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Many plant-associated microbial communities produce
volatile signals that influence insect responses, yet the
impact of floral microorganisms has received less attention
than other plant microbiomes. Floral microorganisms alter
plant and floral odors by adding their own emissions or
modifying plant volatiles. These contextual and microbe
species-specific changes in floral signaling are detectable by
insects and can modify their behavior. Opportunities for
future work in floral systems include identifying specific
microbial semiochemicals that underlie insect behavioral
responses and examining if insect species vary in their
responses to microbial volatiles. Examining if documented
patterns are consistent across diverse plant-microbe-insect
interactions and in realistic plant-based studies will improve
our understanding of how microbes mediate pollination
interactions in complex system.
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Introduction

Semiochemicals are metabolites that facilitate communi-
cation between organisms. Volatile organic compounds
(VOCs) are airborne metabolites that can mediate inter-
actions at great distances, making them of particular
importance for sessile species such as plants [1]. Indeed,
volatile chemicals produced by plants mediate insect
perception and host selection [2]. Plant-associated micro-
bial communities (reviewed in Ref. [3]) modify plant

volatile blends, thereby affecting interactions with insects
[4-6,7°°]. Although plant-insect interactions mediated by
microbes and their volatiles (mVOCs) have been a key
topic of research for years [4,5,8], more recently the
impacts of floral microbial communities have been recog-
nized. Recent reviews have explored the role of floral
microbes in microbial community assembly, floral evolu-
tion, and plant-animal interactions [9°,10°°,11°°]. How-
ever, volatile signaling of floral microorganisms and their
role in insects’ selection of flowers has received much less
attention. In this review, we highlight what is known
about flower-microbe—visitor interactions as mediated
through volatile semiochemicals (Figure 1). We summa-
rize the floral microbiome, current methods used to
identify the mVOCs most commonly produced, and
insect perception and detection of these compounds.
Throughout, we highlight our suggestions for future work
in this rapidly growing field.

Distribution and diversity of floral microbes
The floral microbiome (including microbes isolated from
nectar, pollen, stigmas, petals, etc.) is largely distinct from
those in other plant-associated communities [12,13] (but
see Ref. [14]). Microbes are introduced to flowers by
wind, rain, or through interactions with floral visitors
(e.g. buzz pollination, nectar foraging, defecation and
florivory) [15-20]. The environmental conditions of spe-
cific floral tissues or environments, such as high sugar
content and/or sometimes low pH in nectar, combined
with rapid growth rates of nectar-inhabiting microbes
determine which microbes successfully colonize different
floral tissues and rewards [21-23], and often result in
distinct microbial communities associated with each floral
microhabitat [24].

Among floral microhabitats, the microbial communities of
nectar have been investigated the most extensively, but
see [25] for a review of pathogenic fungi. Yeasts from the
genera Metschnikowia and Starmerella [11°°], and Proteo-
bacteria are commonly isolated from nectar [26,27°],
although floral microbiomes of many plant species remain
to be described. Nectar microbe diversity in a single
flower is typically low, but the density of nectar yeast
or bacteria can be very high [28,29] and early colonizers
prevent ingress by other microbes [30]. In some cases
higher microbial diversity is found in other floral micro-
habitats, including pollen, petals, and stigmas [10°%,31].
Microbes in nectar [32°%,33] or on petals [34°°] can impact

www.sciencedirect.com

Current Opinion in Insect Science 2021, 44:1-12


mailto:acrowleygall@ucdavis.edu
http://john.beck@usda.gov
https://doi.org/10.1016/j.cois.2020.10.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cois.2020.10.004&domain=pdf
http://www.sciencedirect.com/science/journal/aip/22145745

2 Ecology

Figure 1
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A subset of volatile-mediated interactions between floral microbes, flower-visiting insects and flowers, and the focus of this review. Purple boxes
represent hypothesized mechanisms for volatile effects on fitness of each interacting group of species. Not to scale.

flower—insect interactions and mVOCs may mediate
these effects, as we outline below.

Floral microbes affect insect behavior

Insects use a complex array of visual, and chemical (scent
and gustatory) cues to find food sources [2]. Some
chemical cues may be innately attractive to insects,
while others might be attractive as part of complex
blends of compounds, or detected and learned as cues
of particular resources [35]. Insect responses to flower-
inhabiting microbes are impacted by microbial chemical
cues and likely fall into multiple categories (Table 1).
Floral microbes can alter inherent preferences for nectar
or nectar-containing flowers [6,7°°,32°°,33,36—
38,39°°,40°,41]. For example, Clematis akebioides flowers
that were supplemented with synthetic nectar contain-
ing Metschnikowia reukaufii experienced higher visitation
from Bombus friseanus foragers than control flowers [33].
On the other hand, learned behavioral responses have
been associated with floral microbe presence in

laboratory-based [41] and field-based trials [34°°,42].
For example, bacteria on flowers were innately less
preferred by B. impatiens foragers, but over time foraging
workers learned to associate bacterial cues with floral
rewards [32°°]. In addition, flower-visiting insects can
distinguish among floral microbial species
[32°°,34°°37,40°] and in some cases, differentiate
microbes isolated from flowers over those from other
plant tissues [43]. Interestingly, microbes eliciting vary-
ing behavioral responses also emitted distinct volatile
profiles [32°°,39°°,41] supporting the importance of
microbial volatile cues on insect behavior.

Among microbes and insects characterized to date, nec-
tar-specialist yeasts appear to be more attractive to polli-
nators than yeast or bacteria isolated from other environ-
ments [32°°,37,39°° 41]. However, it is unclear if this is
due to the limited number of microbe and insect species
studied so far, or a general pattern. Moreover, the context
of experiments assessing microbial effects on insect
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Table 1

Studies examining the effect of floral microbes on insect visitor behavior

Insect species Microbe species Microbe  Microbial Experimental assay ehavioral response VOC Ref.
kingdom culture media analysis
Aphidius colemani 40 Bacillus strains (five from floral Bacteria Standard lab  Y-tube Significant effect of bacterial clade on  Yes [67]
nectars) culture media response
Apis mellifera Asaia astilbes, Metschnikowia Bacteria, Synthetic Artificial flowers-consumption Preference for control over inoculated  Yes [447]
reukaufii, mixture fungi nectar nectars
Apis mellifera Erwinia amylovora Bacteria  Inoculated Foraging assay (trained bees) Preference for control flowers Yes [7°
apple plants
Blind choice test (naive bees) Higher visitation to feeding solution
associated with control branches
Bombus impatiens Mixture of Leuconostoc fructosum, Bacteria, Microbial Artificial flowers-visitation Ability to learn with and without No [34°°
Lactobacillus micherneri, M. gruessi, fungi suspension microbes, but learn faster without ]
Candida rancensis spread on microbes
flower corolla
Live flowers-visitation Ability to learn in presence of natural
microbial community
Microbial Ability to learn based on microbial
supernatant on chemical cues, suggests discrimination
flower corolla at a distance
Leuconostoc fructosum, Lactobacillus Bacteria  Microbial Preference for flowers without
micherneri, versus M. gruessi, C. versus suspension supplemental bacteria communities
rancensis fungi spread on
flower corolla
Bombus impatiens A. astilbes, M. reukaufii Bacteria, Synthetic Y-tube No significant effect on first choice, Yes [407]
fungi nectar more time in A. astilbes arm of Y-tube
No-choice feeding Consumed more M. reukaufii nectar
Aphidius ervi M. reukaufii Fungi Synthetic Y-tube (naive parasitoids) Preference for arm containing yeast Yes [41]
nectar
Sporobolomyces roseus Preference for control arm
Hanseniaspora uvarum No effect
M. reukaufii, S. roseus, H. uvarum Y-tube-conditioned and tested on same Preference for arm containing yeast for
yeast all yeasts for at least 24 hour, and
48 hour for M. reukaufii
M. reukaufii Y-tube-conditioned with one yeast and  Strongly attracted to H. uvarum and
tested with others (for all tests responses repulsed by S. roseus after two hour
replicated naive parasitoids after 24 hour)
S. roseus Strongly attracted to H. uvarum and M.
reukaufii after two hour
H. uvarum Strongly attracted to M. reukaufii and no
effect of S. roseus after two hour
Bombus friseanus M. reukaufii Fungi Synthetic Live flowers supplemented with synthetic Higher visitation to yeast containing Yes [33]
nectar nectar- flowers
Apis mellifers M. reukaufii, Aureobasidium pullulans, Bacteria, Synthetic Proboscis extension response Reduced responses to A. pullulans, Yes [32°°
Asaia, Neokomagatea fungi nectar Asaia and Neokomagatea ]
Aphidius ervi M. gruessi Fungi Synthetic Y-tube Attractive Yes [39%]
nectar
M. reukaufii Attractive (strongest)
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Table 1 (Continued)

Insect species Microbe species Microbe  Microbial Experimental assay ehavioral response VOC Ref.
kingdom culture media analysis
A. pullulans Attractive
H. uvarum No effect
S. roseus Repellent
M. gruessi, M. reukaufii, A. pullulans, Capillary feeder-no choice Consumed less S. roseus and A.
H. uvarum, S. roseus pullulans
Longevity Reduced longevity with A. pullulans, S.
roseus, and H. uvarum
Survival Reduced survival with A. pullulans, S.
roseus, and H. uvarum
Bombus impatiens M. reukaufii Fungi Synthetic Artificial flowers (trained bees) Preferred yeast-inoculated flowers No [42]
nectar
Artificial flowers (naive bees) Higher proportion of early visits to
flowers with yeast, no effect across all
visits. Longer foraging duration on
flowers with yeast
Apis mellifera Asaia astilbes, M. reukaufii, Erwinia Bacteria, Synthetic Artificial flowers-consumption Reduction in nectar removal across No [37]
tasmaniensis, Lactobaccillus kunkeei  fungi nectar bacterial species
Bombus terrestris 22 bacterial strains isolated from Bacteria  Glucose Proboscis extension response Reduced responses relative to control No [43]
Lamium maculatum (leaves, flowers solution (density-dependent). Responses varied
and nectar) and Achillea millefolium based on isolation source.
(flowers)
Bombus appositus and M. reukaufii Fungi Synthetic Live flowers supplemented with synthetic Higher proportion of visits and more No [38]
B. flavifrons nectar nectar probing at flowers with yeast. Significant
species effect (B. appositus)
Captive Bombus M. reukaufii Fungi Synthetic Artificial flowers-consumption Preference for yeast-containing flowers No [36]
terrestris nectar
M. gruessi No effect
M. reukaufii, M. gruessi, and C. bombi Preference for yeast-containing flowers
(all trials)
Wild bumbebees M. reukaufii Live flowers supplemented with synthetic Preference for yeast-containing flowers
nectar
Acalymma vittatum E. tracheiphila Bacteria  Cucurbit plants Recruitment in field Preference for symptomatic branches  Yes [6]
naturally but healthy flowers
infected
Zucchini yellow mosaic virus Virus Preference for healthy flowers
E. tracheiphila Bacteria  Cucurbit plants Y-tube Preference for volatiles of infected
inoculated in foliage but healthy flowers
lab
Zucchini yellow mosaic virus Virus Preference for volatiles of healthy

flowers, no effect of foliage volatiles
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behavior are important. For example, insect responses to
M. reukaufii, the most extensively studied floral nectar
microbe, vary across studies and insect species. Examples
of M. reukaufii variability include: eliciting no effect on
foraging or feeding in honey bees or parasitoids
[32°°,37,39%°], increased preference to bumble bees or
parasitoids [33,36,38,39°°,40°,41,42] and decreased pref-
erence in some honey bees and bumble bees [40°,44°].
Some of this variation may be due to the behavioral assay
employed. For example, M. reukaufii elicited differential
effects in Y-tube (scent only) and consumption-based
assays, where gustatory cues were available [39°°40°].
The ability of insects to learn and distinguish between
microbial species introduces the possibility of context-
dependent variation in behavior, due to previous expo-
sure to microbial communities in nature and hives. More-
over, as described below, the substrate for microbial
growth can affect volatile production [6,44°].

"The majority of recent studies have used synthetic nectar
and/or artificial flowers to jointly characterize metabolites
and insect behavior (ex. [32°°,40°,44°]). Synthetic systems
are a useful first step in examining the effects of floral
microbes on floral visitor interactions as they provide insight
into the impacts of microbes alone on behavior in a con-
trolled environment. However, there are several limitations
associated with synthetic systems that call for a move
towards in plant experiments when possible: first, some
flower-isolated microbial species do not grow in artificial
nectar sources; second, volatile composition can vary quali-
tatively and quantitatively with media type or substrate
composition, discussed below; and third, contributions of
plant—microbe interactions cannot be accounted for in
synthetic systems and therefore cannot fully represents
the complex interactions that occur in nature. Ultimately
a combination of synthetic and plant-based approaches is
required to parse out the contributions of microbe, plantand
plant—microbe interactions on floral visitor behavior.

Finally, microbial effects on insect behavior may change
over time, not only due to insect learning, but the inter-
play between microbial growth and plant physiological
responses to microbial colonization. The extent to which
flower physiology changes after microbial colonization is
largely unknown, but studies in other plant-response-
based studies have provided evidence that mVOCs play
a dynamic role in communication between organisms
[6,7°°,33]. For example, inoculation of cucurbit plants
and apple blossoms with bacterial pathogens in both
field-based and lab-based experiments revealed that after
an initial exposure, insects prefer healthy flowers over
those that are infected [6,7°°]. This suggests a potentially
volatile-mediated shift in preference induced upon infec-
tion, which is thought to contribute to secondary spread of
the pathogen. Such an approach, where communities are
experimentally manipulated within plants (also see Refs.
[33,36,38]) likely offer the next advances in this area.

Microbe volatiles and insect perception Crowley-Gall et al. 5

The examples presented above show that the presence
and identity of flower inhabiting microbes can affect
insect foraging on flowers and floral nectar, and many
of these studies implicate volatile chemicals. But which
compounds are produced and how may they mediate
insect behavioral responses?

Floral microbial volatiles: production and
ecology

From the current literature, the volatile profiles of only
14 microbial species isolated from flower habitats have
been characterized. These studies report production of
mVOCs that span many chemical classes (Tables 2 and 3),
and reflect the chemical diversity generally observed
among microorganisms [45-47]. Aldehydes, alcohols,
and esters are most frequently detected. Relative to other
plant-associated microorganisms, we note few detections
of terpenoids from nectar microbes grown in nectar or a
synthetic nectar analog (‘T'able 2). In real flowers, micro-
bial addition or removal can modify floral terpenoid
emission (among other VOCs, T'able 3; [6,7°°,48]), sug-
gesting microbial modification of plant VOC emission
rather than de novo synthesis of terpenoids by microbes.

Given the composition of mVOCs of nectar microbes,
what is the ecological significance of these volatiles in
pollination systems? Microbe volatiles may cue the pres-
ence or quality of nectar rewards acting as an honest signal
[49]. This could increase visitation by mobile pollinators
and facilitate microbial dispersal to new flowers. Alterna-
tively, low VOC production may reduce detection by
flower-visiting insects, thereby improving the dispersal
potential of microbes that produce deterrent mVOCs.
Floral fungi produce a greater diversity and abundance
of volatiles than bacteria [32°°,44°]. By virtue of their
abundance, fungal VOCs may be more prevalent and
detectable to insect vectors than bacterial VOCs, and
may therefore also be more likely to act as honest signals,
though this requires further study.

Commonly detected mVOCs include metabolites that are
produced by microorganisms and macroorganisms, such
as products formed upon catabolism of amino acids and
those produced via sugar fermentation (Tables 2 and 3)
[45,46]. The presence of broadly conserved fermentation
volatiles as cues for sugar-rich resources has been pro-
posed to mediate insect responses in other systems, such
as the attraction of Drosophila to fermented fruits [50]. In
support of this hypothesis, the majority of mVOC com-
ponents are produced by many bacteria and fungi includ-
ing those isolated from diverse environments. Indeed,
Sobhy er al. [39°°] compared mVOC emission between
nectar-inhabiting yeast and the baker’s yeast Saccharomy-
ces cerevisiae, reporting similar VOCs among the species,
albeit higher emission for the cultivated §. cerevisiae. 'This
finding suggests that the major volatile components of
nectar mVOC blends are not necessarily specific to nectar
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Table 2

Microbial volatiles (VOCs) identified in synthetic floral systems

Microbe species Microbe kingdom Collection method Detection method VOC classes detected Major VOC components No. of VOCs Ref.
AA Bacteria SPME, passive GC-MS Alcohols, aldehydes, 2-Ethyl-1-hexanol, 2- 30 [447]
alkanes, esters, furanoids, furanmethanol, acetoin
ketones, S-containing
AA Bacteria SPME, passive GC-MS Alcohols, aldehydes, 2-Ethyl-1-hexanol, 2-methyl- 12 [32°7]
isoprenoids, ketones, 1-butanol, 3-methyl-1-
furanoids butanol, ethanol
AP Fungi SPME, passive GC-MS Alcohols, aldehydes, esters, Ethanol, 2-methyl-1-butanol, 17 [32°7]
ketones 3-methyl-1-butanol,
isobutanol
AP Fungi Direct headspace injection GC-FID Alcohols, aldehydes, esters, Acetaldehyde, isobutanol, 3- 7 [39°7]
ketones, S-containing methyl-1-butanol
HU Fungi Direct headspace injection GC-FID Aldehydes, esters, S- Acetaldehyde, dimethyl 9 [41]
containing disulfide, ethyl acetate
HU Fungi Direct headspace injection GC-FID Alcohols, aldehydes, esters, 2-Phenylethanol, 7 [39°7
ketones, S-containing acetaldehyde, 3-methyl-1-
butanol
MG Fungi Direct headspace injection GC-FID Alcohols, aldehydes, esters, 2-Phenylethanol, 3-methyl- 6 [39°7]
ketones, S-containing 1-butanol, acetaldehyde
MK (2 strains) Fungi SPME, passive GC-MS Alcohols, aldehydes, Ethanol, isobutanol, 2- 9,12 [53]
alkanes, carboxylic acids, methyl-1-butanol, 3-methyl-
esters, ketones 1-butanol
MR Fungi SPME, passive GC-MS Alcohols, aldehydes, 2-Methyl-1-butanol, 3- 34 [447]
alkanes, esters, furanoids, methyl-1-butanol, ethanol,
ketones, S-containing 2-ethyl-1-hexanol
MR Fungi SPME, passive GC-MS Alcohols, aldehydes, esters, 2-Methyl-1-butanol, 3- 19 [32°7
ketones methyl-1-butanol, ethanol,
isobutanol
MR Fungi SPME, passive GC-MS Alcohols, carboxylic acids, Ethanol, 2-methyl-1-butanol, 5 [33]
ketones isobutanol
MR Fungi Direct headspace injection GC-FID Aldehydes, esters, S- Acetaldehyde, ethyl acetate, 9 [41]
containing dimethyl disulfide
MR Fungi Direct headspace injection GC-FID Alcohols, aldehydes, esters, 3-Methyl-1-butanol, 7 [39°7
ketones, S-containing acetaldehyde, isobutanol
MR (2 strains) Fungi SPME, passive GC-MS Alcohols, carboxylic acids Ethanol, isobutanol, 2- 62 [53]
methyl-1-butanol, 3-methyl-
1-butanol
N Bacteria SPME, passive GC-MS Alcohols, aldehydes, 2-Ethyl-1-hexanol, 2-methyl- 11 [32°]
isoprenoids, ketones, 1-butanol, 3-methyl-1-
furanoids butanol, ethanol
SR Fungi Direct headspace injection GC-FID Aldehydes, esters, S- Dimethyl disulfide, ethyl 6 [41]
containing acetate, ethyl butyrate
SR Fungi Direct headspace injection GC-FID Alcohols, aldehydes, esters, 2-Phenylethanol, 3-methyl- 8 [39°7

ketones, S-containing

1-butanol, isobutanol

AA = Asaia astilbes, AP = Aureobasidium pullulans, HU = Hanseniaspora uvarum, MG = Metschnikowia gruessii, MK = M. koreensis, MR = M. reukaufii, N = Neokomagataea spp., SR = Sporobo-

lomyces roseus.

2 In both strains.
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Table 3

Microbe-induced changes to volatile (VOC) emission identified in real floral systems

Plant species Manipulation Microbe species Microbe Collection method Detection VOCs Ref.
kingdom method
Increased Decreased
Pollenizer apple, Malus x Spray inoculated Erwinia amylovora Bacteria  SPME, passive GC-MS 1-Penten-3-ol, 3-(E)-hexen- [7°°]
domestica Borkh. open flowers 1-ol
Pollenizer apple, Malus x Spray inoculated Erwinia amylovora Bacteria  Closed loop stripping GC-MS 4Z E)-a-farnesene, (E,E)- “Benzaldehyde, [7°9]
domestica Borkh. open flowers analysis, active a-farnesene, (E)- phenylacetonitrile, benzyl
B-farnesene, curcumene, alcohol, nonanal, decanal, (E)-
copaene, ledene, methyl ocimene, linalool, (2)-jasmone,
salicylate, 2-phenylethyl (E)-4,8-dimethyl-1,3,7-
acetate nonatriene
Various wildflowers Unmanipulated Unspecified Fungi Twister bar, passive =~ GC-MS 2-Nonanone, 2-ethyl-1- [32°7]
open flowers hexanol, 1-hexanol
Brassica rapa Inoculated buds  Staphylococcus, Bacillus, Bacteria  Tenax/Carbotrap B, GC-MS Acetoin, 2,3-butanediol, one 1,2-Propanediol, 2,3- [68]
and leaves and Sphingomonas active sampling unknown dimethylpentanol, longifolene,
two unknowns
Sambucus nigra Fumigation via Unspecified Bacteria  Tenax/Unicarb, active GC-MS trans-B-Ocimene, linalool, [48]
antibiotics sampling epoxylinalool, linalool oxide
Silene caroliniana Pollinator Yeast and potentially Fungi & SPME, passive GC-MS Acetone, isobutanol, 1- Vinyl acetate, heptane, 1- [53]
exclusion bacteria bacteria methoxy-2-propoxy-ethane, methoxy-2-propanone
3-methyl-1-butanol, 4-
methyl-octane, 2,2-
dimethyl-1,3-propanediol, 2-
ethyl-1-hexanol
Cucurbita pepo ssp. Identified as Erwinia tracheiphila Bacteria  SuperQ, active GC-MS & Linalool, 1,4-methoxybenzene, [6]
texana infected sampling FID nonatriene
Cucurbita pepo ssp. Identified as Zucchini yellow mosaic Virus SuperQ, active GC-MS & 1,4-Methoxybenzene [6]
texana infected virus sampling FID

2 Partial least squares discriminant analysis determined floral VOC emission differed between inoculated and control flowers, but the exact compounds underlying this difference were inferred via
ordination and not further investigated.
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or flower-dwelling yeasts. Instead, flower-visiting insects
may respond to VOCs common to many sugar-fermenting
microbes, rather than the emission of a key blend of
attractive mVOCs (or the reduction of repulsive and/or
induction of attractive floral VOCs). However, with lim-
ited insect-microbe pairs and few iz-situ studies per-
formed, this hypothesis requires further study.

Floral mVOCs: considerations for sampling
methods and analytical approaches

Sampling methods

As mentioned above, both synthetic and in plant-based
assessments of floral mVOCs have been used. The pros
and cons associated with these sampling systems are
commonly noted across disciplines. For example, syn-
thetic approaches allow larger sample sizes and volumes,
which can help overcome analytical constraints related to
the relatively small populations of microbes within flow-
ers. To date, synthetic systems have facilitated the detec-
tion of a greater number of mVOCs (T'able 2) than plant-
based studies (Table 3). This may be due to greater
microbial (and therefore volatile) abundance allowed
by synthetic systems, facilitating detection of usually
low-abundance microbe-produced compounds. Synthetic
approaches also offer more controlled experimental con-
ditions, which is of particular relevance in floral mVOC
studies given that floral volatile emission profiles are
highly abundant and variable relative to other tissues
[51]. Floral VOC emission can vary on a diurnal cycle
[51] and across flower phenology [52], generating a more
complex background on which to detect mVOCs.

Despite their experimental and analytical tractability,
synthetic approaches are simplifications of natural sys-
tems that exclude biological interactions between plants
and floral microbes. For example, plant metabolites or
responses to infection may be required as substrates or
elicitors for certain mVOGCs. In contrast, plants may
change emission of floral VOCs in response to microbial
presence. In addition, artificial media likely lack flower-
specific nutrient sources for microbes which may serve as
substrates for ecologically important semiochemicals and
floral mVOC emission fluctuates depending on the
growth substrate [6,44°]. Furthermore, the growth and
physiology of floral microorganisms likely vary among
habitats, which could affect the emission rate or compo-
sition of mVOCs. These effects may be crucial to under-
standing VOC-mediated communication at the floral
interface and can only be definitively understood in
plant-based studies.

Floral mVOC studies rarely simultaneously incorporate
both synthetic and plant-based approaches (but sece Ref.
[53]), yet a dual approach is beneficial [54], providing
greater clarity on flower—microbe—insect interactions as
well as partitioning candidate volatiles into groups: (1)
those directly produced by floral microorganisms, and

thus likely to occur in a variety of flowers; (2) those
produced as a result of plant response to colonization
(induction or reduction of antimicrobial or other floral
VOCs); and, (3) microbial transformation of plant metab-
olites, detectable only when the full suite of chemical
complexity is available to microbes, including oils, waxes,
pollen grains, vitamins, minerals, and other plant
metabolites.

Analytical approaches

VOCs described above (Tables 2 and 3) are most fre-
quently detected and characterized wusing gas
chromatography—mass spectrometry (GC-MS) for in-
plant and zz-vitro approaches. GC-MS is often used
because of its sensitivity, suitability to the detection of
broad chemical classes, and capacity for identifying
unknown compounds.

In order to analyze VOGCs, most studies adopt a pre-
concentration step to collect VOCs onto a porous polymer
(or sorbent matrix) from sample headspace before analy-
sis. VOCs are then released via chemical or thermal
desorption. Collection methods can be classified as either
passive or active. Active collection techniques use a
pump, external gas flow, or both to direct sample head-
space through a sorbent, while passive collection relies on
equilibrium-based partitioning of molecules from a
defined volume headspace to the sorbent. Compared to
studies of floral VOCs [55], studies of floral microbes more
frequently rely on passive collection methods like solid-
phase microextraction (SPME) to concentrate volatiles
before analysis, rather than active sampling techniques
(Tables 2 and 3). The prevalence of SPME in floral
mVOC studies may be explained by the small molecular
mass and high polarity of many major metabolites com-
prising mVOC blends. Small, polar metabolites are often
either poorly retained or irreversibly bound to sorbent
matrices frequently used in active sampling techniques of
plants such as Tenax®, Poropak™ Q, or graphitized
carbon (Rering, unpublished data), whether emitted from
microorganisms or macroorganisms. At present, insuffi-
cient data exists to definitively advise on what techniques
are best able to capture microbe-induced changes to floral
aroma and we recommend further study on this subject.
Given current understanding, we offer the following
suggestions:

1) Choose a collection technique-based on the goals of
the study. If semi-quantitative data is suitable for a
research question (e.g. if a study compares VOCs
between related species/samples, or as a first step to
characterizing VOCs), SPME is a good choice, espe-
cially when limited specialized instrumentation is
available. If fully quantitative data is needed (e.g.
for the development of specific trap or lure formula-
tions or dose-response bioactivity tests), active sam-
pling techniques should be considered. This is not to
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say that quantitative data cannot be obtained from
SPME, but because of its equilibrium-based adsorp-
tion, the logistics for calibration are substantially more
intensive.

2) When possible, thermal desorption should be used. In
chemical desorption, the solvent peak obscures many
early eluting mVOCs. If chemical desorption is
selected, researchers should consider additionally ana-
lyzing a subset of their samples with a solventless
technique.

3) When possible, select mixtures of sorbent polymers for
SPME or active sampling filters, to capture a wide
variety of chemicals.

4) Acknowledge limitations of any approach. In practice
no chemical analysis method can measure all mole-
cules simultaneously (e.g. challenging analytes like
small polar metabolites and inorganic gases are often
excluded or poorly detected). Metabolite limits of
detection, and classes of compounds that can be
detected should be mentioned when results are
reported.

Insect chemoreceptivity: testing mechanisms
and identifying bioactive compounds

Although the specific volatiles emitted by microbes are
beginning to be characterized, understanding of insect
detection of mVOCs remains limited. We propose that
increased attention to insect detection may reveal which
mVOCs mediate ecological interactions.

Insects are able to detect chemical cues from the envi-
ronment (e.g. mVOCs), through the use of chemosensory
systems. For an in-depth examination of the mecha-
nisms underlying insect olfactory systems, we direct
readers to several recent reviews and book chapters
[2,56-59]. The majority of VOCs in the environment
are detected by insect olfactory receptors (ORs), which
can be identified through sequencing and/or transcrip-
tomics, and characterized using electrophysiological
techniques (reviewed in Refs. [56,60]). Candidate insect
chemosensory genes are being discovered at a rapid rate;
however, variation in the number of ORs across species,
large number of environmental VOCs, and difficulty
present in finding a universal expression system hinders
the ability for large scale electrophysiological characteri-
zation of individual ORs across insect species [56].
Therefore, electroantennograms (EAGs) and electropal-
pograms from populations of ORs on the surface of insect
olfactory organs [61], are a useful first step in examining
an insect’s ability to detect ecologically relevant
compounds.

Studies to date suggest that insects are able to detect a
subset of floral mVOCs. Studies using EAG found that
honey and bumble bee antennae are able to detect VOCs
emitted from floral microbes. Antennae of both species
were able to detect approximately 20% of compounds at
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a concentration that provided consistent antennal
response for bee pheromones [32°°,40°] and honey bees
were further able to detect approximately 70% of VOCs
when concentrations were increased 100-fold [32°°].
However, EAG analyses screen only for the detectability
of specific VOCs via ORs and cannot be directly corre-
lated with behavioral responses as there is more down-
stream processing of olfactory signals after initial detec-
tion. In order to identify which components of microbial
volatile blends are contributing to insect behavioral
responses, or whether mixtures have synergistic or antag-
onist effects, behavior trials with individual odorants and
mixtures identified through electrophysiological assays
are needed.

Conclusion

The integration of flower-dwelling microorganisms in the
study of plant-insect interactions is relatively new.
Among such studies, few have directly examined volatile
communication between floral microbes and insects.
Fewer still have incorporated plants in these studies.
Future studies should:

1 Explore more diverse study systems: Most studies focus
on nectar (particularly nectar-specialist yeast and
monocultures) and examine responses in generalist
pollinators, including only a few plant species. How-
ever, other systems likely differ and require study.
Systematic studies across microbial guilds, ideally in
a phylogenetic context, may provide more insight into
plant—floral microbe—insect interactions and reveal con-
served or novel mVOCs with semiochemical activity.

2 Integrate more plant-based approaches: Though bot-
tom-up approaches are helpful for highly complex
systems such as this, holistic understanding is still
needed. For example, it is likely that many behavioral
shifts observed in nature are mediated by microbe
modification of repulsive/attractive floral volatiles
and not specifically via mVOC:s.

3 Adopt an interdisciplinary approach: Chemical ecol-
ogy, an inherently interdisciplinary field requiring
expertise from diverse scientific backgrounds (e.g.
behavioral ecology, chemistry, entomology), has
revealed cues that mediate interspecies interactions.
Continuing to use a combination of techniques in the
study of plant-insect-microbe interactions should
identify novel interactions and help identify semio-
chemicals responsible for mediating them.

4 Integration of volatile databases: In the past microbes
were not necessarily considered as contributors to floral
volatile emissions; however, understanding the role of
volatiles cues in plant—-microbe—insect interactions
requires an understanding of where these cues origi-
nate from (i.e. flower, microbe or microbe induced floral
VOC). Therefore, integration across floral [62-64] and
microbial [47,65,66] volatile databases may improve our
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understanding of the volatile landscape in which
plants, microbes and floral visitors interact.

Although microbes and mVOCs can mediate insect
behavior, the exact changes to volatile emission perceived
by insects and mediating certain behavioral responses
have not been identified and likely vary across floral
microbe—insect—plant interactions. Discovery of key vol-
atile semiochemicals underlying interactions occurring
between diverse plants, insects, and floral microbes in
nature will be facilitated by collaborative studies that
systematically expand  biological and chemical
complexity.
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