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Information-Directed Random Walk for Rare Event
Detection in Hierarchical Processes

Chao Wang, Kobi Cohen, Qing Zhao

Abstract— The problem of detecting a few anomalous processes
among a large number of data streams is considered. At each
time, aggregated observations can be taken from a chosen subset
of the processes, where the chosen subset conforms to a given tree
structure. The random observations are drawn from a general
distribution that may depend on the size of the chosen subset and
the number of anomalous processes in the subset. We propose
a sequential search strategy by devising an information-directed
random walk on the tree-structured observation hierarchy. The
proposed policy is shown to be asymptotically optimal with
respect to the detection accuracy and order-optimal with respect
to the size of the search space. Effectively localizing the data
processing to small subsets of the search space, the proposed
strategy is also efficient in terms of computation and memory
requirement.

Index Terms— Sequential design of experiments, active
hypothesis testing, anomaly detection, noisy group testing,
channel coding with feedback.

I. INTRODUCTION

A. Rare Event Detection in Hierarchical Processes

We consider the problem of detecting anomalies in a large
number of processes. At each time, the decision maker chooses
a subset of processes to observe. The chosen subset conforms
to a predetermined tree structure. The (aggregated) observa-
tions are drawn from a general distribution that may depend
on the size of the chosen subset and the number of anomalies
in the subset. The objective is a sequential search strategy that
adaptively determines which node on the tree to probe at each
time and when to terminate the search in order to minimize a
Bayes risk that takes into account both the sample complexity
and the detection accuracy.

The above problem is an archetype for searching for a few
rare events of interest among a massive number of data streams
that can be observed at different levels of granularity. For
example, financial transactions can be aggregated at different
temporal and geographic scales. In computer vision applica-
tions such as bridge inspection by UAVs with limited battery
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capacity, sequentially determining areas to zoom in or zoom
out can quickly locate anomalies by avoiding giving each pixel
equal attention. A particularly relevant application is heavy
hitter detection in Internet traffic monitoring. It is a common
observation that Internet traffic flows are either “elephants”
(heavy hitters) or “mice” (normal flows). A small percentage
of high-volume flows account for most of the total traffic [1].
Quickly identifying heavy hitters is thus crucial to network
stability and security, especially in detecting denial-of-service
(DoS) attacks. Since maintaining a packet count for each
individual flow is infeasible due to limited sampling resources
at the routers, an effective approach is to aggregate flows based
on the IP prefix of the source or destination addresses [2],
[3]. Indeed, recent advances in software-defined networking
(SDN) allow programmable routers to count aggregated flows
that match a given IP prefix. The search space of all traffic
flows thus follows a binary tree structure. Other applications
include DoA estimation [4] and system control [5].

B. Information-Directed Random Walk

To fully exploit the hierarchical structure of the search
space, the key questions are how many samples to obtain at
each level of the tree and when to zoom in or zoom out on
the hierarchy. A question of particular interest is whether a
sublinear scaling of the sample complexity with the size of
the search space is feasible while achieving the optimal scaling
with the detection accuracy. In other words, whether accurate
detection can be achieved by examining only a diminishing
fraction of the search space as the search space grows.

Our approach is to devise an information-directed random
walk (IRW) on the hierarchy of the search space. The IRW
initiates at the root of the tree and eventually arrives and
terminates at the targets (i.e., the anomalous processes) with
the required reliability. Each move of the random walk is
guided by the test statistic of the sum log-likelihood ratio
(SLLR) collected from each child of the node currently being
visited by the random walk. This local test module ensures
that the global random walk is biased toward a target and
that the walk terminates at a target with the required detection
accuracy.

Analyzing the sample complexity of the IRW strategy lies
in examining the trajectory of the biased random walk. With
a suitably chosen confidence level in the local test module,
the random walk will concentrate, with high probability, on a
smaller and smaller portion of the tree containing the targets
and eventually probes the targets only. The basic structure of
the analysis is to partition the tree into a sequence of half



2

trees with decreasing size, and bound the time the random
walk spends in each half tree. The entire search process, or
equivalently, each sample path of the biased random walk,
is then partitioned into stages by the successively defined
last passage time to each of the half trees in the shrinking
sequence. We show that the sample complexity of the IRW
strategy is asymptotically optimal in detection accuracy and
order optimal, specifically, a logarithmic order, in the size
of the search space when the aggregrated observations are
informative at all levels of the tree (with a finite number of
exceptions).

We also consider the case when higher-level observations
decay to pure noise. Using Bernoulli distribution as a case
study, we show that when the Kullback-Leibler (KL) diver-
gence between the target-absent and target-present distribu-
tions decays to zero in a polynomial order with the depth
of the tree, the IRW offers a sample complexity that is a
poly-logarithmic order in the number of processes; when the
decaying rate is exponential in the level l of the tree (i.e.,
′ α 2l), a sublinear scaling in the size of the search space can
be achieved provided 1 < α <

/
2.

The proposed search strategy is deterministic with search
actions explicitly specified at each given time. It involves
little online computation beyond calculating the SLLR and
performing simple comparisons. It is also efficient in terms of
memory requirement. By effectively localizing data processing
to small subsets of the search space, it has O)1[ computation
and memory complexity.

C. Related Work

The problem considered here falls into the general class
of sequential design of experiments pioneered by Chernoff in
1959 [6] in which he posed a binary active hypothesis testing
problem. Compared with the classical sequential hypothesis
testing pioneered by Wald [7] where the observation model
under each hypothesis is fixed, active hypothesis testing has
a control aspect that allows the decision maker to choose
different experiments (associated with different observation
models) at each time. Chernoff proposed a randomized strat-
egy and showed that it is asymptotically optimal as the error
probability approaches zero. Known as the Chernoff test,
this randomized strategy chooses, at each time, a probability
distribution governing the selection of experiments based on
all past actions and observations. The probability distribution
is given as a solution to a maxmin problem, which can be
difficult to solve, especially when the number of hypotheses
and/or the number of experiments is large (a case of focus in
this paper). Furthermore, the Chernoff test does not address
the scaling with the number of hypotheses and results in a
linear sample complexity in the size of the search space when
applied to the problem considered here.

A number of variations and extensions of Chernoff’s ran-
domized test have been considered (see, for example, [8]–
[11]). In particular, in [10], Naghshvar and Javidi developed
a randomized test that achieves the optimal logarithmic order
of the sample complexity in the number of hypotheses under
certain implicit assumptions on the KL divergence between

the observation distributions under different hypotheses. These
assumptions, however, do not always hold in general for
the observation models considered here. In particular, the
assumption in [10] implies that the supremum of the log-
likelihood ratio between any two hypotheses from a single
observation is bounded, which does not hold in general for
observation kernels with unbounded support. Furthermore,
similar to the Chernoff test, this randomized test is specified
only implicitly as solutions to a sequence of maxmin problems
that is intractable for general observation distributions and
large problem size. More specifically, the work in [10] formu-
lates the sequential hypothesis testing problem as a partially
observable Markov decision process (POMDP). After each
measurement, the new observation is used to update the belief
of each hypothesis. As a result, the computational complexity
after each measurement has a linear order with the search
space. In contrast, the algorithm proposed in this work has a
constant computation and memory complexity that does not
grow with the size of the search space.

In our prior work [11]–[13], we considered a target search
problem in a linear search setting without access to hier-
archical observations. The sample complexity of the search
strategy developed there achieves asymptotical optimality with
respect to the detection accuracy, but linear order with the
size of the search space. The problem addressed in this work
is fundamentally different, focusing on efficient exploitation
of aggregated and potentially low-quality measurements to
achieve an optimal sublinear order with the size of the search
space. The problem of detecting anomalies or outlying se-
quences has also been studied under different formulations,
assumptions, and objectives [14]–[17]. An excellent survey can
be found in [18]. These studies, in general, do not address the
optimal scaling in the detection accuracy or the size of the
search space.

Tree-based search in data structures is a classical problem
in computer science (see, for example, [19], [20]). It is mostly
studied in a deterministic setting, i.e., the observations are
deterministic when the target location is fixed. The problem
studied in this work is a statistical inference problem, where
the observations taken from the tree nodes follow general
statistical distributions.

The problem studied here also has intrinsic connections with
several problems studied in different application domains, in
particular, adaptive sampling, noisy group testing, and channel
coding with feedback. We discuss in detail the connections and
differences in Section VII.

II. PROBLEM FORMULATION

We first consider the case of a single target and a binary tree
structure. Extensions to multi-target detection and general tree
structures are discussed in Sections V and VI, respectively.

As illustrated in Fig. 1, g0 and f0 denote, respectively,
the distributions of the anomalous process and the normal
processes1. Let gl (l = 1, . . . , log2 M) denote the distribution

1The proposed policy and the analysis extend with simple modifications
to cases where each process has different target-present and target-absent
distributions.



3

Fig. 1. A binary tree observation model with a single target.

of the measurements that aggregate the anomalous process and
2l 1 normal processes, and fl (l = 1, . . . , log2 M) denote the
distribution of the measurements that aggregate 2l normal pro-
cesses (see Fig. 1). We allow general relation between }gl, fl |
and }g0, f0 | , which often depends on the specific application.
For example, in the case of heavy hitter detection where the
measurements are packet counts of an aggregated flow, gl and
fl are given by multi-fold convolutions of f0 and g0. For
independent Poisson flows, gl and fl are also Poisson with
mean values given by the sum of the mean values of their
children at the leaf level. As is the case in most of the practical
applications, we expect that observations from each individual
process are more informative than aggregated observations.
More precisely, we expect D)gl 1√fl 1[ ∼ D)gl√fl[ and
D) fl 1‖‖gl 1[ ∼ D) fl√gl[ for all l > 0, where D)×‖‖×[ denotes
the KL divergence between two distributions. However, the
results in this work hold for the general case without these
monotonicity assumptions.

An active search strategy = )}φ)t[| t∼1, τ, δ[ consists of
a sequence of selection rules }φ)t[| t∼1 governing which node
to probe at each time, a stopping rule τ deciding when to
terminate the search, and a declaration rule δ deciding which
leaf node is the target at the time of stopping. We adopt
the Bayesian approach as in Chernoff’s original work [6]
and subsequent studies in [10], [11]. Specifically, a sampling
cost c ∀ )0,1[ is incurred for each observation and a loss of 1
for a wrong declaration. Let πm denote the a priori probability
that process m is anomalous, which is referred to as hypothesis
Hm. The probability of detection error Pe) [ and the sample
complexity Q) [ of strategy are given by

Pe) [ �
M∏
m=1
πmP ]δ � m‖Hm , (1)

Q) [ �
M∏
m=1
πmE ]τ‖Hm , (2)

where P and E denote the probability measure and expec-
tation with respect to the probability space induced by . The
dependency on will be omitted from the notations when
there is no ambiguity. The Bayes risk of is then given by

R) [ � Pe) [ + cQ) [. (3)

The objective is a strategy that achieves the lower bound of
the Bayes risk:

R≡ = inf R) [. (4)

We are interested in strategies that offer the optimal scaling
in both c, which controls the detection accuracy, and M ,
which is the size of the search space. A test is said to be
asymptotically optimal in c if, for fixed M ,

lim
c∝ 0

R) [
R≡
= 1. (5)

A shorthand notation R) [ →R≡ will be used to denote the
relation specified in (5). If the above limit is a constant greater
than 1, then is said to be order optimal. The asymptotic and
order optimalities in M are similarly defined as M approaching
infinity for a fixed c.

A dual formulation of the problem is to minimize the sample
complexity subject to an error constraint ε, i.e.,

≡ = arg inf Q) [, s.t. Pe) [ ≥ ε. (6)

Note that, since we consider a non-empty set of real numbers
that is bounded from below, arg inf always exists. In the Bayes
risk given in (3), c can be viewed as the inverse of the
Lagrange multiplier, thus controls the detection accuracy of the
test that achieves the minimum Bayes risk. Following the same
lines of argument in [21], [22], one can obtain the solution
to (6) from the solution under the Bayesian formulation.

III. INFORMATION-DIRECTED RANDOM WALK

The IRW policy induces a biased random walk that initiates
at the root of the tree and eventually arrives at the target with
a sufficiently high probability. Each move of the random walk
is guided by the output of a local test carried on the node
currently being visited by the random walk. This local test
module U)p[ determines, with a confidence level p, whether
this node contains the target, and if yes, which child contains
the target. Based on the output, the random walk zooms out
to the parent2 of this node or zooms in to one of its child. The
confidence level p of the local test module is set to be greater
than 1(2 to ensure that the global random walk is more likely
to move toward the target than move away from it.

Once the random walk reaches a leaf node, say node m
(m = 1, . . . ,M), samples are taken one by one from node m
and the SLLR Sm)t[ of node m is updated with each new
sample taken during the current visit to this node:

Sm)t[ =
t∏

n=1
log

g0)y)n[[
f0)y)n[[

. (7)

When Sm)t[ drops below 0, the random walk moves back to the
parent of node m. When Sm)t[ exceeds log log2 M

c , the detection
process terminates, and node m is declared as the target. The
choice of the stopping threshold log log2 M

c is to ensure that the
error probability is in the order of O)c[, which in turn secures
the asymptotic optimality in c (see Theorem 1 and the proof
in Appendix B).

We now specify the local test module U)p[ carried out
on upper-level nodes. The objective of U)p[ is to distinguish
three hypotheses—H0 that this node does not contain the target
and H1 (H2) that the left (right) child of this node contains

2The parent of the root node is defined as itself.
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the target—with a confidence level no smaller than p under
each hypothesis. Various tests (fixed-sample-test, sequential,
and active) with a guaranteed confidence level p can be
constructed for this ternary hypothesis testing problem. We
present below a fixed-sample-size test. A sequential test based
on the Sequential Probability Ratio Test (SPRT) [23] and
an active test can also be constructed. Details are given in
Appendix A. The theorems in this paper apply to IRW with
fixed sample-size local test. IRW with the sequential, and
active local tests are analyzed numerically, and also shown
to outperform the fixed sample-size local test in simulation
examples (see Section VIII-B).

Suppose that the random walk is currently at a node on level
l > 0. A fixed Kl samples, denoted as y)n[ (n = 1, . . . ,Kl), are
taken from each child of the node. The SLLR of each child
is computed:

Kl∏
n=1

log
gl 1)y)n[[
fl 1)y)n[[

. (8)

If the SLLRs of both children are negative, the local test
declares hypothesis H0. Otherwise, the local test declares H1
(H2) if the left (right) child has a larger SLLR. The sample size
Kl is chosen to ensure a probability p > 1

2 of correct detection
under each of the three hypotheses and can be determined as
follows. Let p)g[

l
and p) f [

l
denote, respectively, the probability

that the local test output moves the random walk closer to the
target when this node contains the target and when it does
not (see Fig. 2). Both are functions of the sample size Kl . We
have

p)g[
l
= Pr

]
Kl∏
n=1

log
gl 1)Yn[
fl 1)Yn[

> max}
Kl∏
n=1

log
gl 1)Zn[
fl 1)Zn[

,0|
{
,

p) f [
l
=

]
Pr

)
Kl∏
n=1

log
gl 1)Zn[
fl 1)Zn[

< 0

[{2

,

(9)

where }Yn | Kl

n=1 and }Zn | Kl

n=1 are i.i.d. random variables with
distribution gl 1 and fl 1, respectively. The parameter Kl (l =
1,2, . . . , log2 M) is chosen to ensure that p)g[

l
> p and p) f [

l
> p.

Note that the value of Kl can be computed offline and simple
upper bounds suffice.

IV. PERFORMANCE ANALYSIS

In this section, we establish the asymptotic optimality of
the IRW policy in c and the order optimality in M .

A. Main Structure of the Analysis

Analyzing the Bayes risk of the IRW strategy lies in
examining the trajectory of the biased random walk. With a
confidence level p > 1

2 in the local test module, the random
walk will concentrate, with high probability, on a smaller and
smaller portion of the tree containing the target and eventually
probes the target only. Based on this insight, our approach
is to partition the tree into log2 M + 1 half trees Tlog2 M ,
Tlog2 M 1, . . ., T0 with decreasing size, and bound the time
the random walk spent in each half tree. As illustrated in
Fig. 3 for M = 8, Tl is the half tree (including the root)
rooted at level l (l = log2 M, log2 M 1, . . . , 1) that does

Fig. 2. A biased random walk on the tree.

Fig. 3. Partition of the tree into log2 M + 1 half trees.

not contain the target and T0 consists of only the target node.
The entire search process, or equivalently, each sample path of
the resulting random walk, is then partitioned into log2 M + 1
stages by the successively defined last passage time to each
of the half trees in the shrinking sequence. In particular, the
first stage with length τlog2 M starts at the beginning of the
search process and ends at the last passage time to the first
half tree Tlog2 M in the sequence, the second stage with length
τlog2 M 1 starts at τlog2 M+1 and ends at the last passage time to
Tlog2 M 1, and so on. Note that if the random walk terminates
at a half tree Tl with l > 0 (i.e., a detection error occurs), then
τj = 0 for j = l 1, . . . ,0 by definition. It is easy to see that,
for each sample path, we have the total time of the random
walk equal to

∑log2 M
l=0 τl .

In the next two subsections, we address separately the two
cases of (i) the observations at all levels are informative (i.e.,
the KL divergence is bounded away from zero) and (ii) the
aggregated observations decay to pure noise (i.e., diminishing
KL divergence).

B. Informative Observations at All Levels

We first consider the case where the KL divergence between
aggregated observations in the presence and the absence of
anomalous processes is bounded away from zero at all levels
of the tree. The theorem below characterizes the Bayes risk
of IRW.

Theorem 1: Assume that there exists a constant δ > 0
independent of M such that D)gl√fl[ > δ and D) fl√gl[ > δ
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for all l = 1,2, . . . , log2 M . For all M and c, we have

R) IRW[ ≥ cB log2 M +
c log log2 M

c

D)g0√f0[
+O)c[, (10)

where B is a constant independent of c and M . Furthermore,
the Bayes risk of IRW is order optimal in M for all c and
asymptotically optimal in c for all M greater than a finite
constant M0.

Proof: See Appendix B.

The optimality of the Bayes risk of IRW in both c and
M directly carries through to the sample complexity of IRW.
Specifically, from (10), we have the following upper bound on
the sample complexity

Q ) IRW[ ≥ B log2 M +
log log2 M

c

D)g0√f0[
+O)1[. (11)

For a fixed M , we readily have

Q ) IRW[ →
log c

D)g0√f0[
.

For a fixed c > 0, we have

Q ) IRW[ = O)log2 M[.
Using the lower bound on the sample complexity which was
developed in Theorem 2 in [10], for any policy , we have

Q) [ ∼ log2 M
Imax

+
log))1 c[( c[

D)g0√f0[
+O)1[, (12)

where Imax denotes the maximum mutual information between
the true hypothesis and the observation under an optimal
action. It is not difficult to see that the sample complexity of
IRW is asymptotically optimal in c and order optimal in M .
We point out that our analysis here focuses on establishing
asymptotic/order optimality for general observation models.
Hence, we resort to bounding techniques that are generally
applicable but may lead to loose bounds on the leading
constants for specific cases.

C. Aggregated Observations Decaying to Pure Noise

When the quality of higher level measurements decays
sufficiently fast, the sample size Kl of the local test may
increase unboundedly with l (l = 1, . . . ,). Nevertheless, since
the number of levels is log2 M , a sublinear scaling with M is
still attainable at moderate decaying rate of the aggregated
observations. As a case study, we consider the Bernoulli
distribution, which is widely adopted in the literature of hy-
pothesis testing and group testing and also arises in distributed
detection of aggregating local binary decisions. We establish
sufficient conditions on the decaying rate of the quality of the
hierarchical observations under which the IRW policy achieves
a sublinear sample complexity in M .

Assume that fl and gl follow Bernoulli distributions with
parameters ul and 1 ul , respectively. In other words, the
false alarm and miss detection probabilities at level l are given
by ul . The KL divergence between gl and fl is D)gl√fl[ =
D) fl√gl[ = )1 2μl[ log 1 μl

μl
. We consider the case that μl

increases with l and converges to 1
2 as M approaches infinity.

In this case, both D)gl√fl[ and D) fl√gl[ converge to zero,
which leads to unbounded Kl . The following two theorems
characterize the sample complexity of IRW when μl converges
to 1

2 in polynomial order and exponential order, respectively.

Theorem 2: Assume that μl = 1
2 ) 1

2 μ0[)l + 1[ α (l =
0,1,2, . . . , log2 M) for some α ∀ Z+ and μ0 <

1
2 . The Bayes

risk of the IRW policy is upper bounded by:

R ) IRW[ ≥ O)c)log2 M[2α+1[ + c log log2 M
c

D)g0√f0[
+O)c[. (13)

Proof: See Appendix C.
The case specified in Theorem 2 corresponds to a poly-

nomial decay of the KL divergence: D)gl√fl[ = D) fl√gl[ ′
)l + 1[ 2α. In this case, IRW offers a sample complexity that
is poly-logarithmic in M:

Q ) IRW[ = O))log2 M[2α+1[.
Theorem 3: Assume that μl = 1

2 ) 1
2 μ0[α l (l =

0,1,2, . . . , log2 M) for some α > 1 and μ0 <
1
2 . The Bayes

risk of the IRW policy is upper bounded by:

R ) IRW[ ≥ cB̃M log2 α
2
+

c log log2 M
c

D)g0√f0[
+O)c[, (14)

where B̃ is a constant independent of c and M .
Proof: See Appendix C.

The case specified in Theorem 3 corresponds to a exponen-
tial decay of the KL divergence: D)gl√fl[ = D) fl√gl[ ′ α 2l .
In this case, IRW offers a sample complexity that is sub-liner
in M provided that 1 < α <

/
2:

Q ) IRW[ = O)M log2 α
2 [.

V. MULTI-TARGET DETECTION

We now consider the problem of detecting L (L ∼ 0)
anomalous processes. We show that an extension of the IRW
policy preserves the asymptotic optimality in c and the order
optimality in M even when the number L of targets is
unknown.

Let h)d[
l

(l = 0,1, . . . , log2 M , d ≥ min}L,2l | ) denote the
distribution of the measurements that aggregate d anomalous
processes and 2l d normal processes. An example with M = 8
and L = 3 is shown in Fig. 4. For a given d, we assume that
for any d∞≥ d 1, we have

D
)
h)d[
l 1

((h)d
∞[

l 1

[
D

)
h)d[
l 1

((h)d
∞+1[

l 1

[
> 0, (15)

and for any d∞∼ d, we have

D
)
h)d[
l 1

((h)d
∞[

l 1

[
D

)
h)d[
l 1

((h)d
∞+1[

l 1

[
< 0. (16)

The above monotonicity assumption on the KL divergence
between h)d[

l
and h)d

∞[
l

implies that a bigger difference ‖d d∞‖
in the number of targets contained in the aggregated mea-
surements leads to more distinguishable observations, which
is usually true in practice. For the analysis in this section,
we focus on the case that observations at all levels are
informative. In other words, we assume that there exists a
constant δ > 0 independent of M such that D)h)d+k[

l
√h)d[

l
[ > δ

for all l = 1,2, . . . , log2 M , d = 0,1, . . .min}L,2l | , and
d ≥ k ≥ min}L,2l | d.
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Fig. 4. A binary tree observation model with multiple targets.

A. IRW Policy for Known L

For multi-target detection, IRW locates the L (L > 1) targets
one by one3. Similar to the single-target case, a biased random
walk initiates at the root of the tree and eventually arrives at
an undeclared target with high probability (referred to as one
run of the random walk). The random walk is then reset to
the root until L targets have been declared.

The local test U)p[ on an upper-level node differs from
the single-target case in that it now faces four hypotheses,
with an addition of hypothesis H3 that both children contain
undeclared targets. The outputs of H0, H1, and H2 of the local
test guide the random walk in the same way as in the single-
target case. When the local test outputs H3, the random walk
arbitrarily chooses one child to zoom in. The stopping rule
and declaration rule at each run of the random walk remain
the same as in the single-target case.

To specify the local test module U)p[, suppose that the
random walk is currently at a node on an upper level l > 0,
whose left and right child contain, respectively, [dL and [dR

declared targets. Note that the local test faces a composite
hypothesis testing problem, since both the left and right
children may contain more than one target. Consider a fixed-
sample test where K ) [dL [

l
and K ) [dR [

l
samples are taken from

the left and right child, respectively. Note that the number
of samples taken from each child depends on the number of
declared targets. The SLLR of left child is computed as

K
) [dL [
l∏
n=1

log
h)

[dL+1[
l 1 )y)n[[
h)

[dL [
l 1 )y)n[[

. (17)

The SLLR of the right child is similarly obtained. Based
on the monotonicity assumption specified in (15) and (16),
the expected value of the log-likelihood ratio (LLR) of each
sample in (17) is positive when there are undeclared targets
contained in the tested child, and is negative otherwise. The
local decision rule is thus based on whether the SLLRs of the
two children are both negative (H0), both positive (H3), or one
negative one positive (H1 or H2). Similar to the single-target
case, the values of K ) [dL [

l
and K ) [dR [

l
are chosen to guarantee

the probability of declaring the correct hypothesis is greater

3We do not assume that declared targets can be removed and excluded from
future observations, which represents a simpler version of the problem.

than p. A sequential local test and an active local test can be
similarly obtained.

The theorem below characterizes the Bayes risk of the IRW
policy in terms of both M and c.

Theorem 4: Assume that there exists a constant δ > 0
independent of M such that D)h)d+k[

l
√h)d[

l
[ > δ for all

l = 1,2, . . . , log2 M , d = 0,1, . . .min}L,2l | , and d ≥ k ≥
min}L,2l | d. For all M , c, and L , we have

R ) IRW[ ≥ cLB log2 M +
cL log log2 M

c

D)g0√f0[
+O)c2 log2 M[ +O)c[,

(18)

where B is a constant independent of c, M , and L. Further-
more, the Bayes risk of IRW is order optimal in M for all c
and asymptotically optimal in c for all M sufficiently large.

Proof: We present below the basic structure of the proof.
Details can be found in Appendix D. Similar to the single-
target case, the risk associated with a wrong decision is
bounded by O)c[. In analyzing the sample complexity, a
uniform bound on the sample complexity of finding each
target, i.e., a uniform bound on each run of the random walk,
is derived. Such a bound is again obtained by partitioning the
tree into log2 M + 1 subsets. These subsets, however, differ
from the sub-trees in the single-target case. As illustrated in
Fig. 5 for an example with M = 8 and L = 3, subset T0
consists of all the targets. Subset Tl (l = 1, . . . , log2 M) is the
union of all the nodes on level l that contain at least one target,
and their entire left or right subtree if the subtree has no target.
We then show that the successively defined last passage time
to each of the subsets from Tlog2 M to T1 are bounded by a
constant.

B. IRW Policy for Unknown L

When the number L (may be zero) of targets is an unknown
constant independent of M , the IRW policy can be augmented
with a terminating phase carried out at the root of the tree.
Specifically, at the beginning of each run of the random walk
when the local test takes samples from each child of the
root node, if the local test indicates neither child contains
undeclared targets, the policy enters the terminating phase and
starts taking samples from the root node itself. The SLLR of
the root node is updated sequentially with each sample. A
positive SLLR initiates the next run of the random walk. A

Fig. 5. Partition of the tree into log2 M + 1 subsets when there are multiple
targets.
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negative SLLR that drops below log c terminates the detection
process.

Following the similar lines of arguments as in the proof of
Theorem 4, the Bayes risk of the IRW policy when the number
of targets is unknown can be upper bounded by

R ) IRW[ ≥cLB log2 M +
cL log log2 M

c

D)g0√f0[

+
c log 1

c

D
)
h)L[
lr

(((h)L+1[
lr

[ +O)c2 log2 M[ +O)c[.
(19)

Comparing (19) with (18), we see that additional samples are
required to take at the root node in the terminating phase.
Depending on the decaying speed of the KL-divergence, the
additional sample complexity can be large if D

)
h)L[
lr

(((h)L+1[
lr

[
diminishes fast. However, as long as the KL-divergence on
each level is bounded away from zero, IRW remains to be
order-optimal in M and asymptotically optimal in c. In Sec-
tion VIII-D, we show the impact of unknown L via simulation
examples.

VI. EXTENSIONS

In this section, we discuss extensions in two directions: a
general tree structure and a general cost measure.

A. IRW policy for General Tree Structures

As illustrated in Fig. 6, each leaf of the tree follows either
the distribution g0 (target) or f0 (non-target), although the
path length from each leaf to the root may be different. The
observations at a high-level node follow the distributions that
aggregate all its leaf-level descendants. Let ha,b denote the
distribution of the measurements that aggregate a anomalous
processes and b normal processes.

Assuming that the number of targets L is known, the IRW
policy operates in a similar way as presented in Section V. At
each node of the tree, the objective of the local test is to guide,
with probability greater than 1(2, the global walk toward the
child that contains undeclared targets. In particular, Kl) [d,w[
samples are taken from each child where [d is the number of
declared targets and w is the number of the leaf nodes rooted
at the child being tested. The SLLR of the sampled child is
updated as

Kl ) [d,w[∏
n=1

log
h [d+1,w [d 1)y)n[[

h [d,w [d )y)n[[ . (20)

If SLLRs of all the children are negative, the local test
declares that no child contains undeclared targets, and the
random walk goes back to the parent of the current node.
Otherwise, the local test declares the child with the largest
SLLR as containing undeclared targets, and the random walk
zooms into that child. The number Kl) [d,w[ of samples is
chosen to guarantee the biasedness of the random walk.

Following similar lines as in the proof of Theorem 4, we
can show the Bayes risk of the IRW policy is O)cLHD[ +
O)cL log 1

c [, where H is the height of the tree, D is the
maximum degree of the tree.

Fig. 6. A general tree with bounded degree.

For a graph structure that is not a tree, least informative
edges can first be trimmed to obtain a tree. IRW can then be
applied to the resulting tree. An optimal construction of a tree
from an arbitrary graph is an interesting future direction.

B. IRW Policy under Size-Dependent Costs

The work introduced in all the previous sections follows
the Bayesian approach in Chernoff’s original work [6], and
the objective is to find an algorithm that achieves the optimal
Bayesian risk in c and M . We now discuss the case where the
cost of testing a node depends on the location of the node on
the tree. More specifically, the cost is a function of the size
of the testing set.

Let the cost at the leaf level be c and the cost of testing a
node at level l be cl which is a function of l and c. A similar
upper bound on the Bayesian risk of IRW can be obtained by
following similar lines of arguments in Appendix B. If cl is
bounded and limc∝ 0 cl = 0 for all l = 1,2, ..., log2 M , then all
the theorems shown in the paper hold. If, however, cl increases
with l and approaches infinity when M goes to infinity, the
optimality of the IRW policy in terms of minimizing the
Bayesian risk is an open question and requires a separate
investigation.

VII. DISCUSSIONS

Several problems studied in different context can be cast
as an active search problem. In this section, we discuss these
connections and the applicability of the IRW strategy.

A. Adaptive Sampling with Noisy Response

Consider the problem of estimating a step function in ]0,1
(i.e., estimating a zero crossing). Let z≡ ∀ ]0,1 denote the
unknown step of the function. The learner sequentially chooses
sampling points in the interval and observes a noisy version
of their values. Two commonly used noise models are the
additive Gaussian noise model and the boolean noise model.
In the former, the observations are Gaussian with mean 0 or
1, depending on whether the sampling point is to the left or
the right of z≡. In the latter, the observations are Bernoulli
random variables with parameters depending on the relative
locations of the sampling points and z≡. The objective is to
locate z≡ in a δ-length interval with a probability no smaller
than 1 ε. This problem arises in active learning of binary
threshold classifiers [24] and stochastic root finding [25].
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The problem can be cast as one studied in this work. We
partition the ]0,1 interval into δ-length sub-intervals, which
form the M = 1( δ leaf nodes with the sub-interval containing
z≡ being the target. Successively combining two adjacent sub-
intervals leads to a binary tree with the root being the entire
interval of ]0,1 . What remains to be specified is the local
test on a node. Since each node on the tree is a sub-interval
of ]0,1 , there remains the issue of which points in this sub-
interval to sample when we prob this node. One way to trans-
late the problem is to set the sampling points to the boundaries
of each sub-interval. Thus, for the ternary hypothesis testing
problem at each upper-level node, the observations are random
vectors of dimension 4, corresponding to sampling the two
boundaries of each of the children. Similarly, at a leaf node, the
observations are of dimension 2. The local tests can be easily
extended. The IRW policy ends up with a sample complexity
equals

2B log2
1
δ
+

log log2 M
ε

D)g0√f0[
+O)1[,

where B is a constant introduced in Theorem 1, and g0 and f0
are the distributions of the noisy responses when the sampling
is to the right or left of z≡ respectively.

Most of the existing work on adaptive sampling is based
on a Bayesian approach with a binary noise model. A popular
Bayesian strategy, the probabilistic bisection algorithm, up-
dates the posterior distribution of the step location after each
sample (based on the known model of the noisy response)
and takes the next sample at the median point of the posterior
distribution. Several variations of the method have been exten-
sively studied in the literature [26]–[30]. In particular, in [30],
Lalitha et al. proposed a two-stage algorithm based on the pos-
terior matching method and showed the gain in sample com-
plexity over non-adaptive/open-loop strategies. However, the
update and sorting of the posterior probabilities at each sample
require O)M log M) computation and memory complexity. In
contrast, the IRW approach assumes no prior distribution and
has O)1[ computation and memory complexity. This is made
possible by effectively localizing data processing to small
subsets of the input domain based on the tree structure, which
also allows dynamic allocation of limited data storage.

B. Noisy Group Testing

In the group testing problem, the objective is to identify the
defective items in a large population by performing tests on
subsets of items that reveal whether the tested group contains
any defective items (classical Boolean group testing [31],
[32]) or the number of defective items in the tested group
(quantitative group testing [3], [33]).

Various formulations of group testing can be mapped to an
active search problem with specific observation models (e.g.,
Bernoulli distribution for noisy Boolean group testing, sum-
observation model for the quantitative and threshold group
testing). The individual items in the group testing problems
are mapped to the leaf nodes of a tree. The action of testing
a node on the tree corresponds to a group test.

Most existing work on Boolean group testing assumes
error-free test outcomes. There are several recent studies on

the noisy group testing that assume the presence of one-
sided noise [31], [34] or the symmetric case with equal
size-independent false alarm and miss detection probabilities
[32], [35]. In some extended group testing models such as
the noisy quantitative group testing [3] and threshold group
testing [33], the issue of sample complexity in terms of the
detection accuracy is absent in the basic formulation. Most
of the existing results on noisy group testing focus on non-
adaptive open-loop strategies that determine all actions in one
shot a priori. The work by Kaspi et. al [36] studied a problem
of detecting multiple targets that are uniformly placed on the
unit interval. The observation of each measurement follows a
specific Bernoulli additive noise model, which can be mapped
to a binary multiple access channel in the channel coding
problem. Kaspi et. al proposed a non-adaptive strategy and an
adaptive strategy consisting of a series of non-adaptive mea-
suring phases. The disadvantages of non-adaptive strategies
lie in the computational complexity of the coding/decoding
processes and high storage requirement. Another recent work
by Scarlett [37] on the noisy group testing proposed a hybrid
adaptive group testing algorithm where the first stage applies
non-adaptive algorithms, and the second stage (and third stage
in a refined version) improves the initial estimate of the
first stage. Similar to the aforementioned related work, the
observation models are restricted to binary symmetric noise
or one-sided noise (Z-channel). The sampling complexity of
these algorithms is shown to be order-optimal in terms of the
population size. However, it is given in an asymptotic setting
as the probability of error approaching zero, i.e. the accuracy
constraint is not part of the given sampling complexity.

In contrast, IRW provides an adaptive solution to noisy
group testing under general noisy observations and with little
offline or online computation and low memory requirement.
Consider a noisy group testing problem in which L targets
need to be identified from M items with error probability
less than ε. The measurement of a group of items follow
a general distribution that depends on the number of targets
in the group. IRW falls into the family of nested test plans.
Specifically, treating all the M items as the leaf nodes, one
can easily construct a binary tree with height of log2 M as
shown in Fig. 4. Testing on an upper-level node corresponds
to measuring the group of all its leaf-level descendants.

Although adaptive group testing strategies do not neces-
sarily conform to a predetermined tree structure, IRW offers
asymptotic optimality in both population size and reliabil-
ity constraint. It has a sample complexity of BL log2 M +
L log log2 M

ε

D)g0√f0[ +O)ε log2 M[, where g0 and f0 are the distributions
of the measurement from the target and non-target items
respective, and B is a constant independent of L and M
as introduced in Theorem 4. In particular, IRW is the first
adaptive test plan for noisy group testing under a general
noise model and offers asymptotic optimality in terms of the
required detection accuracy and order optimality in terms of
the population size. As a point of comparison, the one-sided
boolean noise model considered in [31] is a special case of
the general model considered here, with g0 = Bernoulli)p[
and f0 ≤ 0. For this special case, the expected number of tests
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under IRW is upper bounded by O) L log2 M

p2 [, which achieves
the same result shown in [31].

C. Channel Coding with Feedback

In channel coding with feedback [38]–[40], the encoder
transmits symbols adaptively based on the receiving history
of the decoder due to the availability of a noiseless feedback
channel. This coding problem under an arbitrary discrete-
input memoryless channel can be mapped to the problem
studied in this work. Without loss of generality, consider a
Discrete Memoryless Channel (DMC) where the output is
also discrete. Let }I1, I2, . . . , IJ | and }O1,O2, . . . ,OK | denote,
respectively, the input and output alphabets. Let P = }pj ,k |
where j = 1, . . . , J, k = 1, . . . ,K be the channel transition
probability matrix. Let M be the number of messages. The
objective is a coding scheme that transits these M messages
successfully with probability no smaller than 1 ε.

The above coding problem can be mapped to an active
search problem on a binary tree with M leaf nodes of which
one is the target, i.e., the message being transmitted. The
binary splitting structure generates a representation of the
location of the target with a }0,1| codeword of which the
length equals log2 M (i.e., for each node, the left branch
represents 0 and the right branch represents 1). The test on
each level of the tree corresponds to sending the next bit or
correcting the previous bit of the source code. The distribution
of the target g0 is set as the probability mass vector }pj≡g ,k | Kk=1
and the distribution of the non-target node f0 is set as the
probability mass vector }pj≡

f
,k | Kk=1, where j≡g and j≡f are the two

most distinguishable symbols transmitted through the channel
and are defined as)

j≡g, j
≡
f

[
= arg max

)jg , j f [

K∏
k=1

pjg ,k log
pjg ,k

pj f ,k
,Ajg, j f = 1, . . . , J .

(21)
The observation distribution of a node on level l ∼ 1 also
follows g0 if it contains the target or f0 if it does not. It is
not difficult to see that the action of sampling a node which
contains the target in the target search problem corresponds
to the action of sending j≡g through the channel, and the
action of sampling a node which does not contain the target
corresponds to the action of sending j≡f through the channel.
The corresponding observations at the receiving end of the
channel follow g0 and f0, respectively.

IRW can be mapped to a coding scheme for the transmission
problem. If the next bit of the source code is 0, i.e., the
left child of the current node contains the target, the sender
sends Kl times of symbol j≡g followed by sending Kl times of
symbol j≡f through the channel. If the next bit of the source
code is 1, i.e., the right child contains the target, the sender
sends Kl times of symbol j≡f followed by sending Kl times
of symbol j≡g through the channel. If there is an error in
the transmission of previous bits, i.e., neither of the children
contains the target, the sender sends 2Kl times of symbol
j≡f to inform the encoder to correct the previous bit. After
each local test (2Kl times channel usages), a bit of the source
code is decoded correctly with probability greater than 1(2.
If a bit is decoded incorrectly, it would be revisited and

corrected later with probability greater than 1(2. When the
random walk arrives at a leaf node, i.e., the full codeword
has been transmitted and decoded, the sender keeps sending
symbol j≡g if the entire codeword has been decoded correctly
until the log-likelihood ratio at the receiver is large enough.
If any bit of the codeword is decoded incorrectly, the sender
keeps sending j≡f . This step of sending the confirmation bits
corresponds to the local test on a leaf in the IRW policy.
The total number of transmissions is then upper bounded by

B log2 M +
log log2 M

ε

D)g0√f0[ +O)ε[, which is order optimal in both M
and ε [38], [39].

A similar connection between the active search problem and
channel coding with feedback was discussed in [30], where
an additive Gaussian noise channel with binary input was
considered. The IRW strategy applies to more general channel
models. Its advantage in computation and memory efficiency
as discussed in the case of adaptive sampling applies here as
well.

VIII. SIMULATION EXAMPLES

In this section, we demonstrate the performance of IRW in
various settings.

A. Comparison of IRW with the Chernoff test and DGF test

Consider the problem of detecting L heavy hitters among
Poisson flows where the measurements are exponentially-
distributed packet inter-arrival times. For the leaf-node, g0 and
f0 are exponential distributions with parameters λg and λ f ,
respectively. The aggregated flows follow the corresponding
exponential distributions with the parameters equal to the sum
of the parameters of their children at the leaf level. Under this
observation model, we have

D)gi√fi[ ∼ D)gi+1√fi+1[, D) fi√gi[ ∼ D) fi+1√gi+1[.
It can be shown that, while the action space consisting of all
the nodes on the tree, the resulting Chernoff test probes only
the leaf nodes. Specifically, at each time t, all the leaf nodes
are sorted based on their SLLRs. If

D)g0√f0[( L ∼ D) f0√g0[( )M L[, (22)

the Chernoff test uniformly at random selects a leaf node
among the set with the top L largest SLLR. Otherwise, the
Chernoff test uniformly at random selects a leaf node among
the )M L[ nodes in the tail of the SLLR ranking. In large-
scale systems where M is sufficiently large, the condition
in (22) holds, and the Chernoff test selects the leaf node which
it believes to be the target. The Chernoff and the IRW tests
have the same stopping and decision rules.

Fig. 7 and Fig. 8 show simulation results on the sample
complexity as a function of M for L = 1 and L = 5,
respectively. We observe that the Chernoff test has a sample
complexity that scales linearly with M , while IRW offers a
logarithmic order. The improvement at M = 20 is already
three-fold.

Also shown in these figures is the DGF policy developed
in [11]. The comparison with DGF is not on equal footing,
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Fig. 7. Performance comparison (L = 1, λg = 10, λ f = 0.01, Kl = 3,
c = 10 13, M = 4, 8, . . . , 128, 1000 Monte Carlo runs).
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Fig. 8. Performance comparison (L = 5, λg = 10, λ f = 0.001, c = 5∗ 10 5,
M = 16, 32, . . . , 1024, 1000 Monte Carlo runs).

since it was developed without assuming a tree structure. The
DGF policy, as a deterministic policy, has a much smaller
linear slope than the Chernoff test. Specifically, DGF probes
the leaf node with the L-th largest SLLR if (22) holds,
otherwise it probes the leaf node with the )L + 1[-th largest
SLLR. The comparison between DGF and IRW is to show that
by exploiting the hierarchical structure of the search space,
more significant gain can be achieved in addition to efficient
design of deterministic selection rules.

B. Comparison of IRW with Different Local Tests

Next, we study the impact of different local tests on the
finite-time performance of IRW. In the example shown in
Fig. 9, L = 1, and the target-present and target-absent distri-
butions are level independent and Bernoulli with parameters
of 0.6 and 0.4, respectively. The confidence level of the local
test is set to p = 0.5625, which determines the number Kl of
samples in the fixed-sample-size test and the thresholds of the
sequential and active tests. The improvement offered by the
sequential and active local tests is evident. In addition, instead
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Fig. 9. Performance comparison of IRW with different local tests (Kl = 7;
thresholds for the sequential local test: γ1 = 1.0986, γ0 = 1.0986; thresholds
for the active local test: ν1 = 0.9445, ν0 = 0.9445; 1000 Monte Carlo runs).

of designing Kl for each level, one pair of thresholds for the
SLLR that guarantees the biased global random walk can be
used on all higher-level nodes.

C. IRW Applied to Channel Coding with Feedback

In this numerical example, we apply the IRW policy to chan-
nel coding with feedback as we discussed in Section VII-C.
The channel is a Binary Symmetric Channel with noiseless
feedback with a crossover probability of 0.3. It can be mapped
to an active search problem on a binary tree with M leaf nodes.
The observation of the target node or any upper-level node
which contains the target follows a Bernoulli distribution with
the success probability p equals to 0.7, and the observation of
the non-target node follows a Bernoulli distribution with the
success probability equals to 0.3. We compare IRW with the
coding procedure introduced in [40] by Burnashev which is
optimal in terms of M . Fig. 10 shows that IRW with active
local test outperforms Burnashev’s coding procedure. In the
same figure, we also illustrate the lower bound of the sample
complexity given in (12) with Imax = 1 + p log2)p[ + )1
p[ log2)1 p[. As an example, at M = 512, the IRW policy
requires about 6.2% fewer samples than Burnashev’s code
scheme, and about 25% more samples when compared to the
derived lower bound.

D. The Impact of Unknown L

In this section, we present simulation results to demonstrate
the impact of not knowing the total number L of targets.
We adopt a size-independent observation setting and assume
that on each level, if the testing node contains at least one
target, the observation follows an exponential distribution with
parameter λg = 10. Otherwise it follows an exponential dis-
tribution with parameter λ f = 1. Due to the size-independent
setting, we also assume that declared targets can be removed
from future observations to make sure the positive observations
are from undeclared target nodes. Fig. 11 shows the sample
complexity obtained by IRW for cases where L is known
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Fig. 10. Performance comparison of IRW policy to the coding procedure
in [40] by Burnashev for the BSC channel with a crossover probability of 0.3
(1000 Monte Carlo runs).
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Fig. 11. Performance comparison when the number of target L is unknown
before testing (L = 3, λg = 10, λ f = 1, c = 10 13, M = 8, 16, . . . , 1024,
1000 Monte Carlo runs).

and unknown. We set L = 3 and increased M from 8 to
1024. When L is unknown, IRW requires more samples at
the root node to terminate the test. For example, at M = 512,
the relative increase in the sample complexity is about 4.2%,
which is rather moderate.

IX. CONCLUSION

In the paper, we considered the problem of detecting a
few anomalous processes among a large number of processes
under a tree observation model. The proposed active inference
strategy induces a biased random walk on the tree and offers
order optimality with the search space size and asymptotic
optimality in terms of the reliability constraint. The proposed
strategy is also efficient in terms of computation and memory
requirement. By effectively localizing the data processing to
small subsets of the search space, it has O)1[ computation
and memory complexity. The results find a wide range of
applications, including noisy group testing, channel coding
with feedback, and adaptive sampling.

APPENDIX A
ALTERNATIVE LOCAL TESTS

A. Sequential Local Test

A sequential version of the local test is to carry out SPRT on
each child, one at a time. If the SPRT on the left child indicates
it contains the target, the local test declare H1. Otherwise, carry
out SPRT on the right child and declare H2 or H0 based on
the outcome of this SPRT.

We now specify the thresholds to be used in each SPRT.
To ensure the required confidence level p of the local test,
the false alarm and miss detection probabilities of each SPRT
should satisfy )1 PFA[2 > p and )PFA[)1 PMD[ > p. This
leads to the following positive and negative thresholds, γ1 and
γ0 respectively, of the SPRT

γ1 = log
1 PMD

PFA
, γ0 = log

PMD

1 PFA
. (23)

B. Active Local Test

We now present a fully active test that adaptively determines
which child to sample. We specify the test and leave the
derivation details to the extended version [41].

The selection rule is to sample the child with a greater SLLR
at each time. The stopping rule is determined by a pair of
thresholds ν0 and ν1. The test stops as soon as max }SL,SR | ≥
ν0, and declares H0; or when max }SL,SR | ∼ ν1, in which
case either H1 or H2 is declared, depending on which SL or
SR exceeds ν1. The thresholds are set as following:

ν1 = log
P11
P01
, ν0 = log

P10
P00
, (24)

where P11 denote the probability of declaring hypothesis H1
when H1 is true, and P00 are defined similarly. To ensure a
confidence level of p, we set P00 = P11 = p, P01 = )1 P00[(2
and P10 = )1 P11[(2.

APPENDIX B
PROOF OF THEOREM 1

Without loss of generality (due to the symmetry of the
binary tree structure), we assume that the left-most leaf is the
target. We focus on the IRW with fixed-sample local tests.

The random walk on the tree can be divided into two states.
The first state is the random walk on upper-level nodes of the
binary tree. In this state, at each time, after taking Kl samples,
we either zoom-in to one child node or zoom-out to the parent
node. As a result, the distance between the current node to
the target is defined as the sum of the discrete distance to
the target node on the tree and the threshold log log2 M

c , which
either decreases by one when zooming-in or increases by one
when zooming-out after taking 2Kl samples from the children.
Once arriving at a leaf node, the test arrives at the second state,
where samples are taken one by one from the current node
until the cumulative SLLR exceeds the threshold or becomes
negative. The cumulative SLLR can be viewed as a discrete
time random walk with random continuous step size which is
the LLR of each sample. For all the non-target leaf-nodes, we
define the distance between the node to the target as the sum
of the discrete distance on the tree, the cumulative SLLR of
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the current node, and the threshold. For the target node, we
define the distance to the target as the difference between the
threshold and the current cumulative SLLR of the target node.
During the search process, these two different states happen
consecutively in Phase I of the IRW policy.

Let Wn denote the random variable of the step size of the
random walk at time n. When the IRW is in the first state (i.e.,
random walk on high-level nodes), depending on the current
level l > 0, Wn has the following distribution:

Pr)Wn‖testing a target node[ =
̂

p)g[
l
, for Wn = 1,

1 p)g[
l
, for Wn = 1,

(25)
or

Pr)Wn‖testing a non-target node[

=

̂
p) f [
l
, for Wn = 1,

1 p) f [
l
, for Wn = 1,

(26)

Since p)g[
l
> 1

2 and p) f [
l
> 1

2 for all l = 1,2, . . . , log2 M , we
have:

E]Wn‖testing a target node = 1 2p)g[
l
, (27)

E]Wn‖testing a non-target node = 1 2p) f [
l
, (28)

which are both less than 0.
For the second state, let Y0 and Z0 denote the random

variables with distributions g0 and f0, respectively. The LLR
will be either log g0)Y0[

f0)Y0[ or log g0)Z0[
f0)Z0[ . It is not difficult to see

that for the target node, we have:

E]Wn = E

]
log

g0)Y0[
f0)Y0[

{
= D)g0√f0[ < 0, (29)

and for all the non-target nodes, we have:

E]Wn = E

]
log

g0)Z0[
f0)Z0[

{
= D) f0√g0[ < 0. (30)

We further assume that the distribution of log g0)Y0[
f0)Y0[ and

log g0)Z0[
f0)Z0[ are light-tailed distributions4.

We now give a rigorous definition of the last passage times
τi as introduced in Section IV-A. Define

G)t[ = i, if at time t the current testing node
is on the half tree Ti .

(31)

It indicates the half tree Ti where the random walk is or the
IRW policy is currently probing at time t. The last passage
time of the sub-tree at the root that does not contain the target,
τlog2 M , is defined as

τlog2 M = sup
}
t ∼ 0 : G)t[ < log2 M

�
. (32)

Based on the recursive formulations, we have

τi = sup }t ∼ 0 : G)t[ < i | τi+1, (33)

for i = 1,2, ..., log2 M 2, log2 M 1. The following lemma
characterizes the distributions of τi .

4A random variable X with the cumulative distribution function F)x[ is
light-tailed if and only if

∑
R
eλxdF)x[ < ∈ for some λ > 0 [42].

Lemma 1: For all τi with i = 1, . . . , log2 M , there exist α > 0
and γ > 0 which are independent of M and c, such that

Pr)τi ∼ n[ ≥ αe γn, An ∼ 0. (34)

Proof: We first prove this lemma for τlog2 M . Let Lt denote
the distance to the target at time t. The random walk starts at
the root node. Therefore the initial distance to the target is
L0 = log2 M + log log2 M

c . Define

τ≡ = sup }t ∼ 0 : Lt ∼ L0 | (35)

as the last time when the search approaches the distance to
the target which is greater than L0. It is not difficult to see
that

τlog2 M ≥ τ≡. (36)

Therefore, we have

Pr)τlog2 M ∼ n[ ≥ Pr)τ≡ ∼ n[. (37)

Based on the definition of τ≡, we have

Pr)τ≡ > n[ = Pr )sup}t ∼ 0 : Lt ∼ L0 | > n[

≥
∈∏
t=n

Pr)Lt ∼ L0[ =
∈∏
t=n

Pr ���
t∏

j=1
Wj ∼ 0�∫� .

(38)

Let μj denote the mean value for each Wj , where μj < 0 for
all j = 1,2, . . . , t. Note that Wj’s can take different values at
different probing nodes with the distributions defined in (25),
(26), (29), and (30) which are not required to be identical.
Since Wj’s are independent, by applying the Chernoff bound

to
t∏

j=1
Wj , we have, for all s > 0,

Pr ���
t∏

j=1
Wj ∼ 0�∫� ≥ E

]
es

∑t
j=1 Wj

{
=

t

j=1
E

]
esWj

{
. (39)

Note that the moment generating function (MGF) of each Wj

is equal to one at s = 0. Furthermore, since E
]
Wj

{
< 0 is

strictly negative for all j ∼ 1, differentiating the MGFs of
all Wj with respect to s yields strictly negative derivatives at
s = 0. Because all Wj’s are light-tailed distributions for all
possible distributions of Wj , there exist s > 0 and γ > 0 such
that E

]
esWj

{
is strictly less than e γ < 1. Hence, from (39),

we have

Pr ���
t∏

j=1
Wj ∼ 0�∫� ≥ e γt . (40)

Due to (38), we have

Pr)τ≡ > n[ ≥
∈∏
t=n

Pr

)
t∏

i=1
Wi ∼ 0

[
≥

∈∏
t=n

e γt =
e γn

1 e γ
.

(41)

Let α = 1
1 e γ , with (37), we complete the proof of

Lemma 1 proved for τlog2 M . Due to the recursive definitions
of τ1, τ2, . . . , τlog2 M , the proof follows the same procedure for
all other τi .
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Based on Lemma 1, we get the following lemma that
characterizes the expected value of τi .

Lemma 2: For all τi with i = 1, . . . , log2 M , there exists a
constant β > 0, such that

E]τi ≥ β. (42)

Proof: Based on the the tail-sum formula of expectation
of non-negative random variables, we have

E]τi =
∈∏
n=0

Pr]τi > n ≥
∈∏
n=0
αe γn

=
α

1 e γ
=

1
)1 e γ[2 = β.

(43)

Now we are ready to prove Theorem 1. Let τIRW denote the
total samples complexity of the proposed IRW policy. Based
on Lemma 2, it is not difficult to show that

E]τIRW ≥ 2Kmax

log2 M∏
i=1
E]τi + E]τ0

≥ 2βKmax log2 M + E]τ0 .
(44)

When the observations are informative at all levels, Kmax is
bounded by a constant. As a result, the first term on the RHS
of (44) is upper bounded by B log2 M , where B is a constant
greater than 2βKmax.

For the last stage at the node j, let

τ0 = min
}
t : Sj)t[ > a or Sj)t[ < 0

�
, (45)

where a = log log2 M
c , denote the stopping time with respect

to the i.i.d. sequence of the LLR
}
log g0)Xn[

f0)Xn[ : n ∼ 1
�
, where

Xn denotes an i.i.d. random variable with distribution g0.
Following similar arguments as in Section 3.4 of [43], at
first step, we prove that τ0 is finite almost surely. To do so,
assume that Pr]log g0)Xn[

f0)Xn[ = 0 < 1. Note that if log g0)Xn[
f0)Xn[ = 0

almost surely, we have g0)x[ = f0)x[ almost everywhere,
which makes it impossible to distinguish between the two
hypotheses. Then, there exist ε > 0 and δ > 0, such that
either Pr]log g0)Xn[

f0)Xn[ > ε = δ or Pr]log g0)Xn[
f0)Xn[ < ε = δ. Let

m be an integer such that mε > a. If Pr]log g0)Xn[
f0)Xn[ > ε = δ,

we have

Pr
]
Sj)k + m[ Sj)k[ > a 0

{
= Pr

]
k+m∏
n=k+1

log
g0)Xn[
f0)Xn[

> a

{
∼ δm

for all k; if Pr]log g0)Xn[
f0)Xn[ < ε = δ, we have

Pr
]
Sj)k + m[ Sj)k[ < 0 a

{
= Pr

]
k+m∏
n=k+1

log
g0)Xn[
f0)Xn[

< a

{
∼ δm

for all k. For either case, it implies that for all integers (say
q) we have:

Pr ]τ0 > qm

= Pr
]
0 < Sj)k[ < a for k = 1,2, ...,qm

{
< )1 δm[q .

Let σ = )1 δm[ 1 and κ = )1 δm[1(m. For an arbitrary t,
we can find q such that qm < t < )q + 1[m and

Pr]τ0 > t ≥ Pr]τ0 > qm ≥ )1 δm[q = σκ)q+1[m ≥ σκq .

This implies that Pr]τ0 < ∈ = 1. Also, the geometric decay
of Pr]τ0 > n implies that the generating function E]exp)uτ0[
is defined for u < ln)κ[, so that τ0 has finite moments. Due
to the Wald’s Equation [23], we then have

E

]
τ0∏
n=1

log
g0)Xn[
f0)Xn[

{
= E]τ0 E

]
log

g0)Xn[
f0)Xn[

{
. (46)

i.e.,

log
log2 M

c
+ Rb = E]τ0 D)g0√f0[, (47)

where Rb is the overshooting at the threshold. Due to Lorden’s
inequality [44], we have

E]Rb ≥
E

])
log g0)Xn[

f0)Xn[
[2

{
E

]
log g0)Xn[

f0)Xn[
{ . (48)

Assuming that the first two moments of the LLR are finite,
we then have

E]τ0 =
log log2 M

c

D)g0√f0[
+O)1[. (49)

The following lemma characterizes the error probability of
the IRW policy.

Lemma 3: The error probability of the IRW policy is upper
bounded by:

Pe ≥ βc = O)c[. (50)

Proof: When the random walk arrives a non-target node,
say node j, the probability of error (accepting Hj) equals to
Pr)Sj ∼ log log2 M

c [. For the sequential probability ratio test,
Wald [7] shows that

Pr)Sj ∼ log
log2 M

c
[ ≥ exp

]
log

log2 M
c

{
=

c
log2 M

. (51)

Let N denote the random number of times of visiting these
non-target leaf nodes in the IRW policy. The conditional error
probability is upper bounded by Nc

log2 M
. Based on the proof

of Theorem 1, the expected value of N is upper bounded by
β log2 M . Therefore, by taking expectation, the error probabil-
ity is bounded by

Pe ≥ c
log2 M

×E]N ≥ c
log2 M

×β log2 M = βc = O)c[. (52)

Combining (44), (49), Lemma 3, and the definition of Bayse
risk in (3) completes the proof.
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APPENDIX C
PROOF OF THEOREM 2 AND THEOREM 3

Follow the same lines of argument in the proof of The-
orem 1, the sample complexity of the last stage τ0 still
satisfies (49). We now give the upper bound of the sample
complexity of the first log2 M stages for the test with a fixed-
size local test.

We focus on the Bernoulli distribution model, where gl
and fl are Bernoulli distributions with false negative and false
positive rates equal to μl . In order to get the relation between
Kl and μl 1, we first introduce the following lemma.

Lemma 4 ( [45]): Let X1, . . . ,Xn be independent Poisson
trials such that Pr)Xi[ = pi . Let X =

∑n
i=1 Xi and ν = E]X .

Then, the following Chernoff bounds hold for 0 < δ ≥ 1,

Pr)X ∼ )1 + δ[ν[ ≥ e νδ2(3; (53)

Pr)X ≥ )1 δ[ν[ ≥ e νδ2(3. (54)

The IRW policy requires that p)g[
l

and p f
l

will satisfy (9).
For p f

l
, we need to find the value of Kl such that

Pr

)
Kl∏
n=1

log
gl 1)Zn[
fl 1)Zn[

< 0

[
> λ.

i.e.,

Pr

)
Kl∏
n=1

log
gl 1)Zn[
fl 1)Zn[

∼ 0

[
≥ 1 λ,

where λ is a constant which satisfies 1
2 ≥ λ2 < 1. The true

distribution of Zn is fl 1 which is Bernoulli with success
probability μl 1. If zn = 1, we have log gl 1)Zn[

fl 1)Zn[ = log 1 μl 1
μl 1

;
if zn = 0, we have log gl 1)Zn[

fl 1)Zn[ = log 1 μl 1
μl 1

. Therefore, the
above probability can be written as

Pr

)
Kl∏
n=1

log
gl 1)Zn[
fl 1)Zn[

∼ 0

[
= Pr

)
log

1 μl 1
μl 1

Kl∏
n=1

)2Zn 1[ ∼ 0

[
= Pr

)
Kl∏
n=1

)2Zn 1[ ∼ 0

[
.

The second equation is true because μl 1 <
1
2 for all l.

Therefore, we need to find Kl such that

Pr

)
Kl∏
n=1

)2Zn 1[ ∼ 0

[
= Pr

)
Kl∏
n=1

Zn ∼ Kl

2

[
≥ 1 λ.

Notice that Zn’s are Poisson trials, and Lemma 4 applies.
When applying Lemma 4, we have ν = Klμl 1, )1+ δ[ν = Kl

2 ,
which means δ = 1 2μl 1

2μl 1
. Then, we have

Pr

)
Kl∏
n=1

Zn ∼ Kl

2

[
≥ e νδ2(3 ≥ 1 λ.

Substituting ν and δ, we have

Kl ×μl 1 ×1
3
×)1 2μl 1[2

4μ2
l 1

∼ log)1 λ[ 1.

i.e.,

Kl ∼ 12μl 1 log)1 λ[ 1

)1 2μl 1[2
.

Similarly, by applying Lemma 4, in order to have pg > 1
2 , we

need

Kl ∼ 12)1 μl 1[ log)1 η[ 1

)1 2μl 1[2
,

where η and λ can be any value in ) 1/
2
,1[ such that η ×λ > 1

2

and λ2 > 1
2 . In order to have p)g[

l
and p) f [

l
both satisfying (9),

we choose Kl greater than

max
}

12)1 μl 1[ log)1 η[ 1

)1 2μl 1[2
,
12μl 1 log)1 λ[ 1

)1 2μl 1[2
(
. (55)

Since μl < 1
2 , w.l.o.g., we choose

Kl =
12)1 μl 1[ log)1 η[ 1

)1 2μl 1[2
. (56)

It is not difficult to see that Kl increases with μl 1. For any
stage l, when l = 1,2, . . . , log2 M , the sample complexity in
this stage is upper bounded by 2Kl ×E]τl . Due to Lemma 2,
the total sample complexity from Stage 1 to Stage log2 M is
thus upper bounded by

E]τ ≥
log2 M∏
l=1

2Kl ×E]τl ≥
log2 M∏
l=1

2βKl . (57)

For Theorem 2, if μl = 1
2 ) 1

2 μ0[ ×)l + 1[ α, due to (56)
and (57), we have

E]τ ≥ B∞
log2 M∏
l=1

l2α, (58)

where B∞= 6β log)1 η[ 1

) 1
2 μ0[2 is a constant. By using the Faulhaber’s

formula, we have
log2 M∏
l=1

l2α = O))log2 M[2α+1[.

Thus, Theorem 2 is proved.
Similarly, for Theorem 3, if μl = 1

2 ) 1
2 μ0[ ×α l , we have

E]τ ≥ B∞
log2 M∏
l=1
α2)l 1[. (59)

By summing up the geometric terms in (59), we can show that

E]τ ≥ B̃)α2[log2 M = B̃M
2

logα 2 , (60)

where B̃ = 1
α2 1 B∞. Thus, Theorem 3 is proved.

APPENDIX D
PROOF OF THEOREM 4

To prove Theorem 4, we first show that the sample com-
plexity of the IRW policy satisfies

Q) IRW[ ≥ LB log2 M +
L log log2 M

c

D)g0√f0[
+O)c log2 M[. (61)

In the proof of the single-target case, we have defined the
random walk as the distance from the current testing node
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to the target. Since the random walk is biased, i.e., the IRW
policy guarantees that the probability of approaching the target
is always greater than 1

2 , the expectation of each step of
the random walk tends to approach the target. By using the
Chernoff bound, we have shown that the last passage time
E]τl on the tree Tl for all l = 1,2, . . . , log2 M is upper
bounded by a constant. Then sample complexity in the first
log2 M stages thus has a logarithmic-order. For the last stage

on T0, it can be shown that E]τ0 = log log2 M

c

D)g0√f0[ +O)1[.
The basic idea to prove (61) is similar to the one-target

case. For multiple-target detection, we need to find a proper
random variable that defines the increment of the random walk.
A negative expected increment is desired so that the r.v. tends
to zero as the random walk approaches the targets. Then, by
using the Chernoff bound, we can get the similar upper bound
of the detection delay for the multi-target case.

The IRW policy is designed to find the targets one by
one. As the process continuous, wrong declarations might
propagate from the previous rounds. We consider the two cases
for the search process on the tree with or without existing
wrong declarations separately.

A. Search on the tree without existing wrong declarations
Unlike the one-target case, we modify the definition of Tl

for all l = 1,2, . . . , log2 M for the multiple targets detection
case. As illustrated in Fig. 5 for M = 8 and L = 3, our
approach is to partition the tree into log2 M+1 disjoint sets of
nodes. Similar to the one-target case, the detection process of
finding any one of the targets is then partitioned into log2 M+1
stages by the successively defined last passage time to each
of the set of nodes from the upper level to the lowest level.

We start by finding the first target. The random walk on the
tree has two states. The first state is the random walk on the
upper-level nodes of the binary tree. Once arriving at a leaf
node, the test moves to the second state, in which samples are
taken one by one from the current node until the cumulative
SLLR exceeds the threshold or becomes negative. Without loss
of generality, we enumerate all the targets with index 1 to L
from left to right. For any node v on the tree, we define Dmin)v[
as

Dmin)v[ := min
i=1,...,L

}Di)v[| , (62)

where Di)v[ is the distance on the tree between the current
node v to the ith target.

For all the non-target leaf-nodes v, we define the distance
between the node to the target as the sum of Dmin)v[, the
cumulative SLLR of the current node, and the threshold
log log2 M

c . For the target node, we define the distance to the
target as the difference between the threshold and the current
cumulative SLLR of the target node.

Let Wn denote one step of the global random walk at time
n. When the IRW is in the first state, given the current node
v, Wn = Dmin)v[ can be either 1 or 1, which has the
distribution

Pr )Wn[ = Pr ) Dmin)v[[

=

̂
pl)v[, for Wn = Dmin)v[ = 1,
1 pl)v[, for Wn = Dmin)v[ = 1.

(63)

Under the IRW policy, for node v on level l, after taking
Kl samples, the random walk has probability pl)v[ > 1

2 to
approach the targets in the tree rooted at the current node or
pl)v[ > 1

2 to zoom out of the current node if it contains no
targets. Therefore, we have

E]Wn = E] Dmin)v[ = 1 2pl)v[ < 0,

which results in drifting toward at least one of the targets on
the tree.

In the second state, similar to the one-target case, we
have (29) for the target nodes and (30) for all the non-target
leaves.

Similarly, let τi denote the last passage time to set Ti . More
specifically, τi is also the last time that the random walk has
a distance greater or equal to i + log log2 M

c to all the targets.
As a result, after τi has elapsed, the random walk will have a
distance less than i + log log2 M

c to at least one of the targets.
Then, using the same arguments as in the proof under the
one-target case, we have that for all τi , i = 1, . . . , log2 M ,
there exists a constant β > 0, such that

E]τi ≥ β. (64)

Therefore, the detection delay E]τ of finding a target in the
first round is upper bounded by

E]τ ≥ B log2 M +
log log2 M

c

D)g0√f0[
+O)1[. (65)

Similar to the one-target case, the probability of making the
first detection error in this round is bounded by

Pe ≥ βc = O)c[.
For the subsequent L 1 rounds used for finding the

remaining L 1 targets, as long as there are no detection errors,
the detection delay of each round can be bounded by (65).
Similarly, the probability of making the first detection error
in this round is upper bounded by Pe ≥ βc = O)c[. Applying
the union bound, we can find that, with probability at least
1 O)Lc[, there would be no detection errors and the detection
delay of finding all the L targets is upper bounded by:

E]τall ≥ LB log2 M +
L log log2 M

c

D)g0√f0[
+O)L[. (66)

B. Search on the tree with existing wrong declarations

Assume that L targets remained to be detected and there
are E detection errors. Due to the detection errors on the tree,
the preference of the IRW policy to approach the targets may
change on a part of the tree.

In Fig. 12, we illustrate an example with M = 8, L = 3,
and E = 1. Assume that after the first round of the test, there
is a detection error that happened on level l = 0, node B. In
the next round of the test, when applying the IRW policy and
starting from the root node, the probability of approaching
the two targets on the right half tree is always greater than
1
2 . However, on the left half tree, due to the detection error,
the observation on the higher level nodes would make the
decision maker think that there are no more undeclared targets
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on the left half tree. The probability of approaching the left-
most target is less than 1

2 before the random walk enters the
subtree R1 as shown in Fig. 12. But once the random walk
enters the subtree R1, the probability of approaching the left-
most target becomes greater than 1

2 since the detection error
will not affect the observation from the true target anymore.
In other words, for all the nodes below node A on level l = 1,
the random walk will have a higher probability of approaching
the left most target; for all the nodes above node A on level
l 1, the random walk will have a higher probability of leaving
the left target. We call R1 the affected subtree, the node A on
level l = 1 the changing point, and the left-most target the
affected target.

For the general case, we provide the definition of these
terminologies as follows. Since the affected trees may be in a
nested structure, they are defined in a recursive way.

Definition 1: For a given tree structure, we define the
affected subtrees from the lowest level to the highest level.
We first define the affected subtrees rooted at level l = 1. If
an undeclared target has a detection error leaf as a sibling, the
subtree formed by these two nodes and their parent node on
level l = 1 is defined as an affected subtree (e.g., R1 in Fig. 12
and R2 in Fig. 13). By induction, after finding all the affected
trees rooted at level l = k, a subtree rooted at level l = k + 1
that satisfies the following two conditions simultaneously is
defined as an affected subtree:

(1). There is at least one undeclared target node in the
subtree which is not covered by any other lower level affected
trees.

(2). The number of all the detection errors on the subtree
is greater or equal to the number of all the undeclared targets
on the subtree.

Definition 2: The roots of the affected subtrees are called
changing points.

Definition 3: All the undeclared targets in an affected
subtree are called affected targets.

There may be more than one affected subtrees in the
detection and they are possibly in a nested structure. We
illustrate another example in Fig. 13, where R1 and R2 are
two affected trees in a nested structure.

Our objective is to show that the sample complexity of the
IRW policy is upper bounded when there are detection errors
in the tree. The proof idea is similar as before. We need to
find a proper random variable that has a negative expectation
(to approach the targets) at each step of the random walk.

Let ∪ denote the set of all the target nodes; L denote the
set of all targets that have already been correctly declared;
C denote the set of the undeclared targets which are affected
by the declaration errors; V denote the set of the undeclared
targets which are not affected by the declaration errors. It is
easy to see that L, C and V are disjoint and ∪ = L{ C { V.

For any node v on the tree, depending on whether the node
is on an affected tree, we consider the following two cases.

Consider first that v is not located in any affected trees.
Define

D̃min)v[ := min
i∀V

}Di)v[| , (67)

Fig. 12. A biased random walk on the tree with detection errors.

Fig. 13. A biased random walk on the tree with detection errors: nested
affected trees.

which is the minimum distance on the tree from v to the
undeclared targets which are not affected by the declaration
errors.

Now consider that v is located in an affected tree. Since
the affected trees may be in a nested structure, D̃min)v[ can be
defined in a recursive way. Let vc denote the changing point
of the affected subtree and Dc denote the minimum distance
from the change point to the undeclared targets on this affected
tree.

We define D̃min)v[ for the node v from larger affected
subtrees to smaller affected subtrees, from higher level to
lower level. For the highest level changing point v of the
largest affected subtree, the parent of v must not be on any
affected trees, of which the D̃min is defined in the previous
bullet. We define a constant Z as

Z := D̃min)parent node of vc[ Dc 1. (68)

It is not difficult to see that Z ∼ 0.
Within all the nodes on the current affected subtree which

are not covered by any lower level nested subtrees, let ∪ R and
∪T denote the sets of all tree nodes and all the undeclared
targets, respectively. For any node v ∀ ∪ R, D̃min)v[ is defined
as

D̃min)v[ = Z + min
i∀∪T

}Di | . (69)

For the nodes on all the lower level/nested affected trees, we
use (68) and (69) recursively to find D̃min)v[. It is not difficult
to see that if there are no detection errors on the tree, D̃min)v[
coincides with Dmin)v[ defined in (62).
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We now apply the definitions in (68) and (69) to provide
examples to illustrate the proof. As shown in Fig 12, D̃min)v[
of node A on level l = 2 is 4 based on (67). For the affected
subtree R1, Z equals 2. Therefore, D̃min)v[ of node A on level
l = 1 is 3. For the example in Fig 13, there are two affected
subtrees R1 and R2. For R1, Z equals 6. Therefore, D̃min)v[
for the node A on level l = 3 is 9 and for the node A on l = 2
is 10. For R2, Z equals 8, which makes D̃min)v[ for the node
A on level l = 1 be 9.

It is not difficult to see that after each step of the random
walk, the variable Wn = Dmin)v[ will have the distribution

Pr )Wn[ = Pr D̃min)v[
[

=

̂
pl)v[, for Wn = D̃min)v[ = 1,
1 pl)v[, for Wn = D̃min)v[ = 1.

(70)

The IRW policy guarantees that pl)v[ is always greater than
1
2 . Therefore, we have

E] D̃min)v[ = 1 2pl)v[ < 0.

Similar to the sample complexity without detection errors,
let τi denote the last time that the random walk has a distance
greater or equal to i + log log2 M

c to all the targets. Therefore,
after τi has elapsed, the random walk would have a distance
less than i + log log2 M

c to at least one of the targets. However,
by definition, the maximum value of D̃min can be at most
2 log2 M . Using the same arguments as in the proof under the
one-target case, we have that for all τi with i = 1, . . . ,2 log2 M ,
there exists a constant β > 0, such that

E]τi ≥ β. (71)

Due to the constant Z in the definition of D̃min in (69), the
first state of the random walk might stop before

∑2 log2 M
i=1 ti . In

this case, the detection delay of the random walk on the first
state will still be bounded. Therefore, when there are detection
errors on the tree, the detection delay E]τ of finding a target
is upper bounded by

E]τ ≥ 2B log2 M +
log log2 M

c

D)g0√f0[
+O)1[.

With probability at most O)Lc[, the detection delay of
finding all the L targets with detection errors is upper bounded
by:

E]τ̃all ≥ 2LB log2 M +
L log log2 M

c

D)g0√f0[
+O)L[. (72)

By combining (66) and (72), the detection delay is upper
bounded by:

E IRW ]τ ≥ )1 Lβc[E]τall + LβcE]τ̃all

≥ LB log2 M +
L log log2 M

c

D)g0√f0[
+ L2Bβc log2 M .

(73)

In each round of the tests, the probability of detection error
is upper bound by O)c[. By applying the union bound, the
overall probability of error is bounded by

Pe ≥ Lβc = O)Lc[. (74)

Combining (73) and (74) completes the proof.
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