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SOCIAL NETWORK ANALYSIS FOR SOCIAL NEUROSCIENTISTS

Abstract

Although social neuroscience is concerned with understanding how the brain interacts
with its social environment, prevailing research in the field has primarily considered the human
brain in isolation, deprived of its rich social context. Emerging work in social neuroscience that
leverages tools from network analysis has begun to pursue this issue, advancing knowledge of
how the human brain influences and is influenced by the structures of its social environment. In
this paper, we provide an overview of key theory and methods in network analysis (especially
for social systems) as an introduction for social neuroscientists who are interested in relating
individual cognition to the structures of an individual’s social environments. We also highlight
some exciting new work as examples of how to productively use these tools to investigate
questions of relevance to social neuroscientists. We include tutorials to help with practical
implementation of the concepts that we discuss. We conclude by highlighting a broad range of
exciting research opportunities for social neuroscientists who are interested in using network

analysis to study social systems.
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Social Network Analysis for Social Neuroscientists

Humans are social beings and are immersed in intricate social structures. Social
interactions and relationships play important roles in healthy human development and
functioning (House et al., 1988; Seeman, 1996; Uchino, 2006), and the need to navigate
complicated social interactions for survival advantage may have contributed to human brain
evolution (Dunbar, 2008). Nevertheless, most work in social neuroscience has studied individual
cognition in isolation, deprived of its rich social context. As demonstrated recently (Morelli et al.,
2018; O’Donnell et al., 2017; Parkinson et al., 2017, 2018; Zerubavel et al., 2015), social
neuroscientists can leverage tools from network analysis to characterize the structure of
individuals’ social worlds to improve understanding of how individual brains shape and are
shaped by their social networks (Weaverdyck & Parkinson, 2018).

Recent work that relates characteristics of individuals’ social networks to their behaviors
and attitudes has uncovered important insights into how people are impacted by the structures
of their social world. For instance, one study that used network tools to characterize the
patterning of relationships in an organization showed that individuals who are not well-
connected to well-connected others are especially likely to be the object of negative gossip and
scapegoating (Ellwardt et al., 2012). As this example and other recent research demonstrate,
the features of an individual’s social network can profoundly impact how they feel (Coviello et
al., 2014; Fowler & Christakis, 2008); how they behave toward others (Ellwardt et al., 2012;
Paluck & Shepherd, 2012; Shepherd & Paluck, 2015); and their general behaviors, attitudes,
and ways of seeing the world (Aral & Walker, 2012; Centola, 2011; Christakis & Fowler, 2007;
Oh & Kilduff, 2008). Clearly, social network attributes significantly influence individuals’
cognition, behavior, and affect. However, the mechanisms that underlie these effects remain
poorly understood. In this paper, we provide an overview of key theory and methods in network
analysis (especially for social systems) and discuss practical examples to highlight how network

analysis can be useful for social neuroscientists who are interested in relating individual
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cognition to the structure of social environments. We also include two tutorials to help with

practical implementations of the concepts in this paper.

Key Concepts of Network Analysis for Social Systems

We now introduce some key concepts of network analysis that are particularly relevant
for understanding social systems (see also Table 1).
Nodes and Edges

Suppose that we want to characterize how people are connected to one another in a
small town. What do we want to know? We may first wish to identify the individuals in the
network. We represent individuals in a network (i.e., “graph”) by nodes, which are often called
“vertices” in mathematics and “actors” in the context of social systems (see Figure 1). For
introductions to networks, see Wasserman & Faust (1994) for a sociological perspective,
Kolaczyk (2009) for a statistical perspective, and Newman (2018) for a physical-science
perspective). In our hypothetical example, a node may represent an inhabitant of a town. We
may next wish to understand who is connected to whom in a network. Considering such
connections is what differentiates studying a group (a collection of nodes) from a network (which
also encodes the connections between nodes). We represent these connections by edges
(which are often called “ties” or “links”). Depending on the questions of interest, edges can
encode different relationships. For instance, edges can represent friendship (e.g., in academic
cohorts; Parkinson et al., 2017, or in student organizations; Zerubavel et al., 2015) or
professional relationships (e.g., in sports teams; Grund, 2012, or in private firms; Zaheer & Bell,
2005). One can define such relationships in terms of subjective reports (e.g., of who likes whom;
Zerubavel et al., 2015, or who trusts whom; Morelli et al., 2018) or the frequency of particular
types of interactions or communications (e.g., physical encounters; Read, Eames, & Edmunds,
2008, or exchange of e-mails; Wuchty & Uzzi, 2011). Edges can also represent other

phenomena, such as shared attributes (e.g., attendance at the same social events; Davis,
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Gardner, & Gardner, 1941) or common behavioral patterns (e.g., voting similarities; Waugh, Pei,
Fowler, Mucha, & Porter, 2009).

It is sometimes important to consider the directions of edges. For example, in a
friendship network, we may place an edge from node A to node B if A reports “liking” B;
however, although it may be awkward, it is possible that B may not “like” A. One can represent
such relationships with directed edges, with an arrow pointing from one node to another (for
example, from A to B). In other cases, edges are undirected, either because the criterion that is
used to define them is inherently undirected (e.g., shared attributes) or because it can
sometimes be pragmatic to consider edges as undirected. For example, a researcher may
choose to consider an undirected “friendship” tie between A and B if and only if they both
reported liking one another to impose a stringent definition of friendship and/or if the researcher
wishes to relate these data to other undirected data, such as interpersonal similarities. It is also
sometimes desirable to consider edge weights to represent relationship strengths. For example,
one can encode interaction frequency with edges that are weighted by the number of
interactions (during some time period) between two actors. In other cases, edges are
unweighted, either because one obtains them in a way that is unweighted by nature (e.g., edges
that encode the existence of a relationship), or because there is a compelling reason to consider
edges as unweighted. For example, to characterize only meaningful relationships, one may
choose to use an edge that represents a relationship between two people if and only if it meets
or exceeds a minimum threshold on the number of interactions.

In summary, edges in a network can be directed or undirected, and they can be either
weighted or unweighted. Choosing how much information to include in edges depends both on
how data are acquired (e.g., by asking questions that produce binary or continuous responses)
and on how they are encoded in a network (e.g., decisions to threshold and binarize continuous
responses). There are advantages and disadvantages to using directed and weighted edges,

rather than using edges that are undirected and unweighted. Although directed and weighted
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edges can provide additional information about the nature of a relationship between two nodes,
they can also complicate analysis. As we discuss in the following sections, they can complicate
the characterization of various network measures and affect associated inferences. (Some
methods also do not work in such more complicated cases; Newman, 2018.) Consequently,
researchers should carefully consider these factors when deciding how to represent a social
network. Other complications are that a network can include multiple types of edges (“multiplex
networks”) and the nodes and edges in a network can change over time (“temporal networks”).
We discuss these issues later (see the section on “Multilayer Networks”), and they are reviewed
in detail elsewhere (Aleta & Moreno, 2019; Kivela et al., 2014).
Sociocentric Networks versus Egocentric Networks

One can study networks either by considering a sociocentric network (which is also
called a “complete network”; Marsden, 2002; Newman, 2018) or by taking an egocentric (i.e.,
“ego-network”) approach (Crossley et al., 2015). A sociocentric-network approach encapsulates
a complete picture of who is connected’ with whom in a network. One can construct a
sociocentric social network by asking each person in a network about those with whom they are
connected directly using a desired type of connection (depending on the question of interest).
For instance, one might survey all members of a sports team to characterize a friendship
network by asking who their friends are or who they turn to for emotional support. Recent work
in social neuroscience that leverages tools from network science has often used a sociocentric-

network approach to characterize relatively small, bounded networks. Bounded networks (which

" We use the term “connected” to indicate that two individuals have a relationship with one another. We
use the term “connected directly” to indicate that two individuals are connected with a distance of 1 (i.e.,
they are “adjacent” to each other in a network). Our use of the term “connected directly” is synonymous
with “direct ties” and the mathematical definition of “adjacent.” We also use the term “connected indirectly”
to indicate that two individuals do not have a direct relationship with one another, but they each have
relationships through one or more third parties (e.g., through mutual friends). We use the term
“connected” throughout the paper, because we expect this terminology to be intuitive to our target
audience for conveying our intended meaning. It is important not to confuse our usage of “connected”
with the use of it to describe graphs or components of graphs (rather than individual nodes) in graph
theory. The latter usage of “connected” refers to the idea that a path exists between every pair of nodes in
a graph or in a component of a graph (Newman, 2018).
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are also called “closed networks”) have clearly defined boundaries. In the strictest adherence to
the definition of “bounded,” the boundaries of a social network are known perfectly, because
individuals reside in a restrictive physical environment, such as a remote island (Brent et al.,
2017), or are assigned to isolated social groups (Sallet et al., 2011). It is difficult to obtain
perfectly bounded networks in humans, but recent work in social neuroscience has
characterized relatively bounded networks, such as academic programs, dorms, and clubs
(Morelli et al., 2018; Parkinson et al., 2017, 2018; Zerubavel et al., 2015). It has then collected
neuroimaging data from some of the members of these relatively bounded networks to relate
neural processing to social network measures. Such an approach demonstrates one useful way
to study individual cognition in the context of a broader social environment.

It is often insightful to study social networks using an ego-network? (i.e., egocentric-
network) approach. An ego network is a network based on an individual (the “ego”) and their
friends (the “alters”). One can construct ego networks in a few different ways. If one possesses
data on an entire bounded network, one can use it to extract “objective” ego networks that
consist of one individual and their friends. In such cases, where one obtains ego networks as
part of a study that also characterizes sociocentric networks, researchers may also be
interested in comparing an individual’s perceptions of a network to actual characteristics of the

network. Such a comparison can lead to interesting questions about how people think about

2 By default, an ego network is a 1-ego network, which consists of an ego’s alters and the edges between
those alters. A 1-ego network thereby consists of the nodes and edges that are in an ego’s personal
social network (Crossley et al., 2015; Jeub, Balachandran, Porter, Mucha, & Mahoney, 2015). When
mathematically analyzing 1-ego networks, one often does not include the direct connections between the
ego and the alter, as one instead concentrates on the direct connections that exist between the alters.
When we write “ego networks”, we refer specifically to 1-ego networks. One can go further than an ego’s
1-neighborhood by obtaining information about the alters’ additional connections, beyond just those who
have direct ties with an ego (e.g., by also obtaining the ego networks of each of the ego’s alters). This
yields a 2-ego network, which gives information about the nodes of distance 2 or less from an ego (e.g.,
“friends of friends” of the ego). One can iterate this process further to obtain k-ego networks (i.e., about all
nodes within distance k of an ego) and thereby encode information about larger social structures in which
an ego is immersed. A benefit of k-ego networks is that they provide more information about the broader
social contexts of an individual than 1-ego networks, although it is often more cumbersome to obtain them
in practice.
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their relationships and relate to the social world around them through “cognitive social
structures” (Krackhardt, 1987). In this case, one can construct “subjective” ego networks by
asking individuals (“egos”) to complete a questionnaire about the people (“alters”) to whom they
are connected’ directly and whether these people are also connected directly to one another.
For instance, one can survey a single member of a sports team to ask who their friends are and
which of their friends are also friends with one another. Although it is relatively uncommon to
obtain data on individuals’ perceptions of relationships between third parties in situations when
one already has characterized a sociocentric network with those individuals (and their alters),
such an approach provides a useful way to explore questions about individuals’ perceptions of
their networks and characteristics of a sociocentric network.

It is most common to obtain and characterize ego networks independently, without
possessing information about an associated sociocentric network. In this situation, one typically
characterizes ego networks through questionnaires that ask one individual (the “ego”) about the
people (the “alters”) to whom they are connected directly and, in some cases, whether those
people are connected directly to one another. When obtaining a sociocentric network is
infeasible or inconvenient, employing an ego-network approach alone can be useful. However,
ego networks do not provide a complete picture of an entire sociocentric network, which limits
the type of inferences that one can draw from such data. For instance, when using an ego-
network approach, if one finds that individual differences in network position® are associated
with a behavioral or neural outcome, it is unclear whether this relationship is due to actual
differences in network position or differences in individuals’ perceptions of their network position

(e.g., how many friends people think that they have versus how many friends they actually

3 We use “network position” as a general term to refer to features that are related to an individual's
location in a social network (e.g., with whom they are close in social ties) and their node-level
characteristics (e.g., centrality measures that quantify the influence of an individual in relation to other
individuals). It is important not to confuse our use of this terminology with the more specific use of
“network position” in relation to positional analysis (Wasserman & Faust, 1994).
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have). Despite their limitations, a key advantage of ego networks over sociocentric networks is
that it is much easier to collect the former, and one can conveniently add them to a study by
administering questionnaires to individuals in isolation. Several new insights in social
neuroscience have resulted from the use of ego-network approaches. For example, estimates of
the number of connections between the ego and other people from self-reporting and Facebook
ego networks are associated with structural and functional differences in brain regions
(Hampton et al., 2016; Von Der Heide et al., 2014), and individual differences in network
position that were identified from Facebook ego networks were associated with brain activity
during a social-influence task (O’Donnell et al., 2017).
Mathematical Representation of Networks

One can represent a network mathematically using an adjacency matrix*. An adjacency
matrix A of a network is an n x n matrix (where n is the number of nodes) with elements Aj. In
an undirected and unweighted network, Aj is 1 if there is an edge between nodes i and j, and A;
is 0 if there is no edge between nodes i and j. Because A;= A;in an undirected network, an
adjacency matrix of such a network is symmetric (see Figure 1). One can also represent a
network using an edge list, which enumerates node pairs that are connected directly by edges
(see Figure 1).
Social Distance

Consider two strangers who are meeting for the first time. After speaking with one
another for a while, they may be surprised to find that they have an acquaintance in common
and then marvel at how small the world seems to be. Anecdotal evidence suggests that many
people have had this sort of experience, reflecting the “small-world phenomenon” (i.e., the idea
that people in general are connected to each other by relatively short chains of relationships;

Newman, 2018). Many people have an intuitive sense of the small-world phenomenon, but one

4 More complicated network structures, such as multilayer networks, have more complicated adjacency
structures (Kivela et al., 2014).
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may wonder how “small” the world really is (i.e., how close together, in terms of social ties,
people actually are). In his pioneering studies of social distance, social psychologist Stanley
Milgram and colleagues sought to test this question (Milgram, 1967, 1969). In these
experiments, they recruited participants in the midwestern part of the United States and
instructed them that their goal was to send a package (which included an official-looking letter
and a stack of cards that was meant to track each person in the chain) to reach a target
individual in Massachusetts. If they did not personally know the person on a first-name basis,
they were instructed to forward the package to one of their direct connections who they thought
was likely to be closer to the target. Milgram and his colleagues found that, on average, it took
six steps for the packages (among those that completed their journey) to reach the target
individual (see Figure 2). This finding has been popularized in popular culture as “six degrees of
separation,” expressing the idea that any two people in the world are separated by six or fewer
social connections. More recently, scholars have examined the small-world phenomenon
through algorithmic frameworks (Kleinberg, 2000, 2011) and experiments like those of Milgram
and colleagues have been conducted using communication channels such as e-mail (Dodds et
al., 2003) and online social networks (Ugander et al., 2011).

In this section, we overview concepts and methods for calculating social distance and
discuss their utility for examining questions of interest to social neuroscientists. Given a network
of nodes and edges, one can calculate a distance between two nodes (e.g., how far A is from B
in a network). There are several ways of calculating distances in a network. The simplest is
geodesic distance, which is the smallest number of edges that one needs to traverse to connect
two nodes in a network (i.e., a shortest path). Two nodes can be connected either by direct ties
(e.g., “friends” in a friendship network, with a distance of 1, because they are “adjacent” in the
network) or by indirect ties (e.g., “friends of friends”, which yields a distance of 2, “friends of
friends of friends”, which yields a distance of 3, and so on). The numerical values of social

distance lead to different sociological inferences, which depend on context. For instance,
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consider the friendship network of a first-year cohort at a university. Suppose that A and B in
this network are separated by a social distance of 4 (e.g., “friends of friends of friends of
friends”). We may be interested in interpreting the absence of friendship between these two
actors based on the social distance of 4. Perhaps they are distant from one another because
they do not have much in common with each other. However, we would make different
inferences from this social distance of 4 depending on whether the two individuals live in dorms
on opposite sides of the university campus or on the same floor of the same dorm. In the first
scenario, the two individuals may be distant from one another in friendship ties due to a lack of
opportunity to interact (and not necessarily a lack of common interests). By contrast, the two
individuals in the second scenario likely have had opportunities to interact but are not friends, so
a lack of common interests may be a more plausible explanation for the large social distance
between them. Missing data can also complicate the interpretation of social distance, as missing
ties can lead to an overestimation of distance between two individuals. For example, in this
scenario, if we are missing data from an individual in the network who is friends with both
individuals (but we know that these two individuals are definitely not friends with each other), the
actual distance between the two individuals is 2, rather than 4. Therefore, when drawing
inferences from social distance, it is advantageous to choose networks that are bounded (so we
do not miss indirect connections between individuals, as this may lead to overestimation of
some social distances) and where we can be confident that opportunities to interact are
relatively equally distributed across the network (to constrain interpretations of the potential
causes of the relative distances between people). That said, the reason that actors are distant
from each other may not matter as much in other situations, such as when characterizing the
spread of information or behavior. When considering which network measures to use,
researchers should ensure that they use methods and tools that are appropriate for their

questions of interest.
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Recent neuroimaging work suggests both that the human brain tracks the social
distance between oneself and familiar others and that people spontaneously retrieve information
about others’ social-network positions when viewing their faces (Morelli et al., 2018; Parkinson
et al., 2017; Zerubavel et al., 2015). This spontaneous retrieval of social-network knowledge
when encountering familiar others may help people respond appropriately when interacting with
different people. There is also evidence that the brain not only tracks information about social-
network position, but also that it influences and is influenced by a person’s social networks. For
example, friendship is associated with similarity of neural responses to naturalistic stimuli.
Recent work found that participants tend to have more similar time series of neural responses to
audiovisual movies to people with whom they are connected directly (e.g., friends) than to
people with whom they are only connected indirectly (e.g., friends of friends), with neural
similarity decreasing with increasing social distance (Hyon et al., 2020; Parkinson et al., 2018).
This suggests that (1) people process information about the world in similar ways to those who
are socially close to them and that (2) individual brains may shape, and be shaped by, other
brains that surround them. Such results demonstrate that one can leverage tools from network
analysis to advance understanding of how individual brains represent and process the world
around them.

Distance in Weighted Networks. Thus far, we have focused our discussion on
geodesic distance, which is the simplest way of computing distance and is used often in
unweighted networks. Computing distance in weighted networks is more complicated, and there
are many ways to do it. A comprehensive discussion is beyond the scope of this paper, but see
Cherkassky, Goldberg, and Radzik (1996) for a detailed consideration of shortest paths in
weighted networks. A common way to calculate distance in weighted networks is to convert
pairwise weights to costs and then use Dijkstra's shortest-path-first algorithm (Dijkstra, 1959;
Newman, 2001). See Box 1 for an overview of Dijkstra's algorithm and important considerations

for interpreting distances in weighted social networks.
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Centrality

It is often of interest to characterize the importance of actors (or of edges between them)
in a social network. For instance, we may wish to know who is well-connected or popular in a
school. The concept of “centrality” in network analysis is helpful for examining such questions
(Newman, 2018). There are myriad variants of centrality; we discuss some of the most common
types in network analysis of social structures, with a focus on methods for calculating these
centrality measures in unweighted, undirected networks. We also point to some resources for
discussions of variations of these measures in weighted and directed networks. See Bringmann
et al. (2019) for important caveats about studying and interpreting centralities in networks.

Degree Centrality. Degree centrality (i.e., “degree”) is the number of edges that are
attached to a node, so it is the number of direct connections of a person in a social network (see
Figure 3). Another way to think about degree is in terms of “walks” across edges in a network.
Consider a robot that is walking around a social network. Given an undirected and unweighted
network, we calculate the degree of a node by taking the number of different ways that the robot
can reach that node via a walk length of 1 (i.e., from a directly connected neighbor). Although
degree is a simple concept to grasp intuitively without illustrating it with a walking robot, we
include this description because it is helpful for comparing degree to other centrality measures.
There are various generalizations of degree that incorporate edge directions and/or weights,
and we discuss some of them in the “Consideration of Direction and Weights in Centrality
Measures” section.

Eigenvector Centrality. Although degree is a useful measure of centrality, it counts the
number of connections of a node without considering the quality of those connections. Consider
a townsperson who does not have many friends but is friends with the mayor, who has a large
degree (and hence is well-connected in that respect). Although that townsperson has few
friends, they may have more influence in the town than an individual with many friends with

small degrees. Eigenvector centrality takes this type of connectivity into account, providing one
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way (see Figure 3) to capture how well-connected a person is to other well-connected people
(Bonacich, 1972). One calculates the eigenvector centralities of the nodes in a “connected” (in
the graph-theoretic sense) network as the components of the leading eigenvector of the
network’s adjacency matrix® A. Another way to visualize the idea behind eigenvector centrality is
through a random walk. Suppose that a robot goes on an infinitely long random walk through a
network. The eigenvector centrality of a node is proportional to the frequency of visits by the
robot during its walk in the network. The robot visits a node with a large eigenvector centrality
more often than a node with a small eigenvector centrality, because the former node’s direct
neighbors are well-connected to other nodes in the network. Using this idea, one can derive the
formula for eigenvector centrality using a random walk, and different variants of random walks
lead to different types of eigenvector-based centralities (Masuda, Porter, & Lambiotte, 2017).
Eigenvector centrality has been associated with various social and health-relevant
phenomena in humans—including happiness (Fowler & Christakis, 2008), body weight
(Christakis & Fowler, 2007), and job retention (Ballinger et al., 2016)—and with reproductive
success in animals (Brent, 2015), suggesting that indirect ties (e.g., friends of friends, friends of
friends of friends, and so on) may influence an individual’s well-being and behavior (and vice
versa). Additionally, people may be more likely to know who is well-connected to well-connected
others than who has a lot of friends. For instance, in a large school, people may be keenly
aware of which individuals are popular in a popular group, but they may be less aware of which
individuals in a less-popular group have many friends. This knowledge of who is well-connected
to well-connected others has important implications. Mistreating an individual who is well-
connected with well-connected ties may be risky, as the individual may be defended by their

friends and their friends of friends, whereas mistreating a poorly connected individual may have

5As we described earlier', a network is “connected” in this sense if, for all pairs of actors, there is a walk
between these actors. A directed network where one can reach any node by a path that starts from any
other node is called “strongly connected”.
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minimal consequences, given their limited influence (Ellwardt et al., 2012; Salmivalli et al.,
1996). In light of these scenarios, eigenvector centrality may be particularly useful when
studying how people perceive social status in a network and how these perceptions shape
behavior. For a brief discussion of PageRank, a variation of eigenvector centrality, see our
Supplementary Material.

Diffusion centrality. Diffusion centrality, which generalizes both eigenvector centrality
and Katz centrality (another notion of importance that is based on a walk on a network; Newman
2018), captures an individual’'s centrality with respect to a simple spreading process on a
network (Banerjee et al., 2013). Calculating diffusion centrality may be useful for social
neuroscientists who are interested in characterizing how central individuals are in their ability to
spread items (such as information) in a dissemination process. Prior work has suggested that
people are accurate at identifying others who are good at spreading information in a social
network and that these estimates are correlated with diffusion centrality (Banerjee et al., 2014).

Betweenness Centrality. Another type of centrality is geodesic betweenness centrality,
which measures the extent to which shortest paths (or, in generalizations of betweenness, other
types of short paths) between pairs of nodes pass through a node. Suppose that a robot is
traversing a network and takes a shortest path between each pair of nodes. One can calculate
betweenness centrality of a node by tracking the number of times that the robot passes through
the node to connect each pair of nodes (see Figure 3). It is common to interpret betweenness
centrality as a measure of brokerage, because it captures some information about the extent to
which a node connects distally connected nodes (Wasserman & Faust, 1994). For instance, an
individual with a large betweenness centrality may have a high capacity for brokerage, because
more of their friends have to go through them to communicate with one another. However, one
should be cautious when interpreting betweenness as a measure of brokerage, as many
different factors in network structure (including ones that are unrelated to a given individual) can

strongly influence betweenness (Everett & Valente, 2016). In large networks, for instance, an
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individual may not be well-connected (as quantified, e.g., by a small degree) and not well-
connected to well-connected others (as quantified, e.g., by a small eigenvector centrality), but
they may still have a large betweenness. This individual may be in the periphery of multiple
groups of friends; although they may broker information between groups of otherwise
unconnected nodes (e.g., two friendship groups), they may not be very influential in either of the
individual groups. Another possibility is that individuals may have a large betweenness if they
are connected directly to nodes that are brokers, even if they are not much of a broker
themselves. If a researcher is interested in characterizing individual differences in socio-
behavioral tendencies that are related to brokerage (e.g., how often people introduce their
friends to one another), it may be useful to calculate local network measures (such as local
clustering coefficient; Watts & Strogatz, 1998, and constraint; Burt, 2004). Similar to many
centrality measures, betweenness is not robust to noise in data (e.g., missing edges), so it is
necessary to pay careful attention to such issues (Bringmann et al., 2019; Everett & Valente,
2016).

Considering Edge Directions and Weights in Centrality Measures. In directed
networks, each node has both an in-degree centrality (the number of edges that point to it) and
an out-degree centrality (the number of edges that emanate from it). Depending on the question
of interest, it may be appropriate to calculate versions of centrality measures for networks with
directions and/or weights. In some cases, generalizations are straightforward; for example,
generalizing betweenness centrality to directed networks only requires restricting the node pairs
(i.e., origin—destination pairs) that one considers, and one can directly generalize eigenvector
centrality to weighted and directed networks by defining it based on random walks or as the
leading eigenvector of an adjacency matrix. PageRank (see Supplementary Material) is
formulated specifically for directed networks and generalizes to weighted networks in the same
way as eigenvector centrality. Other centralities entail more difficulties; for example, once one

decides how to transform from edge weights to edge costs (i.e., edge distances), it becomes
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straightforward to generalize betweenness centrality to weighted networks (because one now
knows how to calculate distances), but deciding what function to use (e.g., inverting the weights
or doing something else) to obtain distances in the first place involves an arbitrary decision that
can severely impact the interpretation of betweenness centrality values.

In a friendship network, one may be interested in the number of people with whom an
individual says they are friends (i.e., out-degree); the number of people who say that they are
friends with an individual (i.e., in-degree); any type of edge, regardless of the direction; or only
edges that are mutually reported (i.e., “reciprocal”). Any of these choices can be useful,
depending on the question of interest, and it is important to select measures that are
appropriate to one's question and context. For instance, if we seek to identify the most popular
people in a school, it may be relevant to use in-degree. One way to quantify popularity is by
calculating (unweighted) in-degree (e.g., by counting the number of people who say that they
like the individual using a binary survey question or by thresholding a continuous "liking" rating
to create an unweighted edge) or through weighted in-degree (i.e., “in-strength”) centrality (e.g.,
by summing continuous liking ratings that an individual receives from different people;
Zerubavel et al., 2015). If we are interested in understanding the spread of sexually transmitted
diseases, however, we may not care about the direction of ties and opt instead to calculate
degree using undirected, unweighted edges (based, e.g., on the number of sexual partners of
an individual, counting any edge between two actors; Christley et al., 2005). However,
incorporating directions and/or weights can become complicated for various centrality measures
(both mathematically and with respect to the interpretation of centrality values), and a detailed
review is beyond the scope of our paper®.

Recent Examples. Recent research that examined centralities has further advanced the

understanding of individual cognition in rich social environments. For instance, individuals

6 See Wang, Hernandez, & Van Mieghem (2008) and White & Borgatti (1994) for helpful discussions.
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appear to spontaneously encode and track network features of others, including eigenvector
centrality (Parkinson et al., 2017), brokerage (Parkinson et al., 2017), and weighted in-degree
(Zerubavel et al., 2015). Furthermore, O’'Donnell et al. (2017) reported that individual differences
in betweenness centrality are associated with individual differences in recruitment of brain
regions during social influence (O’Donnell et al., 2017). Work on nonhuman primates illustrates
that having a larger degree (which, in this study, is assignment to live in a larger group in a
research colony) causally increases gray matter and resting-state functional connectivity in brain
regions that are important for social functioning (Sallet et al., 2011). Although these examples
highlight ways in which network analysis can advance understanding of individual cognition, it is
necessary to be cautious when drawing broad inferences across such studies, given the
heterogeneity of studies in design and specific choices when calculating network measures.
Even the same (or similar) network measure can represent different phenomena, depending on
the context of a study. For example, degree encoded the potential number of social contacts
(i.e., the number of individuals who were assigned to live in the same group in a research
colony, irrespective of individuals' preferences for or interactions with one another) in Sallet et
al. (2011), but it encoded how much a person is liked in Zerubavel et al. (2015). Additionally, the
former paper calculated undirected, unweighted degrees, whereas the latter calculated directed,
weighted degrees. In many situations, results that use different centrality measures—even ones
that may seem very different from each other—are likely picking up some shared information.
Researchers should carefully consider these and other factors when aggregating findings
across studies and forming hypotheses for future studies.
Community Structure and Other Large-Scale Network Structures

Given a network, it is often insightful to study its large-scale structural patterns. Consider
your own social network of friends. How might you organize the individuals in your social
network? One intuitive way is to categorize your friends into groups, such as friends from high

school, teammates from a sports league, fellow cosplayers, and so on. Similarly, many
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researchers are interested in understanding how nodes in a social network congregate into
groups (Porter et al., 2009). They are also often interested in other large-scale patterns, such as
core versus peripheral groups (Csermely et al., 2013; Rombach et al., 2017), the roles and
positions of individuals in a network (Rossi & Ahmed, 2015; Wasserman & Faust, 1994), and so
on. In the present section, we focus on the idea of algorithmically detecting tightly-knit sets of
nodes called “communities™.

The best-studied type of large-scale structure in a network is “community structure”, in
which (in idealized form) densely-connected sets of nodes are connected sparsely to other
densely-connected sets of nodes (Newman, 2018; Porter et al., 2009). Observing the clustered
structure of a network of a school can provide insight into the features by which people organize
into friendship groups (e.g., based on mutual interests or academic subdisciplines) (Traud et al.,
2012). Furthermore, in a large network, finding dense communities of nodes in an algorithmic
way may allow one to break down the network into smaller, manageable subsets. However, how
do we identify sets of nodes that form a community in a network? There are numerous methods
to detect communities in networks, including both sociocentric (i.e., complete-network) and
egocentric approaches. Although the notion of communities (and related notions, such as
cohesive groups; Wasserman & Faust, 1994) in a network is intuitively appealing, it is very
challenging to precisely define what it means for a group of nodes (i.e., a “community”) to be
“densely connected” and “sparsely connected” (Fortunato & Hric, 2016). One common approach
to detect communities is modularity maximization, in which one seeks a partition of a network
that maximizes “modularity”, an objective function that quantifies the extent to which nodes in a
community connect with one another in comparison to some baseline (Newman, 2006). Another
popular approach is statistical inference of communities (and other large-scale network

structures) using stochastic block models (Fortunato & Hric, 2016; Peixoto, 2017). There are

7 For a brief discussion of other large-scale network structures, see our Supplementary Material.
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numerous other algorithms to identify communities (with new ones published frequently), but a
review of these methods is beyond the scope of our paper®.
Multilayer Networks

Thus far, we have discussed single-layer (i.e., “monolayer”) networks, as we have
concentrated on networks with a single type of node in which the nodes are connected to each
other with a single type of tie. Mathematically, one represents a monolayer network as a graph
(Newman, 2018). However, real networks are typically more complicated, as they typically
include multiple types of relationships (sometimes between multiple types of nodes) and
interactions that change over time. Multilayer network analysis allows the study of richer
network representations to further explore how different elements that comprise the social world
interact with each another. A multilayer network consists of a set of layers that each have their
own network of nodes and edges, along with interlayer edges that connect nodes from different
layers®.

As we indicated previously, individuals (i.e., nodes) in a social network can have many
different types of relationships (i.e., edges). For instance, nodes that encode the individuals in a
closed network (e.g., a town) can be connected to each other with edges that represent different
types of relationships, such as friendship, professional ties, and recreational relationships. One
can simultaneously encode all of these relationships in a multilayer network, with each type of
relationship in a different layer. In our town example, each layer includes the same nodes (e.g.,
every townsperson), although this need not be true in general, but different layers have different
types of edges (e.g., with layers 1, 2, and 3 encoding friendships, professional ties, and

recreational relationships, respectively; see Figure 4). We also suppose that all interlayer edges

8 See Porter et al. (2009) for a friendly introduction to community structure and Fortunato & Hric (2016) for
a recent review.

® For a detailed review about multilayer networks, see Kivela et al. (2014). For a recent survey, see Aleta
and Moreno (2019). For a review of multilayer networks in the context of animal behavior, see Finn et al.
(2019).
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in this example are between instantiations of the same individual in different layers. This type of
multilayer network, in which different layers encode different types of relationships and interlayer
connections exist only between the corresponding node across layers, is called a “multiplex”
network.

Multilayer networks can include different types of nodes and/or different types of nodes
in different layers. Consider the online social networks of an individual. An individual may use
Facebook to connect with friends but LinkedIn for professional ties. If we encode connections in
these social media in a multilayer network, with the individual's Facebook and LinkedIn
networks in different layers, respectively, different nodes exist in each layer and some edges
may cross layers (e.g., nodes that communicate across the two platforms). Multilayer networks
can also encode more complicated types of interactions. For instance, one layer may consist of
friendships, with nodes encoding people and edges encoding friendships, and a second layer
may consist of a network of restaurants in town, with nodes encoding restaurants and edges
encoding culinary collaborations (see Figure 4). Edges between the two layers can represent
which restaurants are visited by which individuals, allowing one to examine phenomena such as
relationships between friendship groups and restaurant-patronage patterns.

Temporal Networks. In a network, nodes and edges (and edge weights) often change
over time. For instance, in the social network of a town, people move in and out (changes in
nodes), so the relationships between people change (i.e., time-dependent edges) over time. It is
often convenient to represent a temporal network using a multilayer network, with each layer
encoding the network at a specific time or aggregated over a specific time period. Research on
multilayer representations of temporal networks is related to analysis of temporal networks more
generally (for reviews, see Holme & Saramaki, 2012; Holme, 2015), and investigating a
temporal network may be useful for researchers who seek to relate individual cognition to

dynamically changing social environments.
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Learning from other fields. As we discussed in this section, there is great potential for
using multilayer networks to advance the study of complex human behavior and social systems.
It seems especially promising for social neuroscientists who are interested in studying individual
cognition in the context of broader social contexts. Multilayer networks can provide integrated
representations of the diversity of networks that surround an individual, enabling researchers to
draw insight and test how different layers of a network influence both each another and
processes that occur on them. Although the analysis of multilayer networks is a relatively novel
methodology in network science, it has enriched the study of diverse topics, including
transportation systems (Gallotti & Barthelemy, 2015), coauthorship networks (Berlingerio et al.,
2013), ecological networks (Pilosof et al., 2017), brain networks (Vaiana & Muldoon, 2018), and
animal social networks (Barrett et al., 2012). Researchers who study human behavior can learn
and draw inspiration from such prior work. For example, see Finn et al. (2019) for a detailed
discussion of the use of multilayer network analysis to study animal behavior and Aleta &
Moreno (2019) and Kivela et al. (2014) for broader reviews of multilayer networks.

Methods to Obtain Networks

In this section, we discuss some of the most common methods for obtaining networks.

Self-report surveys and questionnaires. A particularly common approach for obtaining
social networks is through self-report surveys and questionnaires. Using a name generator, one
asks participants to list people with whom they are connected in a social network. In the same
survey, one can generate multilayer networks by asking a selection of questions (e.g., “With
whom are you friends?” and “To whom do you turn for advice?”)'°. Name generators can be
either fixed choice (e.g., “Name the 7 people with whom you are closest.”) or free choice, which

does not impose limits on the number of people that a person can list. When it is possible obtain

0 One should carefully consider the phrasing and ordering of questions in name generators, as these
features can affect participants’ responses. For detailed treatments of these issues, see K. E. Campbell &
Lee (1991), Marin & Hampton (2007), and Pustejovsky & Spillane (2009).
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all of the names of individuals in a network prior to data collection, one can use roster-based
methods. In a roster-based approach, one gives participants a list of all individuals in a network
and asks them to characterize their relationship with each individual (e.g., indicating whether
they are friends with each person, the strength of their friendship, and so on). Roster-based
approaches have fewer recall issues than other approaches, and it is preferable to use them
when possible. As with all self-reported data, all of these methods have potential concerns
about bias and inaccuracy because of desirability concerns of participants and question-order
effects (Pustejovsky & Spillane, 2009). However, this potential disadvantage of self-report
surveys is potentially an object of interest in itself. For instance, a researcher who is interested
in understanding how people understand and represent their own social networks, even if they
are not accurate, can use the framework of cognitive social structures (Krackhardt, 1987).

Direct observation. Another method to obtain networks is through direct observation.
This is a common option for researchers who study animal social networks, as they use it for
observing and recording animal behavior (Noonan et al., 2014; Sallet et al., 2011), although
many recent studies of animal social networks have employed technology such as radio
frequency identification (RFID) data (Bonter & Bridge, 2011; Firth et al., 2017; Krause et al.,
2013). In humans, direct observation can be labor-intensive and is typically feasible only for
small groups. For instance, a researcher may observe the classroom behavior of children to
construct a friendship network (Gest et al., 2003; Santos et al., 2015).

Archival and third-party records. It is also possible to reconstruct social networks
using archival or third-party records. A researcher who is interested in understanding
intermarriage of royal families in Europe during the 1500s can look at historical marriage
records to reconstruct such a network. For instance, Padget & Ansell (1993) used historical data
to characterize and analyze the social network of political elite families in 13" Century Florence,
and they were able to identify network characteristics that contributed to the rise of the powerful

Medici family. One can also leverage technological advances to obtain data such as e-mail,
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phone, and geographic-location records to reconstruct not only networks that encode the
existence of communication ties, but also the frequency and patterns of communication. This
approach has been used for studying communication within organizations (C. S. Campbell et
al., 2003), face-to-face contact in academic conferences and museums (Isella et al., 2011), and
features of social structures that are inferred from mobile-phone data (Eagle & Pentland, 2006).

Advantages of these methods include that they do not rely on self-reporting, are
relatively low-effort (although such data may be hard to access), and can provide a wealth of
different types of data (and an abundance of data of each type). However, researchers should
be mindful when interpreting the social significance of a tie in networks that they construct using
these approaches. For instance, an e-mail exchange in an organization may encode only formal
ties between coworkers and fail to capture less formal ties, which can also affect the
phenomena that a researcher is hoping to capture. Perhaps an employee exchanges frequent
e-mails with their supervisor and none at all with a coworker (with whom they may have a closer
relationship) who sits in the cubicle next to them. Consequently, measuring the distance
between people in a network that one constructs using exclusively e-mail data is unlikely to
provide a complete picture of these individuals’ social relationships. Therefore, researchers
should be mindful of these considerations when drawing inferences from calculations that use
such networks. Researchers should also be mindful of privacy concerns that may arise from
accessing potentially sensitive personal information of participants, particularly when
considering posting data online (which ordinarily is desirable, as it helps promote open science
initiatives). It is possible to reconstruct even fully anonymized data, especially when there is a
lot of data for each participant, to identify individuals (Herschel & Miori, 2017).

The rise of online social networking websites, such as Facebook and Twitter, has also
afforded researchers the opportunity to “scrape” them (and otherwise acquire data from them)
and study online social networks (Lewis et al., 2008), although the policies of the companies

that own the networks may entail some limitations. Additionally, when studying large online
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social networks, it is also necessary to pay close attention to the characteristics both of the
network at large and of smaller local networks of interest, as these they may influence salient
network measures (see, e.g., Jeub et al., 2015; Ugander, Backstrom, Marlow, & Kleinberg,
2012). Furthermore, social networks obtained from online websites are often 1-ego networks?
(encoding information about an individual ego and their friends), which have limitations, as
discussed in our “Sociocentric Networks versus Egocentric Networks" section. One also needs
to be careful when interpreting the social significance of ties in online social networks. For
instance, a large degree on Facebook or Twitter may be an indication that an individual
frequently uses the platform, rather than being related to the types of individual differences in
socio-behavioral tendencies that may be of more interest to social neuroscientists. For example,
a person with a small degree (i.e., few “friends”) on Facebook may actually have a large degree
in their offline life. This can be problematic if one uses degree from Facebook data alone as a
measure to relate to a neural or behavioral measure. More generally, there can be additional
uncertainty in effects that one infers from data from social networking websites, because such
effects only characterize a small slice of individuals' social worlds (Ugander et al., 2012).
Although this issue is particularly salient for nuances of analyzing online-social-network data,
researchers need to be careful more generally to ensure that they are obtaining sufficient
relevant information about an individual's social world whenever they attempt to relate individual
differences in network centrality values (or other differences in individuals' network
characteristics) to neural data or socio-behavioral tendencies. Similar issues can arise if one
uses individual differences in centrality measures (e.g., degree) based on a bounded social
group (e.g., a school), while failing to capture sufficiently many relevant aspects of individuals’
social worlds. For example, in an analogous offline situation to the aforementioned online one,
an individual may have small degree in their school but have many friends outside of school
who are not captured if one calculates degree based only on a school network. Therefore, when

researchers are interested in interpreting a difference in social network position® as an individual
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difference measure (i.e., a trait), it is advantageous to construct network data that captures
people’s full social worlds. When this is not possible (as is often the case), it is desirable to ask
participants about their relationships outside of the social network that one is obtaining.
Tutorial: Example Social Network

Now that we have discussed some key concepts in network analysis that are particularly
relevant for people who are interested in studying human social networks, we present a tutorial
using a sample network. In this artificial network, we are interested in characterizing the network
of a dorm (with 50 students). Suppose that we obtained this data by asking participants to go
through the list of everyone in the network and identify whether they are friends with each
individual (i.e., using a roster-based approach). This gives directed edges, because some
friendships may not be reciprocated. If we are interested in understanding how individuals
cognitively represent different members of the network or how individual differences in network
measures are correlated with differences in neural or behavioral variables, we can also obtain
brain data from all or some of the network members. (We do not cover this idea in the tutorial.)
The tutorial uses an artificial network with 50 nodes, which we label with people’s names to
facilitate exposition. We use the IGRAPH package in R (Csardi & Nepusz, 2006) to visualize the
data and calculate various network measures—such as degree, eigenvector centrality, and
betweenness centrality—and to illustrate community detection. Our tutorial includes detailed
comments on the practical application of the concepts that we have discussed in this paper. We
also present a separate tutorial to illustrate visualization of multilayer networks using the
PYMNET library in Python (Kiveld, 2017). Both tutorials are available at

https://github.com/elisabaek/social _network analysis_tutorial. We hope that they will be helpful

for researchers who are interested in incorporating network measures in studies of individual
cognition.

Future Directions
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In the present paper, we have given an introductory overview of basic network ideas and
concepts that we hope will provide a helpful starting point for social neuroscientists who are new
to network analysis. Although the incorporation of network-analysis tools in social neuroscience
is in its nascent stages, recent work using such tools has produced fascinating insights into how
features of an individual’s social world are reflected in their brain. There are many open
questions in the area, so it is a particularly exciting time to do research in it. In this section, we
highlight areas for future growth. We discuss both how social neuroscientists can integrate
common network methods in new lines of inquiry and how to productively incorporate new
developments and tools in network science and mathematics into future work in social
neuroscience.

Open questions that leverage existing network tools. We begin by highlighting some
of the many open questions in social neuroscience that can benefit from network analysis.
Although we will of course not be exhaustive, we hope to highlight the broad range of exciting
research opportunities for social neuroscientists who are interested in using network analysis.

Information about different types of relationships. Several of the findings that we
discussed highlight how the brain has mechanisms to track and spontaneously retrieve
information about different aspects of friendship networks, such as the extent to which individual
members are popular (Zerubavel et al., 2015), socially valuable (Morelli et al., 2018), well-
connected to well-connected others (Parkinson et al., 2017), and serve as brokers (Parkinson et
al., 2017). These studies barely scratch the surface of the many different types of information
about the social world that our brains may track. People’s lives consist not only of different types
of social groups (e.g., friendship, professional, and family), but also different types of information
about the same social groups that may be important for successful social navigation. For
instance, in the same group of friends, individuals may turn to different people when seeking
emotional support versus career advice. Indeed, recent findings suggest that centralities in a

social network can have different implications, depending on how one characterizes
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relationships. For example, Morelli et al. (2018) examined in-degree in two different social
networks—one with edges that encode trust and the other with edges that encode shared fun—
in the same college dorms. People with better well-being were located more centrally in the fun
network, and people with higher empathy were located more centrally in the trust network. Such
findings suggest that where an individual is located in different social networks (i.e., with
different types of edges) of the same social group is associated with different behavioral
outcomes. Although this was not tested by Morelli et al. (2018), one possibility is that perceivers
also track the centralities of others in the different networks (e.g., those with trust relationships
versus those with fun relationships), as this information may be important for guiding behavior in
different contexts. For example, when seeking empathic support, it seems advantageous to
seek individuals who are central in a trust network. However, when looking to have fun, one
might seek individuals who are central in a fun network. It may be particularly fruitful to conduct
studies that explore how individual brains encode and retrieve information about social networks
with different types of connections in the same social group.

Characterizing different types of relationships in a social group may also improve
understanding of not only who is popular, but also those to whom others turn for support or
empathy. Given that individuals who are more likely to seek social support to help regulate their
emotions (i.e., interpersonal emotion regulation) tend to have better well-being and more
supportive relationships (Williams et al., 2018), one fruitful future direction may be to use
centrality measures to identify supportive individuals (see, e.g., Morelli et al., 2018) and test how
people’s cognitive and affective processes are affected by their social distance to these
individuals or by the amount of time spent with these individuals (e.g., by incorporating weighted
edges).

Individual differences in network features. A small body of research has also begun to
explore associations between individual differences in network positions and brain activity.

Popular individuals (specifically, individuals with large in-degree in a network in which edges
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represent being liked by others) tend to have greater neural sensitivity in the brain’s valuation
system in tracking the popularity of others in a network (Zerubavel et al., 2015), and people with
higher brokerage (which they examined by calculating an egocentric betweenness centrality in a
Facebook friendship network) exhibit greater activity in the brain’s mentalizing system when
considering and incorporating social recommendations to make their own recommendations of
consumer products to others (O’'Donnell et al., 2017). It has also been illustrated that social
status in non-human primates covaries with structural and functional differences in brain regions
that are associated with social cognition (Noonan et al., 2014). In combination, these findings
suggest that an individual’s social-network position is associated with neural and behavioral
responses to various everyday situations. There are many open questions, as only a few
studies have related individual differences in social-network position to neural responses, and
even fewer have done so in the context of social decision-making. Future studies that explore
how individual differences in social-network position relate to neural responses during social
tasks (e.g., social influence, emotion regulation, and interpersonal communication) may be
particularly fruitful. Findings from such studies have the potential to advance understanding of
how particularly influential individuals may be distinctive in how they use their brains and in their
responses to various social situations.

Causal relationships. Most research that integrates neuroscience with social-network
analysis has been cross-sectional (see Table 2). Accordingly, there remain many questions
about the causal directions of the various correlative findings that we have discussed in this
paper. It remains unclear, for instance, whether differences in neural responses cause or result
from differences in social-network characteristics. Experimental findings from nonhuman
primates offer some clues, as it has been demonstrated that social-network characteristics (e.g.,
network size) causally affect the structure and functional responses in regions of the macaque
brain that are associated with social cognition (Sallet et al., 2011). Although long-term,

meaningful experimental manipulation of social networks in humans is very challenging to
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implement because of practical and ethical concerns, longitudinal studies can also elucidate
some of the ambiguity about causality. Longitudinal studies that span key neural and social
developmental periods, such as adolescence or older adulthood, may be particularly fruitful for
providing insight into questions about the causal directions of effects.

Despite the challenging nature of experimental manipulation of social networks in
humans, there are a few possible approaches to pursue. One possibility is to recruit participants
to join either offline or online interest-based communities and then randomly assign participants
to different social networks that one controls experimentally to vary network characteristics of
interest. For example, perhaps one wants a network to have a specific degree distribution, such
as many people with small degrees and few people with large degrees. Such methods have
been used previously to test how social-network characteristics influence the spread of behavior
in online social networks (e.g., how similarity of contacts influence adoption of health behavior;
Centola, 2010, 2011), but to our knowledge they have not yet been used with neuroimaging
tools. Future studies that use similar experimental methods while also obtaining neural
responses before and after individuals’ experiences in a social network may further elucidate
the causal directions of such observations. However, it remains unclear whether (and to what
extent) an individual’'s cognitive and affective processes are influenced by artificially constructed
social networks. Nevertheless, if successful, future studies that employ such approaches may
provide valuable insights into causal relationships between social and neural phenomena.

Potential of incorporating new methods of network analysis. WWe now briefly
overview a few new methods in network analysis and related subjects that may be insightful for
developing richer characterizations of social-network structures. We keep our descriptions brief
because of the introductory nature of this paper.

As we discussed in previous sections, multilayer and temporal networks afford rich
opportunities to examine how individual brains interact over time with the social world in which

they live. For instance, multilayer network analysis will be useful for longitudinal studies to help
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understand how characteristics of a social network change over time, so such analysis may be
able to inform causal relationships that characterize some of the previous findings that link brain
activity and social-network characteristics. One can potentially use multilayer networks to
examine interactions between brain networks and social networks over time to help predict
behavior. It is also possible to analyze cognitive social structures using multilayer networks
(Kivela et al., 2014). Tools from network science (including multilayer network analysis) have
been used to analyze functional and anatomical networks in the brain (Bassett et al., 2011; Fair
et al., 2008; Hutchison et al., 2013; Vaiana & Muldoon, 2018; van den Heuvel & Sporns, 2013),
as well as to link these brain networks with social-network structures (Schmalzle et al., 2017)
and with cognition and behavior (Bassett & Mattar, 2017; Mattar et al., 2018). Recently,
researchers have highlighted potential benefits of using multilayer network analysis to represent
such complex relationships, and these efforts have the potential to advance understanding of
processes of interest to social neuroscientists (Falk & Bassett, 2017). One potential fruitful
application is investigating how health behaviors change over time (Christakis & Fowler, 2007).
For instance, one can use multilayer and temporal networks to study how to predict health-
behavior change (e.g., quitting smoking) from changes in an individual’s social network (e.g.,
joining a support group to stop smoking) through changes in functional networks in the brain
(e.g., how regions in the brain’s valuation system respond to smoking cues). Such a research
question can contribute to broader understanding of how people’s social environments impact
neural processing and behavior.

For a brief discussion of additional network-analysis approaches—such as using
hypergraphs, topological data analysis, community-level characteristics, and other mesoscale
features—that may be fruitful for characterizing social networks for social neuroscience
applications, see our Supplementary Material.

Conclusions and Outlook
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Recent research in social neuroscience that relates characteristics of people’s social
networks to their individual cognition offers new insights into how the brain represents and may
be influenced by its social context. Tools from network analysis provide rich opportunities for
social neuroscientists who are interested in (1) studying how people navigate and interact with
their complex social environments and (2) the mental architecture that supports these
processes. Researchers can leverage existing and developing tools and measures in network
analysis to study new questions. Findings from such studies can contribute to relevant theories
in numerous areas in psychology, neuroscience, and related fields. For instance, insights from
network analysis can inform theories of individual cognition, interpersonal relationships, and
social influence (e.g., through relating features of individuals’ social worlds to how they use their
brain in certain contexts, through observing how social network distance influences how people
process the world, and through understanding how people in specific network positions use their
brains differently). The use of network analysis in social neuroscience is in its emerging stages,
so this is a particularly exciting time, with many opportunities to contribute to shaping the

direction of the field.
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Sociocentric (Complete-Network) Approach

(a)
Y
()
(b) Edge List

[Nick, Jen], [Nick, Elena], [Nick, Mike], [Nick, Sarah], [Jen, Mike],

[Mike, Sarah], [Mike, Felix], [Dan, Hannah], [Sarah, Felix],
[Sarah, Sam], [Felix, Sam], [Sam, Dave], [Dave, Liz]

(c) Adjacency Matrix

Nick Jen Elena Mike Dan Sarah Felix Sam Dave Liz

Nick 0 1 1 1 0 1 1] 1] 0 0
Jen 1 0] 0 1 1 0 1 0 4] 4]
Elena 1 0 0 1 0 1 0 0 0 0
Mike 1 1 1 0 1 1 1 0 0 0
Dan 0 1 0 1 0 0 1 1] o 0
Sarah 1 0 1 1 0 0 1 1 0 0
Felix 0 1 0 1 1 1 1] 1 o 0
Sam 0 0 0 0 0 1 1 [} 1 4]
Dave 0 0 0 0 0 0 0 1 0 1
Lz 0 0 0 0 ] 0 1] 1] 1 0

44

[Jen, Dan], [Jen, Felix], [Elena, Mikel, [Elena, Sarah], [Mike, Dan],

Egocentric Approach
(d)
( Nick ) GQ
r/_
| Elena }
N
y /
- — —{ Felix |
i
(e) Edge List

[Mike, Nick], [Mike, Jen], [Mike, Dan], [Mike, Felix], [Mike, Sarah],
[Mike, Elena], [Nick, Sarah], [Jen, Felix], [Jen, Dan], [Dan, Felix],
[Elena, Sarah], [Sarah, Felix]

(f) Adjacency Matrix

Nick Jen Elena Mike Dan Sarah Felix

Nick 0 0 0 1 0 1 0

Jen 0O 4] 4] 1 1 0 1
Elena ¢ 0 0 1 0 1 0
Mike 1 1 1 0 1 1 1

Sarah 1 0 1 1 0 0 0

Felix 0O 1 4] 1 1 1 0

Figure 1. Approaches to study and mathematically represent social networks. (a—c) In a
sociocentric approach, one characterizes relationships between all members of a bounded
social network. (a) A graphical representation of an undirected, unweighted sociocentric network
that represents friendships between members of a bounded community. The colored circles are
nodes (also called vertices), which represent individuals in the social network. The lines
between the nodes are edges, which represent friendships or some other relationship between
individuals. (b) One can also represent networks with an edge list, which is a list of all direct
connections between nodes. (c) It is also common to represent an n-node network with an
adjacency matrix A of size n x n (with n = 10 in this example). The elements A; of A encode the
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edges (both their existence and their weights) between each node pair (i) in a network. In an
undirected, unweighted network (such as the depicted one), an associated adjacency matrix is
symmetric. For example, the edge between Nick and Jen yields a 1 in the associated element of
an adjacency matrix. (d—f) In an ego-network approach, one characterizes relationships in a
network from an ego’s point of view. Suppose that we obtain information about the same social
network as the one in the left column from interviewing only Mike, a single member of the
network. This gives us Mike’s ego network. We draw solid lines to represent Mike’s responses
about his direct friendships and dotted lines from Mike’s responses about whether his friends
are also friends with one another. Comparing the graph from the sociocentric and ego-network
approaches illustrates that the latter is missing information about several existing edges
between nodes (e.g., between Nick and Elena, Nick and Jen, and so on). We also see this in
the ego network’s associated (e) edge list and (f) adjacency matrix.
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lllustration of Milgram’s Small-World Experiments

Figure 2. An illustration of Stanley Milgram’s Small-World Experiments that Demonstrate
Social Distance. In their pioneering studies of social distance, social psychologist Stanley
Milgram and colleagues (1967,1969) concluded that, on average, people are separated by six
or fewer social connections. As our illustration demonstrates, individuals in the midwestern
United States (the starting position) were able to send a package to a stranger in
Massachusetts (the target individual) through a path whose length was about 6. In one
experiment, of the 160 packages that started in Nebraska (the starting position in this figure), 44
packages successfully arrived at the target individual. Of these 44 packages, the mean number
of edges was about 6. Milgram’s small-world experiments illustrate unweighted social distance
in a real-life context.
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Figure 3. A few common measures of centrality. This adapted version of Krackhardt’s kite
graph (Krackhardt, 1990) illustrates several variants of centrality. (a) An example friendship
network, with each node labeled with the name of an individual. (b—d) Variations of the same
network, with the nodes resized to reflect the value of a particular centrality measure. (b)
Degree centrality (i.e., degree) is the number of other nodes to which a node is connected

directly (i.e., adjacent). Mike has a degree of 7, the largest value in the network. (c) Eigenvector
centrality captures how well-connected a node is to well-connected others. Although Elena,
Dan, and Sam all have the same degree (of 3), Sam has a much smaller eigenvector centrality,
as his friendships are with relatively poorly connected individuals. (d) Betweenness centrality
captures the extent to which a node lies on shortest paths between pairs of nodes. Sam has the
largest betweenness centrality in this network, because he connects many nodes in the network
that otherwise would be on disconnected components of the network.
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(a) (b)

Friendship network Friendship network

Professional network Restaurant Network

Recreational network

Figure 4. Examples of multilayer networks. (a) A multiplex network is a type of multilayer
network in which each layer has a different type of edge and interlayer edges can exist only
between corresponding nodes in different layers. The nodes in this example represent the same
individuals in each layer, and the edges in different layers encode different types of social
relationships. We do not show any interlayer edges. In the first layer, edges encode friendships
between individuals, whereas edges encode professional relationships between individuals in
the second layer and recreational relationships between individuals in the third layer. (b) In this
more general example of a multilayer network, the first layer encodes the same friendship
network that we showed in panel (a). The second layer represents a restaurant network, where
nodes represent restaurants and intralayer edges encode culinary collaborations between
restaurants. Interlayer edges encode restaurant patronage of a restaurant by an individual, with
an edge indicating that an individual has visited a restaurant. This type of multilayer network can
help one understand possible relationships between friendship and restaurant-patronage
patterns. In this example, friends tend to eat at the same restaurants.



SOCIAL NETWORK ANALYSIS FOR SOCIAL NEUROSCIENTISTS 49

Box 1. Computing distances between people in a weighted social network: An example
using Dijkstra's algorithm.

Social neuroscientists are often interested in characterizing not just the existence of social
ties between people, but also the relative strengths of those ties (i.e., in constructing a
weighted social network). It is important to consider the consequences of representing a
network using weighted ties for calculating and interpreting quantities like social distances
between people in the network. We outline a common method for calculating distance in a
weighted network using Dijkstra's shortest-path-first algorithm (Dijkstra, 1959; Newman,
2001) and consider its implications.

Example of a Weighted Network and
Dijkstra’s Algorithm

~
~
\
N\
Weight =1 Weight =2 \
Cost=1 Cost=1/2 \
|
Weight =5 /
Cost=1/5 y
Ve
- — -~
Cost =
1/24+1/5=0.7

Dijkstra’s algorithm works by finding a path of “least resistance” between two nodes, where
the “resistance” is the cost of traversing a path between two nodes. In a weighted network,
the simplest choice for the cost of a tie between two nodes is the inverse of the tie’s weight,
where larger weights represent stronger ties and associated lower costs. For instance, given
that the weight of the edge between Felix and Sam is 2 and that the weight of the edge
between Sam and Dave is 5, the associated costs are 1/2 and 1/5, respectively. For indirect
connections between two nodes (i.e., paths that require at least two edges), one calculates
cost as the sum of the costs of the direct ties between nodes. In the example above, Felix
and Dave are connected through the edge Felix — Sam of weight 2 and the edge Sam —
Dave of weight 5. Therefore, the cost of the 2-step path Felix — Sam — Dave is 1/2 + 1/5 =
0.7.

In many situations, Dijkstra’s algorithm may identify two nodes that are connected only
indirectly as “closer” than two nodes that are connected directly. In the example above, Felix
and Dave are not connected directly and have a cost (i.e., distance) of 0.7. Consider another
pair of nodes, Sarah and Sam, who are connected directly with an edge of weight 1. This
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yields a cost of 1 for their edge, because 1/1 = 1. In Dijkstra’s algorithm, Felix and Dave are
considered to be closer to each other than Sarah and Sam are to each other, even though
Felix and Dave are not connected directly.

This is an important implication of what measures to consider, as many social neuroscientists
may want to consider directly connected people (e.g., friends in a friendship network) as
closer than indirectly connected people, a premise that fits well with the types of applications
and research questions that are common in the field. For researchers who are interested in
understanding the spread of phenomena (e.g., information or a disease) in networks,
Dijkstra’s algorithm may give a helpful estimate of distance because, for example, information
is more likely to spread faster through edges that represent very frequent interactions than
through ones that represent infrequent interactions. We encourage researchers to be driven
by their research questions when making decisions about which network measures to use.
We also encourage them to be attuned to the details of methods before applying and drawing
inferences from them.
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Network
Term

Definition

Applications and Related Concepts

Network
(i.e., graph)

A collection of entities (i.e.,
nodes) that are connected to
one another (through edges).

In the context of social systems, a network
consists of people (or animals) who are
connected to one another.

Node
(i.e., vertex)

A node is an entity in a
network.

Most typically, a node represents a person
in a social network. Nodes are also called
“actors” in the context of social systems.

Edge
(i.e., tie, link)

A connection between two
entities in a network.

In a social network, an edge typically
represents some type of a relationship
(e.g., friendship, professional relationship,
or physical encounters per day) between
individuals.

Directed
edge

A connection between two
entities in a network that has
an orientation. One typically

uses an arrow to represent the
direction of the orientation.

In the context of a social network, directed
edges can be useful for characterizing
concepts such as “popularity”. For
instance, a researcher may choose to
define the popularity of an individual by the
number of nominations that they receive
from others in a network.

Undirected
edge

A connection between two
entities in a network that has
no direction.

Edges can be undirected because the
criterion that one uses to define them is
undirected in nature (e.g., an edge can
represent the presence of a group
affiliation) or because of researcher choice
(e.g., a researcher may choose to define
friendship by counting only mutually
reported relationships).

Weighted
Edge

A connection between two
entities in a network that
encodes the strength of a

relationship (or interaction).

A researcher may use subjective ratings of
closeness to represent strengths of
friendships in a social network.

Unweighted
Edge

A connection between two
entities in a network that does
not incorporate the strength of
a relationship (or interaction).

Edges can be unweighted by nature (e.g., if
an edge encodes whether a relationship
exists or does not exist), or by researcher
choice (e.g., a researcher may choose to
use an edge to represent a relationship
only if it equals or exceeds a minimum
threshold on the number of interactions).
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Sociocentric
Network
(i.e.,
complete
network)

Encapsulates a complete
picture of who is connected to
whom in a network.

An example of a sociocentric network
approach is to survey all of the members of
a sports team to characterize a friendship
network by asking people who their friends
are.

Egocentric
Network

A network that is based on an
individual (“ego”) and their
friends (“alters”).

An example of an egocentric-network
approach is to ask one individual (the
“ego”) about the people (the “alters”) to
whom they are connected directly. In some
cases, one also collects information about
whether the alters themselves are
connected to one another.

Adjacency
Matrix

A mathematical representation
of a network. An adjacency
matrix A of a network is an n x
n matrix (where n is the
number of nodes) with
elements A;.

See Figure 1 for examples of adjacency
matrices.

Edge List

An edge list is a list of node
pairs that are connected
directly by edges.

See Figure 1 for examples of edge lists.

Distance

In an unweighted network, the
distance between two nodes is
the smallest number of edges
that one needs to traverse to
connect the two nodes (i.e., a
shortest path). If edges are
weighted, one uses associated
edge costs to calculates
distances.

Two nodes can be connected by direct ties
(e.g., “friends”, with a distance of 1) or by
indirect ties (e.g., “friends of friends”, with a
distance of 2). Researchers should
carefully consider context before drawing
inferences based on distances between
nodes, as interpretations of distance can
be affected by various features of a
network.

Centrality

Captures importance of actors
(or of edges between them) in
a social network.

There are many variants of centrality. We
discuss several common types.

Degree
Centrality
(i.e., degree)

The number of edges that are
attached to a node.

In a social network, an individual’s degree
centrality is the number of connections that
they have.

Eigenvector
Centrality

The components of the
leading eigenvector of a
network’s adjacency matrix A.

Eigenvector centrality captures how well-
connected an individual is to well-
connected others. PageRank is an

important variation of eigenvector centrality
that has been used most famously to rank
search results on the World Wide Web.

Diffusion
Centrality

Captures an individual’s
centrality with respect to a
simple spreading process on a
network.

Diffusion centrality may be useful for
characterizing how central individuals are
in spreading items (such as information) in

a dissemination process.
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Measures the extent to which

An individual with large betweenness

centrality may have a high capacity for
brokerage because more of their friends
have to go through them to communicate

Beévgﬁﬁglri]te S| shortest paths between pairs with one another. (However, a large
y of nodes traverse a node. betweenness centrality does not
necessarily entail high brokerage. See the
main text for important caveats in
interpreting betweenness centrality.)
A set of nodes that are For instance, given an individual’s social
denselv connected with one network, community-detection algorithms
Communit anoyther but sparsel can help identify different groups of friends
y connected witF;l otheyr (e.g., friends from high school, teammates
communities of nodes from a recreational sports league, and so
' on).
A network with multiple layers.
Each layer has its own sets of Multil K q il
Multilayer nodes and edges, and there Ut ayfr nt_atr\]/vor S csl?fenco © SOC'E}
Network are also interlayer edges that networks with many different types o

connect nodes rom different
layers.

relationships. For examples, see Figure 4.
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The incorporation of network-analysis tools to study social systems has the potential to
greatly enrich the study of the individual cognition in the context of real-life social
environments. However, there are many issues for researchers to consider when making
decisions about using network-analysis tools to study social systems.

Challenges in data collection.

Combining the methods that we described in our “Methods to Obtain Networks” section with
neuroscientific data typically requires having collected data on neuroimaging study
participants’ social relations. Most existing data sets from social neuroscience studies do not
have such data on participants. Consequently, it is typically necessary for a research team
to acquire social network data on neuroimaging participants as part of data collection (rather
than working with existing data sets). This has the potential to pose additional logistical
challenges during data collection.

When network tools may not be the most appropriate.

Sometimes, it may be possible to answer a question of interest more readily by relating brain
activity to other individual difference measures that may be easier to obtain than network
data. For instance, if we are interested in understanding relationships between social
support and brain activity, we can test the relationship between degree centrality and brain
activity (inferring that smaller degree centrality entails fewer friends, which in turn entails
less social support). However, it may be easier (and perhaps more appropriate, in some
cases) to simply ask individuals about their subjective perceptions of social support.

Causal inferences.

As we discuss in our “Future Directions” section, researchers should be very careful when
inferring (or implying) causal directions in relating brain activity and network features. Most
existing studies in social neuroscience that have related brain activity and network features
are cross-sectional in nature, so associated causal relationships are unclear. This arises
because meaningful experimental manipulation of social network features in humans is
challenging (for both practical and ethical concerns), and it can also be difficult to conduct
(or otherwise obtain) longitudinal studies that involve both brain activity and social networks.




