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Earth's climate is rapidly changing in response to anthropogenic pres-
sures and these climatic changes are expected to continue, and pos-
sibly accelerate, over the next century (IPCC, 2014). Understanding 
how climate change is impacting—and will impact—wildlife species is 
essential to develop effective conservation strategies. Ecologists in-
creasingly rely on models to forecast (i.e. estimate the future state 
of) populations in response to potential changes in climate over the 
near and long term (Dietze, 2017). While the structure and complex-
ity of these models can vary greatly depending on species charac-
teristics and data availability, the accuracy of such predictive models 
fundamentally depends on two things: (a) the projected values of 

biologically relevant climate variables at appropriate spatial and 
temporal scales; and (b) retrospective analyses that characterize the 
effects of climate (as well as other abiotic and biotic factors) on de-
mographic rates, population abundance and/or rates of population 
change. Wildlife population forecasts involve numerous sources of 
uncertainty that are associated with both climate projections and 
models of population dynamics (Figure 1). Failing to account for these 
uncertainties can result in biased or misleading forecasts, potentially 
leading to inefficient allocation of limited conservation resources.

Climate projections can range from relatively simple and deter-
ministic predictions (e.g. percent change in weather variables, such 
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population regulation in blue mussels. Journal of Animal Ecology, 90, 562–573, https://
doi.org/10.1111/1365-2656.13377. Conservation strategies for threatened species 
are increasingly dependent on forecasts of population responses to climate change. 
For such forecasts to be accurate, they must account for multiple sources of uncer-
tainty, including those associated with projections of future climate scenarios and 
those associated with the models used to describe population dynamics. While many 
population forecasts incorporate parameter uncertainty in abiotic effects and pro-
cess variance related to unexplained temporal variation, most forecasts overlook the 
importance of evaluating uncertainty in the structure of the population model itself. 
By accounting for structural uncertainties in a model of population growth for blue 
mussels, Jaatinen et al. (2021) demonstrated that density-dependent processes are 
likely to exacerbate adverse effects of climate change and reduce population viability 
of this keystone species. These findings highlight the importance of incorporating 
structural unknowns in population forecasts and the value of approaches that ac-
count for multiple sources of climate and model uncertainties. Forecasts that capture 
a range of possible population trajectories under climate change will help ensure ef-
ficient allocation of limited conservation resources.
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as temperature or precipitation) to stochastic projections generated 
from IPCC-class General Circulation Models (GCMs). The availabil-
ity of fine-scale climate projections has increased considerably with 
recent advances in climate science, enabling population forecasts 
to partition climate uncertainty into that associated with structural 
differences among climate models, future greenhouse gas emis-
sion scenarios and inter-annual fluctuations in weather (Figure  1; 
Hawkins & Sutton,  2009; Knutti & Sedláček,  2013). The relative 
importance of these sources of uncertainty varies with the spatial 
and temporal scales of prediction. While inter-annual fluctuations 
(i.e. internal variability) can be a large source of uncertainty for re-
gional projections of climate over the near term, its importance is 
overshadowed by uncertainty associated with model structure and 
emission scenarios over longer time horizons (Gauthier et al., 2016; 
Hawkins & Sutton, 2009; Iles & Jenouvrier, 2019).

The second factor influencing accuracy and precision of popu-
lation forecasts is the ability to understand and characterize how 
abiotic conditions and biotic interactions influence the population 
dynamics of a target species. Demographic rates, and consequently 
population abundance, can vary immensely from one year or season 
to the next. Much of the uncertainty in population forecasts results 
from an incomplete understanding of the relative importance and 

interactions among abiotic factors (e.g. climate) and biotic factors 
(e.g. density dependence; Coulson et al., 2001; Grøtan et al., 2009). 
Two sources of uncertainty that are frequently included in popula-
tion forecasts are parameter uncertainty (statistical uncertainty in 
the relationships between population parameters and abiotic vari-
ables) and process variance (unexplained temporal variation in pop-
ulation parameters beyond that explained by variables in the model; 
Gauthier et al., 2016; Jenouvrier, 2013; Zhao et al., 2019; Figure 1). 
Jaatinen et  al.  (2021) accounted for an important, yet often over-
looked, source of uncertainty: the structure of the population model.

Population growth models can take a number of forms, depend-
ing on a species’ life history and the quantity and quality of data avail-
able to inform model parameters. For many long-lived vertebrates, 
ecologists can estimate rates of survival, growth or reproductive 
output using individual-based measures. Demographic rates can be 
modelled as a function of climatic variables (as well as other factors), 
and these climate-dependent measures can be used in stage- or 
age-based projection models to forecast population abundance or 
growth rates under different climate change scenarios (e.g. Gamelon 
et al., 2017; Hansen et al., 2019; Nater et al., 2018). When demo-
graphic data are available, forecasts can, and should account for un-
certainty about population structure, initial population size, and in a 

F I G U R E  1   Sources of uncertainty in climate-dependent population forecasts. We highlight three sources of uncertainty associated 
with models used to describe and forecast population trajectories (left): (1) assumptions about population structure and processes driving 
population change (model structure), (2) uncertainty associated with relationships between population parameters and climate (parameter 
uncertainty) and (3) temporal variation in population parameters beyond that explained by climate and other factors in the model (process 
variance). In the left panel, F = stage-specific fecundity; S = stage-specific survival; β0 = mean survival (on the logit scale); βT = the effect of 
temperature (Temp) on survival; 

−

N = mean abundance; and σp = process variance (unexplained temporal variation in abundance). We also 
highlight three sources of uncertainty associated with climate projections (top right): (1) variation among global circulation models (model 
structure), (2) uncertainty about future greenhouse gas emissions (emission scenario) and (3) inter-annual variation in weather (internal 
variability). Reliable forecasts of wildlife populations rely on methods that can account for these varied sources of uncertainty (bottom 
right; with blue- and green-shaded areas representing the proportion of total uncertainty associated with population model- and climate-
related sources respectively). Failing to account for uncertainties in population forecasts can result in biased inferences and overly confident 
predictions about how populations are likely to respond to future changes in climate
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metapopulation context, dispersal among local populations (Iles & 
Jenouvrier, 2019; Jenouvrier et al., 2020). For other species, like the 
blue mussels Mytilus trossulus described in Jaatinen et al. (2021), it is 
impossible to track individuals and estimate demographic rates. In 
these instances, time series of abundance can be used to understand 
how population density, in addition to abiotic factors, drive changes 
in population size. Density-dependent processes are known to be 
important mechanisms driving rates of population change when spe-
cies depend on one or more limited resources (Turchin, 1995). For 
many sessile species, such as mussels, competition for both space 
and food can lead to decreased growth and survival rates (Fréchette 
et al., 1992; Strayer et al. 2020). Although many retrospective anal-
yses have explored density-dependent processes, few studies have 
accounted for uncertainty about the strength and form of density 
dependence in population forecasts (but see Colchero et al., 2009; 
Reed et al., 2013) or assessed how interactions between population 
density and climate could affect future population trajectories.

Jaatinen et  al.  (2021) monitored population densities of blue 
mussels at six locations off the southern coast of Finland over a 
17-year period. They used these data to explore how sea surface 
temperature and salinity, along with density-dependent processes, 
affected population dynamics of the keystone species. Both tem-
perature and salinity had strong impacts on mussel populations, but 
the negative effects of temperature were less severe than expected 
when population densities were high. Jaatinen et al. (2021) then pro-
jected how mussel populations are likely to respond to future in-
creases in temperature and decreases in salinity, exploring a range 
of values inspired by regional climate projections from an ensem-
ble of GCMs (Meier et al., 2012). The forecasts accounted for many 
sources of uncertainty: emission scenarios (in a simplified way, with 
trends in mean salinity and temperature values), parameter uncer-
tainty (using samples from Bayesian posterior distributions) and pro-
cess variance. They also accounted for uncertainty in the structure 
of the population model. Specifically, they estimated the probability 
of population declines under different models of population growth 
(no density dependence, a density-dependent [Ricker] model with 
additive climate effects and a density-dependent [Ricker] model 
that included interactions between population density and climate; 
Dennis et al. 2006).

This exploration of the different ways in which density-dependent 
processes could affect population forecasts of blue mussels provided 
insights that would have been overlooked had analyses simply relied 
on the best-supported model for population forecasts. Retrospective 
models had provided evidence that interactions between tempera-
ture and density could buffer the population against severe drops in 
growth rates when densities and temperatures were very high (Jaatinen 
et  al.,  2021: Fig. 4). However, comparisons of population forecasts 
under different density-dependent assumptions demonstrated that 
when all factors were taken into account, density-dependent mech-
anisms exacerbated adverse effects of climate change and reduced 
population viability (Jaatinen et al., 2021: Fig. 6). The extent to which 
density-dependent processes exacerbate negative effects of climate, as 
they did in blue mussel populations, or mediate climate change effects 

via compensatory increases in population growth rates (e.g. as in Nater 
et al., 2018; Reed et al., 2013) is an emerging field of research. Jaatinen 
et al.'s (2021) approach could be used in analyses of other species to 
evaluate the extent to which species traits and/or environmental 
conditions influence the outcome of interactions between density-
dependent processes and climate variables.

The ability to accurately forecast future population states under 
climate change is rapidly improving as a result of advances in cli-
mate science and population modelling, as well as recent surges in 
the quantity and types of data available on wildlife populations. 
Population forecasting efforts should aim to infuse mechanism 
whenever possible. Even when demographic data are not available, 
population models could account for density-dependent effects (as 
Jaatinen et al. 2021 did) or use count data to characterize underlying 
demographic processes (Dail & Madsen, 2011; Zipkin et al., 2014). 
Yet, increased model complexity may not always improve popula-
tion forecasts, and could even decrease the accuracy of forecasts if 
responses to abiotic factors are sufficiently variable across time or 
space (Rollinson et al., 2021). Acknowledging structural uncertain-
ties and potential sources of spatiotemporal variation, however, al-
lows managers and policymakers to make well-informed, data-driven 
conservation decisions.

Population dynamics are driven by a multitude of biotic and abi-
otic factors. While we can never identify and describe all the ways 
in which these factors influence changes in population sizes, it is 
critical that forecasts account for structural uncertainties in popula-
tion processes and adequately acknowledge what is less certain and 
what is unknown. Accounting for multiple sources of uncertainty 
ensures that population forecasts reflect the full range of possible 
outcomes under climate change, providing unbiased assessments to 
inform conservation strategies for imperiled species.
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