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Flowers provide resources for pollinators, and can also be

transmission venues for beneficial or pathogenic pollinator-

associated microbes. Floral traits could mediate transmission

similarly for beneficial and pathogenic microbes, although

some beneficial microbes can grow in flowers while pathogenic

microbes may only survive until acquired by a new host. In spite

of conceptual similarities, research on beneficial and

pathogenic pollinator-associated microbes has progressed

mostly independently. Recent advances demonstrate that

floral traits are associated with transmission of beneficial and

pathogenic microbes, with consequences for pollinator

populations and communities. However, there is a near-

absence of experimental manipulations of floral traits to

determine causal effects on transmission, and a need

to understand how floral, microbe and host traits interact

to mediate transmission.
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Introduction
By providing pollen and nectar in attractive displays,

flowers serve as ‘nature’s rest stop’ in all its connotations:

a source of resources but also a receptacle for waste and a

way station for passing travelers that mix and then dis-

perse. Flowers can have insect densities 10 000 times

greater than surrounding foliage [1] and so may be sites

where microbes are transmitted between visitors and

other flowers. A 2014 review assessed the role of floral

traits in transmission of pathogens to plants and pollina-

tors via flowers [2]; while there was a substantial literature

for plant pathogens, at that time only a single study had

experimentally demonstrated transmission of pollinator

pathogens at flowers. Since then, there has been growing

research on pollinator pathogens, alongside a parallel but

largely separate literature understanding how floral traits

affect transmission of microbes beneficial to pollinators.

Here, we review recent studies of transmission of both

beneficial and pathogenic pollinator-associated microbes.

We define ‘beneficial’ and ‘pathogenic’ microbes in terms

of their effect on pollinators; ‘pathogenic’ microbes have a

detrimental impact on at least some pollinators, while

‘beneficial’ microbes have a positive impact on at least

some pollinators, although the ecology of many microbes

is poorly understood and effects on pollinators could

be context-dependent. Further, we structure this new

review by the four mechanisms proposed in the

2014 review [2]: (1) Floral attractiveness of uninoculated

plants, (2) Microbe deposition and viability in flowers, (3)

Floral attractiveness of inoculated plants, and (4) Patho-

gen acquisition and establishment in hosts upon visiting

inoculated flowers (Figure 1). With this organizational

structure, our goal is to highlight similarities and

differences in the role of floral traits on transmission of

microbes that may be beneficial, commensal or detrimen-

tal to pollinators, with the goal of a more mechanistic

understanding of the role of floral traits in these

interactions. Although many microbes that affect plants

can be transmitted via flowers [2], this is outside the scope

of our review. We end by highlighting gaps in knowledge

and identifying future key areas of interest.

Traits influencing transmission of beneficial
microbes
Many microbes on flowers cause no detectable harm to

plants or pollinators, and may in some cases benefit them.

Yeasts and bacteria are common inhabitants of flowers

and are often more abundant and frequently isolated after

pollinators have visited a flower compared to unvisited

flowers [e.g. Refs. 3,4], suggesting that pollinators are

major transmitters. Flowers and pollinator bodies are

distinct environments that differ in nutrient composition,

environmental conditions, and longevity, and so it is no

surprise that microbial species appear to specialize on

these distinct habitats. For example, the Ascomycete
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yeasts Metschnikowia reukaufii and Metschnikowia gruessi

attain high density in flowers but are detected in

low numbers on or in bumble bee bodies. In contrast,

Ascomycete yeasts in the Starmerella clade and the genus

Debaryomyces can be detected in low numbers on flowers,

but attain high densities in bumble bee gastrointestinal

tracts and honeypots [5].

Some species of fungi and bacteria found on flowers can

benefit pollinators. Consumption of nectar containing

yeasts can increase colony growth of Bombus terrestris

and may protect against pathogens [6]. Bumble bees

can use microbial volatiles as foraging cues [7�], which

may increase foraging efficiency or resource acquisition.

Microbes in nectar and pollen can colonize solitary bee

provisions [8], where they may aid in preserving sugar and

protein, or serve as food for developing larvae [9,10].

Many other insects deposit microbes on floral surfaces

and/or consume microbes at flowers, and microbes could

benefit flower-feeding insects in diverse ways [11].

Despite the central importance of flower–pollinator

interactions in the transmission of beneficial microbes,

surprisingly little is known about how floral traits affect

transmission. Our review focuses on nectar fungi and

bacteria, with recognition that research on other microbial

symbionts awaits detailed investigation [12].

(1) Floral attractiveness of uninoculated plants

Because many nectar microbes require pollinator visita-

tion for transmission, presumably any floral traits that

increase floral visitation (overall or by taxa that carry

specific microbes) will increase transmission. For

example, nectar yeast frequency and abundance are often

positively correlated with pollinator visitation. In addi-

tion, yeast abundance in nectar was positively associated

with the proportion of floral visits by bumble bees, but

negatively correlated with visits by solitary bees [13],

suggesting that floral traits associated with particular

pollinator groups may affect transmission [14]. However,

research is needed that links intraspecific and interspe-

cific trait variation to transmission [akin to Ref. 15��]. One

exemplar study found higher nectar microbial abundance

in male compared to female flowers of Eurya emarginata,

but the role of pollinator transmission versus filtering by

the nectar environment or resource availability between

flower types was not resolved [16�].

2 Ecology

Figure 1

Current Opinion in Insect Science 

Floral traits can influence beneficial or pathogenic pollinator-associated microbe transmission in four ways. Trait can influence 1) the attractiveness

of uninoculated plants to pollinators, 2) deposition and viability in flowers, 3) attractiveness of inoculated plants, and 4) acquisition and

establishment in new hosts/transmission to new flowers. Each of these four mechanisms is highlighted in the text, along with a brief discussion of

promising future directions. Beneficial and pathogenic pollinator-associated microbes are represented by the caricatures of different colors.
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(2) Microbe deposition and viability in flowers

Microbes in nectar are often a subset of those found on

and in pollinator bodies, suggesting strong filtering by

nectar, likely favoring species that can withstand the high

sugar environment [17] or grow quickly [18]. Research is

accumulating on how nectar traits affect microbe viability

and growth, although it is sometimes challenging to

separate plant species identity versus trait-based effects,

and strains of the same microbial species can vary widely

in relative growth rates in the same nectar sources [19].

However, some common patterns have emerged. For

example, high sugar concentration can inhibit microbial

growth, and nectar secondary compounds, once thought

to reduce microbial growth in nectar, drive concentration-

dependent and compound-specific effects that often

don’t inhibit growth at natural concentrations [18,20].

Survival and growth of microbes in nectar also depends

on their interactions. For example, nectar bacteria and

yeast experience strong priority effects, with whoever

arrives first or has higher initial abundance suppressing

the other [21,22]. Mechanisms associated with priority

effects are likely related to microbial growth rate [18] and

subsequent effects of microbes on nectar traits, such as

pH and amino acids [22,23]. Floral traits that affect

microbial viability and growth in turn affect microbe

acquisition. In artificial nectar arrays, transmission can

depend strongly on microbial density in flowers [24].

These studies lead to the prediction that floral traits that

promote microbial growth will also promote microbial

transmission among pollinators (Figure 1).

(3) Floral attractiveness of inoculated plants

Many nectar microbes affect floral attractiveness to

pollinators. For example, both artificial and natural flow-

ers inoculated with the nectar yeast M. reukaufii receive

increased bumble bee pollinator visitation relative to

uninoculated flowers [25,26], whereas nectar and floral

surfaces colonized by bacteria (such as Neokomagataea sp.

formerly Gluconobacter sp.) can reduce visitation by

hummingbirds, bumble bees, and honey bees [27–29].

Although mechanisms may vary, strong evidence suggests

that pollinator attraction of yeast-inoculated flowers is

driven by associative learning of yeast-derived volatiles

with floral rewards [28], as well as gustatory responses

once pollinators start feeding [30��,31��].

(4) Microbial acquisition by pollinators and transmission

to new nectar sources

Little is known about how floral traits affect the likeli-

hood that pollinators will acquire microbes from nectar

sources, but some exemplar behavioral work suggests a

role. Bees acquire approximately 1% of the microbes on

flowers, with less acquired from nectaring than collecting

pollen [32]. Thus, floral traits that increase time spent

accessing rewards or proportion of the pollinator’s

body contacting contaminated nectar or surfaces should

increase acquisition. Three-way interactions among

flower, microbe and pollinator traits are likely important

in the transmission process, and assessing how microbe

traits interact with floral and pollinator traits to affect

dispersal may yield unique insights [11].

Traits influencing transmission of pathogenic
microbes
Floral traits could mediate the transmission of pathogenic

microbes similarly to beneficial microbes, but there may also

be key differences. Some beneficial microbes can establish

and grow in and on flowers, and floral traits may shape their

growth. By contrast, pollinator pathogens typically cannot

growonor inflowers (althoughthis is rarelyexamined)andso

floral traits may affect pathogen survival and transmission,

but not growth. We describe how floral traits could affect

pathogen transmission using the same mechanistic structure

as for beneficial microbes to facilitate comparisons.

(1) Floral attractiveness of uninoculated plants

Pathogen deposition on flowers can differ by plant species,

which could be due to attraction or how pollinators interact

with flowers. The bumble bee pathogens Nosema bombi,

Crithidia bombi and Apicystis bombi had more deposition onto

bell-shaped (Campanula cochleariifolia) than flat (Viola

tricolor) flowers, but deposition of Nosema apis and Nosema

ceranae honey bee pathogens did not differ between plant

species [33]. Two honey bee viruses had uneven deposition

onto flowers of threelegumespecies, and deposition differed

when plant species were presented alone versus in mixtures

[34��]. Flowers with the longest but also fewest honey bee

visits had the highest virus loads, suggesting that floral traits

affect deposition by altering bee visitation and behavior.

Bombus impatiens infected with C. bombi had variable like-

lihoods of depositing feces (containing infective cells) on

different floral parts in three plant species [35�], suggesting

that floral morphology affects deposition, and B. impatiens

were also more likely to defecate on a large composite flower

than flowers of seven other species [36]. Bumble bees

infected with C. bombi spent more time in flowers with

high-iridoid glycoside nectar than uninfected bees and were

more likely to return to other high-iridoid flowers [37], both

of which could affect pathogen deposition.

(2) Pathogen deposition and viability in flowers

In a comprehensive study, Figueroa et al. [38�] found at

least one bee pathogen (including neogregarines, trypa-

nosomatids, N. ceranae and N. bombi) in flowers from 75%

of 13 plant species from multiple field sites, with patho-

gen prevalence differing widely between plant species.

These differences could be due to differential visitation

or acquisition and viability between plant species, but the

traits responsible are unknown. Once deposited on flow-

ers, pathogens may contact nectar [but see Ref. 39] and as

noted for beneficial microbes, the nectar environment

may be challenging for pathogen survival. Exposure to

increasing sugar concentrations before consumption

reduced C. bombi infection likelihood and intensity in

Floral traits mediating microbe transmission Adler et al. 3
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bumble bees [40]. C. bombi exposure to the nectar iridoid

glycoside aucubin before consumption also reduced

subsequent bumble bee infection [41], but exposure to

several other nectar secondary compounds did not

[41,42]. Location on flower parts can also affect viability;

C. bombi survival was lower on exposed bracts than inside

flowers and in sun compared to shade [35�].

(3) Floral attractiveness of inoculated plants

Although B. terrestris avoided foraging on flowers inocu-

lated with C. bombi [43], we are aware of no studies

assessing whether floral traits mediate bee responses to

inoculated plants. Given the strong evidence that benefi-

cial microbes affect floral attractiveness, this mechanism

warrants further investigation for pathogens.

(4) Pathogen acquisition and establishment in hosts

upon visiting inoculated flowers

Over 25 years ago, a seminal paper demonstrated that B.

terrestris and Bombus lucorum became infected with C.

bombi after foraging on flowers visited by infected bees

[44]. The odds of acquiring infection differed between

two plant species, and also in inflorescences manipulated

to change floral architecture. This study incorporates the

role of floral traits on both deposition by infected hosts

and acquisition/establishment in new hosts. To our

knowledge this is the only paper that has manipulated

any floral trait to assess consequences for pathogen trans-

mission in pollinators.

That said, several nectar secondary compounds con-

sumed after pathogen acquisition can reduce C. bombi

and N. ceranae infections in vivo [reviewed in Refs. 45–47],

with one study discovering a mechanism; callumene from

Calluna vulgaris nectar removed the C. bombi flagellum,

preventing attachment to gut walls [48�]. However,

adding the nectar compound thymol to flowers along

with C. bombi did not affect pathogen establishment in

foraging bumble bees [49].

Flowers, by acting as deposition and acquisition venues,

may also be important in pathogen transmission between

host species. An RNA virus was transmitted between

honey and bumble bees co-foraging on the same flowers,

but this study did not eliminate the possibility of trans-

mission via other surfaces such as cage walls [50]; a more

recent study found that honey bees deposited viruses on

flowers, but viruses were not subsequently acquired by

bumble bees [34��]. However, stingless bees (Tetragonula

hockingsi) became infected by N. ceranae that was previ-

ously deposited on flowers by Apis mellifera [51], conclu-

sively demonstrating the role of flowers in transmission

between bee species. Vectoring of bumble bee pathogens

by honey bees differed on two plant species, but vector-

ing of honey bee pathogens by bumble bees did not differ

with plant species [33]. Furthermore, parasites can play a

role in vectoring pathogens; Varroa mites, which transmit

deformed wing virus to honey bees, were slowest to infest

honey bees foraging at Echinacea flowers compared to

flowers of two other plant species, suggesting a role of

floral shape [52].

Finally, one observational study attempted to isolate

floral traits shaping pathogen acquisition. C. bombi was

added to flowers of 14 plant species, after which individ-

ual B. impatiens foraged. There was a fourfold difference

across plant species in pathogen acquisition and infection

intensity [15��]. However, floral size and shape, number

of open flowers, nectar production, and inflorescence

height did not explain interspecific variation in transmis-

sion; the only trait that correlated with pathogen

acquisition was the total number of reproductive

structures per inflorescence.

Traits influencing microbe spread in plant–
pollinator communities
The studies above indicate that floral traits can influence

transmission at individual flowers, but how these indi-

vidual interactions shape microbe spread in communities

is just beginning to be examined. Susceptible-infectious-

susceptible (SIS) models for plant–pollinator networks

were recently developed with continuous trait distribu-

tions, finding that disease spread was impacted the most

by selective pollinators, universally attractive flowers, and

cospecialized plant–pollinator pairs [53��]. Although this

theory was developed for pathogenic microbes, it can also

be applied to beneficial microbes.

Two recent studies show that prevalence of pathogenic

microbes on flowers varies among plant species, and

changes in the bee:flower ratio in communities can influ-

ence the likelihood of transmission at flowers. Graystock

et al. [54��] screened >5000 bees and flowers in old-field

communities and detected bee pathogens (N. bombi,

N. ceranae, C. bombi, Crithidia expoeki, or Apicystis spp.) in

42% of bee species (12.2% individual bees) and 70% of

flower species (8.7% individual flowers). Prevalence varied

by more than 80% among well-sampled flower species. In

addition, prevalence on flowers was lowest late in the

season when the bee:flower ratio was lowest, suggesting

reduced risk of transmission via dilution. Supporting the

potential importance of dilution, an experiment manipu-

lating B. terrestris density in replicated plant communities

found that when the bee:flower ratio was low, slow bee

paralysis virus (SBPV) was transmitted less efficiently [55�].

This pattern was not observed for C. bombi, indicating

parasite-specific responses to bee/flower density.

New work also suggests that visitation by particular

pollinator species to the flowers of particular plant species

can potentially play a disproportionate role in transmis-

sion. A. mellifera visitation rates to nectar-rich knapweed

(Centaurea spp.) were greater than visitation rates of the

rest of the pollinator community combined to this plant

4 Ecology
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species [56], and honey bees and knapweed were both

among the highest-prevalence bee and flower species,

respectively, for multiple pollinator pathogens [54��].

Finally, particular plant species can be associated with

reduced pathogens in pollinators, and community-level

changes in floral traits can shape disease intensity. Sun-

flower pollen dramatically reduced C. bombi infection in

bumble bees, and farms with more sunflower had bees

with lower infection intensity [57]. Bumble bees at Bel-

gian sites invaded by Impatiens glandulifera had lower

prevalence of infection with Apicystis but not other patho-

gens; the authors hypothesized that pollen polyphenols

could decrease infection [58]. Wildflower fields increased

prevalence of several bee pathogens as well as bee

abundance in some landscape contexts [59�]. Finally,

Adler et al. [60�] created replicated communities using

plant species that had resulted in high or low C. bombi

infection in previous flower foraging assays [15��].

Colonies foraging in tents with high-infection plant

species had on average twice the infection intensity

compared to colonies with low-infection plant species,

indicating the importance of plant communities for infec-

tion dynamics [60�]. Identifying the floral traits mediating

such interactions would provide an invaluable tool for

choosing species to include in habitat restoration.

Future directions
Although there are many gaps in our understanding of

how floral traits affect microbe transmission, here

we briefly highlight ideas that may be particularly

productive.

Assessing the effect of floral traits on multiple microbes

Various pathogens may interact with hosts and flowers

differently, and some have been more strongly associated

with pollinator decline than others. Which floral traits are

most important for the transmission of the most detri-

mental pathogens or the most beneficial microbes, which

are also critical for pollinator health? Currently, observa-

tional studies suggest patterns but there are almost no

experimental manipulations of floral traits to determine

causal relationships. Such information is essential to

provide a general framework that could guide choices

of plants for pollinator habitats, as well as understand

trait-mediated host–parasite dynamics.

The role of floral traits in a community context

Do beneficial microbes and pathogens frequently co-

occur in particular plant species? Are plant species with

more similar floral traits more likely to share microbial

communities, and are such correlations structured by

floral traits and/or pollinator visitation? Are some traits

generally anti-microbial, reducing both pathogen and

beneficial microbe growth? Similarly, are pollinator

species with more similar traits or behaviors more likely

to share pathogens or transmit beneficial microbes?

Research on beneficial and pathogenic microbe transmis-

sion has grown almost independently, but combining

them could yield important insights for bee health.

Interactions among flower, host, and microbe traits

Our focus has been on how floral traits affect microbe

transmission, but the transmission process will also

depend on traits and behaviors of pollinators and

microbes. For example, the morphology or other proper-

ties of particular microbes may make them more condu-

cive to dispersal by particular pollinators [11], or among

particular flower morphologies. In addition, transmission

could occur via biotic or abiotic vectors, and the biology of

the microbe may affect the efficacy of each of these

routes. If this is the case, studying the traits of flowers

alone may misrepresent the drivers of microbial transmis-

sion. Increased study of pollinator and microbial species

using a trait-based approach may help identify the 3-way

community trait space most conducive or susceptible to

microbial transmission and whether such traits can be

generalized across interactions.
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