are exactly 20 positive-dimensional special families arising from cyclic
covers of PL. In [22, Section 6], we computed all of the Newton polygons v that occur on the corresponding
Shimura varieties using the Kottwitz method, see Section 10. Moreover, in [22, Theorem 1.1], we proved that
the open Torelli locus intersects each non-supersingular (resp. supersingular) Newton polygon stratum (resp. as
long as the family has dimension 1 and p is sufficiently large).

In this section, we extend [22, Theorem 1.1] to include the supersingular Newton polygon strata in the five
remaining cases when the dimension of the family is greater than 1, using results from Section 6. Case (5) is
note-worthy since it was not previously known that there exists a smooth supersingular curve of genus 6 when

p=2,3,4mod 5, see [23, Theorem 1.1] and [22, Theorem 1.1] for related results.

Theorem 7.1. There exists a smooth supersingular curve of genus g defined over E, for all sufficiently large

primes satisfying the given congruence condition in the following families:

1. g = 3, when p = 2 mod 3, in the family MI6];

2. g =3, when p = 3 mod 4, in the family M[3];

3. g =4, when p =2 mod 3, in the family M[10];

4. g =4, when p =5 mod 6, in the family M[14]; and

5. g =6, when p = 2,3,4 mod 5, in the family M[16].
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O

Corollary 7.2. Let v = (m, N,a) denote the monodromy datum for one of Moonen’s special families from [28,
Table 1]. Assume p { m. Let v € v(B(um,f)) be a Newton polygon occurring on Sh(v) as in Section 2.6. Then v
occurs as the Newton polygon of a smooth curve in the family Z°(v), as long as p is sufficiently large when v is

supersingular. O

Proof. The proof is immediate from [22, Theorem 1.1] and Theorem 7.1. u

Proof of Theorem 7.1 in cases (1), (2), (4), and (5). Let v denote the monodromy datum, let Z denote
the special family of curves and let Sh denote the corresponding Shimura variety and suppose that p # 1 mod m.
Then dim(Z) = dim(Sh) = 2, and the basic locus Sh[v] is supersingular with codimension 1 in Sh.

Following [22, Section 5.2], a point of Sh[v] which is not in the image of Z° is the Jacobian of a singular
curve of compact type. This point arises from an admissible clutching of points from two families Z; and Zs.
This yields an admissible degeneration of the inertia type, see [22, Definition 5.4]. A complete list of admissible
degenerations of the inertia type for Moonen’s families can be found in [22, Lemma 6.4]. In each of these cases,
there exists an admissible degeneration such that dim(Z;) = 0 and the p-ordinary Newton polygon u; for Z7 is
supersingular, and mq, = mg (so d = 1).

In the degenerations from [22, Lemma 6.4], one checks using [22, Sections 6.1-6.2] that Z5 is a special family
with dim(Z2) = 1 and that Z has exactly two Newton polygons, the u-ordinary one us and the basic one vy
which is supersingular. By [22, Theorem 1.1], for p sufficiently large, Z5[v»] is non-empty. Since there are exactly
two Newton polygons on Z, we conclude that these are u = u; ® us and v = uy @ v». By Proposition 4.4, the
pair of monodromy data for Z; and Z; satisfies hypothesis (B). The codimension condition in (6.1) is satisfied
since the basic locus has codimension 1 in both Z and Zs. By Remark 6.12 and Theorem 6.11, there exists a

1-dimensional family of smooth curves in Z with the basic Newton polygon v, which is supersingular. u

Proof of Theorem 7.1 in case (3). We use the same notation as in the first 2 paragraphs of the proof of the
other cases. The only difference in case (3) is that dim(Z) = dim(Sh) = 3 and the basic locus is supersingular
with codimension 2 in Sh. In case (3), the only admissible degeneration comes from the pair of monodromy data
M =3,3,(1,1,1)) and 72 = (3,5,(2,1,1,1,1)). The latter of these is the monodromy datum for the special
family M6]. The basic locus Sh[v] has dimension 1. The codimension condition in (6.1) is not satisfied in this
situation: codim(Sha[vs], She) = 1, while codim(Sh[v], Sh) = 2.

For p sufficiently large, we claim that the number of irreducible components of Sh[v] exceeds the number
that arise from the boundary of Z. Let W be a 1-dimensional family of supersingular singular curves in Z \ Z°.
The only way to construct such a family W is to clutch a genus 1 curve with ug-action together with a 1-
dimensional family of supersingular curves in M[6]. In other words, W arises as the image under x of Ty x T5,

for some component 77 of Sh(3,3,(1,1,1)) and some component T5 of the supersingular locus of M][6]. The
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number of choices for 71, for the ps-actions, and for the labelings of the ramification points is a fixed constant
that does not depend on p.

Thus it suffices to compare the number sy;71¢) of irreducible components of the supersingular locus in M[10]
with the number s, of irreducible components 75 of the supersingular locus in M[6] when p = 2 mod 3. The
signature type for M[10] is (1,3). By [22, Theorem 8.1], the number s110] grows with respect to p.

The signature type for M[6] is (1,2). By [22, Remark 8.2], we see that s is the same for all odd
p =2 mod 3. More precisely, note that dim(Shs) = 2dim(Sha(2)) when p = 2 mod 3, that the center of the
associated reductive group is connected, and that the supersingular locus is the basic locus. Thus by [38, Remark
1.1.5 (2)], all odd p = 2 mod 3 satisfy the hypothesis of [38, Theorem 1.1.4 (1), Proposition 7.4.2], which provides
an expression for sysg over Fp in terms of objects independent of p.

Hence there exist irreducible components of Shv] which contain the Jacobian of a smooth curve, for p

sufficiently large. ]

8 Unlikely intersections

In this section, we prove that the non-trivial intersection of the open Torelli locus with the Newton polygon
strata found in most of the results of the paper is unexpected.

Recall that ss denotes the Newton polygon (1/2,1/2).

Definition 8.1. Let v be a symmetric Newton polygon of height 2g, and let A,[v] be its Newton polygon

stratum in the Siegel variety A,. Then v satisfies condition (U) if dim(M,) < codim(A,[v], Ay). O
Definition 8.2. The open Torelli locus has an unlikely intersection with A,4[v] in A, if there exists a smooth

curve of genus g with Newton polygon v, and v satisfies condition (U). O

8.1 The codimension of Newton polygon strata in Siegel varieties

We study the codimension of the Newton strata in Ag. By [29, Theorem 4.1], see also (2.6),

codim(A,[V], Ag) = #Q(v), (8.1)

where Q(v) :=={(z,y) € ZXZ |0 < z,y < g, (z,y) strictly below v}.

Remark 8.3. By (8.1), if v is non-ordinary, then codim(Ay4[v"], Ang) grows quadratically in n. In particular,

if v = ss, then codim(A,[ss"], An) = n(n+1)/2 — [n?/4] > n?/4. O

Proposition 8.4. Let {u,},en be a sequence of symmetric Newton polygons. Let 2g,, be the height of w,,.
Suppose there exists A € QN (0,1) such that the multiplicity of A as a slope of u,, is at least n for each n € N.

Then codim(Ay, [u,], Ag, ) grows at least quadratically in n. O
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Proof. Let v = (A, 1 — ) and let & be the height of v. By hypothesis, u,, = v™ @& v, for some symmetric Newton

dg7ﬁnh

polygon v, for each n € N and g,, > nh. Since v, lies on or above or , then u,, = v™ @ v, lies on or above

n—nh
v™ @ ord9» """, Hence

codim( Ay, [un], Ay, ) > codim(A,, V" & ordg"fnh], Ag).

m

By (8.1), or alternatively Proposition 6.8,
codim(Ag, [v" @ ord? "], A,.) > codim(Aun "], Ann).

Thus codim(Ag, [uy,], Ay, ) > codim (A, [v"], Anr), which is sufficient by Remark 8.3. u

8.2 Verifying condition (U)

Given a sequence {uy }nen of symmetric Newton polygons of increasing height, we state simple criteria to ensure

that all but finitely many of them satisfy condition (U). Let 2g,, be the height of w,,.

Proposition 8.5. Assume that g, grows linearly in n and that there exists A € QN (0,1) such that the
multiplicity of A as a slope of w,, grows linearly in n, for all sufficiently large n € N. Then, for all sufficiently

large n, the Newton polygon w,, satisfies condition (U). O

Proof. By Proposition 8.4, codim(Ag, [u,], A,, ) is quadratic in n while dim(My, ) = 3g, — 3 is linear in n by
hypothesis. Thus dim(M,, ) < codim(Ay, [u,], Ay, ) for n > 0. [

Proposition 8.6. If there exists ¢t € Ry such that the multiplicity of 1/2 as a slope of u, is at least 2tg,,, for

all n € N, then u,, satisfies condition (U) for each n € N such that g, > 12/¢2. O

Proof. By the proof of Proposition 8.4 and Remark 8.3,
codim( Ay, [un], Ag,) > codim(Aﬁgn][ss“g”],A(tgn}) > (tgn)?/4.

So condition (U) for u, is true when (tg,)?/4 > (3¢, — 3) and thus when g,, > 12/t2. u

Proposition 8.7. Let 11,15 be two symmetric Newton polygons, respectively of height 2g > 2, and 2h > 0.

Assume v; is not ordinary. Then

1. for all sufficiently large n € N, the Newton polygon v} @ vs satisfies condition (U);
2. if 1/2 occurs as a slope of v; with multiplicity 20 > 0, then the Newton polygon v} @ vs satisfies condition

(U), for each n > max{15g/62,9v/h/5}.51

8-1This bound is not sharp, but it is written so that the asymptotic dependency on g, 8, h is more clear.
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Proof. 1. Let A € QN (0,1) be a slope of vy, occurring with multiplicity my > 1. Then, for each n € N, the
Newton polygon u, = V] ® v, has height 2g,, = 2(ng + k) and slope A occurring with multiplicity at least
man. Taking u,, = v} ® va, the sequence {u, }nen satisfies the hypotheses of Proposition 8.5. Hence, part
(1) holds.

2. As for Proposition 8.4, codim(A,4[v]], Ang) < codim(Apgn[V] @ 2], Apg+n). Therefore, condition (U)

for v’ @ vy is implied by the inequality

dim(Myg4pn) < codim(Ang[v1], Ang)- (8.2)

Following the proof of Proposition 8.6, if the slope 1/2 occurs in v; with multiplicity 24, then inequality
(8.2) is true if 3(ng +h — 1) < (nd)?/4, which holds for n > N := 6gd=2(1 + (1 + 6%(h — 1)371g~2)/2).
The asserted bound follows by noticing that N < max{6(1 + v/2)g/6%,2v/3(1 + v/2)Vh/5}. u

Remark 8.8. For g > 0, Proposition 8.7 implies that the non-trivial intersections of 7> with A, [v] in Corollaries
4.8, 4.9, and 6.15 (resp. 4.10 and 6.16) are unlikely if the p-ordinary Newton polygon w is not ordinary. (resp.

if either uy or usg is not ordinary). O

Remark 8.9. Consider the following refinement of Definition 8.2: a non-empty substack U of T, N Ag4[v] is an
unlikely intersection if codim(U, M) < codim(A4[v], Ay).

The results in Sections 4.3 and 6.4 yield families Z of cyclic covers of P! such that Z°[v] is non-empty and
has the expected codimension in Z. This produces an unlikely intersection as in Remark 8.9 for g > 0, when

the initial Newton polygon w« is not ordinary. O

9 Applications

We apply the results in Sections 4.3 and 6.4 to construct smooth curves of arbitrarily large genus g with
prescribed Newton polygon v. By Proposition 8.7, when g is sufficiently large, the curves in this section lie in

the unlikely intersection 7> N A,[v].

Notation 9.1. For s,t € N, with s < /2 and ged(s,t) = 1, we write (s/t, (t — s)/t) for the Newton polygon of

height 2t with slopes s/t and (¢t — s)/t, each with multiplicity ¢. O

9.1 Newton polygons with many slopes of 1/2

We obtain examples of smooth curves of arbitrarily large genus ¢ such that the only slopes of the Newton

polygons are 0, %, 1. We focus on examples where the multiplicity of 1/2 is large relative to g.

Corollary 9.2. Let m € Z>1 be odd and h = (m — 1)/2. Let p be a prime, p { 2m, such that the order f of p in
(Z/mZ)* is even and pf/2 = —1 mod m. For n € Zs, there exists a ji,,-cover C — P! defined over F,, where C
is a smooth curve of genus g = h(3n — 2) with Newton polygon v = 55" @ ord?*»=1 . If n > 34/h, then Jac(C)

lies in the unlikely intersection 7> N Ay[v]. O
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Proof. Let C — P! be a p,,-cover with v = (m,3,a) where a = (1,1,m — 2). Without loss of generality, an
equation for C is y™ = 22 — 1. By [39, Theorem 6.1], the Newton polygon of C is ss". The first claim follows
from applying Corollary 4.9 to Z(m, 3, ) with ¢ = m. As in the proof of Proposition 8.6, the second claim follows

from the inequalities:

codim(A,p[ss™], Ann) > (nh)?/4 + (nh)/2 > dim(Ms,p,_on) = 9nh — 6h — 3. n

Remark 9.3. The Newton polygons in Proposition 9.2 are p-ordinary; they do not appear in the literature, but
the result also follows from Proposition 4.6(3) if p = —1 mod m or if p > m (NN — 3) where N is the (increasingly

large) number of branch points. O

We highlight the case m = 3 below. To our knowledge, for any odd prime p, this is the first time that a
sequence of smooth curves has been produced for every g € Z>; such that the multiplicity of the slope 1/2 in

the Newton polygon grows linearly in g.

Corollary 9.4. Let p =2 mod 3 be an odd prime. Let g € Z>,. There exists a smooth curve Cj of genus g
defined over Fp, whose Newton polygon v, only has slopes 0, %, 1 and such that the multiplicity of the slope 1/2
is at least 2|g/3]. If g > 107, the curve C, demonstrates an unlikely intersection of the open Torelli locus with

the Newton polygon stratum Ag[vy] in A,. O

Proof. If g = 3n — 2 for some n, the result is immediate from Proposition 9.2. For g = 3n — 2 + 2¢ with e = 1
(resp. € = 2), we apply Corollary 4.7 with ¢ = 1 (resp. twice) and obtain a smooth curve with Newton polygon

ss™ @ ord?n 2t 2, [ |

Working with Moonen’s families gives examples of families of curves where the multiplicity of the slope 1/2

is particularly high relative to the genus.

Corollary 9.5. Let p=4mod 5. For n € Z>,, there exists a smooth curve of genus g =10n—4 in Z =

Z(5,5n,(2,2,...,2)) over F, with g-ordinary Newton polygon u,, = ss*" @ ord®" 4. O
For n > 7, the curves with Newton polygon u,, from Corollary 9.5 lie in the unlikely intersection 7,” N A [v].

Proof. When p =4 mod 5, M[16] has p-ordinary Newton polygon u; = ord?® @ ss*.91 The claim is immediate

from Corollary 4.9. u
Corollary 9.6. Under the given congruence condition on p, and with p > 0, there exists a smooth curve in
Z = Z(m, N, a) over F,, with Newton polygon v and codim(Z[v], Z) = 1.

9-1The codimension condition in (6.1) does not hold for v = ss®.
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construction (m,N,a) genus | congruence | Newton Polygon v
MI[9]+ M[9] | (6,6,(1,1,4,4,4,4)) 8 2 mod 3 ss* @ ord*
M9+ M[12] | (6,6,(1,1,1,1,4,4)) 9 2 mod 3 ss® @ ord”
M(12] + M[12] | (6,6,(1,1,1,1,1,1)) 10 2 mod 3 ss” @ ord®
M[18] + M[18] | (10,6,(3,3,6,6,6,6)) 16 9 mod 10 5810 @ ord®
M[20] + M[20] | (12,6,(4,4,7,7,7,7)) | 19 | 11 mod 12 ss'2 @ ord”

9.2 Newton polygons with slopes 1/3, 1/4, and beyond

Corollary 9.7. Let n € Z>;. The following Newton polygons occur for Jacobians of smooth curves over Fp

under the given congruence condition on p.

congruence v (p-ordinary) v (non p-ordinary) for p > 0
2,4 mod 7 (1/3,2/3)" @ ord®*~© NA
3,5 mod 7 (1/3,2/3)*" @ ord®"© (1/3,2/3)%"2 @ ss% @ ord®"°

2,5mod 9 | (1/3,2/3)%" @ ss™ @ ord®" % | (1/3,2/3)*" 2 @ ss" 0 @ ord®"®

4,7 mod 9 (1/3,2/3)*" @ ord”"® (1/3,2/3)*"~2 @ ss® @ ord”®

O

We remark that none of the last three lines follows from [5, Theorem 6.1] because there are at least two

Newton polygons in B(im, f) having the maximal p-rank.

Proof. Lines 1, 2, and 3 are obtained from applying both Corollaries 4.9 and 6.15 to the families (7,3, (1,1,5)),
M|[17], and M[19], respectively.

For the last line, let m =9 and p = 4,7 mod 9. There are four orbits 0; = (1,4,7), 02 = (2,5,8), 03 = (3),
and 04 = (6). The p-ordinary Newton polygon for the family M[19] is u = (1/3,2/3)? @ ord, and v = ss® @ ord
also occurs for a smooth curve in the family. By [22, Section 6.2], for each 0 € O, u(0) has at most 2 slopes, hence

hypothesis (C) is satisfied, and we obtain the Newton polygons in line 4 from Corollary 4.9 and 6.15.9-2 u

Corollary 9.8. Let n € Z>;. The following Newton polygons occur for Jacobians of smooth curves over Fp

under the given congruence condition on p.

congruence v (p-ordinary) v (non p-ordinary) for p > 0

2,3 mod 5 (1/4,3/4)™ @ ord*™~* (1/4,3/4)" ' @ ss* @ ord*™ 4

3,7mod 10 | (1/4,3/4)" @ ss?" @ ord” ™ | (1/4,3/4)" ' @ ss?"T* g ord”"?

O

9-2 Alternatively, applying Corollary 4.10 and 6.16 produces the Newton polygons (1/3,2/3)"112n2 @ ord®m1+9m2-14 and
(1/3,2/3)"1+272=2 @ 556 @ ord®n1T9m2713 for ny,ny € Zs .
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Proof. The proof follows from Corollary 4.9 and 6.15 applied to M[11] and M[18]. ]

Corollary 9.9. Let p = 2,3 mod 5. For any ni,ng € Z>1, there exists a smooth curve of genus g = 6n1 + 8ns

defined over F, with Newton polygon (1/4,3/4)"%1 @ ss?m1 @ ord* (" Fn2=1), O

Proof. We apply Corollary 4.10 to Z; = Z(5,3,(2,2,1)) and Zy = M[11]. By [22, Section 6.2] and [23, Section
4], if p= 2,3 mod 5, then u; = ss? and uy = (1/4,3/4). %3 u

Example 9.10. Let m be prime and p have odd order modulo m. The Newton polygon v, for a p,,-cover with
monodromy datum ~ = (m, 3, a) has no slopes of 1/2 by [23, Section 3.2]. Applying Corollary 4.9 to Z = Z¢(v)
with ¢ = m shows that the Newton polygon v,, = v’ ® ord™ V=1 gecurs for a smooth curve over Fp, for any

TLEZZL O

Examples of v and vy can be found in [23, Theorem 5.4]. For example, when m =11, a = (1,1,9)
and p=3,4,5,9mod 11, then 14 = (1/5,4/5). As another example, let m =29, a=(1,1,27), and p=
7,16,20,23, 24,25 mod 29, then vy = (2/7,5/7) & (3/7,4/7), yielding another infinite family that cannot be

studied using [5, Theorem 6.1].

10 Appendix: Newton polygons for Moonen’s families

For convenience, we provide the full list of Newton polygons on Moonen’s special families from [22, Section 6].
These occur for a smooth curve in the family by Corollary 7.2. The label M|r] is from [28, Table 1]. The notation

t means we further assume p>0.

9-3The pair Z; and Z» does not satisfy hypothesis (C) and the codimension condition in (6.1) does not hold inductively.
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Label | m a, f Newton Polygon [congruence on p)
MI1] 2 (1,1,1,1), (1) ord, ss [1 mod 2]
M[2] | 2 (1,1,1,1,1,1), (2) ord?, ord @ ss, ss> [1 mod 2]
M3 | 3 (1,1,2,2), (1,1) ord? [1,2 mod 3], ss? [1 mod 3], ss? [2 mod 3]
M4 | 4 (1,2,2,3), (1,0,1) ord? [1,3 mod 4], ss? [1 mod 4], ss? [3 mod 4]
M[5] 6 | (2,3,3/4), (1,0,0,0,1) ord? [1,5 mod 6], ss? [1 mod 6], ss2 [5 mod G]T
M[6] | 3 (1,1,1,1,2), (2,1) ord® [1 mod 3], ord? & ss [2 mod 3], ord & ss2, (1/3,2/3) [1 mod 3], ss° [2 mod 3]
M7 | 4 (1,1,1,1), ord? [1 mod 4], ord @ ss [3 mod 4]
(2,1,0) ord? @ ss [1 mod 4], ss® [3 mod 4]
M[8] | 4 (1,1,2,2,2), ord® [1 mod 4], ord? @ ss [3 mod 4]
(2,0,1) ord @ ss?, (1/3,2/3) [1 mod 4], ss® [3 mod 4]
M[9] | 6 (1,3,4,4), ord® [1 mod 6], ord? @ ss [5 mod 6]
(1,1,0,0,1) ord @ ss? [1 mod 6], ss* [5 mod 6]
MI[10] | 3 (1,1,1,1,1,1) ord* [1 mod 3], ord? @ ss? [2 mod 3]
(3,1) ord? @ ss? [1 mod 3], (1/4,3/4) [2 mod 3]
ord & (1/3,2/3) [1 mod 3], ss* [2 mod 3]7, (1/4,3/4) [1 mod 3]
M[11] | 5 (1,3,3,3), ord* [1 mod 5], (1/4,3/4) [2,3 mod 5], ord? @ ss? [4 mod 5]
(1,2,0,1) ord? @ ss? [1 mod 5], ss* [2,3,4 mod 5]
M[12] | 6 (1,1,1,3), ord? [1 mod 6], ord @ ss* [5 mod 6]
(2,1,1,0,0) ord® @ ss [1 mod 6], ss* [5 mod 6]
M[13] | 6 (1,1,2,2), ord* [1 mod 6], ord? & ss? [5 mod 6]
(2,1,0,1,0) ord? @ ss? [1 mod 6], ss* [5 mod 6]
M[14] | 6 (2,2,2,3,3), ord* [1 mod 6], ord? @ ss® [5 mod 6]
(2,0,0,1,1) ord? @ ss? [1 mod 6], ss? [5 mod 6]T
ord & (1/3,2/3) [1 mod 6]
MJ15] | 8 (2,4,5,5), ord® [1 mod 8], ord? @ ss [3,7 mod 8], ord® @ ss? [5 mod 8]
(1,1,0,0,2,0,1) ord® @ ss? [1 mod 8], (1/4,3/4) @ ss [3 mod 8], ord @ (1/4,3/4) [5 mod 8], ss® [7 mod 8]
MJ16] | 5 (2,2,2,2,2), ord® [1 mod 5], (1/4,3/4) @ ss? [2,3 mod 5], ord? @ ss* [4 mod 5]
(2,0,3,1) ord? @ ss? [1 mod 5], ss% [2,3,4 mod 5]
ord® @ (1/3,2/3) [1 mod 5]
M7 | 7 (2,4,4,4), ord® [1 mod 7], ord® @ (1/3,2/3) [2,4 mod 7]
(1,2,0,2,0,1) (1/3,2/3)2 [3,5 mod 7], ord? & ss* [6 mod 7]
ord* @ ss? [1 mod 7], (1/6,5/6) [2,4 mod 7], ss® [3,5,6 mod 7]
M][18] | 10 (3,5,6,6), ord® [1 mod 10], (1/4,3/4) & ss? [3,7 mod 10], ord? & ss* [9 mod 10]
(1,1,0,1,0,0,2,0,1) ord* @ ss? [1 mod 10], ss% [3,7,9 mod 10]
M[19] | 9 (3,5,5,5), ord” [1 mod 9], (1/3,2/3)% @ ss [2,5 mod 9]
(1,2,0,2,0,1,0,1) ord ® (1/3,2/3)% [4,7 mod 9], ord? @ ss° [8 mod 9]
ord® & ss? [1 mod 9], ss” [2,5,8 mod 9], ord @ ss5 [4,7 mod 9]
M[20] | 12 (4,6,7,7), ord” [1 mod 12], ord® @ ss* [5 mod 12], ord* @ ss? [7 mod 12], ord® @ ss® [11 mod 12]
(1,1,0,1,0,0, ord® @ ss? [1 mod 12], ord @ (1/4,3/4) @ ss> [5 mod 12]

2,0,1,0,1)

ord? @ ss® [7 mod 12], ss” [11 mod 12]
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