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Cybersecurity has rapidly emerged as a grand societal challenge of the 21st century. Innovative solutions to 
proactively tackle emerging cybersecurity challenges are essential to ensuring a safe and secure society. Arti- 
ficial Intelligence (AI) has rapidly emerged as a viable approach for sifting through terabytes of heterogeneous 
cybersecurity data to execute fundamental cybersecurity tasks, such as asset prioritization, control allocation, 
vulnerability management, and threat detection, with unprecedented efficiency and effectiveness. Despite its 
initial promise, AI and cybersecurity have been traditionally siloed disciplines that relied on disparate knowl- 
edge and methodologies. Consequently, the AI for Cybersecurity discipline is in its nascency. In this article, we 
aim to provide an important step to progress the AI for Cybersecurity discipline. We first provide an overview 

of prevailing cybersecurity data, summarize extant AI for Cybersecurity application areas, and identify key 
limitations in the prevailing landscape. Based on these key issues, we offer a multi-disciplinary AI for Cy- 
bersecurity roadmap that centers on major themes such as cybersecurity applications and data, advanced AI 
methodologies for cybersecurity, and AI-enabled decision making. To help scholars and practitioners make 
significant headway in tackling these grand AI for Cybersecurity issues, we summarize promising funding 
mechanisms from the National Science Foundation (NSF) that can support long-term, systematic research 
programs. We conclude this article with an introduction of the articles included in this special issue. 
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 INTRODUCTION 

he regularity of devastating cyber-attacks has made cybersecurity a grand societal challenge.
nnovative solutions to tackle ever-evolving threats in cyberspace are essential for robust cyber-
ecurity postures. Artificial Intelligence (AI) holds significant promise in sifting through large vol-
mes of heterogeneous cybersecurity data with unprecedented efficiency and effectiveness [ 25 ].
hese benefits can lead to significant enhancements in prevailing cybersecurity tasks, including
sset identification, vulnerability management, emerging threats detection, and control deploy-
ent. Despite initial successes, there remains a significant dearth of work examining how AI can
e deployed for cybersecurity. The lack of growth in this area is likely attributable to the diversity,
omplexity, and rapidly evolving nature of AI and cybersecurity. AI draws from math, biology, and
ther disciplines, while cybersecurity relies on knowledge of protocols, risks, and more. Moreover,
ybersecurity data has unique properties based on its underlying generating processes (humans
nd machines), rapidly evolving nature, and sheer volume. As a result, representing and processing
uch data in a manner that maximizes performance and practical utility is a nontrivial technical
nd nontechnical task. 
Despite these significant challenges, globally recognized entities such as the National Academies
f Sciences (NAS) and the National Science Foundation (NSF) have underscored the critical need
or AI for Cybersecurity research [ 20 , 26 ]. Significant advances in this nascent discipline can usher
n a new generation of cyber resilience against an ever-evolving threat landscape. In light of these
ignificant needs, we aim to provide a systematic overview of fundamental cybersecurity data,
revailing AI for Cybersecurity application areas, and key limitations in the extant landscape.
aking these together, we develop and propose a multi-disciplinary roadmap to rapidly advance
he AI for Cybersecurity discipline. We frame the contributions of this article as follows: 

(1) We summarize prevailing cybersecurity data sources commonly used in extant AI for Cy-
bersecurity research. The review broadly categorizes data sources available within and
outside of any particular organization. 

(2) We summarize four major themes of AI for Cybersecurity within the larger scholarly
and practitioner communities: cyber threat intelligence (CTI), security operation centers
(SOCs), disinformation and computational propaganda, and adversarial machine learning
(ML). For each theme, we provide an overview of the data it primarily relies on, as well as
academic and industry pioneers. 

(3) We provide an end-to-end and integrated roadmap that scholars and practitioners can
follow when aiming to conduct the next generation of AI for Cybersecurity research. This
roadmap intentionally emphasizes a multi-disciplinary perspective and provides concrete
examples of promising future directions for research. 

(4) We provide a summary of prevailing grant funding opportunities, conference venues, and
journal outlets that AI for Cybersecurity scholars and practitioners can consider when
aiming to grow the discipline. Presenting a consolidated list of resources in this fashion
can help the AI for Cybersecurity community rapidly build sustainable, visible, and highly-
impactful research and education. 

This remainder of this article is organized as follows. First, we provide a comprehensive
verview of prevailing cybersecurity data sources. Second, we summarize a past and present view
f AI for Cybersecurity initiatives that rely on these data. Third, we highlight some of the key gaps
ithin the existing academic and industry research landscapes and present our integrated AI for
ybersecurity research roadmap. Fourth, we summarize prevailing NSF funding opportunities that
CM Transactions on Management Information Systems, Vol. 11, No. 4, Article 17. Publication date: December 2020. 
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an support AI for Cybersecurity research. The final section presents the articles in this special
ssue and concludes this work. 

 PREVAILING CYBERSECURITY DATA SOURCES 

xecuting effective AI for Cybersecurity is contingent upon analyzing rich data sources. Two broad
ategories of cybersecurity data exist: internal and external. Internal data pertain to resources
vailable within an organization. External cybersecurity data refer to content accessible to the
roader public (i.e., outside of an organization). We provide a summary of prevailing data sources
n each category in Table 1 . For each data source, we provide a brief description, example platforms,
nd sample metadata. 
Internal data hold tremendous value for developing cybersecurity as they are close to an or-

anization’s critical assets. Most critical assets (e.g., web servers, databases, embedded systems,
outers, etc.) are based on workstations and/or virtual machine (VM) images. These devices will
ften possess significant data that can help a hacker and/or a systems administrator identify their
ontents. Sample metadata include operating system (e.g., Windows, Linux, Unix, etc.), version,
le system structure (e.g., size, quantity, file names), and others. Each networked workstation and
M generates data that can help a systems administrator fingerprint its characteristics. Depend-
ng on how the workstation and VM are configured, they may also generate alerts (e.g., events,
imestamps, etc.) about selected activities occurring on the device. Inter-connected devices on a
etwork can often have significant netflow that contains data such as source, destination, bytes,
eaders, and others. Vulnerability assessments conducted by tools such as Nessus, Qualys, Open-
AS, Burp Suite, and others can help systems administrators and security analysts detect the flaws
f technologies deployed across their network. Biometric data provide sensor readings of human
e.g., employee actions) within a network. Finally, enterprise networks may also contain intranets
quipped with social media sites, collaboration tools (e.g., Slack, Teams, Confluence, etc.), and in-
ernal reports. 
While internal network data can provide low lead time when aiming to provide knowledge about

xisting threats and past attacks, external data sources can help facilitate knowledge about events
ccurring in broader cyberspace. Social coding repositories (e.g., GitHub, SourceForge, etc.) and
nternet-of-Things Search Engines (IoTSEs) can help an organization understand the scope of how
ublicly accessible their code bases are (e.g., containing technology names, usernames, passwords,
tc.) and openly available devices are, respectively. Dark Web platforms can provide an under-
tanding of the online hacker community and their relevant tools, techniques, and processes. For
xample, hacker forums provide millions of freely accessible exploits and facilitate discussions to
llow hackers to execute cyber-attacks. DarkNet Marketplaces (DNMs) and carding shops provide
echanisms to sell illicit goods (e.g., stolen credit cards) to reap financial benefit. Internet-Relay-
hat (IRC) channels are often used by hacking groups such as Anonymous to discuss the targets
f their breaches. Selected plain-text Dark Web contents found on hacker forums, DNMs, carding
hops, and IRC channels may sometimes be available in Paste Sites (e.g., PasteBin) too. Commercial
hreat feeds provided by prevailing CTI companies are designed to help industries be aware of pre-
ailing threat trends. Finally, news source and conventional social media (e.g., Twitter, Facebook,
ouTube, etc.) can provide knowledge about the key security issues afflicting society as a whole. 

 A PAST AND PRESENT VIEW OF AI FOR CYBERSECURITY APPLICATION AREAS 

hen taking internal and external data sources together, an organization can have significant
etadata (e.g., timestamps, author names, etc.) and data (e.g., rich text content, risk score, etc.)
o execute fundamental cybersecurity tasks from an AI-based perspective. Recognizing the signif-
cant promise and potential of such a cybersecurity big data gold-mine, numerous scholars and
ACM Transactions on Management Information Systems, Vol. 11, No. 4, Article 17. Publication date: December 2020. 
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Table 1. Summary of Prevailing Cybersecurity Data Sources 

Type Data Source Description 
Example Platforms 

or Tools 
Sample Metadata 

and Data 

Internal 

Workstations and/or 
virtual machine 
images 

Machines that enable and 
facilitate computational 
activities 

Docker, containers, 
VMware 

Operating system, 
applications, file 
systems 

Data storage Devices that store data from 

users and networks 
File store, disk drives, 
file directories 

File size, directory 
name, file name, 
directory size 

Networking devices Devices that help route and 
facilitate network traffic 

Routers, switches, 
gateways, SDN 

software 

ARP, routing tables 

Network-based 
fingerprint data 

Data that pertains to the content 
that a device generates 

Nmap, Zmap TCP, packer header, 
UDP 

Netflow data Flow of data across networked 
devices 

– Source, destination, 
bytes 

Alert and event logs Succinct reports and short alerts 
about selected network and/or 
device events 

Security information 
and event 
management systems 
(SIEM) 

Date, alert name, IP 
address, action 

Vulnerability 
assessment 

Reports generated from 

prevailing vulnerability 
scanning tools 

BurpSuite, Nessus, 
Qualys, OpenVAS 

Name, severity, risk 

Biometric data Data generated from sensors 
that monitor human behaviors 

Mouse movements, 
eye movements, pulse 

x-y-z axis 
accelerometer 
readings 

Intranets and social 
media, and reports 

Tools to facilitate collaborations 
across teams 

SharePoint, 
Confluence, Teams, 
Slack 

Usernames, plain 
text, multi-media data 

External 

Social coding 
repositories 

Sites that enable the sharing of 
code in repositories 

GitHub, SourceForge Commits, authors, 
code, forks 

Internet-of-Things 
(IoT) search engines 

Search engines that search and 
index publicly accessible IoT 
devices 

Shodan, Censys, 
Fofsa, BinaryEdge, 

IP, banner data, 
images, latitude, 
longitude 

Hacker forums Online discussion boards that 
allow hackers to discuss 
malicious attacks 

Antichat, Ciphers, 
WildersSecurity, 
go4expert 

Date, author, threads, 
source code 

DarkNet 
marketplaces 

Markets that facilitate the sale of 
illicit goods 

Hansa, DreamMarket Product name, author 
name, price 

Internet-Relay-Chat Plain-text instant messaging 
chatrooms often used by 
hacktivist groups 

Anonops Date, plain-text 

Carding shops Sites that sell stolen credit cards JStash, Recator Card type, zip code, 

Paste sites Sites that allow anonymous 
posting of plain-text content 

PasteBin Raw paste, author, 
date, size 

Commercial Threat 
Feeds 

Feeds of threat intelligence data 
curated by industry 

AlienVault OTX IPs, hashes, source, 
destination 

Malware Repositories Sites that aggregate malware and 
reports 

EMBER, VirusTotal Hash, binary, date, 
malware reports 

News sources Public media sources that share 
news about events 

CNN, BBC, Fox, ABC Headlines, text 
bodies, images 

Conventional social 
media 

Sites that facilitate social 
networking 

Twitter, Facebook, 
YouTube 

Usernames, plain 
text, multi-media data 

ACM Transactions on Management Information Systems, Vol. 11, No. 4, Article 17. Publication date: December 2020. 
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Table 2. Summary of Prevailing AI for Cybersecurity Application Areas 

Application Area 
Selected 

Common Tasks 
Selected Accessible 

Datasets Selected Tools 
Academic 
Pioneers Industry Pioneers 

CTI 

Malware analysis VirusTotal Cuckoo UTD CS FireEye 

Phishing 
detection 

PhishTank PhishMonger 
UArizona AI Lab 

KnowBe4 

Dark Web 
Analysis 

AZSecure HAP ISILinux CYR3CON 

Disinformation 
and 
Computational 
Propaganda 

Bot detection Bot Repo, Twitter 
Bot-Cyborg 

Hoaxy, 
Botometer 

Computational 
Propaganda 
Project 

Paragon Science 

Disinformation 
identification 

Credibility 
Coalition, GOP 
Twitter 

Exifdata, 
exiftool, 
factcheck 

CMU Center for 
Informed 
Democracy 

CarleyTech, Rand, 
FireEye 

SOC 

Log file analysis Boss of the SOC Kiwi, Splunk UC Irvine CS, U. 
Michigan CS, R. 
Marty 

Splunk 

Vulnerability 
assessment 

NVD, Metasploit Nessus, ZMap Tenable 

Intrusion 
detection 

CIC-IDS 2017 Zeek Palo Alto 

Adversarial ML Malware evasion, 
ML poisoning 

EMBER, NIPS Adv. 
learning 

EvadeML, 
SecML 

Ian Goodfellow, 
Nicholas Carlini 

Elastic, Google 
Brain, Microsoft 

* Note : CS = Computer Science; CMU = Carnegie Mellon University; GOP = Grand Old Party; HAP = Hacker Assets Por- 
tal; NVD = National Vulnerability Database; NIPS = Neural Information Processing Systems; ISILinux = Intelligence and 
Security Informatics Linux; UArizona = University of Arizona; UC = University of California; UTD = University of Texas, 
Dallas. 
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ractitioners have started leveraging AI for four data-rich and ever-evolving cybersecurity appli-
ations: (1) CTI, (2) disinformation and computational propaganda, (3) SOCs, and (4) adversarial
L. Each application area relies on significant quantities of varying data presented in Table 1 . In
able 2 we provide a detailed summary of each AI for Cybersecurity application area, selected
ommon tasks, datasets, tools, academic pioneers, and industry pioneers. 
While each application area of AI for Cybersecurity is presented separately in Table 2 , they all
ave some overlap. For example, SOC analysts often contend with adversarial ML issues while
imultaneously ingesting CTI. In the following sub-sections, we further describe each application
rea, with an emphasis on describing the application area, key tasks, data source, and prevailing
ools and pioneers. 

.1 Cyber Threat Intelligence (CTI) 

TI is concerned with identifying emerging threats and key threat actors to enable effective cyber-
ecurity decision making [ 33 ]. CTI has traditionally been tightly linked with SOCs and has there-
ore relied on internal data sources such as netflow data, virtual machine images, vulnerability as-
essment, fingerprint data, and others. However, recent years have seen a significant expansion to
xternal data sources such as hacker forums, DarkNet Marketplaces, carding shops, IRC channels,
ublic news sources, and others. Conventional analytics tasks include threat modeling, malware
nalysis, IP reputation services, summary statistics, cyber-forensics, and threat hunting [ 6 ]. 
Despite the prevalence of these approaches, results are often high-level overviews of the data

ontents, rather than fine-grained insights into the patterns pervading each dataset. As a result,
TI scholars and industry organizations are increasingly turning to AI for critical tasks such as
merging threat detection and mitigation, key hacker identification and attribution, and others.
cademic CTI pioneers include UT Dallas for malware analysis and University of Arizona’s AI Lab
or Dark Web analytics [ 3 , 8 , 12 , 17 , 35 –37 ] and phishing analysis [ 2 ]. Industry pioneers include
ACM Transactions on Management Information Systems, Vol. 11, No. 4, Article 17. Publication date: December 2020. 
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ireEye, KnowBe4, CYR3CON, and others [ 34 ]. Numerous tools to support various aspects of CTI
ave been generated from these pioneers, including ISILinux for fundamental CTI analytics for the
ntelligence and Security Informatics (ISI) community, Phishmonger to support advanced phishing
nalytics, AZSecure for Dark Web analytics, and Cuckoo and VirusTotal for dynamic and static
alware analysis, respectively. 

.2 Disinformation and Computational Propaganda 

isinformation and computational propaganda research aim to examine how fake or false infor-
ation propagates through international cyberspace and major geo-political regions (e.g., Russia,
hina, US, Middle East, etc.). Computational propaganda examines how the use of algorithms, au-
omation, and big data approaches can influence and shape public opinions related to social and
olitical issues. If left unchecked, disinformation and computational propaganda pose a significant
hreat to quickly destabilize governments and sway public perceptions and actions on societally
elevant events (e.g., elections). As a result of their potentially far-reaching implications, disin-
ormation and computational propaganda topics have gained significant traction within academic
nd practitioner circles. Common data sources that facilitate research focus on conventional social
edia platforms such as Facebook, Twitter, Reddit, Weibo, and YouTube. 
While the initial methodologies employed were qualitative and based in rumor theory and crim-

nological perspectives, recent research has started incorporating AI-based techniques such as text
ining, network science, image recognition, and neural networks that automatically sift through

arge quantities of social media data (e.g., text, images, videos, etc.) to pinpoint computational pro-
aganda, disinformation content, campaigns, astroturfing, bots, message amplification, fake news,
nd other related phenomena. Prevailing academic entities leading innovations in this space in-
lude Carnegie Mellon University’s (CMU’s) Center for Informed Democracy, Indiana University’s
IU’s) Network Science Institute, and the University of Oxford’s Computational Propaganda Re-
earch Project. Industry pioneers include FireEye and Symantec Threat Intelligence. These focused
fforts have enabled various resources pertaining to disinformation and computational propaganda
esearch to emerge, including the Botometer and Hoaxy tools and datasets such as bot repo and
witter Bot dataset. 

.3 Security Operations Centers (SOCs) 

OCs are often the heart of many organizations’ cybersecurity efforts. SOCs have conventionally
elied on human analysts to help to ensure the confidentiality, integrity, and availability (CIA) of se-
ected enterprise information technology (IT) and information systems (IS) are in accordance with
he larger organizational goals and industry-specific policies (e.g., GDPR, CCPA, Sarbanes-Oxley,
ISMA, etc.). Key IT and IS that are often monitored include websites, applications, databases, net-
orking technologies (e.g., switches, routers, software defined networks, etc.), mobile devices, and
nternet of Things (IoT) devices. SOC analysts often rely on systems such as Network Intrusion
etection Systems (NIDS), Network Intrusion Protection Systems (NIPS), Security Information
nd Event Management Systems (SIEMs), Security Operations and Response (SOAR) platforms,
ntivirus, firewalls, and unified threat management (UTM). Such systems capture various data
rom sources including network traffic flow analysis, vulnerability assessment, anomaly detection,
lacklisting, detecting phishing attacks and campaigns, identifying correlations, threat modeling,
lert management, and others. 
Despite the prevalence of these practices, extant SOC operations have been known to be prone

o significant information overload, false positives, and false negatives. These issues can cause
lert fatigue in security analysts and result in significant burnout and mental health issues. In
ecognition of these issues, AI has started to emerge as a viable approach to cut through the noise,
CM Transactions on Management Information Systems, Vol. 11, No. 4, Article 17. Publication date: December 2020. 
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urtail alert fatigue, and deliver filtered results. Prevailing academic pioneers focusing on SOC
esearch include the University of California, Irvine (UCI); the University of California, Santa Bar-
ara (UCSB); and the University of Michigan (UMich). These entities have generated significant
ools and datasets such as Zeek and the CIC-IDS 2017. Each resource is designed to support vari-
us SOC-related inquiries. Industry pioneers include Splunk, Tenable, Palo Alto, and Rafael Marty
 22 , 24 , 29 , 40 , 42 ]. In addition to releasing tools (e.g., Metasploit) and datasets (e.g., NVD), indus-
ry pioneers have launched competitions to help encourage community involvement and enhance
nterest in the topic. An example of such an event is Splunk’s Boss of the SOC (BOTS) event that
raws hundreds of participants annually to engage in hands-on, self-paced blue-team exercises to
unt and defeat threats within networks. 

.4 Adversarial Machine Learning (ML) 

he rapidly increasing popularity of adversarial ML is largely attributable to algorithms and tech-
ologies such as generative adversarial networks (GANs) [ 15 ]. Adversarial ML is an emerging
lass of machine learning algorithms that aim to fool algorithms by generating and/or supplying
eceptive input that is strikingly similar to real data. Adversarial machine learning can be used for
oth offensive and defensive purposes. Prevailing offensive adversarial ML tasks include generat-
ng deep fakes (e.g., synthetic text, images, and videos), poisoning, AI-system attacks, and others.
hese offensive measures pose a new variation of cyber-attacks beyond conventional methods
e.g., malware, distributed denial of service, etc.) and have resulted in significant issues in AI se-
urity, trust, privacy, and dependability. Defensive adversarial ML tasks include threat modeling,
ttack simulation, countermeasure designs, noise detection, and evasion [ 7 ]. Prevailing method-
logies within this area of AI for Cybersecurity include GANs, reinforcement learning, and actor
ritic networks. These approaches can learn from limited training data, closely mimic a human’s
earning process, and rapidly evolve to dynamic environments. 
Adversarial ML is a relatively younger application area in AI for Cybersecurity when compared

o CTI, disinformation, and SOC. Nevertheless, significant investments into developing adversar-
al ML capabilities have been made in recent years from academia and industry alike. Examples
f academic pioneers include Ian Goodfellow (Stanford University), Nicholas Carlini (University
f California, Berkeley), and Hyrum Anderson (University of Washington). Industry leaders in-
lude Microsoft, Google Brain, and Elastic. Prevailing tools and datasets to support adversarial ML
esearch include SecML, EvadeML, and EMBER. Like the SOC community, adversarial ML aca-
emic and industry pioneers have also launched various competitions such as the annual malware
vasion challenge. 

 A MULTI-DISCIPLINARY ROADMAP FOR AI FOR CYBERSECURITY: DATA, 

ANALYTICS, AND AI-ENABLED DECISION MAKING 

espite tremendous progress in each of the aforementioned areas of AI for Cybersecurity research,
here remain four categories of significant issues. When taken together, these drawbacks can sig-
ificantly limit the scope, scale, and impact of relevant AI for Cybersecurity research. 

• First, industry and academia often operate in siloes. For example, academics often develop
highly specialized solutions on older datasets that may not be representative of what is seen
in practice. While attaining excellent performance in lab environments, they often suffer in
production environments. Conversely, industry professionals have a tremendous amount
of existing data but apply standard algorithms. These approaches often do not take into
account of the unique characteristics of cybersecurity data and can lack rigorous evaluation
processes commonly seen in academia. 
ACM Transactions on Management Information Systems, Vol. 11, No. 4, Article 17. Publication date: December 2020. 
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• Second, and relatedly, there is a lack of publicly accessible, relevant, and realistic datasets.
Ultimately, this results in academics performing analytics on single datasets (e.g., malware
binaries, netflow data), rather than executing on multiple datasets simultaneously (much
less realistic yet very useful for practical applications). 

• Third, model sharing and interpretability are key concerns. Models developed in academia
or industry rarely see airtime in the other’s grounds. Moreover, models are often devel-
oped without consideration to how end-users would operate them (e.g., lack transparency).
However, this type of detail and sharing is critically important to quickly develop relevant
and timely models that can be deployed across environments. 

• Finally, many individuals may lack the resources to get started or execute AI for Cyberse-
curity research. Therefore, providing resources to interested individuals to facilitate inno-
vation in this space is critically needed. Doing so can rapidly accelerate the rate of AI for
Cybersecurity innovation and development. 

The limitations summarized above necessitate novel approaches for representing cybersecurity
ata, methodologies to support cross-cutting, inter-disciplinary, and high-impact AI for Cyberse-
urity research. As a result, a clear, crisp, and end-to-end roadmap on promising future directions
s critically needed to ensure the long-term viability of the discipline. To this end, we identify
hree major themes for future AI for Cybersecurity research: cybersecurity applications and data,
dvanced AI methods for cybersecurity, and AI-enabled decision-making. Each area can be sig-
ificantly enhanced by incorporating multi-disciplinary perspectives, including those from socio-
echnical, organizational, regulatory, cultural, cognition, and psychology disciplines. Presenting
 roadmap in this fashion has significantly enhanced the focus of research around major topical
reas [ 1 , 4 , 9 ]. Moreover, taking a multi-disciplinary approach is critical for ensuring that tackling
ocietal issues is done in a holistic, all-encompassing manner [ 7 ]. Figure 1 illustrates each area’s
ajor components as well as the synergistic relationship between each area. We describe each
rea in further detail in the following subsections. 

.1 Cybersecurity Applications and Data 

rogressing the AI for Cybersecurity discipline requires a strong foundation of application areas
nd data sources. We group emerging cybersecurity applications and data into three major groups:
1) emerging application areas, (2) emerging data sources, and (3) refined data representations.
ach is described in the following sub-sections. 

4.1.1 Emerging Application Areas. Prevailing application areas highlighted in previous sections
ave traditionally centered around enterprise IT environments. However, society is increas-
ngly relying on technologies outside of the conventional networked workstation perspective.
xamples include scientific cyberinfrastructures (e.g., science gateways), remote technologies
nd collaboration tools, sensor-based environments for smart homes and health, and industrial
nvironments that deploy Super visor y Control and Data Acquisition (SCADA) Industrial Control
ystem (ICS) or Cyber-Physical System (CPS) technologies. Each of these environments has
nique combinations of data, tasks, and requirements that necessitate novel AI for Cybersecurity
pproaches. Examples include analyzing physical security constraints (e.g., biometric analysis) for
ecured facilities containing confidential information, social engineering-based susceptibilities
e.g., insider threats), and linking to industry- or government-specific risk frameworks (e.g.,
pen Science Risk Profile, MITRE ATT&CK, NIST, etc.) and threat models (e.g., diamond models,
yber kill chains, etc.). Each area has its own key considerations and requirements [ 13 , 14 , 18 ].
uture AI for Cybersecurity research can also execute analytics at varying levels of granularity.
xamples include developing approaches at the macro-level (e.g., industry-wide), meso-level (e.g.,
CM Transactions on Management Information Systems, Vol. 11, No. 4, Article 17. Publication date: December 2020. 
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Fig. 1. A multi-disciplinary AI for Cybersecurity roadmap: cybersecurity applications and data, advanced AI 

methods, and AI-enabled decision making. 
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rganization-specific), and micro-level (e.g., personalized security recommendations). Each level
f granularity can help to unlock the maximum value of AI across multiple stakeholder groups. 

4.1.2 Emerging Data Sources. As indicated in Table 1 , extant cybersecurity data sources can be
rouped into internal and external categories. While these categories encompass the breadth of
ata available to support various cybersecurity research inquiries and applications, data sources
uch as netflow, networked devices, fingerprinting, Dark Web, and social media have been lever-
ged quite extensively. However, data sources such as user-generated contents within an orga-
ization, biometric data, IoTSEs, and public coding repositories have received far less attention.
hese data sources can be leveraged in critical AI for Cybersecurity tasks. For example, examin-
ng user-generated contents (e.g., quarterly calls, internal social media, public websites, etc.) can
elp drive the next generation of insider threat detection and social engineering attack identifica-
ion. Similarly, examining the code employees post in publicly accessible social coding repositories
an help identify potential vulnerabilities (e.g., insecure coding practices, posting of private keys,
tc.) that hackers can leverage to gain a foothold into an organization. Checking the consistency,
orrectness, and completeness of multiple IoTSEs (e.g., Shodan, Censys, Binary Edge, etc.) simul-
aneously can help organizations (including nonenterprise IT) effectively map out their potential
ttack surface and drive targeted vulnerability assessments [ 38 ]. Biometric data such as keystroke
ynamics, touchscreen dynamics, eye movements, pulse rates, and others can help facilitate ad-
anced physical cybersecurity tasks [ 23 , 46 , 47 ]. 

4.1.3 Refined Data Representations. Data representation is critical for strong algorithmic per-
ormance. To date, the prevailing approach for representing cybersecurity is a flattened feature
ector. Despite its popularity, this approach omits crucial relationships apparent within the data
ACM Transactions on Management Information Systems, Vol. 11, No. 4, Article 17. Publication date: December 2020. 
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t represents (e.g., sequences). As such, this representation can lead to significantly diminished
esults when deployed in production environments. To mitigate this issue, future AI for Cyberse-
urity scholars can carefully consider how the cybersecurity data exists within the environment
hey are interested in and carefully select an appropriate option that most closely represents the
henomena of interest. For example, applications within a virtual machine can be represented as
 graph (capturing their dependencies) and file systems can be represented as a tree (given their
ierarchical nature). Other candidate representations include grids, sequences, and non-Euclidean
e.g., tensors, cubes). Selection of an appropriate representation can also be guided based on rele-
ant social-behavioral economic (SBE) theories, organizational requirements, and key data char-
cteristics [ 39 ]. 

.2 Advanced AI Methods for Cybersecurity 

he above-listed application areas, data sources, and data representations will require advanced
ethodologies to fully uncover their potential. Among various options, three major emerging
ethodologies can offer significant value to developing practically relevant and usable AI for
ybersecurity: multi-data source analytics, Explainable AI (XAI), and augmented intelligence
human-AI) interfaces. Each is described in further detail below. 

4.2.1 Multi-View and Multi-Modal Analytics. A key drawback of the extant AI for Cybersecu-
ity research and practice landscape is leveraging single datasets in a siloed manner. This often is
 result of lack of access to multiple datasets (commonly seen within academia) and/or a thorough
nderstanding of the relationships across multiple datasets. Not processing multiple datasets si-
ultaneously can result in an incomplete appraisal of an environment. To address this issue, future
I for Cybersecurity research can aim to leverage the characteristics of multiple data sources in a
ore holistic fashion. Selected promising approaches include deep-learning-based entity match-

ng, short text matching algorithms (e.g., deep structured semantic models), multi-view approaches
e.g., multi-source), and multi-task learning strategies [ 10 ]. Leveraging knowledge across multi-
le datasets via transfer learning and/or federated learning can also be employed to increase task
erformance [ 43 –45 ]. Each model can be significantly extended to account for key domain consid-
rations (e.g., timeliness, interpretability, etc.) and increase the model’s capacity to learn. Success-
ully fusing multiple data sources can result in novel derived attributes, enhanced risk management
cores (e.g., vulnerability assessment scores), and ultimately a holistic view of an organization’s
ybersecurity posture. 

4.2.2 Explainable and Interpretable AI Approaches. Cybersecurity is a domain where it is
ritical to know how and why an algorithm reached its output decision. Unfortunately, prevailing
I-based algorithms rely on deep learning. While providing unprecedented performance in
igh-impact cybersecurity applications such as Dark Web analytics, vulnerability assessment,
nd others, they are notorious for their “black-box” nature. Lack of model explainability and
nterpretability can adversely affect model performance and reduce algorithm trustworthiness,
ecurity, privacy, and adoption. These drawbacks significantly hinder key cybersecurity stake-
olders from effectively leveraging AI-based technologies for critical tasks. To minimize these
rawbacks, future AI for Cybersecurity research can explore how interpretable and explainable AI
an enhance algorithm performance as well as open their black-box nature. Two major categories
f explainable and interpretable AI approaches exist: post hoc and intrinsic [ 11 , 31 ]. Both cate-
ories can operate at the global or local level. Post hoc global approaches interpret major model
omponents after they have been trained. Similarly, post hoc local approaches examine individual
odel processes and components (e.g., neuron activations) after the model has been trained.
ntrinsic global approaches incorporate major model components directly into the architecture.
CM Transactions on Management Information Systems, Vol. 11, No. 4, Article 17. Publication date: December 2020. 
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inally, intrinsic local approaches incorporate components into a model (e.g., attention mecha-
isms) to identify which data features within a data input help a model reach its end output. Future
esearch can explore how each category of the aforementioned approaches can be leveraged to
xtract additional insight from AI-based methodologies to support selected cybersecurity tasks. 

4.2.3 Augmented Intelligence – Human-AI Interfaces. Many cybersecurity professionals would
rgue that AI-based algorithms and systems should not solely make cybersecurity decisions.
ather, AI-based approaches should be closely linked with human action (e.g., a security ana-
yst is an active member in the analytics process) to help facilitate enhanced decision-making
rocesses. Also referred to as augmented intelligence or human-AI interfaces, these approaches
an lead to significant performance gains over using an algorithm or human individually. Three
road approaches of human-AI interfaces exist: substitution (AI replaces humans), augmentation
AI and human synergistically augment each other), and assemblage (humans and AI are dynam-
cally convened to cooperate and function as a single, integrated unit) [ 19 , 21 , 32 ]. The breadth,
cope, and depth of how humans and AI can interface for critical and fundamental cybersecurity
asks is understudied, yet critically needed. Such research would inherently need to take a multi-
isciplinary approach, particularly emphasizing perspectives from cognitive science, psychology,
uman computer interaction, and other areas. 

.3 AI-Enabled Cybersecurity Decision-Making 

he results attained from advanced AI methodologies can enable unprecedented cybersecurity
ecision making. Three key areas that can glean benefit include cybersecurity visualizations, cy-
ersecurity predictive analytics, and AI-enabled cyber defense. We summarize each in turn in the
ollowing sub-sections. 

4.3.1 Cybersecurity Visualizations and Dashboards. Cybersecurity is inherently a data-rich,
nformation-poor domain. While prevailing AI-based methods can help sift through tremendous
mounts of noise, scholars and practitioners who work with new and/or ever-evolving cyberse-
urity data require a mechanism to quickly understand a dataset’s key characteristics and key
atterns at multiple levels of granularity. Cybersecurity visualizations are an indispensable tool to
acilitate these tasks. However, most visualizations for cybersecurity are designed by security pro-
essionals who may not know about visualization theory or are created by visualization experts
ho lack knowledge about the nuances of cybersecurity. Therefore, there is a critical need for
I for Cybersecurity academics and professionals to critically examine how visualizations can be
arefully designed to be incorporated into their workflow. Doing so can provide excellent report-
ng mechanisms, guide the selection of predictive algorithms, and support strategic cybersecurity
unctions (e.g., investments, quarterly reports, etc.). Visualizations can be conducted at the macro
global), meso (local), and micro (individual) levels [ 5 , 41 ]. Visualizations can be temporal, tree,
etwork, charts, tables, and geo-spatial, depending on the data type and key cybersecurity re-
uirements. Visualizations can be designed to incorporate key concepts of overview, zoom, filter,
istory, and details on demand as well as various layouts and color schemes. Incorporating such vi-
ualizations into systems (e.g., human-AI hybrids) can help facilitate unprecedented cybersecurity
ecision making. 

4.3.2 Automated Cybersecurity Predictions. While cybersecurity visualizations can assist in un-
erstanding the key aspects of a particular dataset, predictive analytics can help facilitate auto-
ated decision making in addressing common cybersecurity tasks such as data triage, spam fil-
er, vulnerability classification, and mission mapping. Despite the prevalence and clarity of these
asks, many prevailing methods often lack automation or are rife with false positives. Employing
ACM Transactions on Management Information Systems, Vol. 11, No. 4, Article 17. Publication date: December 2020. 
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dvanced AI-based predictive analytics processes can help address these selected issues. Promising
ethods for predictive analytics include deep Bayesian forecasting, burst detection, deep genera-
ive modeling with temporal constraints, temporal-based graph neural networks, and others. Each
pproach can be enhanced by including industry-specific guidelines, data, tasks, and requirements.
elected stakeholders who can benefit from enhanced predictions include SOC analysts and CTI
rofessionals, specifically those operating at the tactical and operational levels within their orga-
ization. 

4.3.3 AI-Enabled Cyber Defense and Resiliency. Organizations can leverage the knowledge
leaned from their analytics procedures to automatically deploy appropriate security controls. Ex-
mples include automated network segmentation and reorganization, automated threat modeling,
eal networks following cyber-breaches, and automated patching and remediation and mitigation.
utomating each task in an intelligent fashion can significantly assist SOC analysts and operators.
elected emerging AI methodologies supporting these tasks include enhanced AI agents, rein-
orcement learning, actor critic networks, selected defensive adversarial learning methods, and
ayesian networks. Future research can explore how each methodology can produce appropriate
yber-defenses as required across multiple vertical domains (e.g., enterprise IT, scientific cyberin-
rastructure, sensor-based environments, etc.). 

 MECHANISMS TO FACILITATE ADVANCES IN THE AI 

FOR CYBERSECURITY DISCIPLINE 

 key element to executing AI for Cybersecurity research is attaining sufficient resources (e.g.,
uman capital, computation infrastructure, etc.) to effectively tackle emerging topics and signifi-
antly advance knowledge. In light of the significance of AI for Cybersecurity, numerous funding
gencies at the federal, national, and local levels have released highly-visible grant solicitations.
hese solicitations often encourage researchers to develop interdisciplinary teams across tech-
ical fields such as information systems, computer science, electrical and computer engineering,
nformation science, and social sciences as well as social-science-based disciplines such as com-
unications, criminology, psychology, and cognitive sciences. Attaining grant funding can help
hese teams recruit high-caliber research scientists, foster industry and government collabora-
ions, generate a strong reputation, and create systemic long-term research programs centered
round critical AI for Cybersecurity research topics (as opposed to ad hoc teams) [ 16 , 27 , 28 , 30 ].
aken together, these benefits can facilitate AI for Cybersecurity innovations and discoveries at
n unprecedented rate. 
We provide a summary of selected NSF solicitations that have relevance to AI for Cybersecurity

n Table 3 . For space considerations, we only list opportunities available through the NSF. Funding
rom the NSF is often referred to as the “gold-standard” of funding, as it is universally recognized as
unding fundamental scientific research and education programs. We organize the funding oppor-
unities into five major categories: (1) Early Career, (2) Infrastructure Oriented, (3) Core Research,
4) Transition to Practice, and (5) Education-Oriented. For each funding opportunity, we list its
ssociated directorate, division, and funding range(s). 
Early career funding aims to provide selected promising junior faculty with support to launch

heir research programs. Three major funding sources are available in this category: CRII, CA-
EER, and PECASE. CRII is targeted at junior faculty within the first 3 years of their career, while
AREER and PECASE are for junior faculty closer to their tenure stage. Infrastructure-oriented
rants are commonly awarded out of the CISE directorate’s Office of Advanced Cyberinfrastruc-
ure (OAC) and aim to help facilities support high-impact research. For example, DIBBs provide
unding to build large-scale scientific testbeds to facilitate fundamentally sound research. CCRI
CM Transactions on Management Information Systems, Vol. 11, No. 4, Article 17. Publication date: December 2020. 
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Table 3. Summary of Selected National Science Foundation (NSF) Funding Opportunities to Support AI 

for Cybersecurity Research and Education Programs 

Funding Type 
Selected Funding 
Opportunity 

Directorate and 
Division Funding Ranges 

Early Career 
CRII CISE Up to $175K 

CAREER Cross-cutting Up to $500K 

PECASE Cross-cutting Up to $500K 

Infrastructure- 
Oriented 

CSSI (formerly DIBBs) CISE OAC $200K–$1M 

CCRI CISE OAC Up to $1.2M 

Core Research 
SaTC CORE Cross-cutting $500K–$1.2M 

CICI CISE OAC $500K–$1M 

D-ISN Cross-cutting $250K–$1M 

Transition to Practice 
SaTC TTP Cross-cutting $500K–$1.2M 

SBIR/STTR Cross-cutting Up to $1.75M of 
seed funding 

Convergence 
Accelerator 

Cross-cutting $3M–$5M 

Education-Oriented 
SFS EHR DGE Varies 
SaTC-EDU Cross-cutting Up to $500K 

EAGER AI4Cyber EHR DGE Up to $300K 

* Note : CCRI = CISE Community Research Infrastructure; CISE = Computer and Information Sciences and Engineering; 
CRII = CISE Research Initiation Initiative; CSSI = Cyberinfrastructure for Sustained Scientific Innovation; DGE = Division 
of Graduate Education; DIBBs = Data Infrastructure Building Blocks; D-ISN = Disrupting Illicit Supply Networks; EAGER 
= Early-Concept Grants for Exploratory Research; EHR = Education and Human Resources; OAC = Office of Advanced 
Cyberinfrastructure; PECASE = Presidential CAREER; SFS = Scholarship-for-Service; SaTC = Secure and Trustworthy 
Cyberspace; SaTC-EDU = SaTC Education; SBIR = Small Business Innovation Research Program; STTR = Small Business 
Technology Transfer Program; TTP = Transition to Practice. 
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rovides funding to help scholars build computational infrastructure to facilitate their research.
oth DIBBs and CCRI can provide valuable mechanisms to the rapidly growing AI for Cyber-
ecurity community in terms of datasets and resources to support core research topics. Exam-
le programs within the NSF that fund cybersecurity-related research include SaTC, CICI, and
-ISN. SaTC focuses on fundamental cybersecurity-related research, particularly from an inter-
isciplinary perspective. CICI aims to fund research that aims to protect scientific cyberinfrastruc-
ure from attack, particularly by leveraging vulnerability assessment and netflow data. D-ISN is
ocused on disrupting illicit supply networks on the web by closely examining OSINT data sources
e.g., Dark Web forums, markets, etc.). 
Oftentimes, research generated from the aforementioned grants may have significant practical
tility. However, transitioning selected technologies to practice can often be a non-trivial task due
o lack of a clear pathway, unclear end-users, and appropriate financial support. In recognition
f these challenges, the NSF also has mechanisms to support faculty in commercializing their re-
earch and technologies to maximize their societal impact. Example programs to support this goal
nclude SaTC T TP, SBIR/ST TR, and Convergence Accelerator. Each opportunity emphasizes the
ritical importance of clear practical goals and impact. Finally, they provide knowledge about how
I for Cybersecurity (from scholarly and/or practical perspectives) can be delivered via innova-
ive education programs. These programs can be funded by education-oriented funding, such as
AGER AI4Cyber and SaTC-EDU. 
Each funding mechanism listed above can provide excellent resources to help scholars generate
I for Cybersecurity research at a rapid pace. However, peer-reviewing and archiving this research
ACM Transactions on Management Information Systems, Vol. 11, No. 4, Article 17. Publication date: December 2020. 
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Table 4. Selected Relevant Conferences and Venues for Disseminating AI for Cybersecurity Research 

Conference Type Selected Conference* 
Approximate 
Annual Size 

Relevant AI for 
Cybersecurity Workshop(s) 

Academic Security 
Venues 

IEEE S&P 700 + DLS 
ACM CCS 1,000 + AISec 
USENIX 2,000 + ScAINet 
IEEE ISI 200 + –

Industry Security 
Venues 

Cyber Defense 1,000 + –
DEFCON 20,000 + AI Village 
CAMLIS 100 + –

CS AI Venues 

ACM KDD 3,000 + ISI-KDD 

ASONAM 1,000 + FOSINT-SI 
NeurIPS 13,000 + Trustworthy ML 
IEEE ICDM 800 + DL-CTI 

NSF Meetings 
SaTC PI Meeting 500 + AI for Cyber 
Trusted CI Meeting 500 + –
SFS Job Fair 1,000 + –

* Note : AISec = Artificial Intelligence for Security; CAMLIS = Conference on Applied Machine Learning for Information 
Security; CCS = Computer and Communications Security; DL-CTI = Deep Learning for Cyber Threat Intelligence; 
DLS = Deep Learning for Security; FOSINT-SI = Foundations of Open Source Intelligence and Security Informatics; 
ISI = Intelligence and Security Informatics; ISI-KDD = Intelligence and Security Informatics Knowledge Discovery 
from Databases; KDD = Knowledge Discovery from Databases; ASONAM = Advances in Social Network Analysis and 
Mining; NeurIPS = Neural Information Processing Systems; ICDM = International Conference on Data Mining; SaTC 
= Secure and Trustworthy Cyberspace; S&P = Security and Privacy; SFS = Scholarship-for-Service; ScAINet = Security 
and AI Networking Summit. 
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s essential for ensuring the long-term viability and health of a discipline. Conferences and jour-
als can provide excellent mechanisms in this regard. We summarize a selected listing of prevailing
ybersecurity meetings and venues in Table 4 . We group the opportunities into four major groups:
cademic security venues, industry security venues, computer science AI venues, and NSF meet-
ngs. For each conference, we also summarize its approximate annual size as well as relevant AI
or cybersecurity workshops. 
Each conference venue offers a tremendous opportunity for AI for Cybersecurity scholars and
ractitioners to share and disseminate ideas as well as network with colleagues. For example, aca-
emic venues are increasingly supporting workshops pertaining to various topics related to CTI,
dversarial ML, trustworthy computing, and other AI for Cybersecurity topics. These conferences
an also serve as an excellent mechanism to get feedback on preliminary work for possible exten-
ion to prevailing cybersecurity journals and magazines, including IEEE Transactions on Depend-
ble and Secure Computing (TDSC), IEEE Transactions on Information Forensics and Security (TIFS),
CM Transactions on Privacy and Security (TOPS; formerly TISSEC), IEEE Security and Privacy
agazine , and Computers and Security (C&S). Published works in these journals can help archive
he research and contribute to the long-term viability of the AI for Cybersecurity discipline. 

 ARTICLES IN THIS SPECIAL ISSUE 

his special issue aims to take an important step in cultivating the AI for Cybersecurity commu-
ity. The idea for this special issue was originally conceived at the International Conference on
nformation Systems (ICIS) in December 2018 in San Francisco, California. In the ensuing months,
he guest editor team was developed and the Call for Papers (CFP) was carefully refined. The initial
CM Transactions on Management Information Systems, Vol. 11, No. 4, Article 17. Publication date: December 2020. 
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Table 5. Summary of Articles in This Special Issue 

Authors Title Topic Data Sources Methodology 

Husak et al. Predictive Cyber Situational 
Awareness and Personalized 
Black Listing: A Sequential 
Rule Mining Approach 

Personalized blacklisting 12 million alerts from 

34 IDs 
Sequential rule 
mining 

Mangino 
et al. 

Internet-scale Insecurity of 
Consumer Internet of 
Things: An Empirical 
Measurements Perspective 

Fingerprinting infected IoT 
devices 

3.6TB of network 
traffic data; 800K 
compromised IPs 

Gaussian Naïve 
Bayes, SVM, Random 

Forest, intelligent 
feature selection 

Mudgerikar 
et al. 

Edge-based Intrusion 
Detection for IoT Devices 

Profiling IoT devices 3,973 traditional IoT 
malware samples 

Random Forest and 
Naïve Bayes 

Namayanja 
et al. 

IP Reputation Scoring with 
Geo-Contextual Feature 
Augmentation 

Effective anomaly 
detection for encrypted 
network data based on 
geo-location reputations 

See blacklisted and 
whitelisted data, 
network data sources, 
geo-contextual data 

Geo-spatial analysis, 
clustering, reputation 
services 

Shao et al. An Ensemble of Ensembles 
Approach to Author 
Attribution for Internet 
Relay Chat Forensics 

Author identification and 
threat message detection 
for IRC monitoring 

Nine IRC channels 
pertaining to hacking 
activities 

Deep forest and 
ensemble 
methodologies 

Sharma 
et al. 

Panda: Partitioned Data 
Security on Outsourced 
Sensitive and Non-Sensitive 
Data 

Encrypting sensitive vs. 
non-sensitive outsourced 
data 

MPC-based Jana and 
SGX-based Opaque 

Query binning; 
cryptographic 
techniques 

Sweet 
et al. 

On the Variety and Veracity 
of Cyber Intrusion Alerts 
Synthesized by Generative 
Adversarial Networks 

Generating synthetic alerts 
to emulate critical 
dependencies 

Alert logs Generative 
adversarial networks 

Zhang 
et al. 

Analysis of Cyber Incident 
Categories Based on Losses 

Quantifying risks for 
insurance and risk 
management applications 

VERIS Database, 
WebHacking Incident 
Database, Privacy 
Rights Clearinghouse 

Loss occurrences 
with Bernoulli 
random variables, 
clustering, network 
visualizations 

Zihayat 
et al. 

A Time-based Gap Analysis 
of Cybersecurity Trends in 
Academic and Digital Media 

Identifying emerging 
cybersecurity trends 
between 2008 and 2018 

3,556 academic 
papers and 4,163 New 

York Times articles 

Topic modeling, 
temporal analysis 
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FP was distributed via the AISWorld listserv; DBWorld listserv; the 2019 IEEE Intelligence and
ecurity Informatics (ISI) Conference in Shenzhen, China; DEFCON AI Village in Las Vegas; and
ver 250 personal emails in our contact networks. These efforts resulted in 60 submissions to the
pecial issue. Sixteen papers were desk rejected due to lack of fit, resulting in 44 total papers being
ent out for review. During the peer review process, an additional 29 papers were rejected. Out
f the final accepted papers, nine were eventually selected to be part of the cybersecurity related
pecial issue. Each paper went through two or three rounds of review. We provide a summary
f the final accepted papers in Table 5 . For each paper, we identify the topic, data sources, and
ethodology employed or developed. Selected impacts the work has on AI for Cybersecurity are
oted following the table. Papers are listed in alphabetical order based on the last name of the first
uthor. 
Each of the articles made interesting and timely contributions to the field of AI for Cybersecurity.

n the article entitled “Predictive Cyber Situational Awareness and Personalized Black Listing: A
equential Rule Mining Approach,” Husak et al. employed a sequential rule mining approach on 12
illion alerts from 34 Intrusion Detection Systems for personal blacklisting applications. Results of
ACM Transactions on Management Information Systems, Vol. 11, No. 4, Article 17. Publication date: December 2020. 
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his work can significantly help SOC analysts in reducing alert fatigue. Mangino et al. contributed
n article entitled “Internet-scale Insecurity of Consumer Internet of Things: An Empirical Mea-
urements Perspective” that focused on fingerprinting IoT-infected IP addresses via an intelligent
eature selection and classification algorithm approach. Results of their work can have significant
mplications for facilitating global CTI regarding the profile of malicious IoT devices. Mudgerikar
t al. aimed to study a related phenomenon of profiling IoT devices in their work entitled “Edge-
ased Intrusion Detection for IoT Devices.” In particular, they leveraged a classification method-
logy on 3,973 malware samples to achieve their goal. Namayanja et al. aimed to gain a global
nderstanding of device reputations for anomaly detection applications in their article entitled “IP
eputation Scoring with Geo-Contextual Feature Augmentation.” Similar to Mangino et al., this
ork has significant implications for mapping out the global threat landscape. Shao et al. aimed
o also make strides in the CTI area in their work entitled “An Ensemble of Ensembles Approach
o Author Attribution for Internet Relay Chat Forensics.” In particular, they analyzed nine IRC
hannels via a novel author attribution deep forest approach with the goal of attributing selected
uthors in IRC channels and detecting selected threat messages. Sharma et al. aimed to tackle
he problem of anonymizing sensitive data via a query binning and cryptographic techniques in
heir article entitled “Panda: Partitioned Data Security on Outsourced Sensitive and Non-Sensitive
ata.” Sweet et al. contributed an article entitled “On the Variety and Veracity of Cyber Intrusion
lerts Synthesized by Generative Adversarial Networks.” This work makes excellent contribu-
ions to SOC analysts and adversarial ML by tackling the key issue of alert analysis. In the article
Analysis of Cyber Incident Categories Based on Losses,” by Zhang et al. leveraged Bernoulli ran-
om variables, clustering, and network analytics to quantify the risk of selected cyber-attacks for
nsurance and risk management applications. Their work has significant implications for strate-
ic cybersecurity professionals who focus on making critical cybersecurity investments. Finally,
ihayat et al. aimed to identify emerging trends between 2008 and 2018 via a topic modeling and
emporal analysis-based approach in their work entitled “A Time-based Gap Analysis of Cyber-
ecurity Trends in Academic and Digital Media.” Their work provides a powerful approach for
eeping up with the ever-evolving cybersecurity landscape. 

 SUMMARY 

reventing cyber-attacks has become a grand societal challenge. Despite significant investments
n various cybersecurity programs, breaches remain on an upward trend. AI-based techniques
old significant promise in sifting through large quantities of heterogeneous cybersecurity data to
fficiently and effectively support critical cybersecurity tasks such as asset prioritization, controls
llocation, threat detection, and vulnerability management. Despite these potential benefits, the
I for Cybersecurity discipline is still in its nascency. Numerous opportunities exist for scholars
o make significant progress and practical impacts in turning the tide against cyber-attacks. 
In this article, we aimed to provide an important step to progressing the AI for Cybersecurity
iscipline. In particular, we provided an overview of prevailing cybersecurity data (categorized
nto internal and external sources), summarized extant application areas of cybersecurity, and
dentified key limitations within the prevailing landscape. Based on these key issues, we offered a
ulti-disciplinary AI for Cybersecurity roadmap that centers on major themes such as cybersecu-
ity applications and data, advanced AI methodologies for cybersecurity, and AI-enabled decision
aking. To help scholars and practitioners make significant headway in tackling these grand AI
or Cybersecurity issues, we summarized promising funding mechanisms that can support long-
erm, systematic research programs and summarized prevailing journal and conference venues
or disseminating AI for Cybersecurity research. We hope that the contents of this article, along
CM Transactions on Management Information Systems, Vol. 11, No. 4, Article 17. Publication date: December 2020. 
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ith the articles in this special issue, stimulate discussion that can lead to the rapid growth of
igh-impact AI for Cybersecurity topics in a manner that positively impacts society. 
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