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Abstract—An adversarial multi-armed bandit problem with
memory constraints is studied where the memory for storing
arm statistics is only in a sublinear order of the number of
arms. A hierarchical learning framework that offers a sequence
of operating points on the tradeoff curve between the regret
order and memory complexity is developed. Its sublinear regret
orders are established under both weak regret and shifting regret
notions. This work appears to be the first on memory-constrained
bandit problems in the adversarial setting.

Index Terms—Adversarial multi-armed bandits, no-regret
learning, memory complexity.

I. INTRODUCTION

F IRST posed in [1] for the application of clinical trials, the
multi-armed bandit (MAB) problem has been studied un-

der various models and across diverse application domains [2].
The name of the problem comes from likening an archetypical
single-player online learning problem to playing a multi-armed
slot machine (known as a bandit for its ability of emptying the
player’s pocket). Each arm, when pulled, generates rewards
according to an unknown stochastic model or in an adversarial
fashion. Only the reward of the chosen arm is revealed after
each play. The objective of the player is an arm selection
policy that maximizes the cumulative reward over T plays.
The bandit feedback model where an arm can only be observed
after it is played induces the tradeoff between exploration (to
gather information from less explored arms) and exploitation
(to maximize immediate reward by prioritizing arms with a
good reward history).

Depending on the generative model of arm rewards, bandit
problems can be categorized into the stochastic and the adver-
sarial settings. In the former, rewards from successive plays of
an arm obey a given, albeit unknown, stochastic model. In the
latter, rewards are assigned by an adversary. Regardless of the
reward models, a commonly adopted performance measure of
an arm selection policy is regret, defined as the cumulative
reward loss against a properly defined benchmark policy that
assumes hindsight vision or certain clairvoyant knowledge
about the underlying generative model of arm rewards. The
difference between the regret measures in the stochastic and
the adversarial settings is in the adopted benchmark policies.
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A canonical model for stochastic bandits assumes that re-
wards from each arm are drawn i.i.d. from a fixed distribution.
In this case, the benchmark policy in the regret definition
is one that assumes the knowledge of the stochastic model,
hence plays the arm with the greatest mean throughout the
time horizon. The regret is measured in expectation taken over
the random process of reward realizations induced by the arm
selection policy. Representative studies include [3]–[6].

The adversarial bandit problem, first studied in [7], is
closely related to the problem of learning in repeated unknown
games. In the game setting, a player’s reward of taking a
particular action (i.e., playing a particular arm) is jointly
determined by the payoff function of the game and the
actions taken by all opponents. From the perspective of a
single player, the reward can be viewed as assigned by an
adversary aggregating the interactions with all opponents in the
game [8]. Connections between certain system-level objectives
of the game (e.g., convergence to equilibria) and the regret
performance of a single player against a collective adversary
have been revealed [9]–[11]. See a recent survey on distributed
leaning in multi-agent systems [12].

Various benchmark policies have been considered for regret
measures in the adversarial setting. In particular, weak regret is
defined against a benchmark policy that plays the best (fixed)
arm in terms of the cumulative reward in hindsight [13].
The weak regret notion corresponds to the external regret
in the game setting. A stronger regret notion is the shifting
regret, where the benchmark policy is allowed to switch arms
over time but limited by a hardness constraint on the number
of switchings.

A policy is said to achieve no-regret learning if, for every
sequence of rewards assigned by the adversary, the adopted
regret measure has a sublinear growth rate with T . In other
words, the policy offers, asymptotically as T → ∞, the
same average reward as the specific benchmark adopted in
the corresponding regret measure. A number of learning
algorithms have been developed to achieve no-regret learning
under various regret notions [13], [14]. It has been shown that
randomization in arm selection is necessary for achieving no-
regret learning [15].

A. Main Results

Memory complexity has not been considered in adversarial
bandits. Existing learning policies require a memory space
with size linear in the number K of arms to store arm
reward statistics. Such a linear order of memory complexity
may render these learning policies impractical in applications
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involving a large action/arm space, for example, recommenda-
tion systems and dynamic routing in urban transportation and
computer networks.

In this paper, we study the memory-constrained adversarial
bandit problem where a learning policy is only given M words
of memory for storing input values and necessary variables,
where M is in a sublinear order of K. The memory constraint
entails that past reward observations, except for a diminishing
fraction, need to be either forgotten or summarized with certain
succinct statistics. No-regret learning hence hinges on not only
a balance between exploration and exploitation, but also a
balance between what to remember and what to forget.

In this work, we develop a hierarchical learning framework
that offers a sequence of operating points on the tradeoff curve
between the regret order and memory complexity. Referred to
as HLMC (Hierarchical Learning with Memory Constraints),
the proposed learning framework partitions the arms into
multi-level groups and the time horizon into multi-level epochs
through a tree-structured hierarchy. The depth of the tree is
chosen to trade off regret order with memory complexity:
a deeper tree leads to a lower memory complexity at the
price of a higher regret order. Using aggregated statistics for
arm groups at all levels, the HLMC framework recursively
selects arm groups (referred to as super arms) across epochs
(referred to as super time steps) according to the tree hierarchy.
Within each epoch, a memory-unconstrained learning policy
can be employed to govern the selection of arm groups at the
corresponding level. This hierarchical learning framework de-
couples the design issue of to-remember-or-to-forget induced
by the memory constraint from the exploration-exploitation
tradeoff induced by the bandit feedback. It hence provides
a general framework for extending memory-unconstrained
learning policies to memory-constrained settings.

We establish the regret performance and memory complex-
ity of HLMC as a function of D, the depth of the adopted
tree hierarchy. In particular, for D = 2, HLMC consists of a
leaf level of K individual arms and a higher level of Θ(

√
K)

arm groups, each consisting of Θ(
√
K) arms. In this case,

the memory required by HLMC consists of two parts: one
for storing group statistics used by the group-level selection
strategy, the other for arm statistics within the selected group
for arm selection. We show that the memory complexity of
HLMC is Θ(

√
K). In terms of regret performance, we show

that no-regret learning is achieved by HLMC under both weak
regret and shifting regret when suitable memory-unconstrained
policies are employed as learning routines at each level.
Specifically, with a sublinear-order memory complexity of
Θ(
√
K), HLMC offers a weak regret of O(T 3/4K1/4) and a

shifting regret of O(T 3/4V 1/4K1/4) up to logarithmic factors,
where V is the hardness constraint on the benchmark policy.

In the general case with a D-level hierarchy (D ≥ 2), the
memory required by HLMC consists of D parts for storing
group statistics at all D levels. We show that the memory
complexity is of order Θ(DK1/D) with a weak regret order
of O(DT 1− 1

2DK
1

2D ) up to a logarithmic factor. The tradeoff
between regret order and memory complexity of HLMC is
therefore quantified through the discrete depth D of the
adopted hierarchy, which can be designed in accordance with

the size of the available memory space. At the two ends of
the spectrum is D = dlog2Ke and D = 1. In the former,
HLMC achieves no-regret learning under the notion of weak
regret with a memory complexity that is only logarithmic in
K. In the latter, the problem degenerates to the memory-
unconstrained setting, and HLMC reduces to a memory-
unconstrained learning routine.

B. Related Work

There is a growing body of work on adversarial bandits, in
both the canonical form [7], [13], [14] and various variants
arising in specific applications (see, for example, [16], [17]).
However, memory constraints have not been considered. Most
related to this work are two recent studies on memory-
constrained stochastic bandit models [18], [19]. In the stochas-
tic setting in [18], [19], rewards from each arm are drawn i.i.d.
from a fixed distribution. Based on the sample sizes and the
gaps in the sample mean, suboptimal arms can be identified
up to a desired level of accuracy and subsequently eliminated
from memory. Indeed, the key idea of the two algorithms
proposed in [18] [19] is based on best arm identification
techniques (see [20] for examples). Specifically, the memory
constraint is dealt with by exploring and comparing a subset
of arms over a period of time and successively eliminating
suboptimal arms.

The above learning policies for memory-constrained
stochastic bandits, however, do not apply to the adversarial set-
ting. Being deterministic, they incur linear regret orders against
adversaries. This is also confirmed in our numerical studies
in Sec. VI. The fundamental difference between a memory-
constrained adversarial bandit problem and its stochastic coun-
terpart is that the best arm in hindsight of an adversarially
chosen reward sequence can not be reliably inferred from
partial observations. As a result, no arms can be reliably
eliminated from consideration at any point in the learning
horizon without causing significant regret. In the proposed
HLMC, the memory constraint is dealt with by storing succinct
aggregated arm statistics rather than completely forgetting
certain set of arms.

Another type of memory constraint that has been studied in
the MAB literature is temporal across time steps: a policy can
only make decisions based on the reward outcomes of the m
most recent plays. This problem was first considered in [21]
where a two-armed bandit problem with Bernoulli rewards was
studied. It was later shown in [22] that there exists a policy
with m = 2 that achieves an asymptotically optimal average
reward in the two-armed bandit instance. The decision process
with temporal memory constraints was further modeled as a
finite-state machine in [23], where the past reward history
was aggregated as a finite-valued statistic. The objective
considered in these studies was the asymptotic convergence
of the empirical average reward. Analysis on the convergence
rate or the regret order, however, was lacking. The objective
of minimizing regret with temporal memory constraints was
considered in [24] under the full-information feedback setting
(i.e., the rewards of all arms that the player could have played
are revealed after every time step). A learning algorithm
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achieving no-regret learning with O(mK) states (each arm
statistic can take O(m) values) was developed. However, the
full-information feedback setting is fundamentally different
from the bandit setting studied in this paper. Moreover, the
proposed learning algorithm needs to store a statistic of every
arm and the total number of states is exponential in K.

II. PROBLEM FORMULATION

We consider an adversarial bandit problem with a finite
arm set A = {1, 2, ...,K}. At each time t = 1, 2, ..., T , a
player chooses one arm to play. The reward ri,t ∈ [0, 1] of
playing an arm i at time t is assigned by an adversary. We
assume that the adversary is oblivious, i.e., the assignment
of the reward at time t is independent of the player’s past
actions. Equivalently, an oblivious adversary determines the
sequence of reward vectors ((r1,t, ..., rK,t))

T
t=1 ahead of time.

We assume that the player can only observe the reward of the
selected arm at each time.

The objective of the player is an online learning policy π
that specifies a sequential arm selection rule at each time t
based on the observation history. We assume that the policy
can only use M (M = o(K) as K → ∞) words of memory
space to store input values and necessary parameters. We
follow the memory model studied in [19] where each of the
variables used by the policy takes 1 word of memory1 and thus,
a policy with memory size M can only store M statistics at
any given time to summarize the reward history of arms.

The performance of policy π is measured by regret, which
is defined as the reward loss against the best benchmark
action sequence aT = (a1, ..., aT ) with the greatest cumulative
reward, i.e.,

Rπ(T ) = max
aT∈AT

T∑
t=1

rat,t −
T∑
t=1

rπt,t, (1)

where AT is the set of all possible action sequences with
length T and πt is the arm selected by policy π at time t.
When there is no ambiguity, the notation is simplified to R(T ).

As the regret R(T ) can be randomized due to the potential
randomness of the arm selection policy π, we consider two
types of no-regret learning conditions in this paper. A policy π
is said to achieve no-regret learning in expectation if, for
every sequence of rewards ((r1,t, ..., rK,t))

T
t=1, the expected

regret Eπ[R(T )] = o(T ) as T →∞, where the expectation is
taken over the possible randomness of π. The second condition
states that a policy π achieves no-regret learning with high
probability if, for every sequence of rewards and every given
δ ∈ (0, 1), the regret R(T ) = o(T ) as T →∞ with probability
at least 1− δ.

It is not difficult to see that achieving no-regret learning,
either in expectation or with high probability, is impossible if
the benchmark sequence is chosen arbitrarily [13]. Therefore,
certain restrictions on the benchmark sequence is necessary
to make the problem feasible. In this paper, we consider
two types of regret notions with different restrictions on the
benchmark sequence. The first regret notion is the so-called

1The number of bits in a word depends on how real numbers are stored in
the memory, which is out of the scope of this paper.

weak regret where the benchmark sequence consists of a single
arm, i.e.,

Rw(T ) = max
i∈A

T∑
t=1

ri,t −
T∑
t=1

rπt,t. (2)

A stronger regret notion is the so-called shifting regret
where the benchmark sequence is constrained by its hardness.
Specifically, the hardness of a sequence aT = (a1, ..., aT )
measures the total number of arm switchings over time, i.e.,

H(aT ) , 1 +
T−1∑
t=1

I(at 6= at+1), (3)

where I(·) is the indicator function. The shifting regret with a
hardness constraint V is defined as

Rs(T, V ) = max
aT :H(aT )≤V

T∑
t=1

rat,t −
T∑
t=1

rπt,t. (4)

It is clear that the shifting regret is a stronger notion than
the weak regret: no-regret learning under the former implies
no-regret learning under the latter, but not vice versa.

To achieve no-regret learning under various regret notions,
a number of learning routines have been developed in the
memory-unconstrained setting. Representative algorithms in-
clude EXP3, EXP3.P, and EXP3.S that achieve no-regret
learning under the notion of weak regret in expectation, with
high probability, and under the notion of shifting regret in
expectation, respectively. We summarizes the details of these
algorithms in Appendix A.

III. HIERARCHICAL LEARNING WITH MEMORY
CONSTRAINTS

In this section, we propose a general learning structure:
HLMC (Hierarchical Learning with Memory Constraints) for
the memory-constrained adversarial bandit problem. We first
present the general framework of HLMC with a multi-level
hierarchy on the partitions of the arms and the time horizon.
Then we use a representative case with a two-level hierarchy
to illustrate its details.

A. A General Framework with Multi-Level Hierarchy

The key to the balance between what to remember and what
to forget induced by memory constraints is to summarize past
reward observations through certain succinct statistics. This
motivates partitions of the arms into tree-structured groups and
the time horizon into tree-structure epochs through a D-level
hierarchy. At every level of the hierarchy, reward observations
from arms within a group during an epoch is aggregated
as a single group statistic. Using these group statistics, the
HLMC structure carries out a recursive learning procedure that
successively selects and zooms into an arm group during every
corresponding epoch according to the tree hierarchy. See Fig. 1
for an example of HLMC with a three-level hierarchy.

Through the design of the depth D of the adopted hierarchy,
HLMC achieves different operating points on the tradeoff
curve between the regret order and memory complexity. In-
tuitively, a deeper hierarchy requires a smaller memory space
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Fig. 1: HLMC with a three-level hierarchy: the arm set is
partitioned into two level-1 groups and every level-1 group is
partitioned into two level-2 groups (see Sec. V for detailed
discussions on the number of groups at each level). Every
level-2 group consists of 3 arms (level-3 groups). The time
horizon is partitioned in a similar way into multi-level epochs.
At the beginning of every level-` epoch (1 ≤ ` ≤ 3), a level-`
arm group is selected according to a level-` strategy. Within
this epoch, a level-(`+1) strategy is conducted to select level-
(` + 1) arm groups with in the selected level-` group across
level-(`+ 1) epochs.

for storing reward statistics, but incurs a higher regret order.
See Sec. V for detailed discussions.

It should be noted that HLMC is a general learning frame-
work that decouples the tradeoff between what to remember
and what to forget from the one between exploration and
exploitation. The solution to the former is the design of the
aggregated group statistics and the recursive learning structure.
For the latter, different learning routines developed in the
memory-unconstrained setting can be plugged in for group
selection at each level with the goal of minimizing various
notions of regret.

B. A Representative Case with Two-Level Hierarchy

We use D = 2 as a representative case to present the details
of HLMC. In the two-level hierarchy, the set A of arms is
partitioned into equal-sized groups {A`}L`=1 where

A` = {1 +N(`− 1), ...,min(N`,K)}, (5)

N = d
√
Ke is the group size (note that the number of arms

in the last group may be smaller than N ), and L = dKN e is
the number of groups. The time horizon is partitioned into
equal-length epochs {Ts}Ss=1 where

Ts = [1 + ∆(s− 1),min(∆S, T )], (6)

∆ ∈ N+ is the epoch length to be determined later, and S =
d T∆e is the number of epochs. Note that the length of the S-th
epoch may be smaller than ∆.

By treating each group A` as a “super arm” ` and each
epoch Ts a “super time-step” s, we reduce the group selection
problem to a classic memory-unconstrained adversarial bandit
problem. Specifically, with M ≥ L, existing learning strategies
developed for memory-unconstrained adversarial bandits can
be adopted using L words of memory space to select groups
across epochs, without violating the memory constraint. The
reward of playing a “super arm” `s at a “super time-step”
s is defined as the average reward per play obtained from
the corresponding arm group A`s during the corresponding
epoch Ts, i.e.,

y`s,s =
1

|Ts|
∑
t∈Ts

rit,t, (7)

where it ∈ A`s is the arm selected at time t.
The group-level strategy uses an aggregated statistic of

every arm group, which is stored throughout the time horizon,
for group selection across epochs. Once a group A`s is
selected at the beginning of every epoch Ts, an arm-level
learning routine is employed on A`s based on individual
statistics of arms within the group. These arm statistics are
updated at every time step in Ts and are forgotten at the end
of the epoch. After each epoch, the average reward y`s,s per
play is used to update the aggregated statistic of the selected
group A`s . The details of HLMC with a two-level hierarchy
is summarized in Algorithm 1.

Algorithm 1 HLMC with a Two-Level Hierarchy

Input: T the time length, A the set of K arms, and ∆ > 0
the epoch length.
Obtain arm group partition {A`}L`=1 according to (5).
Obtain epoch partition {Ts}Ss=1 according to (6).
Initialize and store the statistics of every arm group.
for s = 1, 2, ..., S do

Select arm group `s according to the group-level
selection strategy.
Initialize and store the statistics of every arm in A`s .
Initialize y`s,s = 0, τ = 0.
for t ∈ Ts do

Play arm it according to the arm-level selection
strategy and receive reward rit,t.
Update arm statistics in the memory using rit,t.
Update y`s,s =

y`s,sτ+rit,t
τ+1 , τ = τ + 1.

Update all group statistics in the memory using y`s,s.

IV. MEMORY COMPLEXITY AND REGRET PERFORMANCE
IN THE TWO-LEVEL CASE

In this section, we analyze the memory complexity and re-
gret performance of the proposed HLMC learning framework
in the two-level case. We notice that in HLMC, the group-
level strategy requires L words of memory to store a statistic
of every arm group. Once a group is selected, the statistics
of all arms within the selected group should also be stored.
Hence, N additional words of memory are needed. As a result,
the total memory size required by the HLMC framework is
N + L, which is of order Θ(

√
K).
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In terms of regret performance, it is clear that the regret
order in T achieved by HLMC depends on the specific
learning routines employed at both group and arm levels. In
the following three subsections, we discuss minimizing weak
regret in expectation, with high probability, and minimizing
shifting regret in expectation, respectively through plugging
in different learning routines to the two levels.

A. Minimizing Weak Regret in Expectation

We first show that adopting EXP3 at both group and arm
levels in the HLMC framework with learning rates γ1 and γ2

respectively guarantees a sublinear regret order in T under the
notion of expected weak regret.

Theorem 1. For any T and K, if the input parameter

∆ =

⌈√
TN lnN
L lnL

⌉
(where N,L are defined in Sec. III-B),

adopting EXP3 at both group and arm levels with learning
rates γ1 =

√
L lnL

2S and γ2 =
√

N lnN
2∆ guarantees that, for

every assignment of the reward sequence, the expected weak
regret of HLMC is upper bounded by:

EHLMC [Rw(T )] ≤ (4 + 2
√

2)T
3
4K

1
4 (lnK)

1
2 . (8)

To obtain the upper bound in Theorem 1, we decompose
the expected weak regret into two parts by introducing an
intermediate term C ′max as follows: for every fixed reward
sequence, let imax be the best arm with the greatest cumulative
reward over the entire time horizon andA`max the arm group to
which imax belongs. We define C ′max as the expected cumula-
tive reward obtained by running the arm-level EXP3 algorithm
with learning rate γ2 on A`max

during all epochs, i.e.,

C ′max =
S∑
s=1

EArm-EXP3(A`max )

[∑
t∈Ts

rit,t

]
, (9)

where EArm-EXP3(A`max )[·] denotes the expectation taken over
the randomness of the arm-level EXP3 algorithm when con-
ducted on group A`max

. Then the expected weak regret of
HLMC is decomposed as:

EHLMC [Rw(T )] = (C ′max − CHLMC)︸ ︷︷ ︸
R1(T )

+ (Cmax − C ′max)︸ ︷︷ ︸
R2(T )

,
(10)

where

CHLMC = EHLMC

[
T∑
t=1

rit,t

]
,

Cmax =
T∑
t=1

rimax,t.

(11)

Note that in the decomposition, R1(T ) corresponds to the
group-level reward loss due to not selecting A`max

at every
epoch, and R2(T ) corresponds to the arm-level reward loss
due to playing suboptimal arms in A`max

assuming that
group A`max is selected at all epochs.

We first upper bound the group-level reward loss R1(T ).
Noticing that the arm selection process during every epoch is
independent of the group and arm selection history in the past,

we can thus rewrite the expected reward of the HLMC policy
as follows:

EHLMC

[
T∑
t=1

rit,t

]

=EGroup-EXP3

[
S∑
s=1

EArm-EXP3(A`s )

[∑
t∈Ts

rit,t

]]
,

(12)

where EGroup-EXP3[·] denotes the expectation taken over the
randomness of the group-level EXP3 algorithm, and A`s is
the group selected at epoch s. To ease the analysis, we
assume without losing generality that all epochs have an equal
length ∆. We further define

x`,s = EArm-EXP3(A`)

[
1

|Ts|
∑
t∈Ts

rit,t

]
. (13)

It is not difficult to see that

R1(T ) = ∆

(
S∑
s=1

x`max,s − EGroup-EXP3

[
S∑
s=1

x`s,s

])
. (14)

It is then clear that upper bounding R1(T ) is equivalent
to upper bounding the weak regret of applying the group-
level EXP3 algorithm to the adversarial bandit problem con-
structed by the reduction in Sec. III. Specifically, the reward
of selecting a group A` at epoch Ts is defined as y`,s
according to (7) where it is randomly selected by the arm-
level EXP3 algorithm. Therefore, y`,s is a random reward
with mean x`,s. The group selection problem is reduced to
a classic memory-unconstrained adversarial bandit problem
with noisy observations. It should be noted that after fixing
an assignment of the reward sequence ((r1,t, ..., rK,t))

T
t=1,

the expected reward x`,s is fixed. Meanwhile, the realization
of y`,s is independent across `, s and is independent of the
arm (group) selection history up to epoch s. We obtain the
following result on applying the group-level EXP3 algorithm
to the reduced bandit problem.

Lemma 1. By choosing γ1 =
√

L lnL
2S , the group-level EXP3

algorithm guarantees that, for every assignment of the reward
sequence ((r1,t, ..., rK,t))

T
t=1,

max
1≤`≤L

S∑
s=1

x`,s − EGroup-EXP3

[
S∑
s=1

x`s,s

]
≤ 2
√

2SL lnL,

(15)
where `s is the arm group selected by the group-level EXP3
algorithm at epoch s.

Proof. See Appendix B in the supplementary material.

For the arm-level reward loss R2(T ), we notice that

R2(T ) =
S∑
s=1

(∑
t∈Ts

rimax,t − EArm-EXP3(A`max )

[∑
t∈Ts

rit,t

])
.

(16)
It suffices to upper bound each term in the summation, that is,
the weak regret of conducting the arm-level EXP3 algorithm
on group A`max during each epoch Ts. The regret bound has
been shown in Lemma 3.
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Theorem 1 is then proved by applying Lemma 1 and
Lemma 3 to R1(T ) and R2(T ), respectively.

Proof of Theorem 1. Combining (14) with Lemma 1, and (16)
with Lemma 3, we can derive that

R1(T ) ≤ 2∆
√

2SL lnL = 2
√

2T∆L lnL,

R2(T ) ≤ 2S
√

2∆N lnN = 2

√
2T 2

∆
N lnN.

(17)

By choosing ∆ =

⌈√
TN lnN
L lnL

⌉
, we obtain the upper bound

in Theorem 1.

It should be noted that although the proposed learning policy
requires the knowledge of the total time length T for choosing
input parameters to achieve no-regret learning, the issue of
unknown T can be easily addressed by the doubling technique
as used in the classic memory-unconstrained setting [13].
Specifically, the algorithm operates in stages, with the stage
length doubles at each time. In stage r with length 2r, the
algorithm operates under a known-horizon setting with the
horizon length T = 2r. It is not difficult to show that the
same regret order still holds.

B. Minimizing Weak Regret with High Probability

We further show that by adopting EXP3.P at both group
and arm levels in the HLMC framework with parameters
(η1, γ1, β1) and (η2, γ2, β2) respectively, the weak regret of
HLCM has a sublinear growth rate in T with high probability.

Theorem 2. For any T,K and every δ ∈ (0, 1), if ∆ =⌈√
TN ln(2KT/δ)
L ln(2L/δ)

⌉
(where N,L are defined in Sec. III-B), and

the EXP3.P algorithm is adopted at both the group level with

β1 =
√

ln(2L/δ)
LS , η1 = 0.95

√
lnL
LS , γ1 = 1.05

√
L lnL
S , and

the arm level with β2 =
√

ln(2KS/δ)
N∆ , η2 = 0.95

√
lnN
N∆ , γ2 =

1.05
√

N lnN
∆ , then for any assignment of the reward sequence,

the weak regret of HLCM is upper bounded by

Rw(T ) ≤ 12.5T
3
4K

1
4 (ln (2KT/δ))

1
2 , (18)

with probability at least 1− δ.

Theorem 2 is proved via a similar structure with that used
in analyzing the expected weak regret of HLMC in Sec. IV-A.
Specifically, the weak regret is decomposed as:

Rw(T ) =
S∑
s=1

∑
t∈Ts

rimax,t −
S∑
s=1

|Ts|y`max,s

+
S∑
s=1

|Ts|y`max,s −
S∑
s=1

∑
t∈Ts

rit,t (19)

= R1(T ) +R2(T ),

where imax is the arm with the greatest cumulative reward
in hindsight, `max is the group index of imax, y`max,s is the
average reward obtained by running the arm-level EXP3.P
algorithm on A`max during epoch s, and it is the arm selected
by HLMC at time t.

We first upper bound R1(T ), which corresponds to the arm-
level reward loss due to playing suboptimal arms in A`max

assuming that A`max is selected at all epochs. It suffices to
upper bound ∑

t∈Ts

rimax,t − |Ts|y`max,s, (20)

for every s. It is clear that (20) is equivalent to the weak regret
of applying the arm-level EXP3.P algorithm to A`max

during
epoch Ts, which is upper bounded in Lemma 4.

To upper bound R2(T ), which corresponds to the group-
level reward loss due to not selecting A`max at all epochs, we
rewrite R2(T ) as

R2(T ) = ∆

(
S∑
s=1

y`max,s −
S∑
s=1

y`s,s

)
(21)

where `s is the group selected by the group-level EXP3.P
algorithm at epoch s (we assume without loss of generality
that every epoch has equal length ∆).

As argued in Sec. IV-A, the realization of y`,s is inde-
pendent across `, s and is independent of the past group
selection history. Once we fixed a sequence of realizations of
((y1,s, ...yL,s))

S
s=1, Lemma 4 can be applied to upper bound

the group-level regret R2(T ) with high probability.

Proof of Theorem 2. For every δ > 0 and every assignment
of the reward sequence, we apply Lemma 4 to all groups ` =
1, ..., L and all epochs s = 1, ..., S by choosing δ0 = δ

2LS .
Then using the union bound, we obtain that with probability
at least 1−δ/2, the upper bound on (20) in Lemma 4 holds for
every groups ` and every epoch s. As a result, the arm-level
regret R1(T ) is upper bounded as:

R1(T ) ≤ 5.15S
√
N∆ ln(2NLS/δ)

= 5.15

√
T 2

∆
N ln

(
2KS

δ

)
, (22)

with probability at least 1− δ/2.
Moreover, we apply Lemma 4 again to the group-level

selection strategy by choosing δ0 = δ/2. We obtain that with
probability at least 1− δ/2,

R2(T ) ≤ 5.15∆
√
LS ln(2L/δ)

= 5.15
√
T∆L ln(2L/δ), (23)

for every realization of ((y1,s, ...yL,s))
S
s=1. The upper bound

on Rw(T ) in Theorem 2 is obtained by choosing ∆ =⌈√
TN ln(2KT/δ)
L ln(2L/δ)

⌉
and combining (22) and (23) using the

union bound.

C. Minimizing Shifting Regret in Expectation

To achieve no-regret learning under a stronger regret notion:
shifting regret, we consider applying EXP3.S at the group level
of HLMC. At the arm-level, we still adopt the EXP3 algorithm
for arm selection. It should be noted that the arm-level strategy
in the HLMC framework is restarted at the beginning of
every epoch, which guarantees quick elimination of the past
experience. Therefore, the hierarchical structure automatically
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adapts to the variation of the benchmark sequence by relying
more on recent observations. In the following theorem, we
provide an upper bound on the expected shifting regret of
HLMC when EXP3.S and EXP3 are adopted at the group and
the arm levels, respectively.

Theorem 3. For any T,K, and V , assume that T ≥ V K.
If the input parameter ∆ =

⌈√
TN lnN
V L ln(TL)

⌉
(where N,L are

defined in Sec. III-B), adopting EXP3.S at the group level with

γ1 =
√

V L ln (LS)
S , α = 1/S, and EXP3 at the arm level with

γ2 =
√

N lnN
2∆ guarantees that, for every assignment of the

reward sequence, the expected shifting regret of HLMC with
a hardness constraint V on the benchmark action sequence is
upper bounded by:

EHLMC[Rs(T, V )] ≤ (6
√

2 + 1)T
3
4V

1
4K

1
4 (ln (KT ))

1
2 . (24)

Corollary 1. If V = o(T ) as T → ∞, the HLMC algorithm
achieves no-regret learning in expectation under the notion of
shifting regret with hardness constraint V .

To upper bound the expected shifting regret of HLMC
against an arbitrary benchmark action sequence aT with a
hardness constraint V , the key technique is to construct an
alternative benchmark sequence bT such that: (i) H(bT ) ≤ V ,
(ii) the cumulative reward achieved by bT is close to that
achieved by aT , and (iii) the actions specified by bT are
invariant within each epoch. Using such a sequence bT , it
suffices to show that the expected shifting regret of HLMC
against bT has a sublinear growth rate in T .

We follow the same proof structure with that used for
analyzing the expected weak regret in Sec. IV-A. First note
that the constructed sequence bT is time-invariant within each
epoch. Therefore, the arm-level regret analysis in Lemma 3
directly carries over. At the group-level, the reduction to a
memory-unconstrained adversarial bandit problem with noisy
observations is still legitimate since the group specified by the
benchmark sequence is fixed within each epoch. Based on the
reduction and Lemma 5, we obtain the following result on
applying the EXP3.S algorithm to the group level.

Lemma 2. By choosing γ1 =
√

LV ln(LS)
S and α = 1/S,

the group-level EXP3.S algorithm guarantees that, for every
assignment of the reward sequence ((r1,t, ..., rK,t))

T
t=1 and

every benchmark sequence of arm groups hS = (h1, ..., hS)
where H(hS) ≤ V ,

S∑
s=1

xhs,s−EGroup-EXP3.S

[
S∑
s=1

x`s,s

]
≤ 4
√
V LS ln(LS),

(25)
where `s is the arm group selected at epoch s.

Proof. See Appendix C in the supplementary material.

The upper bound in Theorem 3 on the expected shift-
ing regret of HLMC against any arbitrary benchmark action
sequence with a hardness upper bound V is obtained by
combining Lemma 3 and Lemma 2 together.

Proof of Theorem 3. For an arbitrary benchmark action se-
quence aT such that H(aT ) ≤ V , we first construct an

alternative benchmark sequence bT as follows: suppose the
time horizon is partitioned into V segments:

[T1, T2), [T2, T3), ..., [TV , TV+1), (26)

where T1 = 1, TV+1 = T + 1, and at is fixed for all t ∈
[Tv, Tv+1) (let jv denote that arm and hv denote the group it
belongs to). Suppose Tv belongs to epoch sv . The alternative
benchmark sequence bT is defined as

bt = jv, if s(t) ∈ [sv, sv+1), (27)

where s(t) is the epoch to which time t belongs.
One can check that the action specified by bT is fixed within

each epoch and H(bT ) ≤ V . Moreover, bT differs from aT

only in the epochs when an action switch happens in aT , i.e.,
{sv}Vv=1. Therefore,

T∑
t=1

(rat,t − rbt,t) ≤ V∆. (28)

We decompose the expected shifting regret against aT as:

EHLMC[RaT (T )]

=
T∑
t=1

(rat,t − rbt,t) +

(
T∑
t=1

rbt,t −
V∑
v=1

sv+1−1∑
s=sv

|Ts|xhv,s

)

+

(
V∑
v=1

sv+1−1∑
s=sv

|Ts|xhv,s − EHLMC

[
T∑
t=1

rit,t

])
=R1(T ) +R2(T ) +R3(T ).

(29)
Note that R1(T ) ≤ V∆. For R2(T ), we have

R2(T ) =
V∑
v=1

sv+1−1∑
s=sv

∑
t∈Ts

rbt,t −
V∑
v=1

sv+1−1∑
s=sv

|Ts|xhv,s

≤ 2S
√

2∆N lnN,

(30)

where the last inequality uses Lemma 3.
For R3(T ), we can show that

R3(T ) =
V∑
v=1

sv+1−1∑
s=sv

|Ts|xhv,s − EGroup-EXP3.S

[
S∑
s=1

∆x`s,s

]
≤ 4∆

√
V LS ln(LS),

(31)
where the last inequality uses Lemma 2.

Combining the above inequalities together and choosing
∆ =

⌈√
TN lnN
V L ln(TL)

⌉
, we can derive that

EHLMC[RaT (T )] ≤ 6
√

2T
3
4V

1
4K

1
4 (ln(KT ))

1
2 +
√
TV K lnK.

(32)
Notice that if T ≥ V K, the first term on the RHS of (32)
dominates. Since aT is chosen arbitrarily with a hardness
upper bounded V , we obtain the conclusion in Theorem 2.

It should be noted that to achieve the upper bound es-
tablished in Theorem 3, the knowledge of V is required in
selecting input parameters. When V is unknown, we show in
the following theorem that no-regret learning under shifting
regret can still be achieved by HLMC in expectation under
certain conditions.
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Theorem 4. By selecting ∆ =
⌈√

TN lnN
L ln(TL)

⌉
and γ1 =√

L ln(LS)
S (the other parameters are identical to those speci-

fied in Theorem 3), the expected shifting regret of HLMC with
a hardness constraint V on the benchmark action sequence is
upper bounded by:

EHLMC[Rs(T, V )] ≤
√

2(V + 5)T
3
4K

1
4 (ln (KT ))

1
2 . (33)

If V = o(T 1/4) as T → ∞, no-regret learning is achieved
by HLMC in expectation under shifting regret with a hardness
constraint V , even if V is unknown.

Proof. The proof is similar to that of Theorem 3 and thus, we
omit the details.

V. MEMORY COMPLEXITY AND REGRET PERFORMANCE
IN GENERAL CASES

As discussed in Sec. III, HLMC achieves different operating
points on the tradeoff curve between the regret order and
memory complexity through selecting different depth D of
the adopted hierarchy. To show this, we provide performance
analysis of HLMC in the general case with D ≥ 2. For sim-
plicity, we present detailed analysis for the case with D = 3.
All claims and results can be easily generalized to cases with
more than three levels.

We first introduce some notations and specify some param-
eters used in the algorithm as well as the analysis. The three
levels in the hierarchy are referred to as the group, subgroup,
and arm levels, respectively. In the first level, the arm set A
is evenly partitioned into N1 = dK1/3e groups {A`}N1

`=1.
Within each group A`, arms are further evenly partitioned into
N2 = dK1/3e subgroups {B`h}

N2

h=1 in the second level. In the
last level, each subgroup B`h consists of N3 = d K

N1N2
e arms

(the size of the last subgroup within each group may be smaller
than N3). We assume without losing generality that the size of
every group (subgroup) is identical. Similarly, the time hori-
zon T is evenly partitioned into S1 epochs {Ts}S1

s=1 and every
epoch Ts is evenly partitioned into S2 subepochs {Isτ}

S1
τ=1.

We assume that every sub-epoch consists of S3 time steps
(S1, S2, S3 will be specified later). It is clear that T = S1S2S3.

The HLMC framework consists of three selection strategies
at the group, subgroup, and arm levels. At the beginning of
every epoch Ts, the group-level strategy selects a group A`s .
The statistics of all sub-groups within A` are stored in the
memory until the end of Ts. During Ts, the subgroup-level
strategy selects a subgroup B`shτ at the beginning of every
subepoch Isτ and the statistics of arms within B`shτ are stored
in the memory until the end of Isτ . The arm-level strategy is
conducted on the selected subgroup to play arms at every time
step during the corresponding subepoch.

It is clear that the size of the memory space required
by HLMC with a three-level hierarchy is N1 + N2 + N3.
Therefore, the memory complexity of HLMC is in the order
of Θ(K1/3). More generally, if we adopt a D-level hierarchy
where each level d (d = 1, 2, ..., D) consists of Nd = dK1/De
level-d groups, the memory complexity of HLMC is of or-
der Θ(DK1/D). It should be noted that a level-d group should
contain at least 2 level-(d+1) groups. As a result, the depth D

is upper bounded by dlog2Ke and the minimum memory
complexity of the HLMC framework is of order Θ(log2K).

We show that HLMC with a three-level hierarchy achieves
no-regret learning in expectation under the notion of weak
regret, if we adopt EXP3 at all three levels. Using a similar
approach with that in analyzing the regret performance in the
two-level case, we prove an upper bound on the expected weak
regret of HLMC in the following theorem.

Theorem 5. For any T and K, by choosing Si =⌈
T 1/3(Ni lnNi)

2/3

(
∏
j 6=iNj lnNj)1/3

⌉
and applying EXP3 with parameter γi =√

Ni lnNi
2Si

at every level i = 1, 2, 3, the expected weak regret of
HLMC with a three-level hierarchy against every assignment
of the reward sequence is upper bounded by

EHLMC[Rw(T )] ≤ 12T 5/6K1/6(lnK)1/2. (34)

Proof. See Appendix D in the supplementary material.

For general HLMC with a D-level hierarchy (2 ≤ D ≤
dlog2Ke), the following corollary on the expected weak regret
can be directly derived.

Corollary 2. If EXP3 is applied to all D levels of the general
HLMC framework, the expected weak regret is of order

O(DT 1− 1
2DK

1
2D ) (35)

up to a logarithmic factor, as T →∞.

Proof. The proof is similar to the ones of Theorem 1 and 5
and thus, we omit the details.

Corollary 2 indicates that the tradeoff between the regret
order and memory complexity of HLMC depends on the
depth D of the adopted hierarchy: a deeper hierarchy incurs
a higher regret order with a smaller memory complexity. We
further establish a memory-dependent regret upper bound of
HLMC by adaptively selecting D based on the size M of the
available memory space. In particular, we define the minimum
depth D∗(M) of a legitimate hierarchy when M words of
memory are available:

D∗(M) = min{D ∈ N+ : DdK1/De ≤M}. (36)

Thus, the minimum regret achieved by HLMC with M words
of memory is of order

O
(
D∗(M)T 1− 1

2D∗(M)K
1

2D∗(M)

)
. (37)

In one extreme case when M = Θ(log2K), the size of the
available memory space matches the minimum complexity of
the deepest hierarchy where D∗(M) = dlog2Ke. In this case,
the regret order achieved by HLMC is still sublinear in T .
In the other extreme case when M ≥ K (i.e., the memory-
unconstrained case), it is clear that D∗(M) = 1 and HLMC
with a single-level hierarchy reduces to an existing learning
routine for memory-unconstrained adversarial bandits.

One may notice that the memory-dependent regret order of
HLMC does not improve when M increases but D∗(M) is un-
changed, since the dependency of the regret order with respect
to the available memory is quantified. However, in practice, a
larger memory space may help in achieving a smaller regret
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if arms are adaptively partitioned according to M , even if D
is fixed. We take the two-level case as an example: given M

words of memory, we let N = �M−
√
M2−4K
2 � and L = �K

N �.

As long as M ≥ 2
√
K, the arm partition is legitimate and one

can verify that N + L ≤ M . It is not difficult to check that

the theoretical regret orders established in Sec. IV still hold

under the adaptive arm partition. We further show in Sec. VI-C

through numerical examples that under certain conditions, the

regret performance of HLMC using adaptive arm partitions in

the two-level hierarchy improves as M increases.

VI. NUMERICAL EXAMPLES

In this section, we illustrate the regret performance of

the proposed HLMC learning structure numerically through

simulations. All the experiments are run 10 times using a

Monte Carlo method on Python 3.7.

A. Weak Regret Minimization

We conduct two experiments to compare the regret per-

formance of HLMC with baseline ones under the notion of

weak regret. Given that this is the first work on memory-

constrained adversarial bandits, we consider two baselines:

UCB-M (proposed in [19] for memory constrained stochastic

bandits) and EXP3 (for classic adversarial bandits without

memory constraints).

We first notice that the only randomness of UCB-M comes

from the random shuffle of arm indices before playing arms,

which provides no improvement on the performance in the

stochastic setting. Without the random shuffle step, UCB-

M is purely deterministic and thus, we can easily construct

a reward sequence such that UCB-M incurs a regret linear

in T . Specifically, in the first experiment, we consider the

following setup: let K = 100, M = 20, and T = 107.

In accordance with the UCB-M policy, we partition the time

horizon into phases with exponentially growing lengths 2ih0b0
(i = 0, 2, ...). Each phase is further partitioned evenly into h0

sub-phases with length 2ib0. We select h0 = �K−1
M−1� and

b0 = M(M + 2). For each phase, we assign arm rewards

as follows: during each subphase u = 0, 2, ..., h0 − 1, we let

arm (M(u + 1) mod K) offer reward 1 and the other arms

offer reward 0. Since UCB-M selects arm groups with size

M in a round-robin fashion, it is clear that arms selected by

UCB-M offers 0 reward at almost all time steps. The weak

regret of UCB-M is clearly linear in T . For HLMC, we adopt

a two-level hierarchy and apply EXP3 to both group and arm

levels. The simulation results on the expected weak regret are

presented in Fig. 2.

From Fig. 2, we can observe that HLMC outperforms the

UCB-M policy under the constructed adversarial environment.

The error bar indicates that the proposed learning policy

is robust with low variance. Note that although the EXP3

algorithm achieves the best performance, it requires Θ(K)
memory size, which is infeasible in the memory-constrained

setting. We also plot the theoretical upper bounds on the regret

of HLMC and EXP3 (i.e., 2T ′
3
4K

1
4 (lnK)

1
2 and 2

√
T ′K lnK

where T ′ = T/5 due to the fact that the cumulative reward

Fig. 2: Comparison of the weak regret of UCB-M (without

random shuffle of arm indices), HLMC, and EXP3: K =
100, M = 20, and T = 107. The time horizon is parti-

tioned into phases with exponentially growing lengths 2ih0b0
(i = 0, 2, ...). Each phase is partitioned evenly into h0

sub-phases with length 2ib0. During each subphase u, arm

(M(u+ 1) mod K) offers reward 1 and the other arms offer

reward 0.

of the best arm is T/5 instead of T in this experiment2),

which verify that the expected weak regret of HLMC has the

same order with the theoretical upper bounded established in

Theorem 1.

We further use another example to show that even with the

random shuffle step, UCB-M still fails to avoid a linear regret

in T against adversaries. We consider the same experiment

setup with a different reward assignment. Specifically, the

phase and subphase partitions are the same with those in the

first experiment. During each subphase u = 0, 2, ..., h0 − 1,

we let arm 1 offer (u mod 2) reward and the other arms

offer ε = 1 × 10−4 rewards. It is not difficult to check that

after every time arm 1 is selected by UCB-M and offers

reward 1, it will offer 0 reward in the next subphase and

will be excluded from memory. Therefore, significant regret

is incurred in the subphase after next, when arm 1 offers 1
reward again. Over the entire time horizon, UCB-M suffers a

linear regret order in T . Moreover, we added another baseline:

EXP3-M by changing the UCB subroutine in UCB-M to

the EXP3 subroutine. The simulation results are presented in

Fig. 3, which again verify the advantage of HLMC against

UCB-M and EXP3-M. It should be noted that even with the

random shuffle step or a subroutine developed for classic

adversarial bandits during every epoch, the UCB-M and EXP3-

M algorithms still suffer significant regret due to the fact

that the algorithmic structure of the two algorithms fails to

2The choice of the constant in front of T,K does not change the regret
order. To demonstrate that the theoretical regret bound and the simulated
results have the same order, we set the constant equal to 2.
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Fig. 3: Comparison of the weak regret of UCB-M (with

random shuffle of arm indices), EXP3-M (with random shuffle

of arm indices) and HLMC: the time partition is the same with

that in Fig. 2. During each subphase u, arm 1 offers (u mod 2)
reward and the other arms offer ε = 10−4 reward.

balance between what to remember and what to forget in the

adversarial setting. Besides, the random shuffle step in UCB-M

and EXP3-M introduces high variance with little improvement

on the expected weak regret. The comparison between the

theoretical upper bounds and the simulated results also verifies

the correctness of our analysis in Theorem 1.

B. Shifting Regret Minimization

We further conduct an experiment to show the regret perfor-

mance of HLMC with a two-level hierarchy under the notion

of shifting regret. As discussed in Sec. IV-C, by adopting

EXP3.S at the group level, HLMC achieves a sublinear scaling

of shifting regret in T . In this experiment, we compare

the performance of HLMC adopting EXP3.S at the group

level and EXP3 at the arm level (referred to as HLMC.S

in this subsection), HLMC adopting EXP3 at both group

and arm levels (referred to as HLMC in this subsection),

EXP3, and EXP3.S. The experiment is set up as follows: let

K = 16,M = 8, and T = 106. The time horizon is partitioned

evenly into V = 10 phases. In phase v = 0, 1, ..., V − 1, we

let arm iv = (vN mod K) offer reward 1 and the other arms

offer reward 0 (N is the group size defined in the HLMC

framework, which equals 4 in this experiment). It is clear that

the best benchmark policy in the shifting regret definition with

hardness V is to play the best arm iv within every phase v.

The simulation results are presented in Fig. 4.

It can be observed from Fig. 4 that HLMC.S designed for

shifting regret minimization outperforms HLMC and EXP3 for

weak regret minimization. Adopting EXP3.S at the group level

of the HLMC framework improves the regret performance

under the notion of shifting regret. Moreover, the error bar

Fig. 4: Comparison of the shifting regret of HLMC.S, HLMC,

EXP3, and EXP3.S: K = 16,M = 8, and T = 106. The time

horizon is partitioned evenly into V = 10 phases. In phase

v = 0, 1, ..., V − 1, arm iv = (vN mod K) offer reward 1
and the other arms offer reward 0.

verifies the robustness of the proposed policies. It should be

noted that although EXP3.S outperforms HLMC and HLMC.S,

it requires Θ(K) memory space, which is inapplicable in the

memory-constrained setting.

C. Impact of Available Memory on Regret Performance

In this subsection, we show the impact of the size of

available memory space on the regret performance of HLMC.

We use the same experiment setup with that in the first

experiment in Sec. VI-A. We compare the weak regret of

HLMC with M = 14, 20, 50, 80. Specifically, when M = 14,

the HLMC framework requires a three-level hierarchy with

N1 = 5, N2 = 5, and N3 = 4. When M = 20, 50, 80, HLMC

adopts two-level hierarchies with N = �M−
√
M2−4K
2 � and

L = �K/N�.

The results in Fig. 5 show that the regret performance of

HLMC improves as the size of the memory space increases.

In particular, adopting a hierarchy with fewer levels improves

the regret order as indicated in Corollary 2. Even with the

same number of levels, a smaller regret can be achieved with

a larger memory space. Intuitively, as M increases, the epoch

length Δ decrease. Since the reward sequence assigned in the

experiment is stable within a short period but varies vastly in

the long run (it has been argued in [25] that such a reward

assignment is justified in various real-world applications), the

arm-level regret is dominated by the group-level regret and

the latter decreases with the epoch length. We also plot the

theoretical upper bounds on the regret of HLMC with different

levels of hierarchies. The comparison between the theoretical

the simulated results verifies our analysis.
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Fig. 5: Comparison of the weak regret of HLMC with M =
14, 20, 50, 80 memory space: the experiment setup is the same

with that in Fig. 2. When M = 14, the HLMC framework

adopts a three-level hierarchy with N1 = 5, N2 = 5, and N3 =
4. When M = 20, 50, 80, HLMC adopts two-level hierarchies

with N = �M−
√
M2−4K
2 � and L = �K/N�.

D. Distributed Dynamic Spectrum Access in the Presence of
Jamming

In this subsection, we consider the application of distributed

dynamic spectrum access in the presence of jamming in

multi-agent wireless communication systems. There are 1000
distributed agents competing for K = 20 channels (arms) and

an attacker that is jamming the channels. The transmission rate

of a channel is modeled as the reward of the corresponding

arm. The quality of a channel depends on whether it is jammed

by the attacker and how many distributed agents are accessing

the channel simultaneously. Specifically, we assume that if a

channel is not jammed, it offers reward 10 and all accessing

agents evenly share the reward, i.e., every agent receives

10/nt reward where nt is the number of agents selecting the

unjammed channel at time t. For the jammed channels, an

agent can only receive 1 reward if there is no collision (if there

are more than two agents selecting the same arm, no agent can

receive reward from this arm). In this experiment, we consider

an attacker that jams all but one channel at every time step t
and the unjammed channel changes at the beginning of every

phase and circulates among the K channels.

From the perspective of every agent, the problem can be

modeled as a memory-constrained adversarial bandit problem

studied in this paper. Due to limited memory on distributed

wireless devices, every agent can store at most M = 10
statistics of arm rewards. We compare the per-agent average

reward where each agent adopts HLMC with that adopting

UCB-M (with and without random shuffle). The simulation

result is shown in Fig. 6, which again demonstrates the

advantage of HLMC against UCB-M in the adversarial setting.

Fig. 6: Comparison of the average reward per agent by adopt-

ing HLMC and UCB-M (with and without random shuffle

of arm indices) in dynamic spectrum access in the presence

of jamming: 1000 distributed agents compete for K = 20
channels. An attacker adversarially jams all but one channel

at every time step and the unjammed channel circulates among

the K channels. For the unjammed channel, all accessing

agents evenly share 10 reward. For the jammed channel, an

agent can only receive 1 reward if there is no collision.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we studied the problem of adversarial multi-

armed bandits with memory constraints. We proposed a gen-

eral hierarchical learning framework: HLMC that adopts a

multi-level hierarchy to partition the arms into groups and the

time horizon into epochs. The HLMC framework decouples

the tradeoff between what to remember and what to forget

induced by memory constraints from the one between explo-

ration and exploitation due to bandit feedback. We showed

in the two-level case that, by employing different existing

learning routines developed for memory-unconstrained bandits

at both levels of the hierarchy, HLMC achieves no-regret

learning under various regret notions with a memory com-

plexity sublinear in the number of arms. We further showed

that through designing the depth of the adopted hierarchy,

HLMC achieves different operating points at the tradeoff

curve between the regret order and memory complexity. We

conducted numerical experiments to verify the advantages of

HLMC against existing baselines.

Several questions remain open in this problem. It is un-

clear whether Θ(logK) is the minimum memory complexity

required for achieving no-regret learning in the adversarial

setting. Moreover, the current hierarchical partition of arm

groups is pre-determined. It worth studying whether a dynamic

(potentially stochastic) grouping strategy that depends on past

observations can improve the regret performance. More impor-

tantly, whether the sequence of operating points offered by the

proposed algorithm traces the Pareto front of this fundamental
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tradeoff between regret performance and memory complexity
is an interesting open question that requires a separate full
investigation. Another potential research direction is to find
the best of both worlds, that is, a learning policy achieving
the optimal regret orders in both stochastic and adversarial
settings with memory constraints.
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