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Abstract: We study the intersection of the Torelli locus with the Newton polygon stratification of the modulo p

reduction of certain PEL-type Shimura varieties. We develop a clutching method to show that the intersection of the

open Torelli locus with some Newton polygon strata is non-empty. This allows us to give a positive answer, under some

compatibility conditions, to a question of Oort about smooth curves in characteristic p whose Newton polygons are an

amalgamate sum. As an application, we produce infinitely many new examples of Newton polygons that occur for

smooth curves that are cyclic covers of the projective line. Most of these arise in inductive systems which demonstrate

unlikely intersections of the open Torelli locus with the Newton polygon stratification in Siegel modular varieties. In

addition, for the twenty special PEL-type Shimura varieties found in Moonen’s work, we prove that all Newton polygon

strata intersect the open Torelli locus (if p >> 0 in the supersingular cases).
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1 Introduction

1.1 Overview

Consider the moduli space Ag of principally polarized abelian varieties of dimension g in characteristic p > 0. It

contains the open Torelli locus T ◦g , which is the image of the moduli space Mg of smooth genus g curves under

the Torelli morphism. The generic point of T ◦g is contained in the ordinary locus of Ag, meaning that the only
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slopes of the Newton polygon of a generic curve of genus g are 0 and 1. This was first proven by Miller for p odd

[26, Proposition 1] using a computation of the Hasse–Witt matrix for hyperelliptic curves and by Koblitz for

all p [16, Theorem 5, page 145] by a deformation theory argument. Faber and Van der Geer [11, Theorem 2.3]

generalized the argument of Koblitz to prove, in particular, that T ◦g intersects the non-ordinary locus of Ag. A

short description of this paper is that we generalize these results for Ag to many Shimura varieties of PEL-type.

More generally, Ag can be stratified by Newton polygon. For a symmetric Newton polygon ν of height 2g,

in most cases it is not known whether the stratum Ag[ν] intersects T ◦g or, equivalently, whether there exists a

smooth curve of genus g in characteristic p whose Jacobian has Newton polygon ν. This question is answered

only when ν is close to ordinary, meaning that the codimension of Ag[ν] in Ag is small.

In this paper, we develop a framework to study Newton polygons of Jacobians of µm-covers of the projective

line P1 for an integer m ≥ 2. This generalizes work of Bouw [5] who studied the p-ranks of Jacobians of µm-

covers. As an application, we find numerous infinite sequences of Newton polygons for Jacobians of smooth

curves which were not previously known to occur. Most of these arise in an unlikely intersection of the open

Torelli locus T ◦g with the Newton polygon strata of Ag in the sense that the codimension of the Newton stratum

in Ag is strictly greater than the dimension of Mg, Definition 8.2.

In essence, our strategy is to replace the system of moduli spaces Ag by inductive systems of PEL-type

Shimura varieties. Each Hurwitz space of µm-covers of P1 determines a unitary Shimura variety Sh associated

with the group algebra of µm, as constructed by Deligne–Mostow [8]. The Torelli morphism maps the Hurwitz

space to the Shimura variety, but the codimension of the image grows quadratically with g.

This allows us to tackle the question of which Newton polygons occur for µm-covers from two sides. First,

the structure of the Shimura variety places restrictions on the Newton polygon. By work of Kottwitz [17, 19],

Wedhorn [36], Viehmann–Wedhorn [34], and Hamacher [14], the Newton polygon stratification of the modulo

p reduction of Sh is well understood in terms of its signature type and the congruence class of p modulo m.

There is a combinatorial description of the most generic Newton polygon u on Sh, which is called the µ-ordinary

Newton polygon Definition 2.5, Section 2.6.1.

Second, using the boundary of the Hurwitz space, we can produce µm-covers of singular curves with

prescribed Newton polygons. Under an admissible condition Definition 3.3, these singular curves can be deformed

to smooth curves which are µm-covers of P1. The main problem is to show that this can be done without

changing the Newton polygon. This problem disappears if the Newton polygon of the singular curve is the µ-

ordinary Newton polygon on Sh. In Theorem 4.5, we show that this happens exactly when a balanced condition

Definition 4.2 is satisfied. In Theorem 6.11, we prove a more powerful result that we can deform to a µm-cover

of smooth curves without changing the Newton polygon under a controlled condition Definition 6.3.

By combining these two perspectives, we prove that the intersection of the Newton polygon stratum Sh[ν]

with the open Torelli locus is non-trivial when ν is close to µ-ordinary, for infinitely many Shimura varieties

Sh of PEL-type, see Sections 4.3 and 6.4. To do this, we find systems of Hurwitz spaces of µm-covers of P1 for
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which the admissible, balanced, and controlled conditions, together with an expected codimension condition on

the Newton polygon strata, can be verified inductively.

The base cases we use involve cyclic covers of P1 branched at 3 points or the 20 special families found by

Moonen [28]. As an application of our method, we also prove that all Newton polygon strata on Moonen’s 20

special families intersect the open Torelli locus (if p >> 0 in the supersingular cases) Corollary 7.2.

1.2 Comparison with other work

In 2005, Oort proposed the following conjecture.

Conjecture 1.1. ([30, Conjecture 8.5.7]) For i = 1, 2, let gi ∈ Z≥1 and let νi be a symmetric Newton polygon

appearing on T ◦gi . Write g = g1 + g2. Let ν be the amalgamate sum of ν1 and ν2 as defined in Section 2.2. Then

ν appears on T ◦g .

Theorems 4.5 and 6.11 show that Oort’s conjecture has an affirmative answer in many cases. Our results

provide the first extensive numerical support for this conjecture. They also provide theoretical support by

verifying that many unlikely intersections of the Torelli locus and the Newton polygon strata occur. However,

these results are not sufficient for us to judge whether Oort’s conjecture is true in general.

The results in Section 4 can be viewed as a generalization of Bouw’s work [5] about the intersection of T ◦g

with the stratum of maximal p-rank in a PEL-type Shimura variety. For most families of µm-covers and most

congruence classes of p modulo m, the maximal p-rank does not determine the Newton polygon.

We use clutching morphisms to study the boundary of Hurwitz spaces. This technique was also used to

study the intersection of T ◦g with the p-rank stratification of Ag in [11, Theorem 2.3]; also [2], [13], [3].

The results in Section 6 generalize Pries’ work [31, Theorem 6.4], which states that if a Newton polygon ν

occurs on Mg with the expected codimension, then the Newton polygon ν ⊕ (0, 1)n occurs on Mg+n with the

expected codimension for n ∈ Z≥1. However, the expected codimension condition is difficult to verify for most

Newton polygons ν.

1.3 Outline of paper and sample result

In Section 2, we review key background about Hurwitz spaces, PEL-type Shimura varieties, and Newton polygon

stratifications. In Section 3, we analyze the image of a clutching morphism κ on a pair of µm-covers of P1.

In Section 4, we study whether the open Torelli locus T ◦g intersects the µ-ordinary Newton polygon stratum

Sh[u], see Definition 2.5, inside the Shimura variety Sh. The first main result Theorem 4.5 provides a method

to leverage information about this question from lower to higher genus. Under a balanced condition on the

signatures Definition 4.2, we verify that the intersection of T ◦g and Sh[u] is non-trivial, for a varying family of

Shimura varieties (Proposition 4.4, which we prove in Section 5).

The most powerful results in the paper are in Section 6, where we study the intersection of the open Torelli

locus T ◦g with the non µ-ordinary Newton polygon strata inside the Shimura variety Sh. Theorem 6.11 also
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provides a method to leverage information from lower to higher genus. Under an additional controlled condition

on the signatures Definition 6.3, we determine the codimension of the Newton polygon strata for a varying

family of Shimura varieties (Proposition 6.8).

In Sections 4.3 and 6.4, we find situations where Theorems 4.5 and 6.11 can be implemented recursively,

infinitely many times, which yields smooth curves with arbitrarily large genera and prescribed Newton polygons

which were not previously known to occur. We do this by constructing suitable infinite clutching systems of

PEL-type Shimura varieties which satisfy the admissible, balanced, (and controlled) conditions at every level.

For example, we prove:

Theorem 1.2 (Special case of Corollary 4.9). Let γ = (m,N, a) be a monodromy datum as in Definition 2.1.

Let p be a prime such that p - m. Let u be the µ-ordinary Newton polygon associated to γ as in Definition 2.5.

Suppose there exists a µm-cover of P1 defined over Fp with monodromy datum γ and Newton polygon u.1.1 Then,

for any n ∈ Z≥1, there exists a smooth curve over Fp with Newton polygon νn = un ⊕ (0, 1)(m−1)(n−1).1.2

For a symmetric Newton polygon ν of height 2g, the open Torelli locus has an unlikely intersection with

the Newton polygon stratum Ag[ν] in Ag if there exists a smooth curve of genus g with Newton polygon ν and

if dim(Mg) < codim(Ag[ν],Ag), Definition 8.2. In Section 8, we study the asymptotic of codim(Ag[ν],Ag) for

the Newton polygons ν appearing in Sections 4.3 and 6.4. We verify that most of our inductive systems produce

unlikely intersections once g is sufficiently large, for most congruence classes of p modulo m.

1.4 Applications

In Corollary 7.2 in Section 7, we prove that all the Newton polygons for the Shimura varieties associated to the

20 special families in [28, Table 1] occur for smooth curves in the family.

In Section 9, we construct explicit infinite sequences of Newton polygons that occur at odd primes

for smooth curves which demonstrate unlikely intersections. For example, by Theorem 1.2 applied to γ =

(m, 3, (1, 1,m− 2)), we prove:

Application 1.3. (Proposition 9.2) Let m ∈ Z>1 be odd and h = (m− 1)/2. Let p be a prime, p - 2m, such that

the order f of p in (Z/mZ)∗ is even and pf/2 ≡ −1 mod m. For n ∈ Z≥1, there exists a µm-cover C → P1 defined

over Fp where C is a smooth curve of genus g = h(3n− 2) with Newton polygon ν′n = (1/2, 1/2)hn ⊕ (0, 1)2h(n−1).

If n ≥ 34/h, then Jac(C) lies in the unlikely intersection T ◦g ∩ Ag[ν].

The slopes of the Newton polygon ν′n in Application 1.3 are 1/2 with multiplicity 2hn and 0 and 1 each

with multiplicity 2h(n− 1). For the reader familiar with the Dieudonné-Manin classification, this means that

the p-divisible group of Jac(C) is isogenous to Ghn1,1 ⊕G
2h(n−1)
0,1 ⊕G2h(n−1)

1,0 .1.3

1.1See Proposition 4.6 for cases when this condition is satisfied.
1.2The slopes of νn are the slopes of u (with multiplicity scaled by n) and 0 and 1 each with multiplicity (m− 1)(n− 1).
1.3In this description, the multiplicity of the slope 1/2 is twice the multiplicity of G1,1 in the p-divisible group.
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In Corollary 9.4, we apply Application 1.3 when m = 3 to verify, for p ≡ 2 mod 3 and g ∈ Z≥1, there exists

a smooth curve of genus g defined over Fp whose Newton polygon only has slopes {0, 1/2, 1} and the multiplicity

of slope 1/2 is at least 2bg/3c. To our knowledge, this is the first time for any odd prime p that a sequence of

smooth curves has been produced for every g ∈ Z≥1 such that the multiplicity of the slope 1/2 in the Newton

polygon grows linearly in g.

2 Notations and Preliminaries

More details on this section can be found in [22, Sections 2,3] and [28, Sections 2,3].

2.1 The group algebra of m-th roots of unity

Let m, d ∈ Z≥1. Let µm := µm(C) denote the group of m-th roots of unity in C. Let Kd be the d-th cyclotomic

field over Q. Let Q[µm] denote the group algebra of µm over Q. Then Q[µm] =
∏
d|mKd. We endow Q[µm] with

the involution ∗ induced by the inverse map on µm, i.e., ζ∗ := ζ−1 for all ζ ∈ µm.

Set T := HomQ(Q[µm],C). If W is a Q[µm]⊗Q C-module, we write W = ⊕τ∈TWτ , where Wτ denotes the

subspace of W on which a⊗ 1 ∈ Q[µm]⊗Q C acts as τ(a). We fix an identification T = Z/mZ by defining, for

all n ∈ Z/mZ,

τn(ζ) := ζn, for all ζ ∈ µm.

Let m ≥ 1. For p - m, we identify T = HomQ(Q[µm],Qun
p ), where Qun

p is the maximal unramified extension

of Qp in an algebraic closure. There is a natural action of the Frobenius σ on T , defined by τ 7→ τσ := σ ◦ τ .

Let O be the set of all σ-orbits o in T .

2.2 Newton polygons

Let X be an abelian scheme defined over the algebraic closure F of Fp. Then there is a finite field F0/Fp,

an abelian scheme X0/F0, and ` ∈ Z≥1, such that X ' X0 ×F0
F and the action of σ` on H1

cris(X0/W (F0)) is

linear; here W (F0) denotes the Witt vector ring of F0. The Newton polygon ν(X) of X is the multi-set of rational

numbers λ such that `λ are the valuations at p of the eigenvalues of σ` acting on H1
cris(X0/W (F0)); the Newton

polygon does not depend on the choice of (F0, X0, `).

The p-rank of X is the multiplicity of the slope 0 in ν(X); it equals dimFp
(Hom(µp, X)).

If ν1 and ν2 are two Newton polygons, the amalgamate sum ν1 ⊕ ν2 is the disjoint union of the multi-sets

ν1 and ν2. We denote by νd the amalgamate sum of d copies of ν.

The Newton polygon ν(X) is typically drawn as a lower convex polygon, with slopes λ occurring with

multiplicity mλ, where mλ denotes the multiplicity of λ in the multi-set. The Newton polygon of a g-dimensional

abelian variety is symmetric, with endpoints (0, 0) and (2g, g), integral break points, and slopes in Q ∩ [0, 1].

For convex polygons, we write ν1 ≥ ν2 if ν1, ν2 share the same endpoints and ν1 lies below ν2.
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We denote by ord the Newton polygon (0, 1) and by ss the Newton polygon (1/2, 1/2). For s, t ∈ Z≥1, with

s ≤ t/2 and gcd(s, t) = 1, we write (s/t, (t− s)/t) for the Newton polygon with slopes s/t and (t− s)/t, each

with multiplicity t.

Suppose Y is a semi-abelian scheme defined over F. Then Y is an extension of an abelian scheme X by a

torus T ; its Newton polygon is defined to be ν(Y ) := ν(X)⊕ ordε, where ε = dim(T ).

2.3 Cyclic covers of the projective line

Definition 2.1. Fix integers m ≥ 2, N ≥ 3 and an N -tuple of integers a = (a(1), . . . , a(N)). Then a is an inertia

type for m and γ = (m,N, a) is a monodromy datum if

1. a(i) 6≡ 0 mod m, for each i = 1, . . . , N ,

2. gcd(m, a(1), . . . , a(N)) = 1,

3.
∑

i a(i) ≡ 0 mod m.

For later applications, we sometimes consider a generalized monodromy datum, in which we allow a(i) ≡

0 mod m. In the case that a(i) = 0, we set gcd(a(i),m) = m.

Two monodromy data (m,N, a) and (m′, N ′, a′) are equivalent if m = m′, N = N ′, and the images of a, a′

in (Z/mZ)N are in the same orbit under (Z/mZ)∗ × SymN .

For fixed m, we work over an irreducible scheme over Z[1/m, ζm]. Let U ⊂ (A1)N be the complement of the

weak diagonal. For each t = (t(1), . . . , t(N)) ∈ U , the equation

ym =

N∏
i=1

(x− t(i))a(i) (2.1)

defines a µm-cover of the projective line. Let C be the smooth projective (relative) curve over U whose fiber at

each point t is the normalization of the curve defined by (2.1). Consider the µm-cover φ : C → P1
U defined by

the function x and the µm-action ι : µm → Aut(C) given by ι(ζ) · (x, y) = (x, ζ · y) for all ζ ∈ µm.

For a closed point t ∈ U , the cover φt : Ct → P1 is a µm-cover, branched at N points t(1), . . . , t(N) in P1,

and with local monodromy a(i) at t(i). By the hypotheses on the monodromy datum, Ct is a geometrically

irreducible curve of genus g, where

g = g(m,N, a) = 1 +
1

2

(
(N − 2)m−

N∑
i=1

gcd(a(i),m)
)
. (2.2)
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Take W = H0(Ct,Ω
1) and, under the identification T = Z/mZ, let f(τn) = dim(Wτn). The signature type

of φ is defined as f = (f(τ1), . . . , f(τm−1)). By [28, Lemma 2.7, §3.2],

f(τn) =


−1 +

∑N
i=1〈

−na(i)
m 〉 if n 6≡ 0 mod m

0 if n ≡ 0 mod m.

(2.3)

where, for any x ∈ R, 〈x〉 denotes the fractional part of x. The signature type of φ does not depend on t; it

determines and is uniquely determined by the inertia type, up to the action of SymN . The action of (Z/mZ)∗

permutes the values f(τn).

2.4 Hurwitz spaces

Let Mg be the moduli space of smooth curves of genus g in characteristic p. Its Deligne–Mumford

compactification Mg is the moduli space of stable curves of genus g. For a Newton polygon ν, let Mg[ν]

be the subspace whose points represent objects with Newton polygon ν. We use analogous notation for other

moduli spaces.

We refer to [10] and [1, Section 2.2] for a more complete description of Hurwitz spaces for cyclic covers of

P1.2.1 Consider the moduli functor Mµm
(resp. M̃µm

) on the category of schemes over Z[1/m, ζm]; its points

represent admissible stable µm-covers (C/U, ι) of a genus 0 curve (resp. together with an ordering of the smooth

branch points and the choice of one ramified point above each of these). We use a superscript ◦ to denote the

subspace of points for which C is smooth. By [10, Theorem 3.2], see also [1, Lemma 2.2], Mµm
(resp. M̃µm

) is

a smooth proper Deligne–Mumford stack and M◦µm
(resp. M̃◦µm

) is open and dense within it.

For each irreducible component of M̃µm , the monodromy datum γ = (m,N, a) of the µm-cover (C/U, ι)

is constant. Conversely, the substack M̃γ
µm

of points representing µm-covers with monodromy datum γ is

irreducible, [12, Corollary 7.5], [37, Corollary 4.2.3].

On Mµm
, there is no ordering of the ramification points; so only the unordered multi-set a =

{a(1), . . . , a(N)} is well-defined. The components of Mµm are indexed by γ = (m,N, a). By [1, Lemma 2.4],

the forgetful morphism M̃γ
µm
→Mγ

µm
is étale and Galois.

Definition 2.2. 2.2 If γ = (m,N, a) is a monodromy datum, let Z̃(γ) = M̃γ
µm

and let Z(γ) be the reduced

image of M̃γ
µm

in Mg. We denote the subspace representing objects where C/U is smooth (resp. of compact

type2.3, resp. stable) by

Z◦(γ) ⊂ Zc(γ) ⊂ Z(γ) and Z̃◦(γ) ⊂ Z̃c(γ) ⊂ Z̃(γ).

2.1The results we use from [1, Section 2.2] are true both when m is prime and when m is composite.
2.2This definition is slightly different from the one in our previous papers [23], [22].
2.3A stable curve has compact type if its dual graph is a tree. The Jacobian of a stable curve C is a semi-abelian variety; also C has
compact type if and only if Jac(C) is an abelian variety.
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By definition, Z(γ) is a reduced irreducible proper substack of Mg. It depends uniquely on the equivalence

class of γ. The forgetful morphism Z̃(γ)→ Z(γ) is finite and hence it preserves the dimension of any substack.

Remark 2.3. Let γ′ = (m,N ′, a′) be a generalized monodromy datum. Assume that a′(N ′) ≡ 0 mod m and

a′(i) 6≡ 0 mod m for 1 ≤ i < N ′. Consider the monodromy datum γ = (m,N ′ − 1, a), where a(i) = a′(i) for

1 ≤ i ≤ N ′ − 1. Then Z(γ′) = Z(γ) and Z̃(γ′) = Z̃(γ)1, where the subscript 1 indicates that the data includes

one marked point on the curve. The fibers of the morphism Z̃◦(γ′)→ Z◦(γ′) are of pure dimension 1.

2.5 Shimura varieties associated to monodromy data

Consider V := Q2g endowed with the standard symplectic form Ψ : V × V → Q and G := GSp(V,Ψ), the group

of symplectic similitudes. Let (GQ, h) be the Siegel Shimura datum.

Fix x ∈ Zc(γ)(C) and let (Jx, θ) denote the Jacobian of the curve represented by x together with its

principal polarization θ. Choose a symplectic similitude

α : (H1(Jx,Z), ψθ)→ (V,Ψ)

where ψθ denotes the Riemannian form on H1(Jx,Q) corresponding to θ. Via α, the Q[µm]-action on Jx

induces a Q[µm]-module structure on V , and the Hodge decomposition of H1(Jx,C) induces a Q[µm]⊗Q C-linear

decomposition VC = V + ⊕ V −.

We recall the PEL-type Shimura stack Sh(µm, f) given in [8]. The Shimura datum of Sh(µm, f) given by

(H, hf) is defined as

H := GLQ[µm](V ) ∩GSp(V,Ψ),

and hf the H-orbit in {h ∈ h | h factors through H} determined by the isomorphism class of the Q[µm]⊗Q C-

module V +, i.e., by the integers f(τ) := dimC(V +
τ ), for all τ ∈ T . Under the identification T = Z/mZ, the

formula for f(τn) is that given in (2.3).

For a Shimura variety Sh := Sh(H, hf) of PEL type, we use Sh∗ to denote the Baily-Borel (i.e., minimal)

compactification and Sh to denote a toroidal compactification (see [20]).

The Torelli morphism T :Mc
g → Ag takes a curve of compact type to its Jacobian.

Definition 2.4. We say that Zc(γ) is special if T (Zc(γ)) is open and closed in the PEL-type Shimura stack

Sh(µm, f) given in [8] (see [22, Section 3.3] for details).

If N = 3, then T (Zc(γ)) is a point of Ag representing an abelian variety with complex multiplication and is

thus special, [23, Lemma 3.1]. By [28, Theorem 3.6], if N ≥ 4, then Zc(γ) is special if and only if γ is equivalent

to one of twenty examples in [28, Table 1].
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2.6 The Kottwitz set and the µ-ordinary Newton polygon

Let p - m be a rational prime. Then the Shimura datum (H, hf) is unramified at p. We write HQp
for the fiber

of H at p, and µh for the conjugacy class of p-adic cocharacters µh associated with h ∈ hf.

Following [17]-[19], we denote by B(HQp
, µh) the partially ordered set of µ-admissible HQp

-isocrystal

structures on VQp
. By [34, Theorem 1.6] (see also [36]), B(HQp

, µh) can be canonically identified with the set of

Newton polygons appearing on Sh(H, h).2.4 We sometimes write Sh := Sh(H, h) and B = B(Sh) := B(HQp
, µh).

Definition 2.5. The µ-ordinary Newton polygon u := uµ−ord is the unique maximal element (lowest Newton

polygon) of B(HQp
, µh).

An explicit formula for u is given below; (see also [22, Section 4.1-4.2]).

2.6.1 Formula for slopes and multiplicities

Let f be a signature type. Fix a σ-orbit o in T as defined in Section 2.1. We recall the formulas from [28, Section

1.2.5] for the slopes and multiplicities of the o-component u(o) of the µ-ordinary Newton polygon in terms of f,

following the notation in [9, Section 2.8], [22, Section 4.2].

With some abuse of notation, we replace T by T − {τ0} and the set of σ-orbits O by O− {{τ0}} throughout

the paper. Let g(τ) := dimC(Vτ ). As the integer g(τ) depends only on the order of τ in the additive group Z/mZ,

and thus only on the orbit o of τ , we sometimes write g(o) = g(τ), for any/all τ ∈ o.

Remark 2.6. For all τ ∈ T , dimC(V +
τ∗) = dimC(V −τ ), and thus f(τ) + f(τ∗) = g(τ).

Let s = s(o) be the number of distinct values of {f(τ) | τ ∈ o} in the range [1, g(o)− 1]. We write these

distinct values as

g(o) > E(1) > E(2) > · · · > E(s) > 0.

Let E(0) := g(o) and E(s+ 1) := 0. Then u(o) has exactly s+ 1 distinct slopes, denoted by 0 ≤ λ(0) < λ(1) <

· · · < λ(s) ≤ 1. For 0 ≤ t ≤ s, the (t+ 1)-st slope is

λ(t) :=
1

|o|
#{τ | fi(τ) ≥ E(t)}. (2.4)

The slope λ(t) occurs in u(o) with multiplicity

ρ(λ(t)) := |o|(E(t)− E(t+ 1)). (2.5)

2.4More precisely, following [22, §4.3], a Newton polygon appearing on Sh(H, h) is a set {ν(o)}o∈O, where each ν(o) is a multi-set of
slopes. On the other hand, following [34, §8.2], a Newton polygon attached to an element in B(HQp , µh) is its image under the Newton

map ν : B(HQp , µh)→ (X∗(T )⊗Q)Γ
dom. Since we work with PEL-type Shimura varieties of types A and C, these two notions of

Newton polygon coincide. Indeed, up to center (note that the center does not affect the Newton polygon), HQp =
∏

o∈OHo, where
Ho is the restriction of scalars of a unitary group, or GLn, or GSpn. For such groups, one can check directly that these two notions
of Newton polygons are equivalent. Moreover, B(HQp , µh) can be identified with its image under ν due to [34, (8.6)] and the fact

that an element in B(HQp ) (notation as in loc. cit. ) is determined by its image under the Newton map ν and the Kottwitz map κ.
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2.7 Geometry of the Newton polygon strata on Sh

For b ∈ B, let Sh[b] := Sh(H, h)[b] denote the Newton polygon stratum for b in Sh. In other words, Sh[b] is

the locally closed substack of Sh parametrizing abelian schemes with Newton polygon b. By Hamacher [14,

Theorem 1.1, Corollary 3.12], based on the work of Chai [6], Mantovan [25], and Viehmann [33], and Kottwitz

[18, Section 8],2.5 on each irreducible component S of Sh, the substack S[b] is non-empty and equidimensional

and

codim(S[b], Sh) = length(b), (2.6)

where length(b) = max{n | there exists a chain b = ν0 < ν1 < · · · < νn = u, νi ∈ B}.

The Newton stratification extends to the toroidal and minimal compactifications Sh, Sh∗. In [21, §3.3], the

authors studied the Newton stratification on compactifications of PEL-type Shimura varieties at good primes.

They proved in this case that all the Newton strata are so called well-positioned subschemes [21, Proposition

3.3.9]. In particular, by [21, Definition 2.2.1, Theorem 2.3.2], the set of Newton polygons on (each irreducible

component of) Sh is the same as that on Sh and, for any b ∈ B,

codim(Sh[b], Sh) = codim(Sh[b], Sh). (2.7)

By the next remark, there exists a µm-cover of smooth curves having monodromy datum γ and µ-ordinary

Newton polygon u if there exists such a cover of stable curves.

Lemma 2.7. The following are equivalent: Z◦(γ)[u] is non-empty; Z◦(γ)[u] is open and dense in Zc(γ); and

Zc(γ)[u] is non-empty.

Proof . This is clear because the Newton polygon is lower semi-continuous, Zc(γ) is irreducible, and Z◦(γ) is

open and dense in Zc(γ).

Remark 2.8. The Ekedahl–Oort type is also determined for many of the smooth curves in this paper. The

reason is that the µ-ordinary Newton polygon stratum in these PEL-type Shimura varieties coincides with the

unique open Ekedahl–Oort stratum. Hence one may compute the Ekedahl–Oort type of these smooth curves

using [27, Section 1.2.3].

2.5Hamacher proved that Sh[b] is non-empty and equidimensional of expected dimension. Since Hecke translations preserve the
Newton polygon strata and act transitively on the irreducible components of Sh, we deduce the same result for S[b]. See [18,
Section 8] for a more detailed discussion.
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3 Clutching morphisms

3.1 Background

We study clutching morphisms, generalized to the context of curves that are µm-covers of P1. The clutching

morphisms are the closed immersions [15, 3.9], for 1 ≤ i ≤ g, as described below:

κi,g−i :Mi;1 ×Mg−i;1 →Mg and λ :Mg−1;2 →Mg.

Informally speaking, the morphism κi,g−i takes a curve of genus i with a marked point and a curve of

genus g − i with a marked point and produces a singular curve by identifying the marked points in an ordinary

double point. By definition, the image of κi,g−i is the component ∆i of the boundary of Mg, whose generic

point represents a stable curve that has two components, of genus i and g − i, intersecting in one point, which

is an ordinary double point.

In our context, we sometimes need to clutch together two curves at more than one point. By construction,

the dual graph of the resulting singular curve contains a cycle. Recall that a stable curve has compact type if its

dual graph is a tree. By definition, ∆0 is the component of the boundary of Mg whose points represent stable

curves that do not have compact type. Informally speaking, the morphism λ takes a curve of genus g − 1 with

two marked points and produces a singular curve by identifying the marked points in an ordinary double point.

The image of λ is the component ∆0.

In this paper, we describe a clutching morphism, denoted κ, which shares attributes of both κi,g−i and λ.

The input for κ is a pair of cyclic covers of P1 and the output is a singular curve which is a cover of a tree of

two projective lines. To provide greater flexibility, we include cases when the covers have different degrees and

when the two covers are clutched together at several points. As a result, a curve in the image of κ is contained

in ∆i for some 1 ≤ i ≤ g and also may be contained in ∆0.

Notation 3.1. Let γ = (m,N, a) be a monodromy datum. For an integer d ≥ 1, consider the induced datum

γ†d = (dm,N, da), which we sometimes denote γ†.

If d > 1, then γ†d is not a monodromy datum because it does not satisfy the gcd condition; this does not

cause any difficulties. Suppose φ : C → P1 is a µm-cover with monodromy datum γ. Consider the induced curve

Inddmm C, which consists of d copies of C, indexed by the cosets of µm ⊂ µdm. From the induced action of µdm

on Inddmm C, there is a µdm-cover Inddmm (φ) : Inddmm C → P1; we say that it has induced datum γ†d . The signature

type of Inddmm (φ) is f†d = f ◦ πd, where πd : Z/dmZ→ Z/mZ denotes the natural projection. By (2.4) and (2.5),

the µ-ordinary polygon of Sh(µdm, f†d) is u†d = ud.

3.2 Numerical data and hypothesis (A)

Notation 3.2. Fix integers m1,m2 ≥ 2, N1, N2 ≥ 3. Let m3 = lcm(m1,m2). For i = 1, 2: let di = m3/mi;

let ai = (ai(1), . . . , ai(Ni)) be such that γi = (mi, Ni, ai) is a (generalized) monodromy datum; and let gi =
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g(mi, Ni, ai) as in (2.2).

Definition 3.3. A pair of monodromy data γ1 = (m1, N1, a1), γ2 = (m2, N2, a2) as in Notation 3.2 is admissible

if it satisfies

hypothesis(A) : d1a1(N1) + d2a2(1) ≡ 0 mod m3.

Notation 3.4. Assume hypothesis (A) for the pair γ1, γ2. Set r1 = gcd(m1, a1(N1)), and r2 = gcd(m2, a2(1)).

Let r0 = gcd(r1, r2) and let

ε = d1d2r0 − d1 − d2 + 1 and g3 = d1g1 + d2g2 + ε. (3.1)

Note that d1r1 = d2r2 = d1d2r0 since gcd(d1, d2) = 1.

Definition 3.5. If γ1, γ2 is an admissible pair of (generalized) monodromy data, we define γ3 = (m3, N3, a3)

by m3 := lcm(m1,m2), N3 := N1 +N2 − 2 and the N3-tuple a3 as

a3(i) :=


d1a1(i) for 1 ≤ i ≤ N1 − 1,

d2a2(i−N1 + 2) for N1 ≤ i ≤ N1 +N2 − 2.

Lemma 3.6. The triple γ3 from Definition 3.5 is a (generalized) monodromy datum. If φ3 : C → P1 is a cover

with monodromy datum γ3, then the genus of C is g3 as in (3.1).

Proof . Most of the properties are immediate from Definition 2.1 and (2.2). The main point to

check is that gcd(m3, a3(1), . . . , a3(N3)) = 1. To see this, note that 1 = gcd(m1, a1(1), . . . , a1(N1)) =

gcd(m1, a1(1), . . . , a1(N1 − 1)) because
∑

i a1(i) ≡ 0 mod m1. So gcd(m3, d1a1(1), . . . , d1a1(N1 − 1)) = d1. Simi-

larly, gcd(m3, a2(2), . . . , a2(N2)) = d2. Also gcd(d1, d2) = 1 since m3 = lcm(m1,m2). Hence 1 is a Z-linear combi-

nation of d1 and d2, and thus a Z-linear combination of m3, d1a1(1), . . . , d1a1(N1 − 1), d2a2(2), . . . , d2a2(N2).

The signature type for φ3 is given in Definition 3.13, see Lemma 3.14.

Remark 3.7. A pair γ1, γ2 of non-admissible monodromy data can be modified slightly to produce a pair γ′1, γ
′
2

of admissible generalized monodromy data by marking an extra unramified fiber. Specifically, let

1. γ′1 = (m1, N1 + 1, a′1) with a′1(i) = a1(i) for 1 ≤ i ≤ N1, and a′1(N1 + 1) = 0;

2. γ′2 = (m2, N2 + 1, a′2) with a′2(1) = 0 and a′2(i) = a2(i− 1) for 2 ≤ i ≤ N2 + 1.

This does not change the geometry, because Z(γ′i) = Z(γi) for i = 1, 2 by Remark 2.3.
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3.3 Clutching morphisms for cyclic covers

Notation 3.8. Let γ1 = (m1, N1, a1), γ2 = (m2, N2, a2) be an admissible pair of monodromy data as in

Notation 3.2. Let γ3 = (m3, N3, a3) be the monodromy datum from Definition 3.5. For i = 1, 2, 3, let Z̃i = Z̃(γi)

be as in Definition 2.2.

Recall that the points of Z̃◦3 represent µm3 -covers C → P1 with monodromy datum γ3, where C is smooth.

The next result is well-understood but we could not find it stated in this level of generality in the literature.

Proposition 3.9. If hypothesis (A) (the admissible condition) is satisfied, there is a clutching morphism

κ : Z̃1 × Z̃2 → Z̃3, and the image of κ is in the complement of Z̃◦3 in Z̃3.

Proof . For i = 1, 2, let φi : Ci → P1 be the µmi
-cover with Ni ordered and labeled µmi

-orbits of points which is

represented by a point of Z̃i. The fact that these µmi -orbits are labeled comes from Section 2.4 since the moduli

data includes the choice of one ramified point in each ramified fiber. There is a natural inclusion µmi
⊂ µm3

.

Let C†i = Indm3
mi

(Ci) be the induced curve and let φ†i : C†i → P1 be the induced cover from Notation 3.1. It has

inertia type a†i = diai = (diai(1), . . . , diai(Ni)).

We define the morphism κ on the pair (φ1, φ2). Let F1 (resp. F2) be the set of points of C†1 above t1(N1) (resp.

C†2 above t2(1)). Then #F1 = d1r1 = d1gcd(m1, a1(N1)) and #F2 = d2r2 = d2gcd(m2, a2(1)). By hypothesis (A),

#F1 = #F2. The inertia group at each point in F1 (resp. F2) is the unique subgroup R of order m3/d1r1 in

µm3
. In addition, the points of F1 (resp. F2) are labeled by the cosets of R in µm3

. Let C3 be the curve whose

components are the d1 components of C†1 and the d2 components of C†2 , formed by identifying each point in F1

with the point in F2 labeled by the same coset, in an ordinary double point.

Then C3 is a µm3
-cover of a tree P of two projective lines. It has N3 labeled µm3

-orbits with inertia type

a3 and is thus represented by a point of Z̃3. The admissible condition in Definition 3.3 is exactly the (local)

admissible condition on the covers φ†1 and φ†2 at the ordinary double points formed by identifying each point of

F1 with a point in F2. By [10, 2.2], the µm3
-cover C3 → P is in the boundary of Z̃◦3 if and only if hypothesis

(A) is satisfied.

The curve C3 constructed in the proof of Proposition 3.9 is a µm3
-cover of type γ3 and thus has arithmetic

genus g3 by Lemma 3.6.

Example 3.10. Let m1 = 3 and m2 = 2. For i = 1, 2, let Ci → P1 be a µmi
-cover. Assume a1(N1) = a2(1) = 0.

The images below show: the induced curves C†1 and C†2 , each with one labeled fiber with m3 = 6 points; the

curve C3 constructed in the proof of Proposition 3.9; and the dual graph of C3 with ε = 2.
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induced curves clutched curve dual graph

Proposition 3.11. The curve C3 constructed in the proof of Proposition 3.9 has Newton polygon

ν(C3) = ν(C1)d1 ⊕ ν(C2)d2 ⊕ ordε. (3.2)

It has compact type if and only if ε = 0.

The term ordε can be viewed as the defect of ν(C3). It measures the number of extra slopes of 0 and 1 that

arise when C3 does not have compact type. By Notation 3.4, ε = 0 if and only if r0 = 1 and either d1 = 1 or

d2 = 1.

Proof . By [24, Chapter 10, Proposition 1.15(b)], the toric rank of C3 is the Euler characteristic of its dual

graph. By construction, the dual graph of C3 is a bipartite graph, with d1 (resp. d2) vertices in bijection with the

components of C†1 (resp. C†2). In C3, each of the components coming from C†1 intersects each of the components

coming from C†2 in r0 points. After removing d1d2(r0 − 1) edges from the dual graph, there is a unique edge

between each pair of vertices on opposite sides. After removing another (d1 − 1)(d2 − 1) edges from the dual

graph, it is a tree. Thus the Euler characteristic of the dual graph of C3 is d1d2(r0 − 1) + (d1 − 1)(d2 − 1), which

equals ε. In particular, C3 has compact type if and only if ε = 0.

By [4, Section 9.2, Example 8], for some torus T of rank ε, there is a short exact sequence

0→ T → Jac(C3)→ Jac(C1)d1 ⊕ Jac(C2)d2 → 0.

Since dimFp
(µp, T ) = ε, the Newton polygon of Jac(C3) is the amalgamate sum (Section 2.2) of the Newton

polygon of Jac(C1)d1 ⊕ Jac(C2)d2 and ordε, which yields (3.2).

3.4 The signature

We find the signature f3 for a cover with monodromy datum γ3.

Definition 3.12. Let d,R ∈ Z≥1 with dR|m. For n ∈ Z/mZ, we define δd,dR(n) := 1 if dRn ≡ 0 mod m and

dn 6≡ 0 mod m, and δd,dR(n) := 0 otherwise.
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Equivalently, if τ ∈ T , then δd,dR(τ) = 1 if the order of τ in Z/mZ divides dR but not d, and δd,dR(τ) = 0

otherwise. Since δd,dR(τ) only depends on the orbit o of τ , we also write δd,dR(o) := δd,dR(τ), for any/all τ ∈ o.

Definition 3.13. Let δ := δd,dr0 + δd1,d1d2 − δ1,d2 , for d = d1d2. For n ∈ Z/m3Z− {0}, let

f3(τn) = f†1(τn) + f†2(τn) + δ(n). (3.3)

By definition, δ(n) = 1 if d1d2r0n ≡ 0 mod m3 and d1n 6≡ 0 mod m3 and d2n 6≡ 0 mod m3, and δ(n) = 0

otherwise.

Lemma 3.14. If φ3 : C → P1 is a cover with (generalized) monodromy datum γ3, as defined in Definition 3.5,

then the signature type of C3 is f3.

Proof . We use (2.3) to compute f3.3.1 If n ≡ 0 mod m1, then f†1(τn) = 0 and f3(τn) = f†2(τn). If n ≡ 0 mod m2,

then f†2(τn) = 0 and f3(τn) = f†1(τn). For n ∈ Z/m3Z, with n 6≡ 0 mod m1 and n 6≡ 0 mod m2, then

(f†1(τn) + 1) + (f†2(τn) + 1)− (f3(τn) + 1) = 〈−nd1a1(N1)

m3
〉+ 〈−nd2a2(1)

m3
〉.

The right hand side is 0 or 1; it is 0 if and only if nd1a1(N1) ≡ nd2a2(1) ≡ 0 mod m3.

3.5 Compatibility with Shimura variety setting

Notation 3.15. Fix an admissible pair γ1 = (m1, N1, a1), γ2 = (m2, N2, a2) of monodromy data as in

Notation 3.2. Consider the monodromy datum γ3 as in Definition 3.5. In particular, let m3 = lcm(m1,m2)

and let f3 be as in Definition 3.13.

For each i = 1, 2, 3, let Zi := Z(mi, Ni, ai), and similarly Z◦i , Z̃ci , etc as in Definition 2.2. Let Shi :=

Shi(µmi
, fi) denote the Shimura substack of Ag as in Section 2.5. Let Xi be the universal abelian scheme

over Shi, Bi := B(Shi) the set of Newton polygons of Shi, and ui the µ-ordinary Newton polygon in Bi from

Definition 2.5.

Via the Torelli map T , the clutching morphism κ : Z̃c1 × Z̃c2 → Z̃3 is compatible with a morphism into the

minimal compactification of the Shimura variety

ι : Sh1 × Sh2 → Sh∗3

3.1Alternatively, one may deduce the formula for f3 geometrically since the extra term δ records the Z/m3Z-action on the dual
graph of the curve C3 constructed in Proposition 3.9.
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where ι(X1,X2) := X d11 ⊕X
d2
2 .3.2 If ε = 0 then Im(ι) lies in Sh3 and the reader may focus on this case; if ε 6= 0,

then Im(ι) is contained in the boundary Sh∗3 − Sh3.

By Proposition 3.11, ι(Sh1[ν1], Sh2[ν2]) ⊆ Sh∗3(νd11 ⊕ ν
d2
2 ⊕ ordε), which yields:

Lemma 3.16. If νi ∈ Bi, then νd11 ⊕ ν
d2
2 ⊕ ordε ∈ B3. In particular, u3 ≥ ud11 ⊕ u

d2
2 ⊕ ordε.

In Proposition 4.4, we give a necessary and sufficient condition on the pair of signature types (f1, f2) for the

equality u3 = ud11 ⊕ u
d2
2 ⊕ ordε to hold.

4 The Torelli locus and the µ-ordinary locus of Shimura varieties

In this section, we prove theorems about the intersection of the open Torelli locus with the µ-ordinary Newton

polygon stratum in a PEL-type Shimura variety. The main result, Theorem 4.5, provides a method to leverage

information from smaller dimension to larger dimension. This provides an inductive method to prove that the

open Torelli locus intersects the µ-ordinary stratum for certain types of families.

In Section 4.3, we use the main theorem to establish the existence of smooth curves of arbitrarily large

genus with prescribed Newton polygon, see Corollary 4.7 to 4.10. For the base cases of the inductive method,

we can use any instances when the µ-ordinary Newton polygon is known to occur (see Proposition 4.6).

Remark 4.1. The method in this section does not give results for every monodromy datum γ. For example,

it is not known whether the µ-ordinary Newton polygon occurs on Z◦(γ) for all p ≡ 3, 5 mod 7 when γ =

(7, 4, (1, 1, 2, 3)). In this case, f = (2, 1, 1, 1, 1, 0), dim(Zc(γ)) = 1, and dim(S(γ)) = 2. The three Newton polygons

on S(γ) are (1/6, 5/6), (1/3, 2/3)2, and ss6, which all have p-rank 0. None of the degenerations for this family

satisfy hypothesis (B) as defined below.

4.1 Hypothesis (B)

We fix an admissible pair γ1 = (m1, N1, a1), γ2 = (m2, N2, a2) of (generalized) monodromy data as in

Notation 3.2. We fix a prime p such that p - m3 = lcm(m1,m2) and work over Fp. Recall Notation 3.4 and

3.15. So di = m3/mi and f†i := fi ◦ πi for i = 1, 2.

Definition 4.2. The pair of monodromy data γ1, γ2 is balanced if, for each orbit o ∈ T = HomQ(Q[µm3
],C)

and all ω, τ ∈ o, the values of the induced signature types satisfy:

hypothesis(B) : if f†1(ω) > f†1(τ) then f†2(ω) ≥ f†2(τ); if f†2(ω) > f†2(τ) then f†1(ω) ≥ f†1(τ).

3.2An abelian variety of dimension less than g3 with µm-action can be viewed as a point on the boundary of Sh∗3 as it comes from

the pure part of some semi-abelian variety of dimension g3 with µm-action, which is a point on Sh3. The image of the Torelli map
in the minimal compactification is determined by the Torelli map on the irreducible components of the curve and forgets the dual
graph structure.
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Remark 4.3. 1. If m1 = m2, then hypothesis (B) is symmetric for the pair γ1, γ2.

2. If γ1 = γ2, then hypothesis (B) is automatically satisfied.

3. Hypothesis (B) depends (only) on the congruence of p modulo m3. If p ≡ 1 mod m3, then each orbit o in

T has size one and hypothesis (B) is vacuously satisfied.

4. Let γ3 be as in Definition 3.5. If the pair γ1, γ2 satisfies hypotheses (A) and (B), then γi, γ3 satisfies

hypothesis (B) for i = 1 and for i = 2.

Proposition 4.4 below gives a geometric interpretation of hypothesis (B). From Notation 3.4, recall the

formula ε = d1d2r0 − d1 − d2 + 1.

Proposition 4.4. Let γ1, γ2 be an admissible pair of monodromy data. Consider the monodromy datum γ3

as in Definition 3.5. For 1 ≤ i ≤ 3, let ui be the µ-ordinary Newton polygon of the Shimura variety Shi as

in Definitions 2.5 and 3.15. Then the equality u3 = ud11 ⊕ u
d2
2 ⊕ ordε holds if and only if the pair γ1, γ2 is

balanced.

We postpone the proof of Proposition 4.4 to the independent Section 5.

4.2 A first main result

In this subsection, we assume that the pair γ1, γ2 is admissible and balanced, meaning that it satisfies hypotheses

(A) and (B) as in Definitions 3.3 and 4.2. Let γ3 = (m3, N3, a3) and f3 be as in Definitions 3.5 and 3.13.

The next result provides a partial positive answer to Conjecture 1.1 when ε = 0.

Theorem 4.5. Let γ1, γ2 be an admissible, balanced pair of monodromy data. If Z◦1 [u1] and Z◦2 [u2] are both

non-empty, then Z◦3 [u3] is non-empty.

Proof . By Lemma 3.6 and 3.14, the signature for the monodromy datum γ3 is given in (3.3). By Proposition 4.4,

hypothesis (B) implies that u3 = ud11 ⊕ u
d2
2 ⊕ ordε. From the hypothesis, Z̃◦1 [u1] and Z̃◦2 [u2] are both non-empty.

By Proposition 3.9, the image of κ on Z̃◦1 [u1]× Z̃◦2 [u2] is in Z̃3. By Proposition 3.11, the Newton polygon of a

curve C3 represented by a point in the image of κ is given by ν(C3) = ud11 ⊕ u
d2
2 ⊕ ordε, which is u3. Thus Z3[u3]

is non-empty and applying Lemma 2.7 finishes the proof.

4.3 Infinite clutching for µ-ordinary

In this section, we find situations in which Theorem 4.5 can be implemented recursively, infinitely many times,

to verify the existence of smooth curves of arbitrarily large genus with prescribed Newton polygon. The required

input is a family (or a compatible pair of families) of cyclic covers of P1 for which the µ-ordinary Newton

polygon at a prime p is known to occur (see Proposition 4.6). Section 9 contains concrete implementations of

these results.
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4.3.1 Base cases

We recall instances when the the µ-ordinary Newton polygon u is known to occur for the Jacobian of a (smooth)

curve in the family Z.

Proposition 4.6. The µ-ordinary Newton polygon stratum Z(m,N, a)[u] is non-empty if either:

1. N = 3; or

2. N ≥ 4 and (m,N, a) is equivalent to one of the twenty examples in [28, Table 1]; or

3. u is the only Newton polygon in B(HQp
, µh) of maximum p-rank and either N = 4 or p ≥ m(N − 3) or

p ≡ ±1 mod m.

Proof . 1. When N = 3, then Z is 0-dimensional and thus special as in Definition 2.4.

2. This is [22, Proposition 5.1].

3. For any monodromy datum γ = (m,N, a), define

β(γ) :=
∑
τ∈T

min
j∈N
{f(τσ

j

)} =
∑
o∈O

#o ·min{f(τ) | τ ∈ o}. (4.1)

By [5, Equation (1)], β(γ) is an upper bound for the p-rank of curves in Z◦(γ). By [5, Theorem 6.1,

Propositions 7.7, 7.4, 7.8], if p ≥ m(N − 3) or N = 4 or p ≡ ±1 mod m, then there exists a µm-cover

C → P1 defined over Fp with monodromy datum γ, for which the p-rank of C equals β(γ). The p-rank is

the multiplicity of 1 as a slope of the Newton polygon. By the formulas (2.4) and (2.5) for the slopes and

multiplicities of the µ-ordinary Newton polygon u = u(γ), the p-rank of u equals β(γ).

To determine the µ-ordinary formula u, we refer to the Shimura–Taniyama formula [32, Section 5] (see also

[23, Theorem 3.2]) when N = 3 and to [22, Section 6] and Section 10 for the special families of [28].

If p ≡ −1 mod m, then all Newton polygons in B = B(HQp
, µh) have slopes in {0, 1/2, 1}. For 0 ≤ f ≤ g, the

unique symmetric Newton polygon of height g and p-rank f with slopes in {0, 1/2, 1} is ordf ⊕ ssg−f . Hence, the

Newton polygons in B are uniquely determined by their p-ranks. For examples of families where the µ-ordinary

Newton polygon is not ordinary, see [22, Section 7.2].

4.3.2 Adding slopes 0 and 1

By implementing Theorem 4.5 recursively, we obtain a method to increase the genus and the multiplicity of

the slopes 0 and 1 in the Newton polygon by the same amount. Because of this, in later results we will aim to

minimize the multiplicity of {0, 1} in the Newton polygon.

Corollary 4.7. Let γ = (m,N, a) be a monodromy datum. Assume that Z◦(γ)[u] is non-empty. Then for any

n in the semi-group of (Z,+) generated by {m− t : t | m}, there exists a µm-cover C → P1 over Fp where C is

a smooth curve with Newton polygon u⊕ ordn.
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Proof . For c ∈ Z≥1 with c ≤ m− 1, let t = gcd(m, c) and consider the monodromy datum γ1 =

(m/t, 3, (c/t, (m− c)/t, 0)). Note g1(τ) = 0, and f1(τ) = 0, for all τ ∈ T .

Let γ2 = (m,N + 1, a′), where a′(1) = 0, and a′(i) = a(i− 1), for i = 2, . . . , N + 1. By construction, the pair

γ1, γ2 is admissible and balanced. By Remark 2.3, Z◦(γ2)[u] is non-empty. Set a3 = (c,m− c, a(1), . . . , a(N));

then γ3 = (m,N + 2, a3) is the monodromy datum from Definition 3.5 for the pair γ1, γ2. By (3.1), ε = m− t. By

Theorem 4.5, Z◦3 [u3] is non-empty, where u3 = u⊕ ordm−t. The statement follows by iterating this construction,

letting c vary.

4.3.3 Single Induction

We consider inductive systems generated by a single monodromy datum γ1. The next result follows from the

observation that if the pair γ1, γ1 is admissible and if Z◦1 [u1] is non-empty, then all hypotheses of Theorem 4.5

are satisfied, and continue to be after iterations.

Corollary 4.8. Assume there exist 1 ≤ i < j ≤ N such that a(i) + a(j) ≡ 0 mod m.4.1 Let r = gcd(a(i),m). If

Z◦(γ)[u] is non-empty, then there exists a smooth curve over Fp with Newton polygon un ⊕ ord(n−1)(r−1), for

any n ∈ Z≥1.

Proof . After reordering the branch points, we can suppose that i = 1, j = N . We define a sequence of families

Z×n as follows: let Z×1 = Z; for n ≥ 2, let Z×n be the family constructed from the monodromy datum produced

by applying Definition 3.5 to the monodromy data of Z×(n−1) and Z×1. For n ∈ Z≥1, the pair of monodromy

data for Z×n and Z×1 satisfies hypotheses (A) and (B). Then un := un ⊕ ord(n−1)(r−1) is the µ-ordinary Newton

polygon for Z×n. The statement follows by applying Theorem 4.5 repeatedly.

The first hypothesis of Corollary 4.8 appears restrictive. However, from any monodromy datum γ with

Z◦(γ)[u] non-empty, we can produce a new monodromy datum which satisfies this hypothesis by clutching with

a µm-cover branched at only two points. As a result, Corollary 4.8 can be generalized to Corollary 4.9 which

holds in much greater generality, at the expense of making the defect slightly larger.

Corollary 4.9. Assume that Z◦(γ)[u] is non-empty and let t be a positive divisor of m. Then there exists a

smooth curve over Fp with Newton polygon un ⊕ ordmn−n−t+1, for any n ∈ Z≥1.

Proof . For t = m, consider the family Z×1 with monodromy datum (m,N + 2, a′), where a′(i) = a(i) for

1 ≤ i ≤ N , a′(N + 1) = a′(N + 2) = 0. Then, the statement follows from Corollary 4.8 applied to Z×1 for r = m.

For t < m, consider the family Z×1 with monodromy datum (m,N + 2, a′), where a′(i) = a(i) for 1 ≤ i ≤ N ,

a′(N + 1) = t and a′(N + 2) = m− t. The µ-ordinary polygon u′ of the associated Shimura variety is u⊕ ordm−t.

By Corollary 4.7, (Z×1)◦[u′] is non-empty. Then, the statement follows from Corollary 4.8 applied to Z×1 for

r = t, by observing that (u′)n ⊕ ord(n−1)(t−1) = un ⊕ ordmn−n−t+1.

4.1This condition implies that Z(γ) intersects the boundary component ∆0 of Mg .



20 W. Li and E. Mantovan and R. Pries and Y. Tang

4.3.4 Double Induction

We next consider inductive systems constructed from a pair of monodromy data satisfying hypotheses (A) and

(B). For clarity, we state Corollary 4.10 under the simplifying assumption m1 = m2. Corollary 9.9 contains an

example of this result; it also applies to the pair of monodromy data in the proof of Corollary 9.7.

Corollary 4.10. Let γ1 and γ2 be a pair of monodromy data with m1 = m2 satisfying hypotheses (A) and

(B). Let r = gcd(m, a1(N1)) and recall Notation 3.15. Assume that Z◦1 [u1] and Z◦2 [u2] are both non-empty.

Then there exists a smooth curve over Fp with Newton polygon un1
1 ⊕ u

n2
2 ⊕ ord(n1+n2−2)(m−1)+(r−1) for any

n1, n2 ∈ Z≥1.

Proof . We apply Corollary 4.9 to the family Z1 (resp. Z2) with t = m. The result is a family Z×n1
1 (resp.

Z×n2
2 ) of smooth curves with Newton polygon un1

1 ⊕ ord(n1−1)(m−1) (resp. un2
2 ⊕ ord(n2−1)(m−1)). Since Z1 and

Z2 satisfy hypotheses (A) and (B), due to the construction in the proof of Corollary 4.9, Z×n1
1 and Z×n2

2 also

satisfy hypothesizes (A) and (B). The result then follows from Theorem 4.5.

5 Hypothesis (B) and the µ-ordinary Newton polygon

In this section, we prove Proposition 4.4, namely that hypothesis (B) for a pair of signatures (f1, f2) is a necessary

and sufficient condition for the associated Shimura variety Sh1 × Sh2 to intersect the µ-ordinary Newton polygon

stratum of Sh∗3. Recall that σ is Frobenius and O is the set of orbits of σ in T .

Notation 5.1. For a σ-orbit o ∈ O, let po be the prime of Q[µm] above p associated with o and let |o| be the

size of the orbit. For each τ ∈ o, the order of τ in Z/mZ is constant and denoted eo; by definition, eo | m. Let

Q[µm]po
denote the local field which is the completion of Keo along the prime po.

Let X denote the universal abelian scheme over Sh = Sh(H, h)5.1, and X [p∞] the associated p-divisible

group scheme. Let x ∈ Sh(Fp) and consider the abelian variety X := Xx. Let ν = ν(X) be the Newton polygon

of X. We omit the proof of the following.

Lemma 5.2. The Q[µm]-action of X induces a Q[µm]⊗Q Qp-action on X [p∞]. Thus it induces canonical

decompositions

X [p∞] =
⊕
o∈O

X [p∞o ] and ν =
⊕
o∈O

ν(o),

where, for each o ∈ O, the group scheme X [p∞o ] is a p-divisible Q[µm]po
-module and ν(o) = ν(X[p∞o ]) is its

Newton polygon.

For each ν ∈ B = B(HQp
, µh), we write ν(o) for its o-component, hence ν =

⊕
o∈O ν(o). For all ν, ν′ ∈ B,

note that ν ≤ ν′ if and only if ν(o) ≤ ν′(o), for all o ∈ O.

By the next lemma, to prove Proposition 4.4, it suffices to consider each σ-orbit o in T = Z/m3Z separately.

5.1or more generally the universal semi-abelian variety over its toroidal compactification,
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Lemma 5.3. With the same notation and assumption as in Proposition 4.4: the equality u3 = ud11 ⊕ u
d2
2 ⊕ ordε

is equivalent to the system of equalities, for every orbit o in T ,

u3(o) = ud11 (o)⊕ ud22 (o)⊕ ordεo , (5.1)

where εo := |o| if eo is a divisor of d1d2r0 but not a divisor of d1 or d2, and εo := 0 otherwise.

Proof . Note that ε = d1d2r0 − d1 − d2 + 1 is equal to the number of τ ∈ T whose order is a divisor of d1d2r0 but

not a divisor of d1 or d2; recall gcd(d1, d2) = 1. Thus ε =
∑

o∈O εo, and the statement follows from Lemma 5.2

and the discussion below the lemma.

Proof of Proposition 4.4. Fix an orbit o in T . For i = 1, 2, let u†i denote the µ-ordinary Newton polygon

of Sh(µm3 , f
†
i ). By definition, u†i = udii , and u†i (o) = udii (o). That is, the Newton polygons u†i (o) and ui(o) have

the same slopes, with the multiplicity of each slope in u†i (o) being di times its multiplicity in ui(o). Recall the

formulas for the slopes and multiplicities of u(o) from Section 2.6.1.

Reduction to a combinatorial problem. The formulas for the slopes and multiplicities rely only on the

signature type f viewed as a N-valued function on T , and do not require f to be a signature associated with a

Shimura variety. We regard each signature type f as an N-valued function on o, and denote by u(o) the Newton

polygon defined by the data of slopes in (2.4) and multiplicities in (2.5).5.2 We use subscripts and superscripts

to identify various N-valued functions and their Newton polygons, for example, f†1 and u†1(o).

Proposition 4.4 follows from the claim below taking R = r0, using Lemma 5.3.

Claim Let R be a positive integer which divides gcd(m1,m2). Set δ := δd,dR + δd1,d1d2 − δ1,d2 , with d :=

m3/ gcd(m1,m2) = d1d2 and notations as in Definition 3.12; set εo := |o| if eo divides dR but not d1 or d2,

and εo := 0 otherwise. Define f3 := f†1 + f†2 + δ. Then the equality

u3(o) = u†1(o)⊕ u†2(o)⊕ ordεo (5.2)

holds if and only if the pair f1, f2 satisfies hypothesis (B).

Reduction of claim to the case d = R = 1 We first prove that if f3 = f†1 + δ then

u3(o) = u†1(o)⊕ ordεo . (5.3)

5.2the integer g(o) will be specified in each part of the proof.
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Note that the function δ(τ) is constant on o, with value δ(o) equal to 1 if eo divides dR but not d1 or d2,

and to 0 otherwise. In particular, εo =
∑

τ∈o δ(τ), δ(o) = δ(o∗), and by Remark 2.6, g3(o) = g†1(o) + 2δ(o).

If δ(o) = 0, then g3(o) = g†1(o), and f3(τ) = f†1(τ) for all τ ∈ o. Hence, u3(o) = u†1(o) which agrees with

equality (5.3) for εo = 0.

If δ(o) = 1, then g3(o) = g†1(o) + 2, and f3(τ) = f†1(τ) + 1 for all τ ∈ o. In particular, g3(o) > f3(τ) ≥ 1, for all

τ ∈ o. By (2.4) and (2.5), both 0 and 1 occur as slopes of u3(o), with multiplicity respectively ρ3(0) = ρ1(0) + |o|

and ρ3(1) = ρ1(1) + |o|. Each of the slopes λ of u†1(o), with λ 6= 0, 1, also occurs for u3(o), with multiplicity

ρ3(λ) = ρ1(λ). Thus u3(o) = u†1(o)⊕ ord|o|, which agrees with equality (5.3) for εo = |o|.

Equality (5.3) is equivalent to the claim for f†2(τ) = 0, for all τ ∈ o. Indeed, hypothesis (B) for the pair

(f†1, 0) holds trivially, and equality (5.2) for f3 = f†1 + δ specializes to (5.3).

By (5.3), we deduce that equality (5.2) holds if and only if it holds in the special case of d = R = 1, that

is if u3(o) = u†1(o) + u†2(o) when f3 = f†1 + f†2. By definition, hypothesis (B) holds for the pair (f†1, f
†
2) if and only

if it holds for (f†1 + δ, f†2). Hence, without loss of generality, we may assume d = R = 1 and f3 = f1 + f2. In this

case, g3(o) = g1(o) + g2(o) by Remark 2.6 and the claim reduces to the following:

Specialized claim: Assume f3 = f1 + f2. Then, the equality

u3(o) = u1(o)⊕ u2(o). (5.4)

holds if and only if the pair f1, f2 satisfies hypothesis (B).

Converse direction: assume hypothesis (B) We shall prove that the equality (5.4) holds, by induction

on the integer s3 + 1, the number of distinct slopes of u3(o). More precisely, we shall proceed as follows. First,

we shall establish the base case of induction, for s3 = 0. Next, we shall prove the equality of multiplicities

ρ3(λ) = ρ1(λ) + ρ2(λ) (5.5)

for λ = λ3(0) the first (smallest) slope of u3(o). Then, we shall assume s3 ≥ 1 and show that the inductive

hypothesis and equality (5.5) imply equality (5.4), which will complete the argument. In the induction process,

gi(o) remains unchanged.

Base case: Assume s3 = 0. Then, for all τ ∈ o, either f3(τ) = g3(o) or f3(τ) = 0. The equalities f3(τ) =

f1(τ) + f2(τ) and g3(o) = g1(o) + g2(o) imply that f3(τ) = g3(o) (resp. f3(τ) = 0) if and only if fi(τ) = gi(o)

(resp. fi(τ) = 0) for both i = 1, 2. We deduce that both hypothesis (B) and (5.4) hold in this situation.

Equality (5.5) For i = 1, 2, 3, let Ei(max) denote the maximal value of fi on o. By definition, Ei(max) is equal

to either Ei(0) or Ei(1). In the first case, λi(0) > 0; in the second case, λi(0) = 0. We claim that hypothesis (B)
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implies E3(max) = E1(max) + E2(max). First, note that hypothesis (B) implies that, for ω, τ ∈ o:

f3(ω) = f3(τ) if and only if fi(ω) = fi(τ) for both i = 1, 2. (5.6)

For i = 1, 2, 3, set Si = {τ ∈ o | fi(τ) = Ei(max)}. Then, property (5.6) implies that S3 = S1 ∩ S2, which in

turn implies E3(max) = E1(max) + E2(max).

We claim that hypothesis (B) implies that S3 = Si for some i ∈ {1, 2}. Without loss of generality, assume

that S2 properly contains S3, and let τ0 ∈ S2 − S3. Then τ0 6∈ S1. For any ω ∈ S1: f1(ω) = E1(max) > f1(τ0).

Thus, by hypothesis (B), f2(ω) ≥ f2(τ0) = E2(max). We deduce that f2(ω) = E2(max), hence S1 ⊆ S2.

By the formulas for slopes (2.4), the equality S1 = S3 implies that λ1(0) = λ3(0), and the inclusion S1 ⊆ S2

implies λ1(0) ≤ λ2(0) (and the equality holds if and only if S2 = S3).

For i = 1, 2, 3, let Ei(next) denote the maximal value of fi on o− S3. For i = 1, 3, Ei(next) < Ei(max); for

i = 2, E2(next) ≤ E2(max) and the equality holds if and only if S2 properly contains S3.

As before by property (5.6), we deduce that hypothesis (B) implies E3(next) = E1(next) + E2(next).

By the formulas for multiplicities (2.5), the two identities, E3(max) = E1(max) + E2(max) and E3(next) =

E1(next) + E2(next), imply the desired equality (5.5).

Assume s3 ≥ 1 Then the polygon u3(o) has at least two distinct slopes. Our plan is to introduce auxiliary

functions f̃1(τ), f̃2(τ) such that polygon ũ3(o) for the function f̃3(τ) := f̃1(τ) + f̃2(τ) has s3 distinct slopes.

For i = 1, 2, define f̃i(τ) := fi(τ) for all τ 6∈ S3 and f̃i(τ) := Ei(next) for τ ∈ S3. Note that f̃2 = f2 unless

S2 = S3. By definition, for i = 1, 2, 3, Ẽi(max) = Ei(next).

For i = 1, 3, and for i = 2 if S2 = S3, the polygon ũi(o) shares the same slopes as ui(o) except λi(0) which

no longer occurs. For each t = 2, . . . , si, the slope λi(t) occurs in ũi(o) with multiplicity equal to ρi(λi(t)); while

the slope λi(1) occurs in ũi(o) with multiplicity ρi(λi(0)) + ρi(λi(1)). For i = 2, if S2 6= S3, then ũ2(o) = u2(o).

Note that ũ3 has exactly s3 slopes. Hence, by the inductive hypothesis, we deduce that ũ3(o) =

ũ1(o)⊕ ũ2(o). This identity, together with (5.5) and the above computation of ρ̃i(λi(1)), implies that u3(o) =

u1(o)⊕ u2(o).

Forward direction: assume (5.4) We shall prove that the pair (f1, f2) satisfies hypothesis (B), arguing by

contradiction. Supposing hypothesis (B) does not hold, we shall define auxiliary functions f1, f2 obtained by

precomposing f1, f2 with a permutation of o, such that the Newton polygon u3(o) associated with the function

f3(τ) := f1(τ) + f2(τ) is strictly above u3(o), i.e., u3(o) < u3(o). By the formulas for slopes and multiplicities

(2.4) and (2.5), we see that precomposing a function f with a permutation of o does not change the associated

polygon u(o). Hence, for i = 1, 2 we deduce ui(o) = ui(o). On the other hand, by repeating the permutation

process, we eventually end up with a pair (f1, f2) which satisfies hypothesis (B) and by the above argument,
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hypothesis (B) implies that u1(o)⊕ u2(o) = u3(o). Hence u3(o) = u1(o)⊕ u2(o), which equals u3(o) by (5.2)

and contradicts the conclusion that u3(o) < u3(o).

Contradict hypothesis (B) Thus, there exist ω0, η0 ∈ o such that

f2(ω0) > f2(η0) and f1(ω0) < f1(η0).

Let γ denote the permutation of o which switches ω0 and η0, and define f1(τ) := f1(γ(τ)) and f2(τ) := f2(τ). Set

f3(τ) := f1(τ) + f2(τ). Then, f3(τ) = f3(τ) except for τ = ω0, η0. Note that f3(ω0) > f3(ω0), f3(η0) < f3(η0), and

f3(ω0) > f3(η0) (also, f3(η0) < f3(ω0)).

We claim that u3(o) < u3(o), meaning that u3(o) and u3(o) share the same endpoints (this follows from

the equality g3(o) = g3(o)), and that u3(o) lies strictly above u3(o).

We first show that possibly after sharing the first several slopes, u3(o) admits a slope which is strictly larger

than the corresponding one in u3(o). Let us consider the value A = f3(ω0). Note that A > f3(ω0) ≥ 0. If A = f3(τ)

for some τ ∈ o, say A = E3(t) for some t ∈ {0, . . . , s3}. Then by the formulas for slopes and multiplicities (2.4)

and (2.5), we deduce that the first t slopes, and their multiplicities, of u3(o) and u3(o) agree, but the (t+ 1)-st

slope of u3(o) is strictly larger that the (t+ 1)-st slope of u3(o). If f3(τ) 6= A for all τ ∈ o, let t ∈ {0, . . . , s3} be

such that E3(t) > A > E3(t+ 1). Thus the first t slopes of u3(o) and u3(o) agree, and so do the multiplicities

of the first t− 1 slopes, but the multiplicity of the t-th slope of u3 is strictly smaller than that of u3(o).

By similar arguments for the subsequent slopes and multiplicities, u3(o) never drops strictly below u3(o),

but it might (and often does) agree with u3(o) for large slopes.

6 The Torelli locus and the non µ-ordinary locus of Shimura varieties

In this section, we study the intersection of the open Torelli locus with Newton polygon strata which are not

µ-ordinary in PEL-type Shimura varieties. The main result, Theorem 6.11, provides a method to leverage

information from smaller dimension to larger dimension. This theorem is significantly more difficult than

Theorem 4.5; we add an extra condition to maintain control over the codimensions of the Newton polygon

strata. This is the first systematic result on this topic that we are aware of.

For applications, we find situations where we can apply Theorem 6.11 infinitely many times; from this, we

produce systems of infinitely many PEL-type Shimura varieties for which we can verify that the open Torelli

locus intersects non µ-ordinary Newton polygon strata. See Corollary 6.14 to 6.16 and Section 9 for details.

Notation 6.1. Let γ1 = (m1, N1, a1), γ2 = (m2, N2, a2) be an ordered pair of (generalized) monodromy data

which satisfies hypothesis (A). Assume that m1|m2. Set d := m2/m1 and r := gcd(m1, a1(N1)). Then, (3.1)

specializes to ε = d(r − 1) and g3 = dg1 + g2 + ε. In particular, ε = 0 if and only if r = 1.

Remark 6.10 explains why we restrict to the case m1|m2.
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6.1 Hypothesis (C)

To study the Newton polygons beyond the µ-ordinary case, we introduce an extra hypothesis.

Definition 6.2. Given a Newton polygon ν, the first slope λ1st(ν) is the smallest slope of ν and the last slope

λlast(ν) is the largest slope of ν. If ν is symmetric with q distinct slopes, the middle slope λmid(ν) is the b q+1
2 c-st

slope of ν.

Definition 6.3. An ordered pair of monodromy data γ1, γ2 is controlled if the slopes of the µ-ordinary Newton

polygons u1 and u2 satisfy:

hypothesis (C): for each orbit o ∈ O, every slope of u1(o) is in the range [0, 1] \ (λ1st(u2(o)), λlast(u2(o))).

By convention, the condition in the previous line holds for o if ui(o) is empty for either i = 1, 2. If a pair of

monodromy data is controlled, then we write u1 �(C) u2.

Remark 6.4. 1. Hypothesis (C) holds for o if either u1(o) has slopes in {0, 1} or u2(o) is supersingular. In

particular, if u is ordinary or supersingular, then u�(C) u.

2. If o = o∗, then hypothesis (C) holds for o if and only if λmid(u1(o)) ≤ λ1st(u2(o)).

3. If u1 �(C) u2 then ud1 �(C) u2 for all d ∈ Z≥1.

Remark 6.5. Let γ1, γ2 be a pair of monodromy data as in Notation 6.1. By Section 2.6.1,

λ1st(u2(o)) =
1

|o|
#{τ ∈ o | f2(τ) = g2(o)} and λlast(u2(o)) =

1

|o|
#{τ ∈ o | f2(τ) > 0}.

Hypothesis (C) holds for o if and only if there exists an integer E(o) ∈ [0, g1(o)] such that

#{τ ∈ o | f†1(τ) > E(o)} ≤ #{τ ∈ o | f2(τ) = g2(o)}, and

#{τ ∈ o | f†1(τ) ≥ E(o)} ≥ #{τ ∈ o | f2(τ) > 0}.

The next statement follows from Definition 6.3 and Remark 6.5.

Lemma 6.6. The following are equivalent: u�(C) u; for each o ∈ O, the Newton polygon u(o) has at most two

distinct slopes; and, for each o ∈ O, there exists an integer E(o) ∈ [0, g(o)] such that f(τ) ∈ {0, E(o), g(o)} for

all τ ∈ o.

Unlike hypothesis (B), hypothesis (C) does not behave well under induction in general. Lemma 6.7 identifies

two instances when it does. We omit the proof.

Lemma 6.7. 1. If u1 �(C) u2 then un1 ⊕ ordl �(C) u2, for any n, l ∈ Z≥1.
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2. If u1 �(C) u2 and u2 �(C) u2, then un1 ⊕ um2 ⊕ ordl �(C) u2, for any n,m, l ∈ Z≥1.

6.2 The significance of hypothesis (C)

Hypothesis (C) is sufficient to prove the geometric condition on the Newton polygon stratification in

Proposition 6.8 below. We use hypothesis (C) to prove the surjectivity of the map in (6.2).

Proposition 6.8. Let γ1 = (m1, N1, a1), γ2 = (m2, N2, a2) be an ordered pair of monodromy data as in

Notation 6.1. Assume the pair satisfies hypotheses (A), (B), and (C). Consider the monodromy datum γ3

as in Definition 3.5. Then, for any Newton polygon ν2 ∈ B2,

codim(Sh2[ν2], Sh2) = codim(Sh3[ud1 ⊕ ν2 ⊕ ordε], Sh3). (6.1)

The following lemma is a reformulation of Proposition 4.4.

Lemma 6.9. Hypothesis (B) is equivalent to the assumption that (6.1) holds for ν2 = u2.

In fact, the proof below shows that if hypothesis (B) does not hold, then (6.1) is false for all ν2 ∈ B2.

Proof of Proposition 6.8. For any Kottwitz set B and any ν ∈ B, let B(ν) = {t ∈ B | t ≥ ν}.

We first prove the case when ε = 0. Consider the map Σ : B2 → B3, where t 7→ ud1 ⊕ t.

We first note that Σ is an order-preserving injection.6.1 Let t ∈ B2. For each orbit o in O, let q1 = q1(o) (resp.

q′1 = q′1(o)) be the number of distinct slopes of u1(o) in [0, λ1st(u2(o)] (resp. [λlast(u2(o)), 1]). By hypothesis (C),

for the Newton polygon ud1 ⊕ t, the first q1 and the last q′1 slopes of u1(o)d ⊕ t(o) are the slopes of u1(o)d with

the same multiplicities and the rest are the slopes of t(o) with the same multiplicities. So, if t ≤ t′ in B2, then

ud1 ⊕ t ≤ ud1 ⊕ t′ in B3. In particular, the map Σ induces an injection on the ordered sets

B2(ν2)→ B3(ud1 ⊕ ν2), t 7→ ud1 ⊕ t. (6.2)

By (2.6), to conclude, it suffices to prove that under hypotheses (B) and (C) the map in (6.2) is

also surjective. By Proposition 4.4, hypothesis (B) implies that u3 = ud1 ⊕ u2. Hence, for a Newton polygon

v ∈ B3(ud1 ⊕ ν2), then ud1 ⊕ ν2 ≤ v ≤ u3 = ud1 ⊕ u2. By the paragraph after Lemma 5.2,

u1(o)d ⊕ ν2(o) ≤ v(o) ≤ u1(o)d ⊕ u2(o).

6.1For convenience, we use hypothesis (C) to construct the order-preserving map (6.2); however, this part can be proved without
using this hypothesis.
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By hypothesis (C), the inequalities above imply that v(o) and u1(o)d share the first q1 and last q′1 slopes,

with the same multiplicities except for the q1-th slope (resp. q2-th slope) which may occur with higher multiplicity

in the former if u1(o) has slope λ1st(u2(o)) (resp. λlast(u2(o))). We deduce that each v ∈ B3(ud1 ⊕ ν2) is of the

form v = ud1 ⊕ t for some t ∈ B2(ν2); thus the map in (6.2) is surjective.

If ε 6= 0, by (2.7), the same argument still applies, with ud1 replaced by ud1 ⊕ ordε.

Remark 6.10. Let γ be a monodromy datum, of signature f. For d > 1, let γ† be the induced datum, of

signature f†, as in Notation 3.1. The map (·)† : B(f)→ B(f†), ν 7→ νd, is injective and order-preserving, but is

not surjective in general. If (·)† is not surjective, then, by (2.6), there exists ν ∈ B such that codim(Sh[ν], Sh) 6=

codim(Sh†[νd], Sh†). For example, if f = (1), and d = 2, this happens when ν = (1/2, 1/2).

6.3 The second main result

The next result also provides a partial positive answer to Conjecture 1.1 when ε = 0.

Theorem 6.11. Let γ1, γ2 be an ordered pair of monodromy data as in Notation 6.1. Assume it satisfies

hypotheses (A), (B), and (C). Let ε = d(r − 1). Consider the monodromy datum γ3 from Definition 3.5. Let

ν2 ∈ B2. If Z◦1 [u1] and Z◦2 [ν2] are non-empty, and Z◦2 [ν2] contains an irreducible component Γ2 such that

codim(Γ2, Z2) = codim(Sh2[ν2], Sh2), (6.3)

then Z◦3 [ud1 ⊕ ν2 ⊕ ordε] is non-empty and contains an irreducible component Γ3 such that

codim(Γ3, Z3) = codim(Sh3[ud1 ⊕ ν2 ⊕ ordε], Sh3).

Remark 6.12. As seen in Section 6.5, hypothesis (C) is not a necessary condition and it can occasionally be

removed. Specifically, Theorem 6.11 still holds with hypothesis (C) replaced by the weaker (but harder to verify)

assumption that (6.1) holds for the given non µ-ordinary Newton polygon ν2 ∈ B2.

Remark 6.13. If Z2 is one of Moonen’s special families from [28] and Z◦2 [ν2] is non-empty, then every irreducible

component of Z◦2 [ν2] satisfies the codimension condition (6.3).

Proof of Theorem 6.11. By Remark 2.3, without loss of generality, we may assume that the inertia types

a1 and a2 contain no zero entries if r < m1 and no zero entries other than a1(N1) = a2(1) = 0 if r = m1. Set

l := codim(Sh2[ν2], Sh2). Recall the clutching morphism κ : Z̃1 × Z̃2 → Z̃3 from Proposition 3.9. Note that

dim(Z3) = N3 − 3 = (N1 − 3) + (N2 − 3) + 1. (6.4)

We distinguish three cases: ε = 0, ε 6= 0 and r < m1, and ε 6= 0 and r = m1.
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Assume ε = 0

Then (6.4) implies that

dim(Z3) = dim(Z1) + dim(Z2) + 1 = dim(Z̃1) + dim(Z̃2) + 1. (6.5)

By Notation 3.4, g3 = dg1 + g2 and the formula for f3 is in (3.3). The clutching morphism κ is compatible

with the morphism ι : Sh1 × Sh2 → Sh3 given by ι(X1,X2) = X d1 ⊕X2. Since the map Z̃i → Zi is finite,

dim(Z̃i[νi]) = dim(Zi[νi]) for any νi ∈ Bi.

By Proposition 6.8, l = codim(Sh3[ud1 ⊕ ν2], Sh3). Let Γ̃2 denote the Zariski closure of the preimage of Γ2

in Z̃2[ν2]. Apriori, Γ̃2 may not be irreducible, in which case we replace it by one of its irreducible components.

Then dim(Γ̃2) = dim(Γ2).

Let W := κ(Z̃1[u1], Z̃2[ν2]). Since W ⊆ Z̃3[ud1 ⊕ ν2], then Z̃3[ud1 ⊕ ν2] is non-empty. By (6.5), κ(Z̃1, Z̃2)

has codimension 1 in Z̃3. In addition, W is an open and closed substack of the intersection of κ(Z̃1, Z̃2)

and Z̃3[ud1 ⊕ ν2]. By [35, page 614], every irreducible component of W has codimension at most 1 in the

irreducible component of Z̃3[ud1 ⊕ ν2] which contains it. Note that κ(Z̃1[u1], Γ̃2) is an irreducible component

of W . Let Γ̃3 be the irreducible component of Z̃3[ud1 ⊕ ν2] which contains κ(Z̃1[u1], Γ̃2). It follows that

codim(κ(Z̃1[u1], Γ̃2), Γ̃3) ≤ 1. So

dim(Γ̃3) =


dim(Z1) + dim(Z2)− l if Γ̃3 = κ(Z̃1[u1], Γ̃2),

dim(Z1) + dim(Z2)− l + 1 otherwise.

On the other hand, for all b ∈ B3, by (2.6) and the de Jong–Oort purity theorem [7, Theorem 4.1], the

codimension of any irreducible component of Z̃3[b] in Z̃3 is no greater than length(b) = codim(Sh3[b], Sh3). For

b = ud1 ⊕ ν2, by (6.5), this yields

dim(Γ̃3) ≥ dim(Z3)− l = dim(Z1) + dim(Z2) + 1− l.

We deduce that codim(Γ̃3, Z̃3) = l and that Γ̃3 strictly contains κ(Z̃1[u1], Γ̃2).

Let Γ3 denote the image of Γ̃3 via the forgetful map Z̃3 → Z3. Define Γ3 = Γ3 ∩ Z◦3 . To finish the proof,

we only need to show that Γ3 is non-empty. Therefore, it suffices to show that Γ̃3 is not contained in the image

of any other clutching map from Proposition 3.9. Since r = 1, by Proposition 3.11 the points in W represent

curves of compact type, thus Γ̃3 ∩ Z̃c3 is non-empty.

To finish, we argue by contradiction; suppose Γ̃3 is contained in the image of any of the other clutching maps

in Z̃c3. This would imply that all points of κ(Z̃1[u1], Γ̃2) represent µm-covers of a curve of genus 0 comprised of

at least 3 projective lines. This is only possible if all points of either Z̃1[u1] or Γ̃2 represent µm-covers of a curve
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of genus 0 comprised of at least 2 projective lines. This would imply that either Z◦1 [u1] or Γ2 ⊂ Z◦2 [ν2] is empty,

which contradicts the hypotheses of the theorem.

Assume ε 6= 0 and r < m1

By the same argument as when ε = 0, there exists an irreducible component Γ̃3 of Z̃3[ud1 ⊕ ν2 ⊕ ordε] of

codimension l such that Γ̃3 strictly contains κ(Z̃1[u1], Γ̃2). To finish the proof, we only need to show that

Γ̃3 is not contained in the boundary of M̃µm
. As before, Γ̃3 is not contained in the image of any of the clutching

maps in Z̃c3. Suppose that Γ̃3 is contained in the image of any of the clutching maps not in Z̃c3. By keeping

careful track of the toric rank, one can check that this implies that the points of either Z̃1[u1] or Γ̃2 represent

µm-covers of curves that are not of compact type. This would imply that either Z◦1 [u1] or Γ2 ⊂ Z◦2 [ν2] is empty,

which contradicts the hypotheses of the theorem.

Assume ε 6= 0 and r = m1

By Remark 2.3, for i = 1, 2, the fibers of the forgetful map fi : Z̃◦i → Z◦i have pure dimension 1. Let Γ̃′2 be an

irreducible component of the preimage via f2 of Γ2; it is in Z̃◦2 [ν2]. Let Γ̃′1 be an irreducible component of the

preimage via f1 of Z◦1 [u1]; it is in Z̃◦1 [u1]. Then dim(Γ̃′2) = dim(Γ2) + 1. Similarly, dim(Γ̃′1) = dim(Z1[u1]) + 1.

Let Γ̃3 be the irreducible component of Z̃3[ud1 ⊕ ν2 ⊕ ordε] that contains the image κ(Γ̃′1, Γ̃
′
2). As before,

dim(Γ̃3) ≥ dim(κ(Γ̃′1, Γ̃
′
2)) + 1. The rest of the proof follows in the same way as when r < m1, by taking

Γ3 = Γ3 ∩ Z◦3 , where Γ3 is the image of Γ̃3 via the forgetful map. To obtain the dimension inequality, note

that

dim(κ(Γ̃′1, Γ̃
′
2)) = 1 + dim(Z1[u1]) + 1 + dim(Γ2) = 2 + dim(Z1) + dim(Z2)− l,

where l = codim(Sh2[ν2], Sh2). In this case, dim(Zi) = Ni − 4 for i = 1, 2. By (6.4),

dim(Z3) = (N1 − 4) + (N2 − 4) + 3 = dim(Z1) + dim(Z2) + 3. (6.6)

On the other hand, by the de Jong–Oort purity theorem [7, Theorem 4.1],

dim(Γ̃3) ≥ dim(Z3)− l = dim(Z1) + dim(Z2) + 3− l = dim(κ(Γ̃′1, Γ̃
′
2)) + 1.

6.4 Infinite clutching for non µ-ordinary

This section is similar to Section 4.3, in that we find situations in which Theorem 6.11 can be implemented

recursively, infinitely many times, except that we now focus on non µ-ordinary Newton polygons.

Let γ = (m,N, a) be a monodromy datum and let ν ∈ B(γ).

Corollary 6.14. (Extension of Corollary 4.7) Assume Z◦(γ)[ν] is non-empty and contains an irreducible

component Γ such that codim(Γ, Zc(γ)) = codim(Sh[ν], Sh). Then for any n in the semi-group of (Z,+) generated
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by {m− t : t | m}, there exists a µm-cover C → P1 over Fp where C is a smooth curve with Newton polygon

ν ⊕ ordn.

Proof . Let γ1 be as in the proof of Corollary 4.7. Note that u1(o) is empty for all o. So the pair γ1, γ satisfies

hypothesis (C), in addition to (A) and (B). The proof is then the same as for Corollary 4.7, replacing Theorem 4.5

with Theorem 6.11.

Corollary 6.15. (Extension of Corollaries 4.8 and 4.9) Let ε = (n− 1)(r − 1) if there exist 1 ≤ i < j ≤ N such

that a(i) + a(j) ≡ 0 mod m, and ε = (n− 1)(m− 1) otherwise. Assume Z◦(γ)[ν] is non-empty and contains

an irreducible component Γ such that codim(Γ, Zc(γ)) = codim(Sh[ν], Sh). Assume u�(C) u. Then for any

n ∈ Z≥1, there exists a smooth curve with Newton polygon un−1 ⊕ ν ⊕ ordε.

Proof . The result is true when n = 1 by hypothesis. For n ≥ 2, we use Corollary 4.8 (resp. Corollary 4.9 with

t = m) to construct a family Z×n−1 with Newton polygon un−1 ⊕ ord(n−2)(r−1) (resp. un−1 ⊕ ord(n−2)(m−1)).

The pair of monodromy data of the families Z×n−1 and Z satisfies hypotheses (A) and (B). Since u�(C) u, by

Lemma 6.7 (1), the pair also satisfies hypothesis (C). Hence we conclude by Theorem 6.11.

Corollary 6.16. With notation and hypotheses as in Corollary 4.10, assume furthermore that for some

ν2 ∈ B(γ2), Z◦2 [ν2] is non-empty and contains an irreducible component Γ such that codim(Γ, Z2) =

codim(Sh2[ν2], Sh2). Also assume that u1 �(C) u2 and u2 �(C) u2. Then there exists a smooth curve with

Newton polygon un1
1 ⊕ u

n2−1
2 ⊕ ν2 ⊕ ord(n1+n2−2)(m−1)+(r−1).

Proof . If n2 = 1, we first apply Corollary 4.9 with t = m to produce a family Z3 with Newton polygon

un1
1 ⊕ ord(n1−1)(m−1). Note that Z3 and Z2 satisfy hypotheses (A) and (B). Since u1 �(C) u2, by Lemma 6.7 (1),

Z3 and Z2 also satisfy hypothesis (C). Applying Theorem 6.11 produces a smooth curve with Newton polygon

un1
1 ⊕ ν2 ⊕ ord(n1−1)(m−1)+(r−1).

For n2 ≥ 2, we apply Corollary 4.10 to produce a family Z4 with Newton polygon un1
1 ⊕ u

n2−1
2 ⊕

ord(n1+n2−3)(m−1). Since u1 �(C) u2 and u2 �(C) u2, by Lemma 6.7 (2), Z4 and Z2 satisfy hypotheses (A), (B),

and (C). Applying Remark 3.7, we produce generalized monodromy data for Z4 and Z2 by marking an additional

unramified fiber. In this situation, the toric rank is ε′ = m− 1. Applying Theorem 6.11 to the generalized families

for Z4 and Z2 completes the proof.

Corollary 6.16 applies to the pair of monodromy data in the proof of Corollary 9.7.

6.5 An exceptional example

We give an example of a pair of monodromy data, and non µ-ordinary Newton polygon ν2, satisfying hypotheses

(A) and (B), but not (C), for which (6.1) can be verified directly. Furthermore, as the Kottwitz set B2 has size

2, this example also shows that hypothesis (C) is sufficient but not necessary for Proposition 6.8 to hold.

Recall that ss is the Newton polygon (1/2, 1/2).
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Proposition 6.17. If p ≡ 7 mod 8 is sufficiently large, then there exists a smooth curve over Fp of genus 9 with

Newton polygon ss7 ⊕ ord2.

Proof . Let Z2 = Z(8, 4, (4, 2, 5, 5)). Then Z2 is the special family M [15] in [28, Table 1], and the associated

Shimura variety Sh2 has signature type f2 = (1, 1, 0, 0, 2, 0, 1). At any prime p ≡ 7 mod 8, the µ-ordinary Newton

polygon is u2 = ord2 ⊕ ss3 and the basic Newton polygon is ν2 = ss5 [22, Section 6.2].

Let Z1 = Z(4, 3, (1, 1, 2)), which has signature (1, 0, 0). At any prime p ≡ 7 mod 8, the µ-ordinary Newton

polygon is u1 = ss [23, Section 4, m = 4]. Then d = 2 and r = 2. By Section 3.1, the induced signature type is

f†1 = (1, 0, 0, 0, 1, 0, 0).

The pair of monodromy data for Z1 and Z2 satisfies hypothesis (A). Let p ≡ 7 mod 8; then it also satisfies

hypothesis (B). For the orbit o = {1, 7}, by [22, Example 4.5], u1(o) has slopes 1/2 and u2(o) has slopes 0 and

1. Thus the pair does not satisfy hypothesis (C).

The image of Z̃1 × Z̃2 under the clutching morphism lies in the family Z̃3 of curves with monodromy datum

(8, 5, (2, 2, 2, 5, 5)). The Shimura variety Sh3 has signature type f3 = (2, 2, 0, 0, 3, 1, 1) and its µ-ordinary Newton

polygon is u3 = u21 ⊕ u2 ⊕ ord2 = ss5 ⊕ ord4 by Proposition 4.4. By [22, Section 4.3], there is only one element

u3 in B(Sh3) which is strictly larger than ss7 ⊕ ord2 = u21 ⊕ ν ⊕ ord2. From (2.6), we see that the codimension

of Sh3[u1 ⊕ ν2 ⊕ ord2] in Sh3 is 1. Thus, we conclude by Remark 6.12 and Theorem 6.11.

7 Supersingular cases in Moonen’s table

In [28, Theorem 3.6], Moonen proved there are exactly 20 positive-dimensional special families arising from cyclic

covers of P1. In [22, Section 6], we computed all of the Newton polygons ν that occur on the corresponding

Shimura varieties using the Kottwitz method, see Section 10. Moreover, in [22, Theorem 1.1], we proved that

the open Torelli locus intersects each non-supersingular (resp. supersingular) Newton polygon stratum (resp. as

long as the family has dimension 1 and p is sufficiently large).

In this section, we extend [22, Theorem 1.1] to include the supersingular Newton polygon strata in the five

remaining cases when the dimension of the family is greater than 1, using results from Section 6. Case (5) is

note-worthy since it was not previously known that there exists a smooth supersingular curve of genus 6 when

p ≡ 2, 3, 4 mod 5, see [23, Theorem 1.1] and [22, Theorem 1.1] for related results.

Theorem 7.1. There exists a smooth supersingular curve of genus g defined over Fp for all sufficiently large

primes satisfying the given congruence condition in the following families:

1. g = 3, when p ≡ 2 mod 3, in the family M [6];

2. g = 3, when p ≡ 3 mod 4, in the family M [8];

3. g = 4, when p ≡ 2 mod 3, in the family M [10];

4. g = 4, when p ≡ 5 mod 6, in the family M [14]; and

5. g = 6, when p ≡ 2, 3, 4 mod 5, in the family M [16].
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Corollary 7.2. Let γ = (m,N, a) denote the monodromy datum for one of Moonen’s special families from [28,

Table 1]. Assume p - m. Let ν ∈ ν(B(µm, f)) be a Newton polygon occurring on Sh(γ) as in Section 2.6. Then ν

occurs as the Newton polygon of a smooth curve in the family Z◦(γ), as long as p is sufficiently large when ν is

supersingular.

Proof . The proof is immediate from [22, Theorem 1.1] and Theorem 7.1.

Proof of Theorem 7.1 in cases (1), (2), (4), and (5). Let γ denote the monodromy datum, let Z denote

the special family of curves and let Sh denote the corresponding Shimura variety and suppose that p 6≡ 1 mod m.

Then dim(Z) = dim(Sh) = 2, and the basic locus Sh[ν] is supersingular with codimension 1 in Sh.

Following [22, Section 5.2], a point of Sh[ν] which is not in the image of Z◦ is the Jacobian of a singular

curve of compact type. This point arises from an admissible clutching of points from two families Z1 and Z2.

This yields an admissible degeneration of the inertia type, see [22, Definition 5.4]. A complete list of admissible

degenerations of the inertia type for Moonen’s families can be found in [22, Lemma 6.4]. In each of these cases,

there exists an admissible degeneration such that dim(Z1) = 0 and the µ-ordinary Newton polygon u1 for Z1 is

supersingular, and m1 = m2 (so d = 1).

In the degenerations from [22, Lemma 6.4], one checks using [22, Sections 6.1-6.2] that Z2 is a special family

with dim(Z2) = 1 and that Z2 has exactly two Newton polygons, the µ-ordinary one u2 and the basic one ν2

which is supersingular. By [22, Theorem 1.1], for p sufficiently large, Z◦2 [ν2] is non-empty. Since there are exactly

two Newton polygons on Z, we conclude that these are u = u1 ⊕ u2 and ν = u1 ⊕ ν2. By Proposition 4.4, the

pair of monodromy data for Z1 and Z2 satisfies hypothesis (B). The codimension condition in (6.1) is satisfied

since the basic locus has codimension 1 in both Z and Z2. By Remark 6.12 and Theorem 6.11, there exists a

1-dimensional family of smooth curves in Z with the basic Newton polygon ν, which is supersingular.

Proof of Theorem 7.1 in case (3). We use the same notation as in the first 2 paragraphs of the proof of the

other cases. The only difference in case (3) is that dim(Z) = dim(Sh) = 3 and the basic locus is supersingular

with codimension 2 in Sh. In case (3), the only admissible degeneration comes from the pair of monodromy data

γ1 = (3, 3, (1, 1, 1)) and γ2 = (3, 5, (2, 1, 1, 1, 1)). The latter of these is the monodromy datum for the special

family M [6]. The basic locus Sh[ν] has dimension 1. The codimension condition in (6.1) is not satisfied in this

situation: codim(Sh2[ν2], Sh2) = 1, while codim(Sh[ν], Sh) = 2.

For p sufficiently large, we claim that the number of irreducible components of Sh[ν] exceeds the number

that arise from the boundary of Z. Let W be a 1-dimensional family of supersingular singular curves in Z \ Z◦.

The only way to construct such a family W is to clutch a genus 1 curve with µ3-action together with a 1-

dimensional family of supersingular curves in M [6]. In other words, W arises as the image under κ of T1 × T2,

for some component T1 of Sh(3, 3, (1, 1, 1)) and some component T2 of the supersingular locus of M [6]. The
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number of choices for T1, for the µ3-actions, and for the labelings of the ramification points is a fixed constant

that does not depend on p.

Thus it suffices to compare the number sM [10] of irreducible components of the supersingular locus in M [10]

with the number sM [6] of irreducible components T2 of the supersingular locus in M [6] when p ≡ 2 mod 3. The

signature type for M [10] is (1, 3). By [22, Theorem 8.1], the number sM [10] grows with respect to p.

The signature type for M [6] is (1, 2). By [22, Remark 8.2], we see that sM [6] is the same for all odd

p ≡ 2 mod 3. More precisely, note that dim(Sh2) = 2 dim(Sh2(ν2)) when p ≡ 2 mod 3, that the center of the

associated reductive group is connected, and that the supersingular locus is the basic locus. Thus by [38, Remark

1.1.5 (2)], all odd p ≡ 2 mod 3 satisfy the hypothesis of [38, Theorem 1.1.4 (1), Proposition 7.4.2], which provides

an expression for sM [6] over Fp in terms of objects independent of p.

Hence there exist irreducible components of Sh[ν] which contain the Jacobian of a smooth curve, for p

sufficiently large.

8 Unlikely intersections

In this section, we prove that the non-trivial intersection of the open Torelli locus with the Newton polygon

strata found in most of the results of the paper is unexpected.

Recall that ss denotes the Newton polygon (1/2, 1/2).

Definition 8.1. Let ν be a symmetric Newton polygon of height 2g, and let Ag[ν] be its Newton polygon

stratum in the Siegel variety Ag. Then ν satisfies condition (U) if dim(Mg) < codim(Ag[ν],Ag).

Definition 8.2. The open Torelli locus has an unlikely intersection with Ag[ν] in Ag if there exists a smooth

curve of genus g with Newton polygon ν, and ν satisfies condition (U).

8.1 The codimension of Newton polygon strata in Siegel varieties

We study the codimension of the Newton strata in Ag. By [29, Theorem 4.1], see also (2.6),

codim(Ag[ν],Ag) = #Ω(ν), (8.1)

where Ω(ν) := {(x, y) ∈ Z× Z | 0 ≤ x, y ≤ g, (x, y) strictly below ν}.

Remark 8.3. By (8.1), if ν is non-ordinary, then codim(Ang[νn],Ang) grows quadratically in n. In particular,

if ν = ss, then codim(An[ssn],An) = n(n+ 1)/2− bn2/4c > n2/4.

Proposition 8.4. Let {un}n∈N be a sequence of symmetric Newton polygons. Let 2gn be the height of un.

Suppose there exists λ ∈ Q ∩ (0, 1) such that the multiplicity of λ as a slope of un is at least n for each n ∈ N.

Then codim(Agn [un],Agn) grows at least quadratically in n.
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Proof . Let ν = (λ, 1− λ) and let h be the height of ν. By hypothesis, un = νn ⊕ νn for some symmetric Newton

polygon νn for each n ∈ N and gn ≥ nh. Since νn lies on or above ordgn−nh, then un = νn ⊕ νn lies on or above

νn ⊕ ordgn−nh. Hence

codim(Agn [un],Agn) ≥ codim(Agn [νn ⊕ ordgn−nh],Agn).

By (8.1), or alternatively Proposition 6.8,

codim(Agn [νn ⊕ ordgn−nh],Agn) ≥ codim(Anh[νn],Anh).

Thus codim(Agn [un],Agn) ≥ codim(Anh[νn],Anh), which is sufficient by Remark 8.3.

8.2 Verifying condition (U)

Given a sequence {un}n∈N of symmetric Newton polygons of increasing height, we state simple criteria to ensure

that all but finitely many of them satisfy condition (U). Let 2gn be the height of un.

Proposition 8.5. Assume that gn grows linearly in n and that there exists λ ∈ Q ∩ (0, 1) such that the

multiplicity of λ as a slope of un grows linearly in n, for all sufficiently large n ∈ N. Then, for all sufficiently

large n, the Newton polygon un satisfies condition (U).

Proof . By Proposition 8.4, codim(Agn [un],Agn) is quadratic in n while dim(Mgn) = 3gn − 3 is linear in n by

hypothesis. Thus dim(Mgn) < codim(Agn [un],Agn) for n� 0.

Proposition 8.6. If there exists t ∈ R>0 such that the multiplicity of 1/2 as a slope of un is at least 2tgn, for

all n ∈ N, then un satisfies condition (U) for each n ∈ N such that gn ≥ 12/t2.

Proof . By the proof of Proposition 8.4 and Remark 8.3,

codim(Agn [un],Agn) ≥ codim(Adtgne[ss
dtgne],Adtgne) > (tgn)2/4.

So condition (U) for un is true when (tgn)2/4 ≥ (3gn − 3) and thus when gn ≥ 12/t2.

Proposition 8.7. Let ν1, ν2 be two symmetric Newton polygons, respectively of height 2g ≥ 2, and 2h ≥ 0.

Assume ν1 is not ordinary. Then

1. for all sufficiently large n ∈ N, the Newton polygon νn1 ⊕ ν2 satisfies condition (U);

2. if 1/2 occurs as a slope of ν1 with multiplicity 2δ > 0, then the Newton polygon νn1 ⊕ ν2 satisfies condition

(U), for each n ≥ max{15g/δ2, 9
√
h/δ}.8.1

8.1This bound is not sharp, but it is written so that the asymptotic dependency on g, δ, h is more clear.
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Proof . 1. Let λ ∈ Q ∩ (0, 1) be a slope of ν1, occurring with multiplicity mλ ≥ 1. Then, for each n ∈ N, the

Newton polygon un = νn1 ⊕ ν2 has height 2gn = 2(ng + h) and slope λ occurring with multiplicity at least

mλn. Taking un = νn1 ⊕ ν2, the sequence {un}n∈N satisfies the hypotheses of Proposition 8.5. Hence, part

(1) holds.

2. As for Proposition 8.4, codim(Ang[νn1 ],Ang) ≤ codim(Ang+h[νn1 ⊕ ν2],Ang+h). Therefore, condition (U)

for νn1 ⊕ ν2 is implied by the inequality

dim(Mng+h) < codim(Ang[νn1 ],Ang). (8.2)

Following the proof of Proposition 8.6, if the slope 1/2 occurs in ν1 with multiplicity 2δ, then inequality

(8.2) is true if 3(ng + h− 1) ≤ (nδ)2/4, which holds for n ≥ N := 6gδ−2(1 + (1 + δ2(h− 1)3−1g−2)1/2).

The asserted bound follows by noticing that N < max{6(1 +
√

2)g/δ2, 2
√

3(1 +
√

2)
√
h/δ}.

Remark 8.8. For g � 0, Proposition 8.7 implies that the non-trivial intersections of T ◦g withAg[ν] in Corollaries

4.8, 4.9, and 6.15 (resp. 4.10 and 6.16) are unlikely if the µ-ordinary Newton polygon u is not ordinary. (resp.

if either u1 or u2 is not ordinary).

Remark 8.9. Consider the following refinement of Definition 8.2: a non-empty substack U of Tg ∩ Ag[ν] is an

unlikely intersection if codim(U,Mg) < codim(Ag[ν],Ag).

The results in Sections 4.3 and 6.4 yield families Z of cyclic covers of P1 such that Z◦[ν] is non-empty and

has the expected codimension in Z. This produces an unlikely intersection as in Remark 8.9 for g � 0, when

the initial Newton polygon u is not ordinary.

9 Applications

We apply the results in Sections 4.3 and 6.4 to construct smooth curves of arbitrarily large genus g with

prescribed Newton polygon ν. By Proposition 8.7, when g is sufficiently large, the curves in this section lie in

the unlikely intersection T ◦g ∩ Ag[ν].

Notation 9.1. For s, t ∈ N, with s ≤ t/2 and gcd(s, t) = 1, we write (s/t, (t− s)/t) for the Newton polygon of

height 2t with slopes s/t and (t− s)/t, each with multiplicity t.

9.1 Newton polygons with many slopes of 1/2

We obtain examples of smooth curves of arbitrarily large genus g such that the only slopes of the Newton

polygons are 0, 12 , 1. We focus on examples where the multiplicity of 1/2 is large relative to g.

Corollary 9.2. Let m ∈ Z≥1 be odd and h = (m− 1)/2. Let p be a prime, p - 2m, such that the order f of p in

(Z/mZ)∗ is even and pf/2 ≡ −1 mod m. For n ∈ Z≥1, there exists a µm-cover C → P1 defined over Fp where C

is a smooth curve of genus g = h(3n− 2) with Newton polygon ν = sshn ⊕ ord2h(n−1). If n ≥ 34/h, then Jac(C)

lies in the unlikely intersection T ◦g ∩ Ag[ν].
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Proof . Let C → P1 be a µm-cover with γ = (m, 3, a) where a = (1, 1,m− 2). Without loss of generality, an

equation for C is ym = x2 − 1. By [39, Theorem 6.1], the Newton polygon of C is ssh. The first claim follows

from applying Corollary 4.9 to Z(m, 3, γ) with t = m. As in the proof of Proposition 8.6, the second claim follows

from the inequalities:

codim(Anh[ssnh],Anh) ≥ (nh)2/4 + (nh)/2 > dim(M3nh−2h) = 9nh− 6h− 3.

Remark 9.3. The Newton polygons in Proposition 9.2 are µ-ordinary; they do not appear in the literature, but

the result also follows from Proposition 4.6(3) if p ≡ −1 mod m or if p ≥ m(N − 3) where N is the (increasingly

large) number of branch points.

We highlight the case m = 3 below. To our knowledge, for any odd prime p, this is the first time that a

sequence of smooth curves has been produced for every g ∈ Z≥1 such that the multiplicity of the slope 1/2 in

the Newton polygon grows linearly in g.

Corollary 9.4. Let p ≡ 2 mod 3 be an odd prime. Let g ∈ Z≥1. There exists a smooth curve Cg of genus g

defined over Fp, whose Newton polygon νg only has slopes 0, 12 , 1 and such that the multiplicity of the slope 1/2

is at least 2bg/3c. If g ≥ 107, the curve Cg demonstrates an unlikely intersection of the open Torelli locus with

the Newton polygon stratum Ag[νg] in Ag.

Proof . If g = 3n− 2 for some n, the result is immediate from Proposition 9.2. For g = 3n− 2 + 2ε with ε = 1

(resp. ε = 2), we apply Corollary 4.7 with t = 1 (resp. twice) and obtain a smooth curve with Newton polygon

ssn ⊕ ord2n−2+2ε.

Working with Moonen’s families gives examples of families of curves where the multiplicity of the slope 1/2

is particularly high relative to the genus.

Corollary 9.5. Let p ≡ 4 mod 5. For n ∈ Z≥1, there exists a smooth curve of genus g = 10n− 4 in Z =

Z(5, 5n, (2, 2, . . . , 2)) over Fp with µ-ordinary Newton polygon un = ss4n ⊕ ord6n−4.

For n ≥ 7, the curves with Newton polygon un from Corollary 9.5 lie in the unlikely intersection T ◦g ∩ Ag[ν].

Proof . When p ≡ 4 mod 5, M [16] has µ-ordinary Newton polygon u1 = ord2 ⊕ ss4.9.1 The claim is immediate

from Corollary 4.9.

Corollary 9.6. Under the given congruence condition on p, and with p� 0, there exists a smooth curve in

Z = Z(m,N, a) over Fp with Newton polygon ν and codim(Z[ν], Z) = 1.

9.1The codimension condition in (6.1) does not hold for ν = ss6.
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construction (m,N,a) genus congruence Newton Polygon ν

M [9] +M [9] (6, 6, (1, 1, 4, 4, 4, 4)) 8 2 mod 3 ss4 ⊕ ord4

M [9] +M [12] (6, 6, (1, 1, 1, 1, 4, 4)) 9 2 mod 3 ss5 ⊕ ord4

M [12] +M [12] (6, 6, (1, 1, 1, 1, 1, 1)) 10 2 mod 3 ss7 ⊕ ord3

M [18] +M [18] (10, 6, (3, 3, 6, 6, 6, 6)) 16 9 mod 10 ss10 ⊕ ord6

M [20] +M [20] (12, 6, (4, 4, 7, 7, 7, 7)) 19 11 mod 12 ss12 ⊕ ord7

9.2 Newton polygons with slopes 1/3, 1/4, and beyond

Corollary 9.7. Let n ∈ Z≥1. The following Newton polygons occur for Jacobians of smooth curves over Fp

under the given congruence condition on p.

congruence ν (µ-ordinary) ν (non µ-ordinary) for p� 0

2, 4 mod 7 (1/3, 2/3)n ⊕ ord6n−6 NA

3, 5 mod 7 (1/3, 2/3)2n ⊕ ord6n−6 (1/3, 2/3)2n−2 ⊕ ss6 ⊕ ord6n−6

2, 5 mod 9 (1/3, 2/3)2n ⊕ ssn ⊕ ord8n−8 (1/3, 2/3)2n−2 ⊕ ssn+6 ⊕ ord8n−8

4, 7 mod 9 (1/3, 2/3)2n ⊕ ord9n−8 (1/3, 2/3)2n−2 ⊕ ss6 ⊕ ord9n−8

We remark that none of the last three lines follows from [5, Theorem 6.1] because there are at least two

Newton polygons in B(µm, f) having the maximal p-rank.

Proof . Lines 1, 2, and 3 are obtained from applying both Corollaries 4.9 and 6.15 to the families (7, 3, (1, 1, 5)),

M [17], and M [19], respectively.

For the last line, let m = 9 and p ≡ 4, 7 mod 9. There are four orbits o1 = (1, 4, 7), o2 = (2, 5, 8), o3 = (3),

and o4 = (6). The µ-ordinary Newton polygon for the family M [19] is u = (1/3, 2/3)2 ⊕ ord, and ν = ss6 ⊕ ord

also occurs for a smooth curve in the family. By [22, Section 6.2], for each o ∈ O, u(o) has at most 2 slopes, hence

hypothesis (C) is satisfied, and we obtain the Newton polygons in line 4 from Corollary 4.9 and 6.15.9.2

Corollary 9.8. Let n ∈ Z≥1. The following Newton polygons occur for Jacobians of smooth curves over Fp

under the given congruence condition on p.

congruence ν (µ-ordinary) ν (non µ-ordinary) for p� 0

2, 3 mod 5 (1/4, 3/4)n ⊕ ord4n−4 (1/4, 3/4)n−1 ⊕ ss4 ⊕ ord4n−4

3, 7 mod 10 (1/4, 3/4)n ⊕ ss2n ⊕ ord9n−9 (1/4, 3/4)n−1 ⊕ ss2n+4 ⊕ ord9n−9

9.2Alternatively, applying Corollary 4.10 and 6.16 produces the Newton polygons (1/3, 2/3)n1+2n2 ⊕ ord8n1+9n2−14 and
(1/3, 2/3)n1+2n2−2 ⊕ ss6 ⊕ ord8n1+9n2−13 for n1, n2 ∈ Z≥1.
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Proof . The proof follows from Corollary 4.9 and 6.15 applied to M [11] and M [18].

Corollary 9.9. Let p ≡ 2, 3 mod 5. For any n1, n2 ∈ Z≥1, there exists a smooth curve of genus g = 6n1 + 8n2

defined over Fp with Newton polygon (1/4, 3/4)n2+1 ⊕ ss2n1 ⊕ ord4(n1+n2−1).

Proof . We apply Corollary 4.10 to Z1 = Z(5, 3, (2, 2, 1)) and Z2 = M [11]. By [22, Section 6.2] and [23, Section

4], if p ≡ 2, 3 mod 5, then u1 = ss2 and u2 = (1/4, 3/4). 9.3

Example 9.10. Let m be prime and p have odd order modulo m. The Newton polygon ν1 for a µm-cover with

monodromy datum γ = (m, 3, a) has no slopes of 1/2 by [23, Section 3.2]. Applying Corollary 4.9 to Z = Zc(γ)

with t = m shows that the Newton polygon νn = νn1 ⊕ ord(m−1)(n−1) occurs for a smooth curve over Fp, for any

n ∈ Z≥1.

Examples of γ and ν1 can be found in [23, Theorem 5.4]. For example, when m = 11, a = (1, 1, 9)

and p ≡ 3, 4, 5, 9 mod 11, then ν1 = (1/5, 4/5). As another example, let m = 29, a = (1, 1, 27), and p ≡

7, 16, 20, 23, 24, 25 mod 29, then ν1 = (2/7, 5/7)⊕ (3/7, 4/7), yielding another infinite family that cannot be

studied using [5, Theorem 6.1].

10 Appendix: Newton polygons for Moonen’s families

For convenience, we provide the full list of Newton polygons on Moonen’s special families from [22, Section 6].

These occur for a smooth curve in the family by Corollary 7.2. The label M [r] is from [28, Table 1]. The notation

† means we further assume p� 0.

9.3The pair Z1 and Z2 does not satisfy hypothesis (C) and the codimension condition in (6.1) does not hold inductively.
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Label m a, f Newton Polygon [congruence on p]

M [1] 2 (1,1,1,1), (1) ord, ss [1 mod 2]

M [2] 2 (1,1,1,1,1,1), (2) ord2, ord ⊕ ss, ss2 [1 mod 2]

M [3] 3 (1,1,2,2), (1, 1) ord2 [1, 2 mod 3], ss2 [1 mod 3], ss2 [2 mod 3]†

M [4] 4 (1,2,2,3), (1, 0, 1) ord2 [1, 3 mod 4], ss2 [1 mod 4], ss2 [3 mod 4]†

M [5] 6 (2,3,3,4), (1, 0, 0, 0, 1) ord2 [1, 5 mod 6], ss2 [1 mod 6], ss2 [5 mod 6]†

M [6] 3 (1,1,1,1,2), (2, 1) ord3 [1 mod 3], ord2 ⊕ ss [2 mod 3], ord ⊕ ss2, (1/3, 2/3) [1 mod 3], ss3 [2 mod 3]†

M [7] 4 (1,1,1,1), ord3 [1 mod 4], ord ⊕ ss2 [3 mod 4]

(2, 1, 0) ord2 ⊕ ss [1 mod 4], ss3 [3 mod 4]†

M [8] 4 (1,1,2,2,2), ord3 [1 mod 4], ord2 ⊕ ss [3 mod 4]

(2, 0, 1) ord ⊕ ss2, (1/3, 2/3) [1 mod 4], ss3 [3 mod 4]†

M [9] 6 (1,3,4,4), ord3 [1 mod 6], ord2 ⊕ ss [5 mod 6]

(1, 1, 0, 0, 1) ord ⊕ ss2 [1 mod 6], ss3 [5 mod 6]†

M [10] 3 (1,1,1,1,1,1) ord4 [1 mod 3], ord2 ⊕ ss2 [2 mod 3]

(3, 1) ord2 ⊕ ss2 [1 mod 3], (1/4, 3/4) [2 mod 3]

ord ⊕ (1/3, 2/3) [1 mod 3], ss4 [2 mod 3]†, (1/4, 3/4) [1 mod 3]

M [11] 5 (1,3,3,3), ord4 [1 mod 5], (1/4, 3/4) [2, 3 mod 5], ord2 ⊕ ss2 [4 mod 5]

(1, 2, 0, 1) ord2 ⊕ ss2 [1 mod 5], ss4 [2, 3, 4 mod 5]†

M [12] 6 (1,1,1,3), ord4 [1 mod 6], ord ⊕ ss3 [5 mod 6]

(2, 1, 1, 0, 0) ord3 ⊕ ss [1 mod 6], ss4 [5 mod 6]†

M [13] 6 (1,1,2,2), ord4 [1 mod 6], ord2 ⊕ ss2 [5 mod 6]

(2, 1, 0, 1, 0) ord2 ⊕ ss2 [1 mod 6], ss4 [5 mod 6]†

M [14] 6 (2,2,2,3,3), ord4 [1 mod 6], ord2 ⊕ ss2 [5 mod 6]

(2, 0, 0, 1, 1) ord2 ⊕ ss2 [1 mod 6], ss4 [5 mod 6]†

ord ⊕ (1/3, 2/3) [1 mod 6]

M [15] 8 (2,4,5,5), ord5 [1 mod 8], ord2 ⊕ ss3 [3, 7 mod 8], ord3 ⊕ ss2 [5 mod 8]

(1, 1, 0, 0, 2, 0, 1) ord3 ⊕ ss2 [1 mod 8], (1/4, 3/4) ⊕ ss [3 mod 8], ord ⊕ (1/4, 3/4) [5 mod 8], ss5 [7 mod 8]†

M [16] 5 (2,2,2,2,2), ord6 [1 mod 5], (1/4, 3/4) ⊕ ss2 [2, 3 mod 5], ord2 ⊕ ss4 [4 mod 5]

(2, 0, 3, 1) ord4 ⊕ ss2 [1 mod 5], ss6 [2, 3, 4 mod 5]†

ord3 ⊕ (1/3, 2/3) [1 mod 5]

M [17] 7 (2,4,4,4), ord6 [1 mod 7], ord3 ⊕ (1/3, 2/3) [2, 4 mod 7]

(1, 2, 0, 2, 0, 1) (1/3, 2/3)2 [3, 5 mod 7], ord2 ⊕ ss4 [6 mod 7]

ord4 ⊕ ss2 [1 mod 7], (1/6, 5/6) [2, 4 mod 7], ss6 [3, 5, 6 mod 7]†

M [18] 10 (3,5,6,6), ord6 [1 mod 10], (1/4, 3/4) ⊕ ss2 [3, 7 mod 10], ord2 ⊕ ss4 [9 mod 10]

(1, 1, 0, 1, 0, 0, 2, 0, 1) ord4 ⊕ ss2 [1 mod 10], ss6 [3, 7, 9 mod 10]†

M [19] 9 (3,5,5,5), ord7 [1 mod 9], (1/3, 2/3)2 ⊕ ss [2, 5 mod 9]

(1, 2, 0, 2, 0, 1, 0, 1) ord ⊕ (1/3, 2/3)2 [4, 7 mod 9], ord2 ⊕ ss5 [8 mod 9]

ord5 ⊕ ss2 [1 mod 9], ss7 [2, 5, 8 mod 9]†, ord ⊕ ss6 [4, 7 mod 9]

M [20] 12 (4,6,7,7), ord7 [1 mod 12], ord3 ⊕ ss4 [5 mod 12], ord4 ⊕ ss3 [7 mod 12], ord2 ⊕ ss5 [11 mod 12]

(1, 1, 0, 1, 0, 0, ord5 ⊕ ss2 [1 mod 12], ord ⊕ (1/4, 3/4) ⊕ ss2 [5 mod 12]

2, 0, 1, 0, 1) ord2 ⊕ ss5 [7 mod 12], ss7 [11 mod 12]†
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