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Handling Editor: Jennifer Gill are increasingly dependent on forecasts of population responses to climate change.
For such forecasts to be accurate, they must account for multiple sources of uncer-
tainty, including those associated with projections of future climate scenarios and
those associated with the models used to describe population dynamics. While many
population forecasts incorporate parameter uncertainty in abiotic effects and pro-
cess variance related to unexplained temporal variation, most forecasts overlook the
importance of evaluating uncertainty in the structure of the population model itself.
By accounting for structural uncertainties in a model of population growth for blue
mussels, Jaatinen et al. (2021) demonstrated that density-dependent processes are
likely to exacerbate adverse effects of climate change and reduce population viability
of this keystone species. These findings highlight the importance of incorporating
structural unknowns in population forecasts and the value of approaches that ac-
count for multiple sources of climate and model uncertainties. Forecasts that capture
a range of possible population trajectories under climate change will help ensure ef-

ficient allocation of limited conservation resources.
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Earth's climate is rapidly changing in response to anthropogenic pres-
sures and these climatic changes are expected to continue, and pos-
sibly accelerate, over the next century (IPCC, 2014). Understanding
how climate change is impacting—and will impact—wildlife species is
essential to develop effective conservation strategies. Ecologists in-
creasingly rely on models to forecast (i.e. estimate the future state
of) populations in response to potential changes in climate over the
near and long term (Dietze, 2017). While the structure and complex-
ity of these models can vary greatly depending on species charac-
teristics and data availability, the accuracy of such predictive models

fundamentally depends on two things: (a) the projected values of

biologically relevant climate variables at appropriate spatial and
temporal scales; and (b) retrospective analyses that characterize the
effects of climate (as well as other abiotic and biotic factors) on de-
mographic rates, population abundance and/or rates of population
change. Wildlife population forecasts involve numerous sources of
uncertainty that are associated with both climate projections and
models of population dynamics (Figure 1). Failing to account for these
uncertainties can result in biased or misleading forecasts, potentially
leading to inefficient allocation of limited conservation resources.
Climate projections can range from relatively simple and deter-

ministic predictions (e.g. percent change in weather variables, such
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FIGURE 1 Sources of uncertainty in climate-dependent population forecasts. We highlight three sources of uncertainty associated
with models used to describe and forecast population trajectories (left): (1) assumptions about population structure and processes driving
population change (model structure), (2) uncertainty associated with relationships between population parameters and climate (parameter
uncertainty) and (3) temporal variation in population parameters beyond that explained by climate and other factors in the model (process
variance). In the left panel, F = stage-specific fecundity; S = stage-specific survival; /) = mean survival (on the logit scale); g, = the effect of
temperature (Temp) on survival; N = mean abundance; and 0, = process variance (unexplained temporal variation in abundance). We also
highlight three sources of uncertainty associated with climate projections (top right): (1) variation among global circulation models (model
structure), (2) uncertainty about future greenhouse gas emissions (emission scenario) and (3) inter-annual variation in weather (internal
variability). Reliable forecasts of wildlife populations rely on methods that can account for these varied sources of uncertainty (bottom
right; with blue- and green-shaded areas representing the proportion of total uncertainty associated with population model- and climate-
related sources respectively). Failing to account for uncertainties in population forecasts can result in biased inferences and overly confident
predictions about how populations are likely to respond to future changes in climate

as temperature or precipitation) to stochastic projections generated
from IPCC-class General Circulation Models (GCMs). The availabil-
ity of fine-scale climate projections has increased considerably with
recent advances in climate science, enabling population forecasts
to partition climate uncertainty into that associated with structural
differences among climate models, future greenhouse gas emis-
sion scenarios and inter-annual fluctuations in weather (Figure 1;
Hawkins & Sutton, 2009; Knutti & Sedlacek, 2013). The relative
importance of these sources of uncertainty varies with the spatial
and temporal scales of prediction. While inter-annual fluctuations
(i.e. internal variability) can be a large source of uncertainty for re-
gional projections of climate over the near term, its importance is
overshadowed by uncertainty associated with model structure and
emission scenarios over longer time horizons (Gauthier et al., 2016;
Hawkins & Sutton, 2009; lles & Jenouvrier, 2019).

The second factor influencing accuracy and precision of popu-
lation forecasts is the ability to understand and characterize how
abiotic conditions and biotic interactions influence the population
dynamics of a target species. Demographic rates, and consequently
population abundance, can vary immensely from one year or season
to the next. Much of the uncertainty in population forecasts results

from an incomplete understanding of the relative importance and

interactions among abiotic factors (e.g. climate) and biotic factors
(e.g. density dependence; Coulson et al., 2001; Grgtan et al., 2009).
Two sources of uncertainty that are frequently included in popula-
tion forecasts are parameter uncertainty (statistical uncertainty in
the relationships between population parameters and abiotic vari-
ables) and process variance (unexplained temporal variation in pop-
ulation parameters beyond that explained by variables in the model;
Gauthier et al., 2016; Jenouvrier, 2013; Zhao et al., 2019; Figure 1).
Jaatinen et al. (2021) accounted for an important, yet often over-
looked, source of uncertainty: the structure of the population model.

Population growth models can take a number of forms, depend-
ing on a species’ life history and the quantity and quality of data avail-
able to inform model parameters. For many long-lived vertebrates,
ecologists can estimate rates of survival, growth or reproductive
output using individual-based measures. Demographic rates can be
modelled as a function of climatic variables (as well as other factors),
and these climate-dependent measures can be used in stage- or
age-based projection models to forecast population abundance or
growth rates under different climate change scenarios (e.g. Gamelon
et al., 2017; Hansen et al., 2019; Nater et al., 2018). When demo-
graphic data are available, forecasts can, and should account for un-

certainty about population structure, initial population size, and in a
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metapopulation context, dispersal among local populations (lles &
Jenouvrier, 2019; Jenouvrier et al., 2020). For other species, like the
blue mussels Mytilus trossulus described in Jaatinen et al. (2021), it is
impossible to track individuals and estimate demographic rates. In
these instances, time series of abundance can be used to understand
how population density, in addition to abiotic factors, drive changes
in population size. Density-dependent processes are known to be
important mechanisms driving rates of population change when spe-
cies depend on one or more limited resources (Turchin, 1995). For
many sessile species, such as mussels, competition for both space
and food can lead to decreased growth and survival rates (Fréchette
et al., 1992; Strayer et al. 2020). Although many retrospective anal-
yses have explored density-dependent processes, few studies have
accounted for uncertainty about the strength and form of density
dependence in population forecasts (but see Colchero et al., 2009;
Reed et al., 2013) or assessed how interactions between population
density and climate could affect future population trajectories.

Jaatinen et al. (2021) monitored population densities of blue
mussels at six locations off the southern coast of Finland over a
17-year period. They used these data to explore how sea surface
temperature and salinity, along with density-dependent processes,
affected population dynamics of the keystone species. Both tem-
perature and salinity had strong impacts on mussel populations, but
the negative effects of temperature were less severe than expected
when population densities were high. Jaatinen et al. (2021) then pro-
jected how mussel populations are likely to respond to future in-
creases in temperature and decreases in salinity, exploring a range
of values inspired by regional climate projections from an ensem-
ble of GCMs (Meier et al., 2012). The forecasts accounted for many
sources of uncertainty: emission scenarios (in a simplified way, with
trends in mean salinity and temperature values), parameter uncer-
tainty (using samples from Bayesian posterior distributions) and pro-
cess variance. They also accounted for uncertainty in the structure
of the population model. Specifically, they estimated the probability
of population declines under different models of population growth
(no density dependence, a density-dependent [Ricker] model with
additive climate effects and a density-dependent [Ricker] model
that included interactions between population density and climate;
Dennis et al. 2006).

This exploration of the different ways in which density-dependent
processes could affect population forecasts of blue mussels provided
insights that would have been overlooked had analyses simply relied
on the best-supported model for population forecasts. Retrospective
models had provided evidence that interactions between tempera-
ture and density could buffer the population against severe drops in
growth rates when densities and temperatures were very high (Jaatinen
et al, 2021: Fig. 4). However, comparisons of population forecasts
under different density-dependent assumptions demonstrated that
when all factors were taken into account, density-dependent mech-
anisms exacerbated adverse effects of climate change and reduced
population viability (Jaatinen et al., 2021: Fig. 6). The extent to which
density-dependent processes exacerbate negative effects of climate, as

they did in blue mussel populations, or mediate climate change effects

via compensatory increases in population growth rates (e.g. as in Nater
et al., 2018; Reed et al., 2013) is an emerging field of research. Jaatinen
et al.'s (2021) approach could be used in analyses of other species to
evaluate the extent to which species traits and/or environmental
conditions influence the outcome of interactions between density-
dependent processes and climate variables.

The ability to accurately forecast future population states under
climate change is rapidly improving as a result of advances in cli-
mate science and population modelling, as well as recent surges in
the quantity and types of data available on wildlife populations.
Population forecasting efforts should aim to infuse mechanism
whenever possible. Even when demographic data are not available,
population models could account for density-dependent effects (as
Jaatinen et al. 2021 did) or use count data to characterize underlying
demographic processes (Dail & Madsen, 2011; Zipkin et al., 2014).
Yet, increased model complexity may not always improve popula-
tion forecasts, and could even decrease the accuracy of forecasts if
responses to abiotic factors are sufficiently variable across time or
space (Rollinson et al., 2021). Acknowledging structural uncertain-
ties and potential sources of spatiotemporal variation, however, al-
lows managers and policymakers to make well-informed, data-driven
conservation decisions.

Population dynamics are driven by a multitude of biotic and abi-
otic factors. While we can never identify and describe all the ways
in which these factors influence changes in population sizes, it is
critical that forecasts account for structural uncertainties in popula-
tion processes and adequately acknowledge what is less certain and
what is unknown. Accounting for multiple sources of uncertainty
ensures that population forecasts reflect the full range of possible
outcomes under climate change, providing unbiased assessments to

inform conservation strategies for imperiled species.
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