
Noname manuscript No.
(will be inserted by the editor)

Modeling User Concerns in Sharing Economy: The
Case of Food Delivery Apps

Grant Williams · Miroslav Tushev ·
Fahimeh Ebrahimi · Anas Mahmoud

Received: date / Accepted: date

Abstract Sharing Economy apps, such as Uber, Airbnb, and TaskRabbit,
have generated a substantial consumer interest over the past decade. The
unique form of peer-to-peer business exchange these apps have enabled has
been linked to significant levels of economic growth, helping people in resource-
constrained communities to build social capital and move up the economic
ladder. However, due to the multidimensional nature of their operational en-
vironments, and the lack of effective methods for capturing and describing
their end-users’ concerns, Sharing Economy apps often struggle to survive. To
address these challenges, in this paper, we examine crowd feedback in ecosys-
tems of Sharing Economy apps. Specifically, we present a case study targeting
the ecosystem of food delivery apps. Using qualitative analysis methods, we
synthesize important user concerns present in the Twitter feeds and app store
reviews of these apps. We further propose and intrinsically evaluate an au-
tomated procedure for generating a succinct model of these concerns. Our
work provides a first step toward building a full understanding of user needs
in ecosystems of Sharing Economy apps. Our objective is to provide Sharing
Economy app developers with systematic guidelines to help them maximize
their market fitness and mitigate their end-users’ concerns and optimize their
experience.

Keywords Sharing Economy · Domain Modeling · Mobile Applications

1 Introduction

The recent decade has witnessed a major shift in the way people deal services
and goods. This shift has been enabled by the emergence of a new form of busi-

Grant Williams
Microsoft
Redmond, Washington, 98052
E-mail: grwillia@microsoft.com

2 Grant Williams et al.

ness exchange, known as Sharing Economy (SE). Unlike conventional business
models, SE is focused on providing access to— rather than ownership of— as-
sets and resources via peer-2-peer (P2P) coordination [59]. This on-demand,
convenient, and sustainable form of resource consumption has attracted con-
sumers and investors around the globe. As of today, there are hundreds of SE
platforms, enabling consumers to sell, rent, swap, lend, and borrow services
and assets at unprecedented scales. According to PwC—the multinational pro-
fessional services network—SE is projected to grow from 15 billion U.S. dollars
in 2014 to close to 335 billion U.S. dollars by 2025 [74].

Earlier adaptations of digital SE can be traced back to the early days of the
Internet. Ebay and Craigslist, both launched in 1995, are prominent examples
of platforms that enabled a collaborative P2P circulation of services and assets.
However, the real proliferation of SE can be attributed to mobile technology.
Global networks of mobile devices has created an ideal environment for SE
applications (apps) to thrive and reach the mainstream culture. Using mobile
apps as a mediator, services such as Uber (ridesharing), Airbnb (lodging),
and TaskRabbit (freelancing) paved the way for a new form of disruptive
innovations that transformed the way we do business forever.

Despite their proven benefits, SE apps often struggle to survive. In ad-
dition to competing with each other (e.g., multiple apps providing the exact
same service in the same geographical area), these apps have to compete with
existing classical markets in ecosystems of finite resources (e.g., taxi, hotel,
and retail industries) [28]. To survive this fierce competition, SE apps have
to be in a constant state of innovation, driven by a deep knowledge of their
end-users’ expectations, preferences, and needs [27]. However, this knowledge
is often tacit, embedded in the complex interplay between the user, system,
and market components of the ecosystem of operation. In order to be effec-
tively utilized, such knowledge must be translated into an explicit form, or
externalized [70]. Once domain knowledge is externalized, it can be used to
instantiate and sustain innovation [33].

To address these challenges, in this paper, we propose an automated ap-
proach for modeling crowd concerns in ecosystems of SE apps. We define a
user concern as any functional or non-functional behavior of the app
that might negatively impact its users’ experience or their overall
well-being. This abstract definition includes any technical (bugs or crashes)
or nontechnical (service, economic, or social) issues that consumers of mo-
bile apps may experience. The proposed approach is demonstrated through a
case study targeting the ecosystem of food courier, or delivery, apps. These
apps, typically classified in popular app stores under the Food & Drink cate-
gory, form a uniquely complex and dynamic ecosystem that consists of food
consumers, drivers, and restaurants, operating in an extremely competitive
environment and under strict business and technological constraints. The goal
of our case study is to demonstrate how such a complex ecosystem can be au-
tomatically analyzed and modeled. Specifically, our contributions in this paper
can be described as follows:

Modeling User Concerns in Sharing Economy: The Case of Food Delivery Apps 3

– We qualitatively analyze a large dataset of user feedback collected from
the Twitter feeds and app store reviews of four prominent food delivery
apps. Our objective is to understand and classify the main pressing user
concerns in the ecosystem of these apps.

– We propose, formally describe, and evaluate a fully automated procedure
for modeling user concerns in the ecosystem of food delivery apps along
with their main attributes and triggers. The generated model is intended
to provide SE app developers with a framework for assessing the fitness of
their mobile apps and understanding the complex realities of their ecosys-
tem.

The remainder of this paper is organized as follows. Section 2 provides a
brief background of existing related research, motivates our work in this paper,
and presents our research questions. Section 3 describes our qualitative anal-
ysis. Section 4 proposes an automated procedure for extracting and modeling
crowd concerns in the ecosystem of food delivery apps. Section 5 discusses our
key findings and their impact. Section 6 describes the main limitations of our
study. Finally, Section 7 concludes the paper and describes our future work.

2 Background, Rationale, and Research Questions

In this section, we provide a brief summary of seminal related research, moti-
vate our work, and present our research questions.

2.1 Background: Sharing Economy

The research on SE has become a prominent subject of research across multiple
disciplines [27,45]. This can be explained based on the interdisciplinary nature
of the problems often raised in this domain. In general, the research on SE can
be categorized into five main categories:

– Economic: Recent research revealed that adapting solutions of SE can
foster economic growth in big cities and local communities [20,100]. Specif-
ically, SE can help to counter excessive spending and purchase habits [46]
while generating new sources of revenue [62]. However, major concerns are
frequently raised about the impact of this new business model on tradi-
tional long-established markets, affecting the revenue and business prac-
tices of these markets and threatening to put millions (e.g., taxi drivers
and employees in the hotel industry) out of work by making their jobs
obsolete [5,98].

– Social: Existing research often describe SE as a vehicle for building social
capital and establishing social relationships within local communities [7,
87]. However, on the negative side, SE has paved the way for a new form of
social challenges, including problems such as digital discrimination, which
refers to scenarios where a business transaction is influenced by race, gen-
der, age, or other aspects of appearance of service provider or receiver. [29].

4 Grant Williams et al.

For instance, a recent report by the National Bureau of Economic Research
found that black riders using Uber waited 30% longer to be picked up [32].
Another study reported that non-black Airbnb hosts were able to charge
12% more than black hosts [29].

– Environmental: Several studies suggest that SE promotes environmental
awareness by enabling more sustainable consumption practices in modern-
day societies [3,13]. Other studies argue that this impact is not as sub-
stantial, suggesting that environmental factors are not as important for
consumers as economic factors [2]. In fact, some other studies went even
further to suggest that SE can lead to more environmental pressure and re-
source exploitation due to the more affordable alternatives it provides [87].

– Legal: This category of studies investigate existing regulations and suggest
new regulatory infrastructures for protecting users of SE platforms from
unwanted business practices. The main objective is to propose legislation
to regulate the relationship between the app (e.g., Uber or Airbnb), service
providers (e.g., drivers or apartment owners), and service receivers (e.g.,
riders or renters) [14,68], especially when the terms-of-service are some-
how violated, such as in cases of drunk drivers, under-insured cars, unsafe
apartments, and fraud [16].

– Computing: in computing, studies of SE often tackle the problem from
an algorithmic and human–computer interaction (HCI) perspectives [27].
Algorithmic papers are mainly concerned with proposing new and more
efficient algorithms for P2P matching, path planning in ride-sharing [21,
42], platform fairness [11,82,83], and pricing [11]. HCI related study, on
the other hand, propose design solutions to optimize user experience [26],
including protecting their privacy [35,95] and safety [6] and understanding
their usage patterns and motivations to participate in SE [100].

2.2 Background: Mining Mobile App User Feedback

The research on mining mobile app user feedback has noticeably advanced in
the past few years. The objective of this line of research is to help software
developers infer their end-users’ needs, detect bugs in their code, and plan for
future releases of their apps. In general, two main channels of feedback are
often considered: app store reviews and Twitter.

– App store reviews: A systematic survey of studies related to app store
review analysis is provided in Martin et al. [61]. In general, this line of
research proposes new tools (e.g., AR-Miner [19], MARA [47], MARC [50],
and CLAP [89]), methods, and procedures for analyzing user reviews avail-
able on Google Play and the Apple App Store. The main objective is to
capture any actionable maintenance requests in these reviews, such as bug
reports and feature requests as well as non-functional requirements con-
cerns, such as usability, reliability, security, and privacy [38,50].
To automatically identify informative user reviews, reviews are typically
classified using standard text classification techniques, including Naive

Modeling User Concerns in Sharing Economy: The Case of Food Delivery Apps 5

Bayes (NB), Support Vector Machines (SVM), Random Forests (RF), and
Decision Trees (DT) [50,73] as well as clustering algorithms such as DB-
SCAN [89]. Simpler techniques, which rely on linguistic pattern and term
matching have also been proposed in the literature [40,47,73]. In terms
of modeling, techniques such as Latent Direchlet Allocation (LDA), are
commonly used to infer meaningful high-level topics from reviews [19,40].
Text processing techniques, such as sentiment analysis, lemmatization, and
part of speech tagging, are also commonly used to improve the accuracy
of review classification and modeling techniques [17,58,64,91]. In addition,
meta-data attributes of user reviews, such as their star rating and author
information, are used to improve the predictive capabilities of review clas-
sifiers [54,58].

– Twitter: Twitter enables large populations of end-users of software to
publicly share their experiences and concerns about their apps in the form
of micro-blogs. Analysis of large datasets of tweets collected from the Twit-
ter feeds of software systems revealed that around 50% of collected tweets
contained actionable maintenance information [91]. Such information was
found to be useful for different groups of technical and non-technical stake-
holders [39], providing complementary information to support mobile app
developers during release planning tasks. The results also showed that text
classifiers, such as SVM and NB, summarization methods, such as Hybrid
TF.IDF and SumBasic, and modeling methods, such as LDA, can be effec-
tively used to categorize, summarize, and cluster software-related tweets
into semantically related groups of technical feedback [91].

2.3 Research Gap and Motivation

Our review shows that systematically analyzing and synthesizing user feed-
back at a domain level can help app developers to critically evaluate the
current landscape of competition and to understand their end-users’ expec-
tations, preferences, and needs [25,31,41,72,80]. Understanding the domain
of competition is critical for the survival of SE apps. Specifically, the clus-
ters of functionally-related SE apps form distinct micro-ecosystems within the
app store ecosystem. A software ecosystem can be defined as a set of actors
functioning as a unit and interacting with a shared market for software and
services, together with the relationships among them [49].

However, the majority of existing research on mining crowd feedback in
the mobile app market is focused on individual apps, with little attention paid
to how such information can be utilized and integrated to facilitate software
analysis at an ecosystem, or application domain, level [61,73]. Extracting con-
cerns at a domain level can be a more challenging problem than focusing on
single apps, which typically receive only a limited number of reviews or tweets
per day [63]. Furthermore, existing crowd feedback mining techniques are cal-
ibrated to extract technical user concerns, such as bug reports and feature
requests, often ignoring other non-technical types of concerns that originate

6 Grant Williams et al.

from the operational characteristics of the app [51,61]. These observations em-
phasize the need for new methods that can integrate multiple heterogeneous
sources of user feedback to reflect a more accurate picture of the ecosystem. To
bridge the gap in existing research in this paper, we present a case study
on modeling crowd feedback in ecosystems of SE apps. Our case study tar-
gets the ecosystem of food delivery apps. Emerging evidence has shown that,
unlike other SE apps, the demand for food delivery services has significantly
increased after the COVID-19 shelter-in-place order [18]. In fact, according to
The New York Times, while use of Uber’s ride-sharing service went down by
80% in April of 2020, UberEats has experienced 89% increase in demand [24].
This makes food delivery a particularly interesting SE domain to be targeted
by our analysis.

2.4 Case Study Setup and Research Questions

The first major food courier service to emerge was Seamless, in 1999. A prod-
uct of the internet boom, Seamless allowed users to order from participating
restaurants using an online menu, a unique innovation that granted the service
considerable popularity. Following Seamless, Grubhub was also met with suc-
cess when it began offering web-based food delivery for the Chicago market in
2004. As smart phones became more popular, a number of new food couriers
took advantage of the new demand for a more convenient mobile app-based
delivery services. Of these competitors, UberEATS rose to the top, leveraging
their experience with ride-sharing to adapt to food delivery. By the end of
2017, UberEATS became the most downloaded food-related app on the Apple
App Store.

The set of food delivery apps along with their consumer (e.g., restaurant
patrons and drivers) and business (e.g., restaurants) components represent
a uniquely complex and dynamic multi-agent ecosystem. This complexity im-
poses several challenges on the operation of these apps. These challenges, which
can also be often found in other SE ecosystems, can be described as follows:

– Fierce competition: users often have multiple services to choose from
within a given metropolitan area. Switching from one app to another is
trivial, and users are highly impatient with late or incorrect orders. For
instance, food delivery services have less than one hour for delivery. This
forces developers to constantly innovate to provide faster delivery than
their rivals.

– Decentralized fulfillment: the drivers are generally independent con-
tractors who choose whom to work for and when to work. This creates
challenges, not only for job assignment, but also for predicting when and
where human resources will become available.

– Multi-lateral communication: in order to fulfill an order, the delivery
app must communicate with users, drivers, and restaurants to ensure that
the food order is ready when the driver arrives, and that the user knows

Modeling User Concerns in Sharing Economy: The Case of Food Delivery Apps 7

when to expect delivery. Each channel of communication presents an op-
portunity for failure.

The main objective of our analysis is to demonstrate the feasibility of au-
tomatically generating an abstract conceptual model of user concerns in such
a dynamic and complex ecosystem. Such model is intended to provide system-
atic technical and business insights for app developers as well as newcomers
trying to break into the SE market. To guide our analysis, we formulate the
two following research questions:

– RQ1: What types of concerns are raised by users of food deliv-
ery apps? Mobile app users are highly vocal in sharing suggestions and
criticism. Understanding this feedback is critical for evaluating and prior-
itizing potential changes to software. However, not all concerns, especially
in business-oriented apps, are technical in nature. Therefore, developers
must also be aware of business discussions, such as talk of competitors,
poor service, or issues with other actors in their ecosystems. Therefore,
the first phase of our analysis is focused on systematically externalizing
and classifying crowd feedback available in the Twitter feeds and app store
reviews of food delivery apps.

– RQ2: How can user concerns in the ecosystem of food delivery
apps be automatically and effectively modeled? The second phase of
our analysis is focused on automatically externalizing and modeling user
concerns in the ecosystem of food delivery apps. Modeling such information
can provide valuable information for SE app developers, enabling them
to discover the most important user concerns in their ecosystem, along
with their defining attributes and triggers. To answer this question, we
propose an automated procedure for generating a new form of user feedback
analysis models and we compare its performance to LDA, a commonly
used technique for generating topics of app user concerns from online user
feedback.

3 Qualitative Analysis

To answer our first research question (RQ1), in this section, we qualitatively
analyze a large dataset of app store reviews and tweets, sampled from the
crowd feedback of four popular food delivery apps. In what follows, we describe
our data collection process as well as the main findings of our analysis.

3.1 Data Collection

In order to determine which apps to include in our case study, we used the top
charts feature of the Apple App Store and Google Play. These charts keep the
public aware of the top grossing and downloaded apps in the app store. As of
September of 2018, UberEats is the most popular food delivery app on the App

8 Grant Williams et al.

Store. Among the top ten apps in the Food category, there are three additional
competing delivery apps: Doordash, GrubHub, and PostMates. If we broaden
our focus to the top twenty-five apps, only one additional food delivery app is
found, Eat24. Eat24 was recently acquired by GrubHub, and have redirected
users to their parent app, allowing us to exclude it from the analysis1. The
Google Play Store shows the top 25 most popular apps in an arbitrary order.
However, we find that UberEats and its three main competing apps are also
present within the top 25. Therefore, the apps UberEats, Doordash, GrubHub,
and PostMates covers the most popular food delivery services available on both
platforms.

It is important to point out that there are several other food delivery apps
in the app market. These apps often operate in very limited geographical
areas or have smaller user base. In our analysis, we are interested in apps
with the biggest market share (as quantified by their app store download
numbers), thus we narrowed down our ecosystem to its fittest elements from
a user perspective. Popular apps receive significantly more crowd feedback on
app stores and social media in comparison to smaller apps [63]. Furthermore,
selecting mature apps gives smaller and newcomer apps a chance to learn from
the mistakes of the big players in the market [71].

After the list of apps is determined, the second step in our analysis is to
identify and classify the main user concerns in the ecosystem. Prior research
has revealed that software-relevant feedback can be found in tweets and app
store reviews [58,73,77,92]. To extract reviews, we used the free third-party
service AppAnnie2. This service allows reviews up to 90 days old to be retrieved
from Google Play and the Apple App Store.

To collect tweets, we limited our search to tweets directed to the Twitter ac-
count of our apps. For example, to retrieve tweets associated with UberEats, we
searched for to:ubereats. Our previous analysis has revealed that this query
form yields a large rate (roughly 50%) of meaningful technical feedback among
the resulting tweets [92]. In our analysis, we collected tweets in the period from
September 4th to December 4nd of 2018. In total, 1,833 tweets, 13,557 App
Store reviews, and 29,674 Google Play reviews were extracted. Table 1 summa-
rizes our dataset. Collecting data from multiple sources of feedback (multiple
app stores and twitter) and over a long period of time is necessary to minimize
any sampling bias that may impact the validity of the analysis [60].

3.2 Analysis

To conduct our qualitative analysis, we sampled 900 posts (300 tweets, 300
iOS reviews, and 300 Android reviews) from the data collected for each app
in our domain. Sampling 900 posts from the population of posts for each app
ensures a confidence level of 99%. To perform the sampling, we developed a
Ruby program to first execute a shuffle() method on the lists of tweets and

1 https://www.eat24.com/
2 https://www.appannie.com/en/

https://www.eat24.com/
https://www.appannie.com/en/

Modeling User Concerns in Sharing Economy: The Case of Food Delivery Apps 9

Table 1: Experimental Data, including the number of posts (tweets and re-
views) collected from each channel of user feedback.

App Tweets Apple App Store Google Play Total

Doordash 344 6,685 5,273 12,302

GrubHub 414 1,058 2,863 4,335

Postmates 450 1,467 2,820 4,737

UberEats 625 4,347 18,718 23,690

reviews to randomize the order, taking the time of the post into consideration
to avoid selecting posts from the same time period (e.g., tweets from one week
only). The first 300 posts from each source of user feedback were then selected.

To manually classify our data, we followed a systematic and iterative cod-
ing process. Specifically, three judges participated in the data classification
process. The judges have an average of three years of industrial software engi-
neering experience. For each post (tweet and review), each judge had to answer
three main questions: a) does the post raise any concerns (informative vs. un-
informative)?, b) what is the broad issue raised in the post?, and c) what is
the specific concern raised in the post? The manual classification process was
carried over four sessions, each session lasted around six hours, divided into
two periods of three hours each to avoid any fatigue issues and to ensure the
integrity of the data [94]. A final meeting was then held to generate the main
categories of concerns as they appeared in the individually classified data.
Conflicts were detected in less than 5% of the cases, mainly on the granular-
ity level of the classification. For example, concerns about refunds and promo
codes were considered two separate categories by one judge, while another
judge classified them under the same concern category (money issues). Such
conflicts were resolved after further discussion and eventually using majority
voting. In what follows, we describe the results of our qualitative analysis in
greater detail.

3.3 Results

A post during our manual classification task was considered informative if
it raised any form of user concerns. The rest of the reviews were considered
miscellaneous. Posts containing spam (e.g.,“#UberEats Always late!! Check
bit.ly/1xTaYs”) or context-free praise or insults (e.g., “I hate this app!” and
“This app is great!”) were also considered irrelevant. In general, the following
general categories and sub categories of concerns were identified in the set of
informative posts:

– Business concerns: This category includes any concerns that are related
directly to the business aspects of food delivery. In general, these concerns
can be subdivided into two main subcategories:

10 Grant Williams et al.

– Human: these concerns are related to interactions with employees of
the apps. Users often complained about orders running late, cancella-
tions, restaurant workers being rude, and drivers getting lost on the
way to delivery. Human related reviews were on average the longest (30
words), often narrating multi-paragraph sequences of human (mainly
driver) failures that led to undesirable outcomes.

– Market: the apps in our dataset generally make money either through
flat-rate delivery charges or surcharges added to the price of individual
menu items. Users are highly sensitive to the differences between what
they would pay at the restaurant versus at their doorstep. Posts com-
plimenting low fees and markups were rare. Price complaints were not
the only form of market-related feedback. Other posts included generic
discussions of market-related concerns such as business policy (such as
refunds), discussion of competitors, promotions, and posts about par-
ticipating restaurants and delivery zones. Requests for service in remote
areas were fairly common too.

– Technical concerns: This set of concerns includes any technical issues
that are related to the user experience when using the app itself. As have
been shown before [58], technical concerns often revolve around two sub-
categories:

– Bug reports: Posts classified under this category contain descriptions
of software errors, or differences between the described and the ob-
served behaviors of the app. Bug reports commonly consist of a simple
narration of an app failure. In our dataset, we observed that the most
common bugs were related to payments (174 out of 533) while crashes
and service outages counted for 53 posts.

– Feature requests: These posts contain requests for specific function-
ality to be added to the app, or discussions of success/failure of distinct
features. For example, some users of DoorDash complained about being
forced to tip before the order was delivered. Users of Eat24 lament a re-
cent update which removed the ability to reorder the last meal requested
through the app. Under this category, we also include non-functional
requirements (NFRs), or aspects of software which are related to over-
all utility of the app rather than its functional behavior (e.g., usability,
reliability, security, and accessibility) [23,34]. Ease-of-use was the most
common NFR cited by users, followed by user experience (UX).

In terms of specific concerns, nine different concerns were identified: drivers,
customer service, refund, service outage, promo code, communication, security,
routing, and order. Thorough descriptions as well as examples of these concerns
are shown in Table 2. In Table 3, we show the number of posts classified under
each category of concerns in the sampled dataset. In general, our qualitative
analysis revealed that, based on the total number of relevant posts, Android
reviews were the least informative in comparison to other sources of feedback.
One potential explanation for this phenomenon is that Google Play does not
pose any restriction on the number of times an app can request users to leave

Modeling User Concerns in Sharing Economy: The Case of Food Delivery Apps 11

Human

DoorDashGrubHub PostmatesUberEATS

50

100

150

200

250

300

Market

N
u

m
b

er
of

p
os

ts

Bug Feature

Fig. 1: The distribution of concern categories for each app. Y-axes is the num-
ber of posts (reviews and tweets).

a review for the app, while the Apple App Store limits app in this respect. As
a result, many Android reviews were terse, with statements such as “I’m only
posting this because the app keeps nagging me” being common.

Finally, the results also show that the distribution of concerns over the apps
was almost the same. As Fig. 1 shows, concern types spread almost equally
among apps, highlighting the similarity between the apps in their core features
and user base. It is important to point out that our identified categories were
considered orthogonal: each post could be any combination of human, market,
bug, and feature issues. Therefore, there was considerable overlap between
categories. This overlap is shown in Fig. 2.

4 Modeling Crowd Feedback

In the first phase of our analysis, we qualitatively analyzed a large dataset of
crowd feedback, sampled from the set of app store reviews and tweets directed
to the apps in our ecosystem. Our results showed that user concerns tend to
overlap and extend over a broad range of technical and business issues. Further-
more, these concerns tend to spread over multiple feedback channels and apps
in the domain, which makes it practically infeasible to collect and synthesize
such feedback manually. This emphasizes the need for automated tools that
developers can use to make sense of such data. To address these challenges,
our second research question in this paper (RQ2) aims at proposing auto-
mated methods for generating representative models of the data. To answer
this question, we first investigate the performance of LDA as one of the most
commonly used topic modeling techniques in app user feedback analysis [19,
36,40,47]. We then propose a novel frequency-based approach for generating
more expressive models of the data. The performance of both techniques is

12 Grant Williams et al.

Table 2: A fine-grained classification of user concerns in the ecosystem of food
delivery apps.

Concern Description Example post

Drivers The single most common prob-
lem was with drivers. Specif-
ically, drivers were dispatched
inefficiently, or combined or-
ders, causing long wait times.
Users were especially upset
when drivers went the wrong
direction.

-“In addition, the address that
I gave to #UberEats took the
driver to a completely differ-
ent parking lot” and “@Door-
Dash The driver did not follow
the order instructions, was bel-
ligerent, and shouted at me.”

Customer service Users commonly expressed dis-
satisfaction with the friendli-
ness of service members and
how long it took to receive an-
swers.

“Do not ever use this ser-
vice! The contact number is
nowhere to be found; I had to
ask Google to find it.”

Refund Users were often frustrated to
discover that services generally
only offered refunds for the de-
livery charge, excluding the or-
der, even if the food was ren-
dered inedible due to long de-
livery time.

“They were unable to get me
a refund for food that arrived
cold and rubbery when I live 3
minutes away from the restau-
rant.”

Service outage Whenever a service was down,
users immediately turned to
social media to complain.

“The servers are down!” and
“Great timing for an outage.”

Promo code A common bug report was pro-
motion codes not being applied
to orders correctly.

“The promo code was rejected,
inaccurately saying that I was
not eligible.”

Communication Bugs commonly originated
from failed communication
between the delivery service
and the restaurant, especially
regarding menu items and
hours-of-operation.

“@Postmates so I ordered baby
blues spent 52$ for my post-
mate to send me a picture of
the place closed so I had to
cancel my order and now I cant
get food tonight.”

Security Security errors were surpris-
ingly common. Several users
reported unexplained charges
to their accounts.

“@Postmates my account was
hacked. I reset my password
and people all over the coun-
try are still ordering on my ac-
count.”

Routing Occasionally the GPS systems
in the drivers’ apps failed,
causing drivers to ask users for
help. Many users were upset
when this happened.

“Driver got lost had to ask
me for BASIC directions, then
drove in the complete opposite
direction. The food came so
late it was inedible.”

Order Sometimes, services failed to
route a driver to an order, and
rather than alert the customer,
they gradually pushed the de-
livery window back.

“I had to contact #grubhub,
not the other way around,
about a delivery that was an
hour beyond the delivery win-
dow and the estimated time
kept pushing further back.”

Modeling User Concerns in Sharing Economy: The Case of Food Delivery Apps 13

Table 3: The number of posts (tweets and reviews) classified under each cat-
egory of user feedback. Length is the average number of words in the posts
classified under each category.

Tweets iOS Android Total Length

Human 443 649 276 1368 30

Market 392 563 340 1295 28

Business 704 931 522 2157 27

Bug 244 175 114 533 27

Feature 54 106 77 237 24

Technical 292 258 186 736 25

Human

Market

Bug

Feature

237 1295

7334 506

533 1368

2312

169 137
8

1657
142

Fig. 2: A Venn diagram of the distribution of classification labels and their
overlap in the dataset. For example, the diagram shows that there is 1368
unique Human-related concerns. Among those, 506 were also classified as Mar-
ket concerns, 23 as Human, Market, and Feature, 137 as Human and Feature,
16 as Human, Bug, and Feature, 57 as Human, Market, and Bug, 142 as Hu-
man and Bug, and 8 as Human, Market, Feature, and Bug.

evaluated based on their ability to capture the main concerns of food delivery
app users as well as their main attributes and triggers (Table 2).

4.1 Baseline: Modeling User Concerns with LDA

Introduced by Blei et al. [12], LDA is an unsupervised probabilistic approach
for estimating a topic distribution over a text corpus. A topic consists of a
group of words that collectively represents a potential thematic concept [12,
43]. Formally, LDA assumes that words within documents are the observed
data. The known parameters of the model include the number of topics k,
and the Dirichlet priors on the topic-word and document-topic distributions
β and α. Each topic ti in the latent topic space (ti ∈ T) is modeled as a
multi-dimensional probability distribution, sampled from a Dirichlet distribu-

14 Grant Williams et al.

tion β, over the set of unique words (wi ∈ W) in the corpus D, such that,
φw|t ∼ Dirichlet(β). Similarly, each document from the collection (di ∈ D) is
modeled as a probability distribution, sampled from a Dirichlet distribution α
over the set of topics, such that, θt|d ∼ Dirichlet(α). θt|d and φw|t are inferred
using approximate inference techniques such as Gibbs Sampling [37]. Gibbs
sampling creates an initial, naturally weak, full assignment of words and doc-
uments to topics. The sampling process then iterates through each word in
each document until word and topic assignments converge to an acceptable
(stable) estimation [12].

4.1.1 Topic Extraction

We use Gensim3 to extract topics from our dataset of user posts (reviews and
tweets) [75]. Gensim is a Python-based open-source toolkit for vector space
modeling and topic modeling. We apply lemmatization and stop-word removal
on the posts to enhance the quality of generated topics. For lemmatization we
use the spaCy library for Python4 and to remove stop-words we use Gensim’s
built-in stop-word removal function. LDA’s hyper-parameters α and β are
optimized by Gensim, where α is automatically learned from the corpus and β
is set to be 1/(number of topics). To determine the number of topics, we rely
on Gensim’s coherence score. Topic coherence provides a convenient measure
to judge how good a given topic model is. Our analysis shows that at around
8-10 topics, our data will generate the most cohesive topics (Fig. 3-a).

4.1.2 Results

The list of generated topics are shown in Table 4. In general, the topics are
of poor quality, in other words, they do not seem to capture any of the major
concerns identified either by our qualitative analysis. For example, while the
second topic in Table 4 includes words such as delivery, food, and fee, it fails
to represent a coherent concern due to the mixture of words from more than
one concern category. Other topics in Table 4 also contain almost no words
collectively representative of any of the concern categories identified during
our qualitative analysis phase.

These poor results can be explained based on the limited length of user re-
views and tweets. Recent research has shown that LDA does not perform well
when the input documents are short in length [9,44,96]. Specifically, LDA
is a data-intensive technique that requires large quantities of text to gener-
ate meaningful topic distributions. However, due to the sparsity attribute of
short-text, applying standard LDA to short-text data (e.g., user reviews or
tweets) often produces incoherent topics [44,99]. To overcome this problem,
researchers use supplemental strategies to effectively train LDA in short-text
environments. Such strategies, often known as pooling, are based on merging

3 https://radimrehurek.com/gensim/
4 https://spacy.io

https://radimrehurek.com/gensim/
https://spacy.io

Modeling User Concerns in Sharing Economy: The Case of Food Delivery Apps 15

2 4 6 8 10 12 14 16 18 20

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

The number of topics

C
o
h
er

en
ce

S
co

re

a) LDA

2 4 6 8 10 12 14 16 18 20

0.235

0.24

0.245

0.25

0.255

The number of topics

C
o
h
er

en
ce

S
co

re

b) Assisted LDA

Fig. 3: The impact of the number of topics on the coherence score.

(aggregating) related texts together and presenting them as single pseudo-
documents to LDA, thus, increasing the amount of text per document to work
with. In our analysis, we aggregate posts from each source (App Store re-
views, Google Play reviews, and Twitter) for each app in a single document,
thus producing 3 x 4 documents. We then generate topics for our aggregated
data. Using this data, the coherence score hits a local maxima at 6 topics
(Fig. 3-b). The generated topics are shown in Table 5.

In general, aggregating user posts resulted in producing very similar topics.
Generated topics are more redundant, providing only incomplete representa-
tions of the user concern in our data. The poor generalization ability of LDA
can be attributed to two main reasons. First, due to the overlapping nature
of the different concern categories, the classes are not separable by LDA. As a
result, we see a mixture of words from different concern categories in the same
topic. Second, LDA is a data-intensive technique that requires large quantities
of text to generate meaningful topic distributions [12]. However, our dataset
is relatively small, consisting of only 3,600 user posts, and even much less
documents when these posts are aggregated.

In summary, our attempt to automatically generate our list of concerns
using LDA was relatively unsuccessful. In order to generate meaningful topics,
LDA requires a balance between the number and length of text artifacts being
modeled [81]. While we had a relativity large number of artifacts, their length
was limited. Our attempt to generate larger artifacts using Assisted LDA re-
sulted in only few lengthy artifacts (12). This has negatively impacted LDA’s
ability to converge, or generate meaningful latent topic structures. Our expec-
tation is that, applying more fine-grained text aggregation strategies that can
produce sufficiently long, but not too long, documents (e.g., aggregating tweets
based on hashtags) would help to improve the quality of generated topics [44,
66].

16 Grant Williams et al.

Table 4: Topics generated by LDA for our dataset of use feedback.

Topic 1 Topic 2 Topic 3 Topic 4

Word Prob. Word Prob. Word Prob. Word Prob.

uber 0.078 delivery 0.092 option 0.076 well 0.077

nice 0.036 food 0.073 horrible 0.055 terrible 0.066

number 0.021 even 0.034 location 0.039 fast 0.028

see 0.032 fee 0.031 home 0.028 actually 0.027

payment 0.025 love 0.026 dollar 0.028 be 0.018

super 0.019 pay 0.024 live 0.026 speak 0.018

unable 0.018 go 0.020 night 0.022 life 0.016

check 0.017 want 0.020 download 0.018 report 0.014

user 0.017 come 0.019 awful 0.014 name 0.014

many 0.016 cold 0.015 part 0.014 buy 0.013

Topic 5 Topic 6 Topic 7 Topic 8

Word Prob. Word Prob. Word Prob. Word Prob.

ever 0.081 order 0.090 good 0.186 app 0.127

company 0.051 service 0.045 card 0.052 great 0.033

mobile 0.022 get 0.044 awesome 0.038 restaurant 0.032

steal 0.021 time 0.037 use 0.038 try 0.028

apply 0.021 customer 0.030 everything 0.025 uber-eats 0.025

wish 0.017 food 0.022 think 0.024 work 0.024

create 0.016 say 0.021 sign 0.022 place 0.023

quick 0.015 driver 0.020 next 0.017 use 0.018

scam 0.014 never 0.019 amazing 0.017 go 0.018

basically 0.014 call 0.019 delay 0.015 way 0.017

4.2 Proposed Modeling Approach

The first part of our modeling analysis showed that LDA comes with several
inherent limitations related to its computational complexity and the nature
of our data. These limitations prevent LDA from producing meaningful rep-
resentations of crowd feedback. To overcome these limitations, in this section,
we propose a fully automated procedure for generating succinct representa-
tions of crowd feedback in the ecosystem of food delivery apps. In general, our
automated model generation procedure can be divided into four main steps:

1. Informative feedback is captured.
2. Important concepts (domain entities) in the feedback are identified.
3. Relationships between the domain entities are determined.
4. Entities and relations are consolidated to automatically generate the model.

In what follows, we describe these steps in greater detail.

4.2.1 Identifying Informative Feedback

The first step in our procedure is to separate informative user feedback from
uninformative feedback. A large body of research exists on classifying mobile

Modeling User Concerns in Sharing Economy: The Case of Food Delivery Apps 17

Table 5: Topics generated by Assisted LDA for our dataset of user feedback.

Topic 1 Topic 2 Topic 3

Word Prob. Word Prob. Word Prob.

order 0.002 order 0.042 app 0.037

app 0.001 food 0.022 order 0.030

food 0.001 app 0.020 food 0.023

get 0.001 get 0.019 great 0.020

service 0.001 service 0.019 time 0.018

delivery 0.001 time 0.017 love 0.017

driver 0.001 delivery 0.016 delivery 0.017

time 0.001 customer 0.012 get 0.015

restaurant 0.001 driver 0.012 service 0.015

customer 0.001 never 0.010 good 0.014

Topic 4 Topic 5 Topic 6

Word Prob. Word Prob. Word Prob.

order 0.002 order 0.023 app 0.037

app 0.001 get 0.021 good 0.030

food 0.001 food 0.015 order 0.023

get 0.001 app 0.012 food 0.020

delivery 0.001 service 0.011 delivery 0.018

service 0.001 driver 0.009 service 0.017

customer 0.001 customer 0.009 nice 0.017

time 0.001 guy 0.009 time 0.015

driver 0.001 doordash help 0.008 get 0.015

never 0.001 delivery 0.008 bad 0.014

app user feedback into different categories of software maintenance tasks, such
as feature requests and bug reports [58,73,92]. Our classification configurations
can be described as follows:

– Classification algorithms: To represent our data, we experiment with
three different classification algorithms: Support Vector Machines (SVM),
Naive Bayes (NB), and Random Forests (RF). These algorithms have been
extensively used to classify crowd feedback in the app market [58,73]. Their
success can be attributed to their ability to deal effectively with short text
(e.g., tweets, user reviews, YouTube comments, etc.) [90].

– Training settings: to train our classifiers, we used 10-fold cross validation.
This method creates 10 partitions of the dataset such that each partition
has 90% of the instances as a training set and 10% as an evaluation set.
The benefit of this technique is that it uses all the data for building the
model, and the results often exhibit significantly less variance than those
of simpler techniques such as the holdout method (e.g., 70% training set
and 30% testing set).

– Text pre-processing: English stop-words were removed and stemming
was applied to reduce words to their morphological roots. We used Weka’s
built-in stemmer and stop-word list to pre-process the posts in our dataset [57].

18 Grant Williams et al.

It is important to point out that lemmatization is sometimes used instead
of stemming in app review classification tasks [73]. The results often show
a marginal impact of these techniques on the precision of classification. In
our analysis, we use stemming for its lower overhead. Specifically, lemmati-
zation techniques are often exponential to the text length, while stemming
is known for its linear time complexity [10].

– Sentiment Analysis: sentiment analysis is often used in app user feed-
back classification tasks as a classification feature of the input data [93,51].
The underlying hypothesis is that user concerns are often expressed using
negative sentiment [56]. To calculate the sentiment of our data, we used
SentiStrength [85]. SentiStrength assigns positive (p) and negative (n) sen-
timent scores to input text, using a scale of -5 to +5, based on the emotional
polarity of individual words. To convert SentiStrength’s numeric scores
into these categories, we adapted the approach proposed by Jongeling et
al. [53] and Thelwall et al. [84]. Specifically, a post is considered positive if
p+ n > 0, negative if p+ n < 0, and neutral if p+ n = 0. It is worth men-
tioning that other sentiment analysis techniques, such as VADER and the
Stanford CoreNLP are also used in related studies. However, the difference
in performance between these tools is often marginal [73,52,92].

– Text representation: to classify our data, we experimented with sim-
ple bag-of-words with lowercase tokens. The bag-of-words representation
encodes each post as a vector. Each attribute of the vector corresponds
to one word in the vocabulary of the dataset. A word is included in the
vocabulary if it is present in at least two posts. Words that appear in a
single post are highly unlikely to carry any predictive value to the classi-
fier. An attribute of one in a post’s vector indicates that the corresponding
word is present, while a zero indicates absence. This representation can be
extended to treat common sequences of adjacent words, called n-grams, a
gram is a single word; n is the number of adjacent words, so two adjacent
words are a bi-gram. For example, the phrase “this app is good” contains
four words, and three b-grams (“this app”, “app is”, “is good”). Fig. 4
illustrates how bag-of-words and n-gram representations work; “updated”,
“app”, and “crashes” are the key words that occur in the tweet “I updated
the app, but now it crashes”. “Now it crashes” is a tri-gram that is also in-
cluded. Each ‘1’ in the vector representation at the bottom corresponds to
one of the highlighted n-grams, while each ‘0’ corresponds to a vocabulary
word that is not found in the tweet. To generate this representation, we
utilized the n-gram tokenizer in Weka, which allowed uni-gram, bi-gram,
and tri-gram tokens to be included in a single dataset.

We trained two set of classifiers to categorize our data. One classifier for
detecting business posts and one classifier for detecting technical posts. The
standard measures of Precision (P), Recall (R), and F-Score (Fβ) are used
to evaluate the performance of our classification algorithms. Assuming tp is
the set of true positives, fp is the set of false positives, and fn is the set of
false negatives; precision is calculated as: tp/(tp + fp) and recall is calculated

Modeling User Concerns in Sharing Economy: The Case of Food Delivery Apps 19

< 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1 >

Fig. 4: A visual representation of an N-Gram encoded tweet.

as: tp/(tp + fn). The F-measure is the weighted harmonic mean of P and R,
calculated as: Fβ = ((1 + β2)PR)/(β2P + R). In our analysis, we use β = 2
to emphasize recall over precision [8].

All tweets and reviews in our original dataset were stored in ARFF format,
a common text-based file format often used for representing machine learning
datasets, and then fed to Weka5. Table 6 shows the performance of NB, SVM,
and RF in terms of P , R, and F2. SVM provided the best average classification
performance in separating the different types of concerns, in comparison to NB
and RF respectively. The best SVM results were obtained using the Pearson
VII function-based universal kernel (Puk) with kernel parameters σ = 8 and
ω = 1 [88]. Universal Kernels are known to be effective for a large class of clas-
sification problems, especially for noisy data [79]. RF was evaluated with 100
iterations. Raising iterations above this number did not improve the perfor-
mance. We also notice that almost all classifiers achieved better performance
when classifying the reviews and tweets into generic categories of Business
and Technical. The performance deteriorated when the data was classified at
a subcategory level (Human, Market, Bug, and Feature) due to the fact that
the classifier had to deal with a larger set of classes (labels). Separating con-
cerns at this level can be challenging, especially when the data is relatively
unbalanced.

In general, business-related posts were easier to classify than technically-
related posts. This phenomenon is driven by the quantity of each class. Table 3
shows that technical posts were rare. The prior-probability of any given post
being technical is less than 25%, negatively impacting the performance of all
three classifiers. This problem was exacerbated for the individual technical
categories, with feature requests only occurring in 6.5% of posts. The relative
sparsity of technical posts in comparison to other application domains can
be explained based on the fact that the domain food delivery is a business
domain in nature, thus, users had so many more business-related issues to
discuss. For instance, Food courier services would often fail behind the scene,
causing drivers to be dispatched to incorrect locations, or customer support

5 A replication package is available at: http://seel.cse.lsu.edu/data/ASEJ2019.zip

http://seel.cse.lsu.edu/data/ASEJ2019.zip

20 Grant Williams et al.

Table 6: A comparison of the performance of our classifiers (SVM, NB, and
RF) with lower-casing (LC), stemming (ST), stop-word (SW) removal, and
sentiment analysis (SEN).

NB SVM RF

P R F2 P R F2 P R F2

Business

LC 0.85 0.79 0.82 0.89 0.85 0.87 0.85 0.87 0.86

LC + SEN 0.85 0.79 0.82 0.89 0.85 0.87 0.86 0.87 0.86

LC + SW 0.83 0.84 0.83 0.89 0.85 0.87 0.88 0.86 0.87

LC + SW + ST 0.84 0.83 0.84 0.89 0.85 0.87 0.87 0.88 0.87

Human

LC 0.68 0.79 0.73 0.83 0.79 0.81 0.85 0.70 0.77

LC + SEN 0.68 0.78 0.73 0.83 0.79 0.81 0.85 0.69 0.76

LC + SW 0.69 0.83 0.75 0.83 0.79 0.81 0.87 0.74 0.80

LC + SW + ST 0.68 0.81 0.74 0.83 0.79 0.81 0.86 0.75 0.80

Market

LC 0.56 0.69 0.62 0.72 0.66 0.69 0.78 0.47 0.59

LC + SEN 0.56 0.69 0.62 0.73 0.67 0.70 0.80 0.43 0.56

LC + SW 0.55 0.75 0.63 0.75 0.67 0.71 0.81 0.54 0.65

LC + SW + ST 0.56 0.74 0.64 0.75 0.68 0.71 0.79 0.53 0.64

Technical

LC 0.38 0.67 0.49 0.60 0.55 0.57 0.93 0.07 0.13

LC + SEN 0.38 0.67 0.49 0.59 0.55 0.57 0.95 0.05 0.10

LC + SW 0.42 0.69 0.52 0.58 0.52 0.55 0.88 0.22 0.35

LC + SW + ST 0.39 0.71 0.51 0.61 0.55 0.58 0.91 0.16 0.27

Bugs

LC 0.31 0.65 0.42 0.51 0.53 0.53 1.00 0.03 0.05

LC + SEN 0.31 0.65 0.42 0.51 0.53 0.51 0.52 0.03 0.06

LC + SW 0.34 0.66 0.45 0.52 0.57 0.53 0.91 0.14 0.24

LC + SW + ST 0.33 0.68 0.45 0.53 0.57 0.54 0.98 0.11 0.19

Features

LC 0.17 0.65 0.27 0.50 0.51 0.51 0.00 0.00 0.00

LC + SEN 0.17 0.63 0.27 0.50 0.51 0.50 0.00 0.00 0.00

LC + SW 0.19 0.62 0.29 0.50 0.52 0.50 1.00 0.01 0.03

LC + SW + ST 0.18 0.67 0.28 0.51 0.52 0.51 1.00 0.01 0.02

to fail to call. These failures often caused customers to discuss competition
and pricing. As a result, business concerns crowded out technical concerns. In
other domains, failures are more immediate and visible to consumers, meaning
that user concerns are more likely to take the form of bug reports.

We further experimented with the bag-of-words representation of text, and
then allowing bi- and tri-grams to be included alongside individual words. Nei-
ther approach improved the performance. Table 7 shows a comparison between
the uni-gram encoding (i.e., bag-of-words), and the encoding which included
bi- and tri-grams. The lack of improvement partly stems from the fact that
the additional composite tokens often had the same class implications as their
constituent words. For example, the term account was found to have a neg-
ative implication on the business class, meaning that posts containing the
word account were unlikely to be business-related. Most of the related N-
grams, including account got hacked and account was hacked had the same

Modeling User Concerns in Sharing Economy: The Case of Food Delivery Apps 21

Table 7: A performance comparison of SVM using ordinary bag-of-words vs.
N-grams.

Uni, Bi, and Tri-Grams Bag-of-words

Prec. Recall F2 Prec. Recall F2

Business 0.89 0.85 0.87 0.89 0.85 0.87

Human 0.84 0.80 0.82 0.83 0.79 0.81

Market 0.71 0.66 0.69 0.78 0.68 0.71

Technical 0.61 0.55 0.58 0.61 0.55 0.58

Bug 0.58 0.52 0.55 0.53 0.57 0.54

Feature 0.48 0.32 0.38 0.51 0.52 0.51

B
us
in
es
s

T
ec
hn
ic
al

M
is
c.

H
um

an

M
ar
ke
t

B
ug

Fe
at
ur
e

50

100

P
ro

p
o
rt
io
n

o
f
S
e
n
ti
m
e
n
t
(%

)

Negative Neutral Positive

Fig. 5: The distribution of sentiment over the different types of posts.

implication, except with a substantially smaller weight. Therefore, they were
essentially irrelevant to classification. In some other cases, bi- and tri-grams
did not have the same implication as their constituent words. For example,
promo was positively implicated to business, but promo code had a negative
implication. However, the single word in this case, and in many others, had a
higher weight than the bi- and tri-grams, and occurred in substantially more
posts. Often times, the bi-grams had the same weight and occurrence as the
tri-grams, making the tri-grams superfluous.

Our results also show that the sentiment polarity of posts had almost
no impact on the classification accuracy. Specifically, the results show that
miscellaneous posts (posts not business or technically-relevant) were detected
as having more positive sentiment than any other category. These result were
expected; non-miscellaneous posts often described problems users were having.
Otherwise, as Fig. 5 shows, the categories had substantially similar sentiment
scores overall. For future work, we suspect that enhancing SentiStrength’s
dictionary with emotion-provoking software-related words (crash, uninstall,
etc.), or using customized sentiment analysis classifiers (e.g., [91]) would help
to better estimate the emotional polarity of posts.

22 Grant Williams et al.

4.2.2 Identifying model entities

In order to specify the main entities (nodes) of our model, we look for im-
portant words in the set of reviews and tweets classified as informative in the
previous step. Our assumption is that such words capture the essence of user
concerns in the ecosystem. In Object Oriented software design, when gener-
ating conceptual models from requirements text or any textual data, nouns
are considered candidate classes (objects), verbs are considered as candidate
operations (functions), while adjectives commonly represent attributes [1,30].
Based on these assumptions, we only consider important nouns, verbs, and
adjectives in our analysis.

To extract these parts of speech (POS), we utilize the Natural Language
Toolkit (NTLK) [10] POS tagging library. We further apply lemmatization to
reduce the morphological variants of words in our dataset down to their base
forms. For example, drink, drinks, drinking, drank, and drunk, are all trans-
formed to simply drink. By applying lemmatization, we avoid the problem of
morphological variants being treated as entirely different words by our model.
After lemmatization, we merge words together under each part of speech cat-
egory. For example drive and drives are merged to simply drive when used
as verbs. However, the word drive can also be a noun (e.g., “that was a long
drive”). Therefore, we only merge words within the same part of speech to
avoid losing this semantic distinction. Extracted parts of speech are then
ranked based on their Hybrid TF.IDF scores [48]. Formally, TF.IDF can
be computed as:

TF.IDF (wi) = TF (wi)× lg
|R|

|rj : wi ∈ rj ∧ rj ∈ R|
(1)

where TF (wi) is the term frequency of the word wi in the entire collection,
|R| is the total number of posts in the collection, and |rj : wi ∈ rj ∧ rj ∈ R| is
the number of posts in R that contain the word wi. The purpose of TF.IDF is
to score the overall importance of a word to a particular document or dataset.
In general, TF.IDF balances general frequency and appearance in number of
posts. High frequent words appearing in few documents have higher TF.IDF.
After defining TF.IDF , we extract important POS from the set of informative
business and technical posts. The top ten nouns, verbs, and adjectives in our
dataset are shown in Table 8.

4.2.3 Identifying model relations

Our model generation procedure depends on the co-occurrence statistics of
words in the data to capture their relations. For example, in our dataset, the
words customer and refund appear in a very large number of user reviews
and tweets. Therefore, the procedure assumes there is a relation connecting
these two entities. To count for such information, we use Pointwise Mutual
Information (PMI).

Modeling User Concerns in Sharing Economy: The Case of Food Delivery Apps 23

Table 8: The top 10 most important nouns, verbs, and adjectives in our dataset.

Noun Verb Adjective

food order good

app use great

service say terrible

delivery deliver horrible

time charge wrong

consumer wait last

driver cancel bad

restaurant give free

money want easy

PMI is an information-theoretic measure of information overlap, or statis-
tical dependence, between two words [22]. PMI was introduced by Church and
Hanks [22], and later used by Turney [86] to identify synonym pairs using Web
search results. Formally, PMI between two words w1 and w2 can be measured
as the probability of them occurring in the same text versus their probabili-
ties of occurring separately. Assuming the corpus contains N documents, PMI
between two words w1 and w2 can be calculated as:

PMI = log2(
C(w1,w2)

N
C(w1)
N

C(w2)
N

) = log2(
P (w1, w2)

P (w1)P (w2)
) (2)

where C(w1, w2) is the number of documents in the collection containing both
w1 and w2, and C(w1), C(w2) are the numbers of documents containing w1

and w2 respectively. Mutual information compares the probability of observing
w1 and w2 together against the probabilities of observing w1 and w2 indepen-
dently. Formally, mutual information is a measure of how much the actual
probability of a co-occurrence of an event P (w1, w2) differs from the expec-
tation based on the assumption of independence of P (w1) and P (w2) [15].
If the words w1 and w2 are frequently associated, the probability of observ-
ing w1 and w2 together will be much larger than the probability of observing
them independently. This results in a PMI > 1. On the other hand, if there is
absolutely no relation between w1 and w2, then the probability of observing
w1 and w2 together will be much less than the probability of observing them
independently (i.e., PMI < 1). PMI is intuitive, scalable, and computation-
ally efficient [65,69]. These attributes have made it an appealing similarity
method to be used to process massive corpora of textual data in tasks such as
short-text retrieval [65], Semantic Web [78,86], source code retrieval [55].

To generate the relations in our model, we computed PMI between every
pair of words to determine their relatedness. One potential pitfall of relying on
PMI as a measure of relatedness is that PMIs hits a maximum with words oc-
curring only once. This happens often with misspellings and irrelevant words.
In order to prevent this phenomenon, we restrict our analysis to only words
that occur at least ten times. Ten was chosen due to being the point at which

24 Grant Williams et al.

sensitivity to additional increases became less noticeable (i.e., changing 10 to
11 would not substantially alter the results).

4.2.4 Model Representation

To generate our model, we extract the top 10 nouns ranked by TF.IDF and
then use PMI to extract the three most related verbs and adjectives with each
noun. An example of a node, or an atomic entity in our model, is shown in
Fig. 6. This node consists of three main parts:

– Concern: the middle part of the node represents the concern’s name (food),
which is basically one of the important nouns (based on TF.IDF) in our
dataset.

– Properties: directly attached to the entity’s name from the right is the top
three adjectives associated with the entity (based on PMI). In our example,
food could be cold, hot, or late.

– Triggers: on the left side of the node, we attach the list the top three verbs
frequently associated (based on PMI) with the noun (concern’s name).
Verbs often represent triggers, or leading causes of concerns. In our exam-
ple, the verbs arrive, deliver, and prepare are commonly associated with
the word food.

Formally, our model generation process can be described as follows, given a
set of Words, containing all words in the dataset occurring at least ten times,
we define the parts of speech of a word, or pos(word), Adjs, V erbs, and Nouns
as follows:

Adjs = {word ∈Words | pos(word) = Adj}
V erbs = {word ∈Words | pos(word) = V erb}

Nouns = {word ∈Words | pos(word) = Noun}
(3)

We define three helper sets to help us express our graph mathematically.
SelNouns is the list of the top 10 selected nouns when ranked by Hybrid
TF.IDF . V erbsw and Adjsw are the sets of three most closely related (by
PMI) verbs and adjectives for a given word w. These sets are defined, using
the function top(n, pred) to retrieve the top n words after words are sorted
based on the predecessor function pred(word). We use two functions to sort
words: TF.IDF for nouns and PMI for verbs and adjectives. We express this
using λ notation for defining anonymous functions, such that, λx.TFIDF (x)
means define a function that takes an x and returns its TF.IDF. This results
in the following expressions:

SelNouns = top(10, Nouns, λx.TFIDF (x))

V erbsw = top(3, V erbs, λv.PMI(v, w))

Adjsw = top(3, Adjs, λa.PMI(a,w))

(4)

Modeling User Concerns in Sharing Economy: The Case of Food Delivery Apps 25

Food
Cold
Hot
Late

Arrive
Deliver
Prepare

Fig. 6: The key elements of the entity-action-property relations represented by
our model.

We define a graph, (V,E), expressed as a tuple of vertices and edges, as
follows:

V =
⋃
{w ∈ SelNouns | {w} ∪ V erbsw ∪Adjsw}

E = {w ∈ SelNouns, v ∈ V erbsw | (w, v)} ∪
{w ∈ SelNouns, a ∈ Adjsw | (w, a)}

(5)

The set of vertices (V) is constructed by creating a smaller set containing
each selected noun and its related adjectives and verbs, and then taking the
union of these smaller sets to form the entire set of relevant entities, properties,
and actions. The set of edges (E) is simply the union of associations of nouns
to adjectives and nouns to verbs. Applying this process to our informative
posts in the domain of food delivery apps results in the model in Fig. 7.

4.3 Model Evaluation and Interpretation

Due to the lack of a priori ground-truth, evaluating domain models can be
a challenging task. In general, a domain model is an abstraction that de-
scribes a specific body of knowledge. Therefore, the quality of the model can
be assessed based on its completeness, or its ability to encompass the main
concepts present in the knowledge it models [67,76]. These concepts are often
determined manually by domain experts. To evaluate our model generation
procedure, we examine the main concepts captured in the model. Specifically,
we assess the extent to which the noun-verb-adjective associations presented
in our model reflect the main concerns identified by our qualitative analysis:

– Customer Service: Concerns about customer service frequently appeared
when an order was not delivered on time, when the order was inaccurate,
or when refunds were denied. The model identified both customer and
service as important nouns along with the relations <customer, refund>
and <customer, incorrect>. Furthermore, both customer and service were
associated with the adjectives poor and terrible in the model.

– Orders: Orders were commonly associated with delays. Users complained
about receiving cold food as a result. Users were disappointed whenever
food was left waiting at the restaurant to be picked up. The model identified
<order, refuse> whenever restaurants refused to cancel orders or the app
refused to take action when things went wrong. In addition, <order, place>
was a common occurrence as these two words often appeared together (e.g.,
“place order”). The relation <order, second> originated from posts of users

26 Grant Williams et al.

Order Food

App Service

Delivery Time

Customer Driver

Restaurant Money

Second
Full
Disappointed

Past
Easy
Ridiculous

Cold
Hot
Late

Complete
Terrible

Poor

Estimated
Free
High

Second
First

Ready

Poor
Terrible
Incorrect

Awful
Ready
Big

Ready
Local
Hard

Difficult
Past
Long

Place
Refuse
Mess

Arrive
Deliver
Prepare

Delete
Download

Recommend
Hack
Care

Choose

Refund

Happen
Take

Show

Look

Waste

Estimate

Leave
Find

Call

Fig. 7: A suggested model diagram depicting the relationships between im-
portant nouns (entities of the ecosystem), adjectives (attributes), and verbs
(concern triggers).

complaining about having to re-order for the second time and the relation
<order, full> originated from people asking for full refunds.

– Food: Food was directly related to arrival. This was captured in the re-
lations <food, arrive>, <food, deliver>, and <food, prepare>. Food was
also associated with temperature, mainly due to the number of complaints
about receiving cold or hot food (e.g., <food, cold> and <food, hot>).
Complaints about orders being late were common, resulting in the relation
<food, late>.

– Delivery: Delivery was associated with a number of complaints about
incorrect estimated times, explaining the relation <delivery, estimate>.
The relation <delivery, prepare> occurred due to issues with orders being
stuck in the preparation stage and never being dispatched for delivery.
The relation <delivery, choose> primarily occurred in the context of users
stating that they would “choose a different delivery service”.

– Time: Time was primarily present in complaints about delivery delays.
The relations <time, estimate> and <time, prepare> appeared for the
same reasons they appeared with delivery. A common occurrence was
<time, waste> due to unexpected delays and order cancellations. The re-
lation <time, long> occurred in similar contexts, as in “it took longer than
the estimated time”.

Modeling User Concerns in Sharing Economy: The Case of Food Delivery Apps 27

– App: App appeared alongside comments about ease-of-use, resulting in
the relation <app, easy>. The relation <app, ridiculous> was a general
complaint about poor policies or bad usability. The relation <app, delete>
appeared when users discussed deleting an app after a poor experience. A
common association was <app, look>, appearing due to phrases such as
“look into this” and “looks like”. The relation <app, end> appeared from
posts were users complained that they “ended up” eating cold or incorrect
food, or not eating at all.

– Money: Money issues were captured by the relation <money, waste>.
This relation stems from incidents were users ordered food that ended up
being inedible and being unable to obtain a refund, which also yielded
the model relation <money, refund>. The verb take was associated with
money in posts such as “you take my money but did not deliver”, resulting
the relation <money, take>.

– Drivers: Drivers are a critical component of the ecosystem. All services
struggled with their drivers’ timing, directions, and friendliness. Users fre-
quently complained about drivers combining orders. The model success-
fully identified the relation <driver, find> from posts discussing a driver’s
inability to find their destination. Lack of friendliness is captured in the
relation <driver, awful>.

– Restaurants: Users often asked services to add new restaurants as well as
discussed problems that occurred between the app, restaurant, and driver.
The relation <restaurant, show> appeared in the model partly due to
users stating that the restaurant they wanted did not “show up” in the
app. However, this phrase was more often associated with the driver not
appearing at the restaurant. Communication problems between restaurants
and consumers were captured through the <restaurant, call> relation.

In summary, to answer RQ2, in terms of completeness (the omission of
domain concepts and relationships), our model was able to recover a large
number of concepts in the data. Missed concerns were rare (e.g., inability to
find a customer service number). In terms of clarity, some of the captured
relations, such as <food, cold> or <money, waste> were more obvious than
others, for example <restaurant, show>. Incorrect, or hard to explain, relations
were also present in the model. For example, the relations <driver, big> and
<money, long> did not seem to reflect any issues that were identified by our
qualitative analysis of the data, rather they originated from posts such as “not
a big fan of the driver” or “no longer interested”. While these relations were
relatively rare, they can be eliminated by compiling a list of such common
English adjectives to filter them out before they make their way to the model.
Another observation is that technical concerns, despite not being accurately
classified, have also found their way into the model. For instance, hacking was
a popular technical concerns. The verb hack appeared in association with the
nouns customer and service.

28 Grant Williams et al.

Stop-word removal
Stemming
Sentiment analysis
Classification

Identifying model relations

Improved, concern-aware, Sharing Economy apps

Feedback classification

POS tagging
TF.IDF analysis

Identifying model entities

PMI Analysis
Tweets and reviews

Fig. 8: A diagram of the proposed approach.

5 Discussion and Impact

A summary of the main steps of the proposed approach is depicted in Fig 8.
The first phase of our analysis has revealed that user concerns in SE extend
beyond the technical issues of mobile apps to cover other business and service
oriented matters. These results emphasize the importance of studying user
feedback in the app market at an ecosystem-level. Specifically, apps should
be analyzed in bundles, or clusters, of functionally-related apps rather than
studied individually. In fact, such clusters can be automatically generated
using app classification techniques [4].

Once these fine-grained categories of semantically-similar apps are identi-
fied, automated data clustering, classification, and modeling techniques should
be employed to consolidate and analyze user feedback and identify the main
pressing user concerns in these clusters. Our analysis has also provided an
additional evidence on the value of considering multiple sources of user feed-
back to get the full picture of user concerns. For instance, in the domain of
food delivery apps, users preferred to use Twitter as low latency method to
get instant reactions from app developers or operators. These complaints were
very common whenever any of the services in our ecosystem went down for
some reason. Understanding how users utilize different sources of feedback can
help developers to focus their attention on the right channels of feedback while
planning for their next release.

In the second phase of our analysis, we proposed an automated proce-
dure for generating conceptual models of user concerns in the ecosystem of
food delivery apps. According to Eric Yu [97], “conceptual modeling frame-
works aim to offer succinct representations of certain aspects of complex re-
alities through a small number of modeling constructs, with the intent that
they can support some kinds of analysis”. Our procedure adapted assertions
from Object-Oriented programming and text processing to extract the main
entities of our ecosystem. An underlying tenet is that the vocabulary of a
domain provides an easily accessible supply of concepts. An information the-
oretic approach, which utilizes term co-occurrence statistics, was then used
to establish a structuring mechanism for assembling and organizing extracted

Modeling User Concerns in Sharing Economy: The Case of Food Delivery Apps 29

concepts. Our evaluation showed that relying on these techniques can generate
a high quality model which captures most of the latent concepts in the domain
knowledge. By changing the TF.IDF and PMI thresholds and the number of
nouns, verbs, and adjectives in Eq. 4, domain entities and relations can be
included or excluded, thus, giving app developers the flexibility to generate
domain models at different levels of granularity. The simplicity and configura-
bility of our procedure gives it an advantage over other more computationally
expensive methods, such as LDA [12], which requires large amounts of data
and a calibration of several hyperparameters in order to produce meaningful
topics [19,40].

In terms of impact, our generated model can provide valuable ecosystem-
wide information to SE app developers, acting as a vehicle to facilitate a quick
transition from domain knowledge to requirements specifications. For instance,
startups, or newcomers, trying to break into the food delivery app market,
can use our procedure to quickly generate a model for their micro-ecosystem
of operation. Through the model entities and relations, they can get insights
into the complex realities of their operational environments. Such information
can help them to redirect their effort toward innovations that can help to
avoid these issues in their apps. For example, developers can work on more
accurate driver dispatching procedures to avoid delays, add new features for
payments and refund to reduce amount of money and time wasted, add more
security measures to prevent hacking, and implement smarter rating systems
of drivers, customers, and restaurants, to control for the quality of service
provided through the app. After release, developers can further use our model
to automatically track users’ reactions to their newly-released features.

6 Limitations and Validity

Our analysis takes the form of a case study. Case studies often suffer from
external validity threats since they target specific phenomena in their specific
contexts [94]. For instance, our case study only included four apps. These apps
might not represent the entire domain of food delivery. However, as mentioned
earlier, our analysis was focused only on the fittest actors in the ecosystem.
These popular apps often receive significantly more feedback than smaller
apps [63]. Furthermore, to minimize any sampling bias, our data collection
process included multiple sources of user feedback and has extended over a
long period of time to capture as much information about the apps in our
ecosystem as possible. In terms of generalizability, we anticipate that our pro-
posed approach could be applied to other application domains beyond SE,
especially for apps operating in complex multi-agent ecosystems. However,
independent case studies need to be conducted before we can make such a
claim.

Internal validity threats may stem from the fact that we only relied on the
textual content of user posts and their sentiment as classification features. In
the literature, meta-data attributes, such as the star-rating of the review or the

30 Grant Williams et al.

number of retweets, have also been considered as classification features [40].
The decision to exclude such attributes was motivated by our goal of main-
taining simplicity. Specifically, practitioners trying to use our procedure do
not have to worry about collecting and normalizing such data, especially that
the impact of such attributes on the quality of classification was found to be
limited [40].

Threats might also stem from our model evaluation procedure. Specifically,
our generated LDA topics and models was only evaluated intrinsically, based
on how well the generated model correlated with the results of the qualitative
analysis. While such evaluation can be sufficient for model generation and
calibration tasks, it does not capture the practical significance of the model.
Therefore, a main direction of future work will be dedicated to the extrinsic
evaluation of our model. Extrinsic evaluation is concerned with criteria relating
to the system’s function, or role, in relation to its purpose (e.g., validation
through experience). To conduct such analysis, our model will be provided to
selected groups of app developers to be used as an integral part of their app
development activities. Evaluation data will be collected through surveys that
will measure the level of adaptation as well as the impact of such models on
idea formulation and the success or failure of mobile app products.

7 Conclusions

SE has come with a set of unconventional challenges for software engineers.
Understanding these challenges begins with understanding end-users’ needs,
and then using such knowledge to develop a better understanding of the inter-
nal dynamics of such a complex and dynamic software ecosystem. To achieve
this goal, in this paper, we proposed an automated approach for modeling
crowed feedback in ecosystems of SE apps. The proposed approach is evalu-
ated through a case study targeting the ecosystem of the food delivery apps.
Our results showed that users tend to express a variety of concerns in their
feedback. Such concerns often extend over a broad range of technical and busi-
ness issues. The results also showed that, in our ecosystem of interest, business
concerns were more prevalent than technical concerns. In the second phase of
our analysis, we proposed an approach for automatically generating an ab-
stract conceptual model of the main user concerns in the ecosystem of food
delivery apps. The results showed that a descriptive model can be generated
by relying on the specificity, frequency, and co-occurrence statistics of nouns,
verbs, and adjectives in textual user feedback. The results also showed that,
despite being relatively rare and hard to classify, dominant technical concerns
were reflected in the model. We further compared our generated model’s enti-
ties with topics generated using the topic modeling technique LDA. The results
showed that, due to the short nature and lack of structure in user feedback
text, LDA failed to generate any cohesive topics that were representative of
valid user concerns.

Modeling User Concerns in Sharing Economy: The Case of Food Delivery Apps 31

In addition to extrinsically evaluating our generated model, our future
work in this domain will include conducting more case studies, targeting SE
apps operating in dynamic and multi-agent ecosystems, such as ridesharing or
freelancing. These models will be enriched with more information such as the
priority of user concerns, or the magnitude/direction of the relation between
two ecosystem entities. Such information will enable us to understand the SE
app market at a micro level and provide more succinct representations of its
complex realities.

Acknowledgements This work was supported in part by the U.S. National Science Foun-
dation (Award CNS 1951411) and LSU Economic Development Assistantships awards.

References

1. Abbott, R.: Program design by informal English descriptions. Communications of the
ACM 26(11), 882–894 (1983)

2. Acquier, A., Daudigeos, T., Pinkse, J.: Promises and paradoxes of the sharing economy:
an organizing framework. Technological Forecasting and Social Change 125, 1–10
(2017)

3. Ala-Mantilaa, S., Ottelina, J., Heinonenb, J., Junnilaa, S.: To each their own? The
greenhouse gas impacts of intra-household sharing in different urban zones. Journal of
Cleaner Production 135, 356–367 (2016)

4. AlSubaihin, A., Sarro, F., Black, S., Capra, L., Harman, M., Jia, Y., Zhang, Y.: Clus-
tering mobile apps based on mined textual features. In: International Symposium on
Empirical Software Engineering and Measurement, pp. 38:1–38:10 (2016)

5. Aznar, J., Sayeras, J.M., Rocafort, A., Galiana, J.: The irruption of Airbnb and its ef-
fects on hotels’ profitability: An analysis of barcelona’s hotel sector. Intangible Capital
13(1), 147–159 (2017)

6. Bellotti, V., Ambard, A., Turner, D., Gossmann, C., Demkova, K., Carroll., J.M.: A
muddle of models of motivation for using peer-to-peer economy systems. In: Annual
ACM Conference on Human Factors in Computing Systems, pp. 1085–1094 (2015)

7. Benkler, Y.: Peer production, the commons, and the future of the firm. Strategic
Organization 15(2), 264–274 (2017)

8. Berry, D.: Evaluation of tools for hairy requirements and software engineering tasks. In:
International Requirements Engineering Conference Workshops, pp. 284–291 (2017)

9. Bing, L., Lam, W., Wong, T.L.: Using query log and social tagging to refine queries
based on latent topics. In: International Conference on Information and Knowledge
Management, pp. 583–592 (2011)

10. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python. O’Reilly
Media (2009)

11. Bistaffa, F., Farinelli, A., Chalkiadakis, G., Ramchurn, S.: Payments for large-scale
social ridesharing. In: The ACM Conference on Recommender Systems, pp. 139–146
(2015)

12. Blei, D., Ng, A., Jordan, M.: Latent Dirichlet Allocation. Journal of Machine Learning
Research 3, 993–1022 (2003)

13. Bonciu, F., Balgar, A.: Sharing economy as a contributor to sustainable growth. An
EU perspective. Romanian Journal of European Affairs 16(2), 36–45 (2016)

14. Bond, A.: An app for that: local governments and the rise of the sharing economy.
Notre Dame Law Review (Online 77) (2014)

15. Bouma, G.: Normalized (pointwise) mutual information in collocation extraction. Ger-
man Society for Computation Linguistics and Language Technology pp. 31–40 (2009)

16. Cannon, S., Summers, L.: How Uber and the sharing economy can win over regulators.
Harvard Business Review 13 (2014)

32 Grant Williams et al.

17. Carreńo, G., Winbladh, K.: Analysis of user comments: An approach for software
requirements evolution. In: International Conference on Software Engineering, pp.
343–348 (2013)

18. Chen, G., Cheng, M., Edwards, D., Xu, L.: Covid-19 pandemic exposes the vulnera-
bility of the sharing economy. Research Square (2020)

19. Chen, N., Lin, J., Hoi, S., Xiao, X., Zhang, B.: AR-Miner: Mining informative reviews
for developers from mobile app marketplace. In: International Conference on Software
Engineering, pp. 767–778 (2014)

20. Cheng, M.: Current sharing economy media discourse in tourism. Annals of Tourism
Research 60(C), 111–114 (2016)

21. Chow, Y., Yuan Yu, J.: Real-time bidding based vehicle sharing. In: International
Conference on Autonomous Agents and Multiagent Systems, pp. 1829—-1830 (2015)

22. Church, K., Hanks, P.: Word association norms, mutual information, and lexicography.
Computer Linguistics 16(1), 22–29 (1990)

23. Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., Christina, S.: Goal-
centric traceability for managing non-functional requirements. In: International Con-
ference on Software Engineering, pp. 362–371 (2005)

24. Conger, K., Griffith, E.: The results are in for the sharing economy.
they are ugly. (2020). URL https://www.nytimes.com/2020/05/07/technology/

the-results-are-in-for-the-sharing-economy-they-are-ugly.html

25. Coulton, P., Bamford, W.: Experimenting through mobile apps and app stores. Inter-
national Journal on Mobile Human Computer Interaction 3(4), 55–70 (2011)

26. Dillahunt, T., Malone, A.: The promise of the sharing economy among disadvantaged
communities. In: Annual ACM Conference on Human Factors in Computing Systems,
pp. 2285—-2294 (2015)

27. Dillahunt, T., Wang, X., Wheeler, E., Cheng, H.F., Hecht, B., Zhu, H.: The shar-
ing economy in computing: A systematic literature review. ACM Human Computer
Interaction 1(38), 1–26 (2017)

28. Dogru, T., Mody, M., Suess, C.: Adding evidence to the debate: Quantifying Airbnb’s
disruptive impact on ten key hotel markets. Tourism Management 72, 27–39 (2019)

29. Edelman, B., Luca, M.: Digital discrimination: The case of Airbnb.com. Harvard
Business School NOM Unit Working Paper No. 14-054 (2014)

30. Elbendak, M., Vickers, P., Rossiter, N.: Parsed use case descriptions as a basis for
object-oriented class model generation. Journal of Systems and Software 87(7), 1209–
1223 (2011)

31. Finkelstein, A., Harman, M., Jia, Y., Martin, W., Sarro, F., Zhang, Y.: App store
analysis: Mining app stores for relationships between customer, business and technical
characteristics. Tech. rep., University of College London, Tech. Rep. rN/14/10, 2014
(2014)

32. Ge, Y., Knittel, C., MacKenzie, D., Zoepf, S.: Racial and gender discrimination in
transportation network companies (NBER Working Paper No. 22776) (2017)

33. Glassey, O.: Method and instruments for modeling integrated knowledge. Knowledge
and Process Management 15(4), 247–257 (2008)

34. Glinz, M.: On non-functional requirements. In: Requirements Engineering, pp. 21–26
(2007)

35. Goel, P., Kulik, L., Ramamohanarao, K.: Privacy-aware dynamic ride sharing. ACM
Transactions on Spatial Algorithms and Systems 2(1), 1–41 (2016)

36. Gomez, M., Martineza, M., Monperrus, M., Rouvoy, R.: When app stores listen to the
crowd to fight bugs in the wild. In: International Conference on Software Engineering,
track on New Ideas and Emerging Results (NIER), vol. 2, pp. 567–570 (2015)

37. Griffiths, T., Steyvers, M.: Finding scientific topics. In: The National Academy of
Sciences, pp. 5228–5235 (2004)

38. Groen, E., Kopczyǹska, S., Hauer, M., Krafft, T., Doerr, J.: Users: The hidden software
product quality experts?: A study on how app users report quality aspects in online
reviews. In: International Requirements Engineering Conference, pp. 80–89 (2017)

39. Guzman, E., Ibrahim, M., Glinz, M.: A little bird told me: Mining tweets for require-
ments and software evolution. In: International Requirements Engineering Conference,
pp. 11–20 (2017)

https://www.nytimes.com/2020/05/07/technology/the-results-are-in-for-the-sharing-economy-they-are-ugly.html
https://www.nytimes.com/2020/05/07/technology/the-results-are-in-for-the-sharing-economy-they-are-ugly.html

Modeling User Concerns in Sharing Economy: The Case of Food Delivery Apps 33

40. Guzman, E., Maalej, W.: How do users like this feature? A fine grained sentiment
analysis of app reviews. In: Requirements Engineering, pp. 153–162 (2014)

41. Harman, M., Jia, Y., Zhang, Y.: App store mining and analysis: MSR for app stores.
In: Conference on Mining Software Repositories, p. 2012 (108–111)

42. He, W., Li, D., Zhang, T., An, L., Guo, M., Chen, G.: Mining regular routes from
GPS data for ridesharing recommendations. In: The ACM SIGKDD International
Workshop on Urban Computing, pp. 79–86 (2012)

43. Hofmann, T.: Probabilistic latent semantic indexing. In: International Conference on
Research and Development in Information Retrieval, pp. 50–57 (1999)

44. Hong, L., Davison, B.: Empirical study of topic modeling in Twitter. In: Workshop on
Social Media Analytics, pp. 80–88 (2010)

45. Hossain, M.: Sharing economy: A comprehensive literature review. International Jour-
nal of Hospitality Management 87 (2020)

46. Hüttel, A., Ziesemer, F., Peyer, M., Balderjahn, I.: To purchase or not? Why con-
sumers make economically (non-) sustainable consumption choices. Journal of Cleaner
Production 174, 827–836 (2018)

47. Iacob, C., Harrison, R.: Retrieving and analyzing mobile apps feature requests from
online reviews. In: Mining Software Repositories, pp. 41–44 (2013)

48. Inouye, D., Kalita, J.: Comparing Twitter summarization algorithms for multiple post
summaries. In: International Conference on Social Computing (SocialCom) and In-
ternational Conference on Privacy, Security, Risk and Trust (PASSAT), pp. 298–306
(2011)

49. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research agenda
for software ecosystems. In: International Conference on Software Engineering - Com-
panion Volume, pp. 187–190 (2009)

50. Jha, N., Mahmoud, A.: Using frame semantics for classifying and summarizing appli-
cation store reviews. Empirical Software Engineering 23(6), 3734–3767 (2018)

51. Jha, N., Mahmoud, A.: Mining non-functional requirements from app store reviews.
Empirical Software Engineering (2019)

52. Jongeling, R., Datta, S., Serebrenik, A.: Choosing your weapons: On sentiment anal-
ysis tools for software engineering research. In: International Conference on Software
Maintenance and Evolution, pp. 531–535 (2015)

53. Jongeling, R., Sarkar, P., Datta, S., Serebrenik, A.: On negative results when using sen-
timent analysis tools for software engineering research. Empirical Software Engineering
22(5), 2543–2584 (2017)

54. Khalid, H., Shihab, E., Nagappan, M., Hassan, A.: What do mobile app users complain
about? IEEE Software 32(3), 70–77 (2015)

55. Khatiwada, S., Tushev, M., Mahmoud, A.: Just enough semantics: An information
theoretic approach for IR-based software bug localization. Information and Software
Technology 93, 45–57 (2017)

56. Lin, B., Zampetti, F., Bavota, G., Di Penta, M., Lanza, M., Oliveto, R.: Sentiment
analysis for software engineering: How far can we go? In: International Conference on
Software Engineering (2018)

57. Lovins, J.: Development of a stemming algorithm. Mechanical Translation and Com-
putational Linguistics 11, 22–31 (1968)

58. Maalej, W., Nabil, H.: Bug report, feature request, or simply praise? On automatically
classifying app reviews. In: Requirements Engineering Conference, pp. 116–125 (2015)

59. Martin, C.: The sharing economy: A pathway to sustainability or a nightmarish form
of neoliberal capitalism? Ecological Economics 121, 149–159 (2016)

60. Martin, W., Harman, M., Jia, Y., Sarro, F., Zhang, Y.: The app sampling problem
for app store mining. In: Working Conference on Mining Software Repositories, pp.
123–133 (2015)

61. Martin, W., Sarro, F., Jia, Y., Zhang, Y., Harman, M.: A survey of app store analysis
for software engineering. Transactions on Software Engineering 43(9), 817–847 (2017)

62. Matzler, K., Veider, V., Kathan, W.: Adapting to the sharing economy. MIT Sloan
Management Review 56(2), 71–77 (2015)

63. Mcilroy, S., Shang, W., Ali, N., Hassan, A.: User reviews of top mobile apps in apple
and google app stores. Communications of the ACM 60(11), 62–67 (2017)

34 Grant Williams et al.

64. Mcllroy, S., Ali, N., Khalid, H., Hassan, A.: Analyzing and automatically labelling
the types of user issues that are raised in mobile app reviews. Empirical Software
Engineering 21(3), 1067–1106 (2016)

65. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based mea-
sures of text semantic similarity. In: National Conference on Artificial Intelligence, pp.
775–780 (2006)

66. Mimno, D., Wallach, H., Talley, E., Leenders, M., McCallum, A.: Optimizing semantic
coherence in topic models. In: Conference on Empirical Methods in Natural Language
Processing, pp. 262–272 (2011)

67. Mohagheghi, P., Dehlen, V.: Existing model metrics and relations to model quality.
In: ICSE Workshop on Software Quality, pp. 39–45 (2019)

68. Murillo, D., Buckland, H., Val, E.: When the sharing economy becomes neoliberalism
on steroids: unravelling the controversies. Technological Forecasting and Social Change
125, 66–76 (2017)

69. Newman, D., Noh, Y., Talley, E., Karimi, S., Baldwin, T.: Evaluating topic models for
digital libraries. In: Annual Joint Conference on Digital Libraries, pp. 215–224 (2010)

70. Nonaka, I.: A dynamic theory of organizational knowledge creation. Organization
Science 5(1), 14–37 (1994)

71. Pagano, D., Maalej, W.: User feedback in the appstore: An empirical study. In: Re-
quirements Engineering Conference, pp. 125–134 (2013)

72. Palomba, F., Linares-Vásquez, M., Bavota, G., Oliveto, R., Di Penta, M., Poshyvanyk,
D., De Lucia, A.: Crowdsourcing user reviews to support the evolution of mobile apps.
Journal of Systems and Software 137, 143–162 (2018)

73. Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C., Canfora, G., Gall, H.: How can
I improve my app? Classifying user reviews for software maintenance and evolution. In:
International Conference on Software Maintenance and Evolution, pp. 767–778 (2015)

74. PwC: The sharing economy: Consumer intelligence series. PricewaterhouseCoopers
LLP (2015)

75. Rehurek, R., Sojka, P.: Software framework for topic modelling with large corpora. In:
Workshop on New Challenges for NLP Frameworks (2010)

76. Rubén: Domain analysis: An introduction
77. Sorbo, A.D., Panichella, S., Alexandru, C., Shimagaki, J., Visaggio, C., Canfora, G.,

Gall, H.: What would users change in my app? Summarizing app reviews for recom-
mending software changes. In: International Symposium on Foundations of Software
Engineering, pp. 499–510 (2016)

78. Sousa, D., Sarmento, L., Rodrigues, E.: Characterization of the twitter replies network:
Are user ties social or topical? In: International Workshop on Search and Mining User-
generated Contents, pp. 63–70 (2010)

79. Steinwart, I.: On the influence of the kernel on the consistency of Support Vector
Machines. Journal of Machine Learning Research 2, 67–93 (2001)

80. Svedic, Z.: The effect of informational signals on mobile apps sales ranks across the
globe. Ph.D. thesis, School Business Faculty, Simon Fraser University (2015)

81. Tang, J., Meng, Z., Nguyen, X., Mei, Q., Zhang, M.: Understanding the limiting factors
of topic modeling via posterior contraction analysis. In: International Conference on
Machine Learning, pp. 190–198 (2014)

82. Thebault-Spieker, J., Terveen, L., Hecht, B.: Avoiding the south side and the sub-
urbs: The geography of mobile crowdsourcing markets. In: The ACM Conference on
Computer Supported Cooperative Work & Social Computing, pp. 265–275 (2015)

83. Thebault-Spieker, J., Terveen, L., Hecht, B.: Toward a geographic understanding of
the sharing economy: Systemic biases in uberx and taskrabbit. ACM Transactions on
Computer-Human Interaction 24(3), 40 (2017)

84. Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment strength detection for the social
web. Journal of the American Society for Information Science and Technology 63(1),
163–173 (2012)

85. Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A.: Sentiment strength
detection in short informal text. Journal of the Association for Information Science
and Technology 61(12), 2544–2558 (2010)

86. Turney, P.: Mining the web for synonyms: PMI-IR versus LSA on TOEFL. In: Euro-
pean Conference on Machine Learning, pp. 491–502 (2001)

Modeling User Concerns in Sharing Economy: The Case of Food Delivery Apps 35

87. Tussyadiah, I.P., Pesonen, J.: Impacts of peer-to-peer accommodation use on travel
patterns. Journal of Travel Research 55(8), 1022–1040 (2016)

88. Üstün, B., Melssen, W., Buydens., L.: Facilitating the application of support vector
regression by using a universal pearson vii function based kernel. Chemometrics and
Intelligent Laboratory Systems 81, 29–40 (2006)

89. Villarroel, L., Bavota, G., Russo, B., Oliveto, R., Di Penta, M.: Release planning of mo-
bile apps based on user reviews. In: International Conference on Software Engineering,
pp. 14–24 (2016)

90. Wang, S., Manning, C.: Baselines and bigrams: Simple, good sentiment and topic
classification. In: Annual Meeting of the Association for Computational Linguistics,
pp. 90–94 (2012)

91. Williams, G., Mahmoud, A.: Analyzing, classifying, and interpreting emotions in soft-
ware users’ tweets. In: International Workshop on Emotion Awareness in Software
Engineering, pp. 2–7 (2017)

92. Williams, G., Mahmoud, A.: Mining Twitter feeds for software user requirements. In:
International Requirements Engineering Conference, pp. 1–10 (2017)

93. Williams, G., Mahmoud, A.: Modeling user concerns in the app store: A case study on
the rise and fall of Yik Yak. In: International Requirements Engineering Conference,
pp. 64–75 (2018)

94. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslèn, A.: Experimen-
tation in Software Engineering. Springer (2012)

95. Xu, L., Shah, N., Chen, L., Diallo, N., Gao, Z., Lu, Y., Shi, W.: Economy: Privacy
respecting contract based on public blockchain. In: The ACM Workshop on Blockchain,
Cryptocurrencies and Contracts, pp. 15–21 (2017)

96. Yan, X., Guo, J., Lan, Y., Cheng, X.: A biterm topic model for short texts. In:
International Conference on World Wide Web, pp. 1445–1456 (2013)

97. Yu, E.S.: Conceptual modeling: Foundations and applications. chap. Social Modeling
and i*, pp. 99–121. Springer-Verlag (2009)

98. Zervas, G., Proserpio, D., Byers, J.: The rise of the sharing economy: Estimating the
impact of Airbnb on the hotel industry. Journal of Marketing Research 54(5), 687–705
(2017)

99. Zhao, W., Jiang, J., Weng, J., Lim, E., Yan, H., Li, X.: Comparing Twitter and tradi-
tional media using topic models. In: European Conference on Advances in Information
Retrieval, pp. 338–349 (2011)

100. Zhu, G., Kam Fung So, K., Hudson, S.: Inside the sharing economy: Understanding
consumer motivations behind the adoption of mobile applications. International Jour-
nal of Contemporary Hospitality Management 29(9), 2218–2239 (2017)

	Introduction
	Background, Rationale, and Research Questions
	Qualitative Analysis
	Modeling Crowd Feedback
	Discussion and Impact
	Limitations and Validity
	Conclusions

