
Faster Polytope Rounding, Sampling, and Volume Computation
via a Sub-linear Ball Walk

Oren Mangoubi
Worcester Polytechnic Institute

Worcester, MA

Nisheeth K. Vishnoi
Yale University

New Haven, CT

Abstract—This paper studies the problem of “isotropically
rounding” a polytope K ⊆ Rn, that is, computing a linear
transformation which makes the uniform distribution on the
polytope have roughly identity covariance matrix. It is assumed
that K ⊆ Rn is defined by m linear inequalities. We introduce
a new variant of the ball walk Markov chain and show that,
roughly, the expected number of arithmetic operations per-
step of this Markov chain is O(m) that is sub-linear in the
input size mn – the per-step time of all prior Markov chains.
Subsequently, we apply this new variant of the ball walk
to obtain a rounding algorithm that gives a factor of

√
n

improvement on the number of arithmetic operations over the
previous bound which uses the hit-and-run algorithm. Since
the cost of the rounding pre-processing step is in many cases
the bottleneck in improving sampling or volume computation
running time bounds, our results imply improved bounds for
these tasks. Our algorithm achieves this improvement by a
novel method of computing polytope membership, where one
avoids checking inequalities which are estimated to have a very
low probability of being violated. We believe that this method
is likely to be of independent interest for constrained sampling
and optimization problems.

Keywords-polytope rounding; volume computation; sam-
pling; random walks

I. INTRODUCTION

The task of bringing a polytope into near-isotropic posi-
tion is an important problem in mathematics and theoretical
computer science (TCS). In TCS, this problem is closely
linked with the widely studied problem of computing a
polytope’s volume [6], [15], [8], [19], [4], and often serves
as an important pre-processing step for these algorithms. For
a > 0, we say that a convex body K is in a-isotropic position
if the uniform distribution on K has covariance matrix ΣK
and mean µK satisfying

1

a2
In 4 ΣK 4 a2In and ‖µK‖2 ≤

1

10
a.

Formally, consider the following problem, where B denotes
the unit ball centered at the origin:

Problem 1 (Bringing a polytope into isotropic position).
Given a polytope K := {x ∈ Rn : Ax ≤ b}, with A ∈
Rm×n and b ∈ Rm such that rB ⊆ K ⊆ RB for some
r,R > 0, generate a matrix Ω̃ ∈ Rn×n and vector µ̃ ∈ Rn
such that K̃ := Ω̃−

1
2 (K − µ̃) is in 2-isotropic position.

The problems of sampling from the uniform distribution on a
polytope and of bringing a polytope into isotropic position
are closely related. On the one hand, bringing a polytope
into isotropic position can improve the running time of
Markov chain-based sampling algorithms [14]. On the other
hand, it is known that n log(n) independent samples from
the uniform distribution on a polytope suffices to bring
a polytope into O(1)-isotropic position [22]. All current
Markov chains which are used to sample from the uniform
distribution on a polytope defined by m inequalities use
at least mn arithmetic operations per Markov chain step
to implement, and it is currently an open problem how to
improve the number of arithmetic operations to fewer than
mn [14]. mn is the size of the input and is also the time
required to check whether a given point is in K or not.

The main focus of this paper is to develop Markov chains
for sampling that allow us to bypass this mn barrier, and
obtain faster algorithms for rounding, sampling, and volume
computation. In particular, we introduce an implementation
of the ball walk Markov chain [1], [8], which improves the
expected number of arithmetic operations to roughly O(m)
operations per ball walk step. Our improvement in the per-
step complexity applies in the special case when the polytope
is in near-isotropic position, and we are given an O(1)-warm
start in the n−3 interior of the polytope.

We then apply a recent result of [14] which says that,
starting at any point on the n−3 interior of K, the ball walk,
together with a rejection sampling post-processing step from
[8], can generate a sample from the uniform distribution on
K in O(n2.5 log(1

ε)) “proper” ball walk steps (that is, only
counting the steps where the ball walk changes position). If
X0 is also O(1)-warm, the expected number of steps (both
proper and improper) is also O(n2.5 log(1

ε)) [8]. Multiplying
the two, we get that the expected number of operations for
our implementation of the ball walk to generate a sample
with TV error ε, is, roughly speaking1, O(m×n2.5 log(1

ε)).

1Since the two random variables may be correlated, we cannot simply
multiply their expectations. Instead, we treat these two expectations sepa-
rately until the very end of our proof, and then use Markov’s inequality to
bound each with probability 9/10. We then multiply our bounds for the
two random variables that we obtained from Markov’s inequality to get a
bound for the product of the random variables which holds with probability
8/10.

Therefore, if we re-start the ball walk at the same O(1)-
warm initial point X0 after we generate each sample, we can
use our algorithm to generate p samples that are (condition-
ally on X0) jointly independent and uniformly distributed
on K with TV error ε, after roughly O(pmn2.5 log(1

ε))
operations.

Using our implementation of the ball walk to generate
n log(n) samples, we can use results from [22] to compute
a sample mean and sample covariance matrix for the uniform
distribution on K which allows us to bring any polytope K
that is in 15-isotropic position into 2-isotropic position with
probability 1−ε, in roughly Õ(mn3.5 log(1

ε)) operations, if
we are given an O(1)-warm start X0, with X0 in the n−3

interior of K. We use this idea in an iterative manner to
obtain a rounding algorithm which can bring any polytope
rB ⊆ K ⊆ RB into 2-isotropic position with probability
1− ε. Specifically, we show the following:

Theorem I.1 (Main theorem: Bringing a polytope into
isotropic position). There exists an algorithm which, given
a polytope K := {x ∈ Rn : Ax ≤ b}, with A ∈ Rm×n and
b ∈ Rm such that rB ⊆ K ⊆ RB for some r,R > 0,
and ε > 0, generates a matrix Ω̃ ∈ Rn×n and vector
µ̃ ∈ Rn such that the polytope K̃ := Ω̃−

1
2 (K − µ̃) is

in 2-isotropic position with probability at least 1 − ε, in
Õ(mn4.5polylog(1

ε ,
R
r)) arithmetic operations.

To prove Theorem I.1 (see Theorem V.6 for the version
of Theorem I.1 specific to our algorithm), we consider a
sequence of convex bodies

Ki := K ∩ (1 + 1/n)irB,

and bring these convex bodies into isotropic position se-
quentially, starting from K0 = rB. We are able to do
this since one can show that the same linear transforma-
tion which brings Ki into 2-isotropic position also brings
Ki+1 into 15-isotropic position. Since there are n log(Rr)
convex bodies Ki in the sequence, our algorithm brings K
into 2-isotropic position in Õ(mn4.5polylog(1

ε ,
R
r)) opera-

tions. Our rounding algorithm improves the best previous
Õ(mn5polylog(1

ε ,
R
r)) bound of [19] for bringing a poly-

tope into isotropic (or just “well-rounded”) position by a
factor of

√
n, making progress on an open problem (see #4

in Section 8 of [4]). We get an improvement of
√
n rather

than n since our bound for the number of operations per
ball walk step needs the convex bodies Ki to be kept in
isotropic position at each i (requiring us to generate Θ̃(n2)
independent samples), while [19] only need to keep their
sequence of convex bodies in well-rounded position at each
iteration (which they can do using only Θ̃(n) independent
samples). On the other hand, each of our samples requires
n1.5 fewer operations per sample in expectation: we get a
factor of n fewer operations from our improved bound on
the expected number of operations per Markov chain step,
and an additional factor of

√
n fewer operations because

the bound on the number of ball walk steps on isotropic
convex bodies is smaller by a factor of

√
n than the bound

for the hit-and-run Markov chain used in [19]. Our bound
on the number of operations to put K in isotropic position
is therefore smaller by a factor of

√
n compared to [19].

A. Application to volume computation

Bringing K into isotropic position allows us to then use
the volume computation algorithm of [4] to compute the
volume of K with error δ, in Õ(mn

4

δ2) operations after we
pre-process K into isotropic position. Hence, starting with
K far from isotropic position, we can compute the volume
of K in roughly Õ(mn4.5 log(Rr) + mn4

δ2) operations:

Corollary I.2 (Computing the volume of a polytope).
There exists an algorithm which, given a polytope K :=
{x ∈ Rn : Ax ≤ b}, with A ∈ Rm×n and b ∈ Rm such that
rB ⊆ K ⊆ RB for some r,R > 0, and ε, δ > 0, computes
with probability at least 1−ε the volume of K up to a factor
of 1 + δ in Õ(mn4.5polylog(1

ε ,
R
r) + mn4

δ2 polylog(1
δ ,

1
ε))

arithmetic operations.

In the regime where δ−1 = O(1) and m ≥ n3,
the best current algorithm, which uses [19] for pre-
processing and [4] for volume computation, gives a bound
of Õ(mn5polylog(1

ε ,
R
r) + mn4

δ2 polylog(1
δ ,

1
ε)) operations.

Corollary I.2 improves this bound by a factor of
√
n.

Moreover, since our result benefits from recent improve-
ments in the bound on the Cheeger constant of an isotropic
convex body, Corollary I.2 makes progress towards the open
problem of connecting improved bounds on the Cheeger
constant to faster volume computation (See section 2.2.3
of [14]). In Table I we give bounds for different algorithms
which can be used to compute the volume.

B. Application to sampling

Pre-processing a polytope into isotropic position is also
a bottleneck for the problem of sampling from the uniform
distribution on the polytope. If we use our rounding algo-
rithm (Theorem I.1) to bring K into 2-isotropic position,
and then use the hit-and-run algorithm to generate a sample
from the uniform distribution on K, we obtain a sample
from the uniform distribution on K with TV error ε in
Õ(mn4.5polylog(1

ε ,
R
r)) arithmetic operations:

Corollary I.3 (Sampling from non-rounded polytope).
There exists an algorithm which, given a polytope K :=
{x ∈ Rn : Ax ≤ b}, with A ∈ Rm×n and b ∈ Rm such that
rB ⊆ K ⊆ RB for some r,R > 0, and ε > 0, generates
a sample uniformly distributed on K with TV error ε, in
Õ(mn4.5polylog(1

ε ,
R
r)) arithmetic operations.

In the regime where m ≥ n2, the current best bound is
Õ(mn5polylog(1

ε ,
R
r)) operations (if one uses a rounding

pre-processing step from [19], and then the hit-and-run

Markov chain [18]) or, depending on the matrix multipli-
cation exponent 2 < ω ≤ 3, Õ(mnω+2.5 log(1

ε)) for the
John walk [3]. Corollary I.3 improves on [19] by a factor of√
n, and on [3] by a factor of nω−2. However, for smaller

values of m algorithms such as Riemannian HMC [13] can
be faster (see Table II).

Algorithm # of arithmetic operations

Ball walk + rounding [8] mn6δ−2

Ball walk + rounding [11]
mn5.5 +mn4δ−2

+ Gaussian cooling
Hit-and-run [19]

mn5δ−2

+ simulated annealing

Riemannian HMC [13] m2nω−1/3δ−2

Gaussian cooling [5] mn×max(n2(R/r)2, n3)δ−2

Algorithm 1&2 [our paper]
mn4.5 +mn4δ−2

+ Gaussian cooling

Table I: Bounds on the number of arithmetic operations to compute
the volume of a polytope K with rB ⊆ K ⊆ RB (logarithmic
factors of r,R, ε, d,m are not shown). Here ω is the matrix
multiplication exponent, currently ω ≈ 2.37. (note: Gaussian
cooling assumes (r,R)-well rounded, which is somewhat weaker
than rB ⊆ K ⊆ RB)

Algorithm # of arithmetic operations

Ball walk + rounding [11] mn5.5

Hit-and-run + rounding [19] mn5

Dikin walk [9] m2nω+1

John walk [3]
mnω+2.5

+ Dikin walk initialization
m2nω+3/4

Geodesic walk* [12] (m2nω− 1
4 log(β) assuming

a β-warm start)
m2nω+2/3

Riemannian HMC* [13] (m2nω−1/3 log(β) assuming
a β-warm start)

Vaidya walk [3]
m1.5nω+3/2

+ Dikin walk initialization

Algorithm 1&2 [our paper] mn4.5

Table II: Bounds on the number of arithmetic operations to
generate one sample from the uniform distribution on a polytope
K with rB ⊆ K ⊆ RB (logarithmic factors of r,R, ε, d,m are
not shown). The matrix multiplication exponent ω is currently
ω ≈ 2.37 for the best known matrix multiplication algorithm.
(*Note: RHMC and Geodesic walk assume a warm start. While
one can obtain a (R/r)n-warm start in our setting by initializing
from the uniform distribution on rB, this causes the running times
of RHMC and Geodesic walk to gain an additional factor of n.)

Note that in Table II the Dikin, Geodesic and Vaidya walks,

as well as Riemannian HMC, have bounds with dependence
on m of at least m1.5. In particular, in the regime m > n2,
they have slower bounds than the algorithms which have
linear dependence on m, including our algorithm as well as
the hit-and-run algorithm of [19] and the ball walk of [11].
Finally, note that, given the current bound ω ≈ 2.37, our
algorithm has faster bounds compared to the John walk.

C. Key technical ideas

The algorithmic techniques we use in our variant of the
ball walk are inspired from stochastic gradients, where one
queries an oracle by subsampling. Instead of subsampling a
small subset of component gradients, at each step of the ball
walk we check a small subset of the inequalities defining our
polytope. The challenge is in determining which inequalities
are important at any given time. The main difficulty lies in
the fact that the ball walk is much more likely to violate
inequalities corresponding to nearby hyperplanes than far-
away ones. The reason is that, if the Markov chain’s steps are
uniformly distributed, by the isoperimetric inequality [20]
(and convexity of the polytope) the Markov chain will in
expectation spend at least roughly half of its time a distance
of 1

n from the boundary of the polytope, if the polytope is in
near-isotropic position. Hence, in expectation, the Markov
chain will be a distance of 1

n from one or more faces
of the polytope at least half of the time and one cannot
simply check a uniform random subset of these inequalities.
Instead, our Markov chain estimates the distance to each
inequality, and checks only those inequalities which have a
non-negligible probability of being violated. This idea turns
out to be challenging to execute and we expand on it in
Section III. We believe our method of checking membership
may be of independent interest to constrained sampling and
optimization problems.

II. OUR ALGORITHMS

A. Notation

For any finite-volume subset S ⊆ Rn, let ΣS denote the
covariance matrix of the uniform distribution on S and let
µS denote the mean of the uniform distribution on S. Let
πK denote the uniform distribution on a convex body K.
Let π̂K ≡ π̂ηK denote the speedy distribution for step size η,
where the speedy distribution is the stationary distribution
of the proper steps of the ball walk with step size η. The
Markov chain formed by the proper steps of the ball walk
is called the speedy walk. A convex body K is said to be
a-isotropic if

1

a2
In 4 ΣK 4 a2In.

If, furthermore, ‖µK‖2 ≤ 1
10a, we say that K is in a-

isotropic position. A convex body K is said to be (r,R)-
rounded if

EX∼πK [‖X‖22] ≤ R2

and K contains a ball of radius r. A convex body which is
O(1)-isotropic is also (O(1), O(

√
n))-rounded, although the

converse is not true [17]. If a convex body is (r,R)-rounded
with R

r = O(
√
n), we say it is well-rounded. For any subset

S ⊆ Rn and any point x ∈ Rn, let

dist(x, S) := inf
y∈S
‖x− y‖2

denote the distance from x to the subset S and let ∂S
denote the boundary of the subset S. Let B(x, r) denote
the Euclidean ball with center x and radius r, and denote
the unit ball by the shorthand notation B := B(0, 1). We
say that a probability distribution µ : Rn → R (or a random
variable with distribution µ) is β-warm with respect to a
probability distribution ν : Rn → R if

µ(x)

ν(x)
≤ β ∀x ∈ Rn.

We denote the probability distribution of a random variable
X by L(X). Finally, we define the ball walk Markov chain
X̃0, X̃1 . . . on K with initial point X̃0 ∈ K and step size
η > 0, by the recursion

X̃i+1 =

{
X̃i + ηξi if X̃i + ηξi ∈ K
X̃i+1 = X̃i otherwise,

where ξ0, ξ1, . . . are iid uniform on the unit ball.

B. Algorithm 1 (Sampling)

Algorithm 1 generates independent samples approxi-
mately uniform on a convex body

K := {x ∈ Rn : Ax ≤ b} ∩ ρB,

for some ρ > 0. It has two main components: a Markov
chain obtained as a subsequence of the ball walk which
generates samples from the “speedy distribution”, and a
rejection sampling method which obtains uniform samples
from these “speedy distributed” samples. The “While” loop
generates the ball walk X1, To determine whether a
ball walk proposal is inside K without checking all m
inequalities at each step, every time that the algorithm checks
an inequality Ajx ≤ b, it stores in memory the distance hj to
the corresponding hyperplane Hj . The algorithm then waits
hj

αη/
√
n

steps until re-computing that inequality, where α > 0
is a parameter set by the user. The idea is that, since with
high probability the ball walk makes steps of size O(η/

√
n) in

the direction of the hyperplane Hj , the ball walk is unlikely
to propose a step which crosses Hj before taking hj

αη/
√
n

steps. This allows us to ensure that our implementation of
the ball walk remains inside K with high probability.

The ball walk is run until a fixed number of proper
steps Ys are made. The Markov chain Y1, Y2, . . . formed
by the proper steps of the ball walk is called the “speedy
walk”. Since fast mixing bounds are available for the speedy
walk but not for the ball walk, we generate our samples

from the speedy walk, that is, we run the ball walk for a
fixed number I of proper steps. This gives us a sample YI
approximately from the stationary distribution of the speedy
walk. Unfortunately, the speedy walk does not have uniform
stationary distribution; the samples from the speedy walk
have a different distribution called the “speedy distribution”.
To obtain uniformly distributed samples from our speedy-
distributed samples we use a rejection sampling method,
Algorithm 4.15 from [8] (reproduced in our Algorithm 1
as Steps 35-40). To obtain p independent samples, we run
the speedy walk p times starting at the same initial point
Y0 but using different independent random Gaussian vectors
ξi each time (this is the outer “For” loop). The parameter
“Modified” can be set to “ON” or “OFF”. If it is “ON”
we use our new implementation of the ball walk, while if
it is “OFF” we use the usual implementation where all m
inequalities are checked at each step. The purpose of the
parameter “Modified” is only to simplify the exposition of
our proofs; in practice we always set “Modified = ON.”

Algorithm 1 Sampling (Modified speedy walk)

input: A ∈ Rm×n, b ∈ Rm, ρ > 0, with 1
10B ⊆ K where

K := {x ∈ Rn : Ax ≤ b} ∩ ρB
input: step size η > 0, tolerance α > 0, I > 0, maximum
number imax of proper+improper steps
input: Initial point Y0 ∈ K, Modified ∈ {ON,OFF}

1: for j = 1 to m do . Initialization: compute distance to
all m hyperplanes

2: Set hj = bj −AjX0

3: end for
4: Sort the hj’s in increasing order, and denote the

ordered set of hj’s by H
5: Set i = 0, s = 0, and k = 1
6: while k ≤ p do
7: Set X0 = Y0
8: while s ≤ I and i ≤ imax do
9: Set i← i+ 1, and set K = True

10: Sample ξi ∼ unif(B(0, 1))
11: Set X̂i+1 = Xi + ηξi . Ball walk proposal
12: if Modified = ON then . Determining which

inequalities to check
13: Set j? to be the largest value of j such that

hj < α η√
n
× i

14: for j = 1 to j? do . Compute distance to
possibly-nearby hyperplanes

15: Set hj = bj −AjXi

16: Insert hj into H such that H remains in
increasing order

17: if hj < 0 and K = True then
18: Set K = False
19: end if
20: end for

21: if ‖X̂i+1‖2 > ρ then . Check if in ball ρB
22: Set K = False
23: end if
24: else . Conventional membership query, if

modifications “turned off”
25: Check if X̂i+1 satisfies all m inequalities and

is in ρB, and if not set K← False
26: end if
27: if K = True then
28: Set Ys = Xi . Speedy walk step
29: Set Xi+1 = X̂i+1

30: Set s← s+ 1
31: else
32: Set Xi+1 = Xi

33: end if
34: end while
35: Set Zk = 2n

2n−1Ys
36: if Zk ∈ K then
37: “accept” Zk and set k ← k + 1
38: else
39: “reject” Zk . rejection sampling to get uniform

distribution
40: end if
41: end while
42: output: Samples Z1, . . . , Zp which are approximately

uniformly distributed on K. Output these samples if i ≤
imax. Otherwise, output “Failure”.

C. Algorithm 2 (Rounding)

Using Algorithm 1 as a subroutine, we obtain an algorithm
(Algorithm 2) for bringing a polytope into isotropic position:

The goal of Algorithm 2 is to inductively bring into
isotropic position a sequence of convex bodies

K1 ⊆ K2 ⊆ · · · , where Ki := (1 + 1/n)irB ∩K,

starting with K1. At each iteration of the “For” loop, we use
Algorithm 1 to generate samples from the uniform distribu-
tion on a convex body K̂i which is an affine transformation
of Ki in 15-isotropic position obtained at the previous step
of the “For” loop (Step 11). Using these samples, Algorithm
1 computes a sample covariance matrix and mean for K̂i

(Steps 12 and 13), which allows it to compute an affine
transformation that puts Ki into 2-isotropic position as “K̃i”
and Ki+1 into 15-isotropic position as “K̂i+1”. Steps 15-21
generate a point X0 which is O(1)-warm with respect to the
uniform distribution and in the n−3-interior of K̃i. The point
X0, which is also O(1)-warm with respect to the uniform
distribution on K̂i+1 and in its n−3-interior, is then used in
the next iteration of the “For” loop as an initial point when
Algorithm 1 is used to generate samples from the uniform
distribution on K̂i+1.

Algorithm 2 Rounding

input: A ∈ Rm×n, b ∈ Rm
input: r,R > 0 such that rB ⊆ K ⊆ RB, where
K := {x ∈ Rn : Ax ≤ b}
input: p ∈ N, ε > 0, Modified ∈ {ON,OFF}

1: Set Σ̂0 = r2In and µ̂0 = 0
2: Set i? = n log2(Rr)
3: for k = 1 to p do
4: Sample Zk from the uniform distribution on B
5: if dist(Zk, ∂B) ≥ n−3 then
6: Set X̂0 = Zk
7: end if
8: end for
9: for i = 1 to i? − 1 do

10: Define Ki := (1 + 1/n)irB ∩K (just a definition,
no computation here)

11: Use Algorithm 1 with parameter “Modified” and
initial point X0 to generate p points Z1, . . . , Zp
approximately from the uniform distribution on
K̂i ∩ 20

√
n log(40n2

ε)B, where K̂i := Σ̂
− 1

2
i (Ki − µ̂i)

and is represented by the inequalities with matrix
AΣ̂

1
2
i ∈ Rm×n, and vector b−Aµ̂i ∈ Rm.

12: Set µ̂i+1 = 1
p

∑p
j=1 Zi + µ̂i

13: Set Σ̂i+1 = [1p
∑p
j=1(Zi − µi)>(Zi − µi)]Σ̂i

14: Set Interior = False
15: while Interior = False do . generate a starting

point, uniform on the “n−3-interior” of K̂i

16: Use Algorithm 1 with parameter “Modified”
and initial point X0 to a generate a single sample X̂0

approximately from the uniform distribution on
K̂i ∩ 20

√
n log(40n2

ε)B.

17: Set X̂ ′0 ← Σ̂
− 1

2
i+1Σ̂

1
2
i (X̂0 + µ̂i − µ̂i+1)

18: if dist(X̂ ′0, ∂[K̃i ∩ 20
√
n log(40n2

ε)B]) ≥ n−3,

where K̃i := Σ̂
− 1

2
i+1(Ki − µ̂i+1) then

19: Set X0 = X̂ ′0
20: Set Interior = True
21: end if
22: end while
23: end for
24: output: Σ̂i? , µ̂i? , X0

III. TECHNICAL OVERVIEW OF OUR MAIN RESULT:
THEOREM I.1

A. Rounding polytopes via sampling

Most algorithms which bring a polytope into isotropic po-
sition work by generating independent or near-independent
samples which are approximately uniformly distributed in
the polytope. These samples allow one to compute the
sample mean and sample covariance matrix for the polytope.
In [22] it was shown that n log(n) samples suffice to bring

a polytope into isotropic position. However, one is still left
with the problem of generating independent uniform samples
from the polytope. Typically this is done by running a
Markov chain on the polytope whose stationary distribution
is equal (or in some sense close to) the uniform distribution
in the polytope. However, the number of steps for which one
must run the Markov chain to obtain uniform independent
samples in many cases itself depends on the extent to
which the polytope is isotropic, or the extent to which it
is rounded.2

Because of this, most rounding algorithms start with the
ball contained in the polytope (which is very easy to put in
well-rounded position), and gradually deform the polytope at
each iteration (for instance by considering the intersection of
the polytope with a ball of increasing radius). One alternates
between sampling steps where one samples from the convex
body, and steps where one uses these samples to compute
an affine transformation which keeps the convex body well-
rounded (for example, this transformation can be achieved
by computing the sample covariance matrix). For instance,
this is the case for the “ball walk” Markov chain used
in [8], and the “hit-and-run” Markov chain used in [19].
In particular, the algorithm of [19] requires only n log(n)
samples to round the convex body. Key to this is that the hit-
and-run Markov chain does not require isotropic position but
rather only that the polytope be well-rounded. This fact was
used in [19], together with a “pencil construction,” to provide
a rounding algorithm where one computes a well-rounded
polytope at n log(Rr) iterations each using log(n) samples,
and using n samples to bring the polytope into isotropic
position only every log(n) iterations. Since the hit-and-
run Markov chain requires n3 steps to generate a uniform
sample, they require roughly n4 log(n) log(Rr) Markov chain
steps to put a polytope into isotropic position. If the polytope
is defined by m inequalities, the hit-and-run algorithm uses
mn arithmetic operations to compute polytope membership
at each step of the Markov chain, giving a bound of
mn× n4 log(n)) log(Rr) arithmetic operations to round the
polytope; this is currently the fastest running time bound for
rounding this class of polytopes in our setting.

This mn cost of computing each step of the Markov chain
is a feature of all current Markov chain sampling algorithms
on polytopes defined by m inequalities [14]. However, one
can imagine that there may be ways of reducing the cost
of computing polytope membership. One approach is to use
a Markov chain called “coordinate hit-and-run” [7]. This
algorithm works in the same way as the usual hit-and-
run algorithm, except that it only takes steps in (random)
coordinate directions. Hence, checking each inequality takes
only O(1) arithmetic operations, meaning that each step of

2While there are some algorithms such as the Dikin walk which do not
depend on how isotropic the polytope is, these do not currently provide
the fastest methods of bringing a polytope rB ⊆ K ⊆ RB into isotropic
position in our setting.

the Markov chain would roughly require only m operations.
Unfortunately, since there are as of yet no polynomial-in-
dimension mixing time bounds for coordinate hit-and-run,
one cannot currently use coordinate hit-and-run to obtain
better running time bounds for rounding.

B. A first attempt

As an alternative approach to coordinate hit-and-run one
might consider using the stochastic gradient technique to
reduce the cost of computing each step of a Markov chain
which stays inside a polytope. For instance, one might
attempt to apply stochastic gradients to a Markov chain such
as the Dikin walk which, instead of computing polytope
membership, makes use of the log-barrier function of the
polytope to remain inside the polytope. The log-barrier at
any point in the Markov chain is given by

φ(x) = −
m∑
j=1

log(Ajx− bj),

with Hessian

∇2φ(x) = −
m∑
j=1

A>j Aj

(Ajx− bj)2

(here Aj is a row-vector). If m is large, one might try to
estimate the gradient, or in the case of the Dikin walk the
Hessian, of the log-barrier function by taking a small subset
of the polytope’s inequalities and using these to estimate
the sum. Unfortunately this “stochastic Hessian” gives a
very bad approximation for points which are near a face
of the polytope, since the term 1

(Ajx−bj)2 corresponding
to the nearest face can be much larger than the combined
contributions of the terms corresponding to all the other
faces, and a small subsample of the polytope inequalities
will most likely not include the single very large term.
Since a uniform random sampling is unlikely to include
this overwhelmingly large term in the sum, this “stochastic
Hessian” version of the Dikin walk is likely to very quickly
leave the polytope.

One might instead consider an approach related to
stochastic gradients, but for Markov chains such as the
ball walk which, instead of computing a barrier function,
compute polytope membership at each step. To determine
polytope membership, one typically checks all m inequal-
ities at each step of the Markov chain. One may instead
consider checking only a small uniformly random subset
of m

n of these inequalities at each step. Unfortunately, this
approach cannot work if one wishes to sample from the
uniform distribution on a polytope. The reason is that, if
the Markov chain’s steps are uniformly distributed, by the
isoperimetric inequality [20] (and convexity of the polytope)
the Markov chain will in expectation spend at least half of
its time a distance of 1

n from the boundary of the polytope.
Hence, in expectation, the Markov chain will be a distance

of 1
n from one face of the polytope at least half of the time.

For a ball walk with optimal step size of η = Θ(1√
n

), with
high probability the ball walk takes a step of size 1

n in the
direction of this face. Since the ball walk may have an Ω(1)
probability of proposing a step which violates the inequality
corresponding to the closest face, if one only checks a small
random subset of size m

n of the inequalities one is likely
to miss checking the inequality corresponding to this face,
which in many cases would cause the Markov chain to leave
the polytope with probability Ω(1) at each step (this is the
case, for instance, if the polytope is a cube). Hence, we
cannot limit ourselves to checking a random subsample of
the inequalities.

C. Our method of computing polytope membership

Recall that the isoperimetric inequality [20] implies that
any Markov chain whose stationary distribution is close to
the uniform distribution on the polytope will spend on aver-
age at least 1

n of its time a distance 1
n from the boundary of

the polytope. This suggests that if we wish to compute only
a small subsample of the polytope inequalities at each step
of the Markov chain, we must make sure that our subsample
includes all those inequalities whose corresponding face is
close to the current Markov chain step. While it is possible
for us to compute the distance

hj(i) := AjXi − bj

between the current point in the Markov chain Xi to the
hyperplane Hj corresponding to each inequality (Aj , bj),
we do not wish to compute this distance hj(i) for each
j at every step i in the Markov chain, since this takes
the same mn operations needed to check each inequality.
To get around this problem, rather than computing each
distance, we instead only compute the distance to any given
hyperplane at a small fraction of the steps. To determine
which hj(i) should be computed at any given step, we
estimate a high-probability lower bound Lj(i) for hj(i) and
only compute hj(i) if the Markov chain is likely to propose
a step violating the jth inequality, that is, if this lower bound
is

Lj(i) = O

(
1

n

)
.

To estimate the lower bound on hj(i), we apply concentra-
tion inequalities to the steps of the ball walk. Specifically, we
use concentration inequalities for spherical caps to show that
with probability at least 1− ε

m the ball walk will never take
any steps of size more than η√

n
log(imax

ε) in the direction of
Hj , if the ball walk is run for at most imax steps (imax is
a “cutoff time” parameter which can be set by the user of
Algorithm 1; if the algorithm takes more than imax steps,
the algorithm terminates without outputting any samples).

Hence, if we set our high-probability lower bound to be

Lj(i) = hj(i
?(i))− (i− i

?(i))× η√
n

log(
imax

ε
),

where i
?(i) is the last time before step i that the distance to

Hj was computed, then with probability at least 1 − ε the
ball walk will never leave the polytope (Lemma IV.1, and
Step 13 in Algorithm 1).

D. Using anti-concentration to prove expected running time
bounds for our algorithm

Even though we have shown that our algorithm obtains
the exact same samples as the usual implementation of
the ball walk with high probability, we still have to show
that it reduces the number of inequalities one has to check
at each step of the Markov chain. Towards this end, we
prove an anti-concentration inequality (Lemma IV.3) for the
uniform distribution on a convex body to show that the
expected number of inequalities our algorithm checks at any
given step is roughly m

n . Roughly, this inequality says that
a uniform random point on an isotropic convex body has
probability at most O(∆) of being within a distance ∆ of
any given codimension-1 hyperplane. The main obstacle in
applying the anti-concentration inequality is that, while we
are able to guarantee that a random step of the Markov chain
is O(1)-warm with respect to the uniform distribution on K,
if we are to only check a small fraction 1

n of the inequalities
(in expectation) at each step, the steps where one checks the
inequality cannot be uniformly distributed or even O(1)-
warm with respect to the uniform distribution but instead
can only be Θ(n)-warm at best. This is because one has
to ensure that, if the Markov chain is within a distance of
one ball walk step from a given inequality, this inequality
will be checked with very high probability, but only with
probability O(1

n) at a “typical” step.
To get around this problem we instead bound the waiting

time between any given step i of the Markov chain and the
most recent time i

?(i) that the distance to the hyperplane
was computed by the algorithm, as a function of the distance
to this hyperplane at the current step i of the Markov
chain, allowing us to apply the anti-concentration inequality.
Specifically, we use our bound on the size of the ball walk’s
steps in the direction of Hj to show that i − i

?(i) must
be greater than hj(i)

√
n

η log(mimax
ε)

. Since η = Θ(1√
n

), applying
the anti-concentration inequality on hj(i) gives a lower
bound on E[i − i

?(i)] that is roughly equal to n, if we
are given an O(1)-warm start with respect to the uniform
distribution. This in turn implies that given an O(1)-warm
start, we compute the distance to any given hyperplane at
only a small fraction 1

n of the ball walk steps in expectation
(Lemma IV.5). Hence, rather than taking mn operations,
our algorithm is able to compute each step of the ball walk
in only m operations in expectation, an improvement by a
factor of n.

E. Improved bounds for Rounding a polytope

Unfortunately, we cannot use the rounding meta-algorithm
of [19], which requires only n log(n) samples to round the
polytope, with our implementation of the ball walk. The
reason is that, while the rounding meta-algorithm in [19]
keeps a sequence of convex bodies well-rounded at each of
the n iterations, it only keeps the convex bodies in isotropic
position at a small number log(n) of the iterations. To obtain
our bounds on the expected frequency at which one needs
to compute the distance to each Hj , we must make sure that
the convex body is in isotropic position at each iteration; our
rounding algorithm (Algorithm 2) uses n2 log(n) samples
instead of n log(n) (see the next paragraph for a discussion
of the rounding algorithm). Hence, it would seem at first
that, despite the fact that we improve the expected number
of arithmetic operations at each step of the Markov chain by
a factor of n, this improvement would be offset by the fact
that we need n times as many samples, which we require
to keep the polytope in isotropic position at every iteration.
However, there are additional benefits to keeping a polytope
in isotropic position. In particular, recent improvements
towards weaker versions of the KLS conjecture imply that
the best current bound on the mixing time of the proper
steps of the ball walk (also called the “speedy walk”) also
improves to n2.5 by a factor of

√
n if the polytope is in

isotropic position as opposed to the roughly n3 mixing time
bound available for the hit-and-run Markov chain when
the polytope is well-rounded but not O(1)-isotropic [11].
Hence, keeping the convex body in isotropic position allows
us to combine our factor of n improvement with the

√
n

improvement in the mixing time from [11]. The number
of arithmetic operations to round a convex body is then
at most roughly mn4.5, an improvement of

√
n over the

mn5 bound of [19]. Note that it is enough to bound the
number of arithmetic operations in expectation, since one
can always start over if the rounding algorithm takes more
than its expected number of steps.

F. Rounding a polytope by sampling from isotropic position
(Algorithm 2)

More specifically, in order to efficiently generate the
samples needed to bring a polytope into 2-isotropic position
one should first ensure that the polytope from which one
samples is, say, in 15-isotropic position. Towards this end,
one can consider a sequence of nested convex bodies

Ki := K ∩ (1 + 1/n)irB.

The initial polytope K0 = rB is just the ball contained
inside K, which can be brought into isotropic position by
multiplying this ball by 1

r
√
d

. Since the diameter of Ki in-
creases by a factor of only 1+1/n, at each step, one can show
that the volume of these convex bodies does not increase by
more than e at each step i, and that for any transformation

that brings Ki−1 into 2-isotropic position, applying the
same transformation to Ki would bring it into 15-isotropic
position. This suggests an iterative algorithm (Algorithm 2),
where one samples from a 15-isotropic convex body which is
a linear transformation of Ki−1, allowing one to bring Ki−1
into 2-isotropic position. The same transformation brings
Ki into 15-isotropic position, allowing one to iteratively
bring the sequence of polytopes into 2-isotropic position
by alternating between sampling and linear transformation
steps (Lemma V.2). This takes n log(Rr) iterations to bring
the polytope K into isotropic position, and uses n log(n)
samples at each iteration; the number of samples to round
the polytope is then roughly n2 log(n) log(Rr). To allow us
to apply Lemma IV.5 and bound the expected fraction of the
time that our implementation of the ball walk (Algorithm 1)
checks a given inequality, we must still show the ball walk
has a warm start at each iteration of Algorithm 2. We can
obtain a warm start for Ki by using a sample from the i−1
iteration which is approximately uniformly distributed on
Ki−1 (Steps 15-21 of Algorithm 2). Since Ki−1 contains at
least 1

e of the volume of Ki, a uniformly distributed point on
Ki−1 provides us with an O(1)-warm start for Ki (Lemma
V.4).

Remark III.1. If the KLS conjecture is proved true, the
mixing time bound of the speedy walk on convex bodies in
isotropic position would decrease by an additional factor of√
n to just roughly n2, potentially allowing us to improve

our running time to roughly mn4. On the other hand, as
noted in [11], it is not known how to connect improvements
in the KLS conjecture to the current-best rounding algo-
rithm which uses hit-and-run from a well-rounded but not
isotropic position [19]. We note, however, that since further
improvements to KLS would only apply to the ball walk from
a warm start, even using our method, one would have to
find a way to modify our rounding algorithm to allow it to
use approximately-independent samples from a warm start
rather than fully-independent samples from a cold start.

G. Organization of the rest of the paper

In the rest of the paper, we prove the main result (Theorem
I.1, proved for our specific algorithm as Theorem V.6), and
its corollaries I.2 and I.3.

In Section IV we bound the accuracy of Algorithm 1
and (roughly speaking) the expected number of arithmetic
operations it performs when it is used to sample from a
polytope in O(1)-isotropic position. In Section IV-A we
bound the probability our implementation of the ball walk
leaves the polytope. In Section IV-B we prove an anti-
concentration bound, which we use in Section IV-C to bound
the expected frequency at which our implementation of the
ball walk checks a given inequality. In Sections IV-D and
IV-E we recall results from [8] and [11] which allow us to
then bound the mixing time of the speedy walk (the proper

steps of the ball walk) and the expected number of steps.
In Section V we bound the success probability and

expected number of arithmetic operations of the rounding
algorithm (Algorithm 2). In Section V-A we bound the
success probability of Algorithm 2. In Section V-B we
bound the expected number of arithmetic operations made
by Algorithm 2 under the assumption that it provides a
warm start to the ball walk subroutine (Algorithm 1) at
each iteration of Algorithm 2, and in Section V-C we show
that this warm start assumption holds. In Section V-D we
verify that the running time of steps where one does not
check inequalities have only negligible contribution to the
running time of Algorithm 2. In Section V-E we combine
these results to complete the proof of our main theorem for
rounding (Theorem V.6).

In Section VI we prove our results for volume com-
putation (Corollary I.2) and sampling (Corollary I.3) for
polytopes which may be far from isotropic position.

IV. SAMPLING FROM AN ISOTROPIC POSITION.

A. Bounding the distance traveled in any direction

In this section we bound the distance traveled by the
Markov chain in the direction orthogonal to the plane Hj

after i steps.

Lemma IV.1. Fix ε̂ > 0 and suppose that α ≥
4 log

(
2mimax

ε̂

)
in Algorithm 1. Then with probability at least

1 − ε̂ we have that, given the same random vectors ξi, the
output of Algorithm 1 is the same regardless of whether we
set Modified = ON or Modified = OFF.

Proof: By the concentration inequality for spherical
caps [10], for ξ ∼ uniform(B(0, 1)), for the jth row Aj
of the matrix A we have

P
(∣∣∣∣Aj ξ

‖ξ‖2

∣∣∣∣ ≥ t) ≤ 2e−(n−2)t
2/2,

and hence

P
(∣∣∣∣ηAj ξ

‖ξ‖2

∣∣∣∣ ≥ ηt√
n

)
≤ 2e−t

2/2.

Thus,

P
(∣∣∣∣ηAj ξ

‖ξ‖2

∣∣∣∣ ≥ η√
n

2 log(
2

δ
)

)
≤ δ,

for every δ > 0. Therefore, for every ε̂ > 0,

P

(
i∑

`=1

∣∣∣∣ηAj ξ`
‖ξ‖2

∣∣∣∣ ≥ i× η√
n

2 log

(
2i

ε̂

))

≤ P
(∣∣∣∣ηAj ξ`

‖ξ‖2

∣∣∣∣ ≥ η√
n

2 log

(
2i

ε̂

)
for some ` ∈ [i]

)
≤ i× ε̂

i
= ε̂.

Hence, for our implementation of the ball walk X1, X2, . . .
in Algorithm 1 we have

P
(

sup
i≤`≤k

|AjX` −AjXi| ≥ (k − i) 2η√
n

log

(
2imax

ε̂

)
for some 0 ≤ i ≤ k ≤ imax

)
≤ P

(∣∣∣∣ηAj ξ`
‖ξ‖2

∣∣∣∣ ≥ 2η√
n

log

(
2imax

ε̂

)
for some ` ∈ [imax]

)
≤ imax ×

ε̂

imax

≤ ε̂.

Thus, if α ≥ 2 log
(
2mimax

ε̂

)
, we have

P
(

sup
i≤`≤k

|AjX` −AjXi| ≥ (k − i) η√
n
α (1)

for some 0 ≤ i ≤ k ≤ imax

)
≤ ε̂

m
.

Let Zi be the usual ball walk Markov chain (where we check
every inequality at each step) which evolves according to the
following update equations:

Z0 = X0

Zi+1 =

{
Zi + ηξi if Zi + ηξi ∈ K
Zi otherwise.

Then inequality (1) implies that if we set α ≥ 2 log
(
2mimax

ε̂

)
in Algorithm 1, then with probability at least 1− ε̂ we have
that Xi = Zi for every i ∈ [imax].

Therefore, with probability at least 1 − ε̂, the output
of Algorithm 1 is the same regardless of whether we set
Modified = ON or Modified = OFF.

Remark IV.2. We have to bound the sum of the absolute
value of the distance, rather than the sum of the variance,
since the rejection step could introduce a bias (for instance,
if the Markov chain is traveling along the face of a polytope).

B. Anti-concentration bounds for isotropic convex bodies

Lemma IV.3. Suppose that the uniform distribution πK on
K has identity covariance matrix (that is, K is 1-isotropic)
and that X ∼ πK is a random vector uniformly distributed
on K. Let H be any codimension-1 hyperplane. Then we
have

P(dist(X,H) ≤ ε̂) ≤ 2ε̂ ∀ε̂ > 0.

Proof: Let A ∈ R1×n be a row vector and b ∈ R a real
number such that Ax = b is the equation for the Hyperplane
H . Let X ∼ πK be a random vector uniformly distributed
on K. Denote the distribution of AX by πA

K . Note that πA
K

is a marginal distribution of πK . First, we note two facts:

1) All marginals of a logconcave distribution are logcon-
cave (Theorem 2.2 of [23]).

2) If the covariance matrix of any distribution π satisfies

σ1In 4 Σ 4 σ2In,

then the variance AΣA> of its marginal πA in the
subspace defined by A satisfies

σ1 ≤ AΣA> ≤ σ2.

By the above facts, we have that the distribution of AX ∈ R
is isotropic (i.e., it has variance 1) and is logconcave. Let x?

be a maximizer of πA
K . By Lemma 5.5(a) in [16], we have

πA
K(x?) ≤ 1. (2)

Hence, for any ε̂ > 0 we have

P(|AX − b| ≤ ε̂) =

∫ b+ε̂

b−ε̂
πA
K(x)dx

≤
∫ b+ε̂

b−ε̂
πA
K(x?)dx

(Eq. 2)
≤

∫ b+ε̂

b−ε̂
1dx

= 2ε̂.

Remark IV.4. Note that the bounds in [21] are more
general than what we need since they apply to hyperplanes
of any codimension. We only care about codimension-1
hyperplanes, and can reduce the problem to obtaining anti-
concentration bounds for a 1-dimensional isotropic logcon-
cave distribution. This allows us to get a tight bound in
Lemma IV.3 without assuming the KLS conjecture. This
bound is tight (up to a universal constant) since it is tight
for the special case of the unit cube and the regular simplex.

C. Bounding the frequency of constraint checking

To simplify notation, define η̂ := 1
10η
√
n, and γ := 10αη̂.

Lemma IV.5. Suppose that K contains a ball of radius
r = 1

10 . Fix ε̂ > 0 and set the algorithmic parameter
α ≥ 4 log

(
2imax

ε̂

)
. Consider any row Aj of A and entry

bj of b. Suppose that the initial point X0 is β-warm with
respect to the uniform distribution for some β > 0. Let
Nj be the number of steps (excluding the first step) of the
Markov chain in Algorithm 1 with Modified = ON at
which the algorithm checks inequality (Aj , bj) and let N
be the number of Markov chain steps. Let Fj :=

Nj
N be

the frequency of checking this inequality (excluding the first
check). Then

E[Fj] ≤ 16n−1γβ +
32γ

n
× β log (n/γ) +

1

N
βε̂.

Proof: First, we note that the stationary distribution of
the steps of the ball walk (including improper and proper
steps) is uniform on K. Let

X = X0, X1, X2, . . . XN

be the Markov chain generated by Algorithm 1 with
Modified = ON, initial point X0 = Y0, and random vectors
ξ1, Let

X̃ = X̃1, X̃2, . . . X̃N

be the first N steps of the Markov chain generated by
Algorithm 1 with Modified = OFF, using the same initial
point X̃0 = Y0 and the same random vectors3. Using the
same initial point and random vectors defines a coupling
between X and X̃ . Then Xk = X̃k for all k if and only if
Xk ∈ K for all k ≤ N .

Let G be the event that

sup
i≤`≤k

|AjX̃` −AjX̃i| < (k − i)× η√
n
α

for all 0 ≤ i ≤ k ≤ imax and all j ∈ [m]. By Equation (1)
in the proof of Lemma IV.1, we have that

P(G) ≥ 1− βε̂.

Also by the proof of Lemma IV.1 we have that Xk ∈ K for
all k ≤ N if G occurs. Hence,

P(Xk = X̃k∀k ≤ imax) ≥ P(G). (3)

Recall that hj(i) := bj − AjXi is the distance from
the Markov chain Xi to the hyperplane corresponding to
the inequality (Aj , bj) at step i. Rather than checking the
inequality (Aj , bj) at each step of the ball walk, Algorithm
1 waits some number of steps w(i) after checking this
inequality at some step i. More generally, we define

w(i) := max

(⌊√
n

αη
hj(i)

⌋
, 1

)
regardless of whether the inequality is actually checked at
step i (we can think of w(i) as the amount of time the
algorithm would have waited if it had checked the inequality
at step i).

Let i(k) be the step at which the inequality is checked for
the kth time. Let k(i) be the number of times the inequality
has been checked after i Markov chain steps (in particular,
we have k(i) ≤ i). Let

i
?(i) := i(k(i))

be the last time the inequality was checked.

3We consider all steps X̃k = X̃Ñ , for all k ≥ Ñ ,where Ñ is the
number of Markov chain steps computed by the algorithm. That is, the
Markov chain remains stuck forever at the same point after Algorithm 1
halts.

Then, if the Markov chain X does not leave K, the total
number Nj of times the inequality is checked is

Nj =

Nj∑
k=1

w(i(k)) (4)

=
N∑
i=1

1

w(i?(i))
(If G does not occur),

where the first equality holds because w(i(k)) = 1 for all
k. Therefore, we have

E[Nj] ≤
N∑
i=1

E
[

1

w(i?(i))

]
+ P(Gc). (5)

We will show that, if G occurs, then

w(i− s) ≥ 1

4
w(i) ∀0 ≤ s ≤ 1

8
w(i).

Suppose that G occurs. Without loss of generality we may
assume that w(i) > 2 (since otherwise we have w(i− s) >
1 > 1

4w(i)). Then

hj(i− s) ≥ hj(i)− s×
η√
n
α (6)

≥ hj(i)−
1

8
w(i)× η√

n
α

= hj(i)−
2

8

√
n

αη
hj(i)×

η√
n
α

=
3

4
hj(i).

Therefore,

w(i− s) = max

(⌊√
n

αη
hj(i− s)

⌋
, 1

)
(Eq. 6)
≥ max

(⌊√
n

αη

3

4
hj(i)

⌋
, 1

)
≥ max

(√
n

αη

3

4
hj(i), 1

)
− 1

≥ 3

4
max

(√
n

αη
hj(i), 1

)
− 1

≥ 3

4
w(i)− 1

≥ 1

4
w(i),

where the last inequality holds since we assumed without
loss of generality that w(i) > 2. Therefore whenever G
occurs we have

w(i− s) ≥ 1

4
w(i) ∀i, s ∈ Z+, s ∈

[
0,

1

8
w(i)

]
. (7)

Suppose (towards a contradiction) that w(i?(i)) < 1
8w(i).

But we always have

i
?(i) + w(i?(i)) > i,

since w(i?(i)) is the amount of time we wait to check the
inequality after step i

?(i), and, by definition of i
?(i) we

have not yet re-checked the inequality at step i. Hence we
would have

i− i
?(i) < w(i?(i)) <

1

8
w(i).

Then by Inequality 7 we would have

w(i?(i)) ≥ 1

4
w(i),

which contradicts our assumption that w(i?(i)) < 1
8w(i).

Therefore, by contradiction we have that

w(i?(i)) ≥ 1

8
w(i) ∀i ∈ Z+. (8)

Hence, combing Equations (5) and (8) we have

E[Nj]
(Eq. 5)
≤

N∑
i=1

E
[

1

w(i?(i))

]
+ P(Gc) (9)

(Eq. 8)
≤ 8

N∑
i=1

E
[

1

w(i)

]
+ P(Gc).

Therefore it is enough to bound E[1
w(i)] for each i.

Bounding E[1
w(i)]: Fix any i ∈ [N]. First, we note that

without loss of generality we may assume that X0 ≡ X̃0 is
a 1-warm start, since the bound on E[Fj] for the β-warm
case for general β ≥ 1 will be at most β times as large as
the bound for the 1-warm special case.

In the special case where X0 ≡ X̃0 is a 1-warm start,
X̃i ∼ πK is uniformly distributed on K. Then by Lemma
IV.3 we have

E
[

1

w(i)

]
= E

[
1

max(b
√
n

αη hj(i)c, 1)

]
(10)

= E

[
1

max(b n
10αη̂hj(i)c, 1)

]

≤ 1× P
(
hj(i) ≤

10αη̂

n

)
+ 2E

[
10αη̂

nhj(i)
× 1{hj(i) ≥

10αη̂

n
}
]

(Lemma IV.3)
≤ 2n−1γ

+ 2E
[

γ

nhj(i)
× 1{hj(i) ≥

γ

n
}
]
,

where γ := 10αη̂.
But

E
[

γ

nhj(i)
× 1{hj(i) ≥

γ

n
}
]

(11)

=

∫ ∞
0

P
(

γ

nhj(i)
× 1{hj(i) ≥

γ

n
} ≥ t

)
dt

=

∫ ∞
0

P
(

γ

nhj(i)
× 1{1 ≥ γ

nhj(i)
} ≥ t

)
dt

=

∫ 1

0

P
(

γ

nhj(i)
× 1{1 ≥ γ

nhj(i)
} ≥ t

)
dt

≤
∫ 1

0

P
(

γ

nhj(i)
≥ t
)

dt

=

∫ 1

0

P
(γ
tn
≥ hj(i)

)
dt

= −γ
n

∫ γ
n

∞
P (u ≥ hj(i))u−2du

=
γ

n

∫ ∞
γ
n

P (u ≥ hj(i))u−2du

=
γ

n

∫ 1

γ
n

P(u ≥ hj(i))u−2du

+
γ

n

∫ ∞
1

P(u ≥ hj(i))u−2du

(Lemma IV.3)
≤ γ

n

∫ 1

γ
n

u1 × 2× u−2du

+
γ

n

∫ ∞
1

1× u−2du

=
2γ

n

∫ 1

γ
n

u−2+1du+
γ

n

=
2γ

n
× log (n/γ) +

γ

n

≤ 4γ

n
× log (n/γ) .

Hence, combining Inequalities (10) and (11) we have

E
[

1

w(i)

]
≤ 2n−1γ +

4γ

n
× log (n/γ) . (12)

Thus, by Inequality (9) we have

E[Fj] = E
[
Nj
N

]
(13)

(Eq. 9)
≤ 8

1

N

N∑
i=1

E
[

1

w(i)

]
+

1

N
P(Gc)

(Eq. 12)
≤ 8

N

N∑
i=1

[
2n−1γ +

4γ

n
× log (n/γ)

]
+

1

N
P(Gc)

=
8

N
×N

[
2n−1γ +

4γ

n
× log (n/γ)

]
+

1

N
P(Gc)

≤ 16n−1γ +
32γ

n
× log (n/γ) +

1

N
ε̂.

Hence, in the general-β case we get:

E[Fj] ≤ 16n−1γβ +
32γ

n
× β log (n/γ) +

1

N
βε̂.

D. Mixing time of the speedy walk

To bound the mixing time of the ball walk, one can
consider the speedy walk. The speedy walk is the same
Markov chain as the ball walk except that we leave out
the steps where the ball walk does not change position.
Since the ball walk ends up staying for more time at certain
points than the speedy walk, the speedy walk has a different
stationary distribution π̂K called the “speedy distribution”.
Denote by the random variable τi the stopping time which
is equal to the number of proper+improper steps taken until
the ball walk has taken i proper steps. Then the random
walk Z1, Z2, . . . where Zi = Xτi is the “speedy walk”.

We recall the following Theorem4 from [8], of which
Theorem 18 and the following paragraph in [11] is a
corollary:

Lemma IV.6 (Speedy walk (Theorem 18 and following
paragraph in [11], Theorem 4.1 in [8])). Suppose that K is
15-isotropic and fix ε̂ > 0. Given an initial point X0 which
is a β-warm start with respect to the speedy distribution, the
ball walk on K with step size η ≥ 1

800
√
n log(n/ε̂)

satisfies

‖L(Xτi)− π̂K‖TV ≤ ε̂

if i ≥ cn2.5 log3(βε̂) where c > 0 is a universal constant.
If instead the ball walk starts from a non-random point

which is a distance at least n−c1 for any constant c1, then
the ball walk on K with step size η ≥ 1

800
√
n log(n/ε̂)

satisfies

‖L(Xτi)− π̂K‖TV ≤ ε̂

if i ≥ c2n
2D(log logD) log3(n/ε̂) where D is the diameter

of K and c2 is a constant that depends only on c1.

Let λ be the probability that the ball walk proposes a step
inside the convex body K from a point uniformly distributed
on K; we call λ the average local conductance. We will use
the following results [8] which allow one to obtain improved
average-case running time bounds for the ball walk.5

Lemma IV.7 (Corollary 4.6 in [8]). The average local
conductance of K satisfies λ ≥ 1 − η

√
n

2r if K contains
a ball of radius r.

Using average local conductance [8] gives the following
Lemma on the expected number of improper steps taken
by the ball walk:

Lemma IV.8 (Theorem 4.10b in [8]). Suppose that X0 is
distributed according to the speedy distribution on K. Fix

4The “M-distance” used in [8] is bounded above by the warmness β,
and bounded below by the TV distance. So the result we quote here is in
fact weaker than the “M-distance” version of the result.

5Since our goal is to put the convex body in isotropic position, which
fails with exponentially small probability in the running time if we obtain
iid points, it is enough to bound the average-case running time since we
can always just start over if the running time ends up being too long.

t > 0. Then the expected number of (proper and improper)
ball walk steps needed to get t proper steps is at most 2t

λ .

Remark IV.9. Theorem 4.10b [8] was stated for a specific
value of t (their bound on the mixing time). However, in
the special case when we already start at the stationary
distribution of the speedy walk, if the expectation holds
for one value of t, it must also hold for every value of
t. (Moreover, we note that even for non-stationary starts
(which we do not need here) their proof holds for all values
of t.)

E. Bounding the accuracy

Lemma IV.10. Assume that K is a 30-isotropic convex
body containing B(0, 1

10), and that dist(X0, ∂K) ≥ n−3.
Fix ε̂ > 0. Then Algorithm 1 with η ≤ 1

10
√

8n log(n/ε̂)
,

Modified = OFF, and I = c2n
2ρ(log log ρ) log3(n/ε̂)

outputs independent samples Z1, Z2, . . . , Zp, where each Zi
has TV distance 10ε̂ to the uniform distribution on K.

Proof: Since the speedy walk is initialized at a point
X0, which is a distance at least n−3 from the boundary
of K, by Lemma IV.6 we have that the samples Y1, Y2, . . .
obtained by running the speedy walk for

I = c2n
2ρ(log log ρ) log3(n/ε̂)

proper steps each satisfy

‖L(Ys)− π̂K‖TV ≤ ε̂

for all s. Moreover, these points are independent since each
run of the speedy walk starts at the same point X0.

By Theorem 4.16 in [8] we have that the samples
Z1, Z2, . . . obtained from Y1, Y2, . . . by the rejection sam-
pling step in Algorithm 1 are uniformly distributed on K
with TV error 10ε̂. Moreover, since Y1, Y2, . . . are jointly
independent, Z1, Z2, . . . , Zp are also jointly independent.

V. ROUNDING A POLYTOPE

In this section we analyze the running time and accuracy
of Algorithm 2.

A. Bounding the success probability of Algorithm 2

In this section we bound the success probability of Algo-
rithm 2. We use the following lemma (Corollary 11 in [2]),
which is a corollary of the main result in [22].

Lemma V.1 (Corollary 11 in [2]). Let K be a convex set.
Let Y1, . . . , Yp be iid uniform random points in K and fix
ε̂ > 0. Let

Ȳ :=
1

p

p∑
i=1

Yk,

and let

Σ̂Y :=
1

p

p∑
i=1

(Yi − Ȳ)(Yi − Ȳ)>.

Then there exists an absolute constant c such that if p ≥
n× c log2(1

ε̂) log2(n), the convex set

K‡ := Σ̂
− 1

2

Y (K − Ȳ)

is 2-isotropic and ‖µK‡‖2 < 1
20 with probability at least

1− ε̂.

Note that in the proof of Corollary 11 in [2] it is shown that

‖µK‡‖2 <
1

20
,

although this is not mentioned explicitly in [2] in the
statement of their Corollary.

Fix ε > 0. From now on we fix the parameters p, I, η in
Algorithm 1 as follows:
• p ≥ n× c log2(1

ε) log2(n),
• I = c2n

220
√
n log

(
40n2p2

ε

)
×
(

log log 20
√
n log

(
40n2p2

ε

))
log3

(
np2

ε

)
log log(Rr),

• η = 1

30
√
n log(n/ε)

.

Lemma V.2. Suppose that we set parameters modified =
OFF, imax = ∞. Then for any value of α > 0, with
probability at least 1− ε the convex body

K̃i? := Σ̂
− 1

2
i? (K − µ̂i?)

outputed by Algorithm 2 is in 2-isotropic position. Moreover,
the expected number of iterations of each of the “While”
loops in Algorithm 2 is bounded above by 2.

Proof: Recall the definitions from Algorithm 2 where

K̃i−1 :=

{
B for i = 1

Σ̂
− 1

2
i (Ki−1 − µ̂i) for i ≥ 2,

and

K̂i := Σ̂
− 1

2
i (Ki − µ̂i) ∀i ∈ N.

We prove this theorem by induction:
Inductive assumption: Suppose that

K̃i−1 = Σ̂
− 1

2
i (Ki−1 − µ̂i)

is 2-isotropic with ‖µK̃i−1
‖2 ≤ 1

20 , and that

B(0,
1

4
) ⊆ K̃i−1.

Base case: Since for i = 1 K̃i−1 = B is 2-isotropic, we
must have that K̂i is 4e ≤ 15-isotropic (see the inductive
case for why this is true). Therefore K̂i is 15-isotropic and
contains the ball B(0, 14), since

K̂i ⊇ K̃i−1 = B ⊇ B(0,
1

4
).

Then by Lemma IV.10 we have that the points Z1, . . . , Zp
are independent, and are each a TV distance at most ε

p2 from
the uniform distribution on K̂i. 6

Therefore, by Lemma V.1 we have that K̃i is 2-
isotropic with probability at least 1− ε

p (since we can cou-
ple Z1, . . . , Zp to independent random vectors Ẑ1, . . . , Ẑp
which are exactly uniformly distributed on K̂i, such that

P(Xi = Ẑi) ≥ 1− ε

p2
,

and apply Lemma V.1 to these vectors).
Inductive case: Showing that K̃i−1 being in 2-isotropic

position implies that K̃i is in 2-isotropic position.
Since

Ki−1 ⊆ Ki and Vol(Ki) ≤ eVol(Ki−1),

we have

ΣKi <
Vol(Ki−1)

Vol(Ki)
ΣKi−1

<
1

e
ΣKi−1

.

Moreover, since K is convex and 0 ∈ K, we have

Ki ⊆ (1 + 1/n)Ki−1,

and

Vol(Ki) ≥
1

e
Vol ((1 + 1/n)Ki−1) .

Hence, we have

ΣKi 4
Vol((1 + 1/n)Ki−1)

Vol(Ki)
Σ(1+1/n)Ki−1

=
Vol((1 + 1/n)Ki−1)

Vol(Ki)
(1 + 1/n)2ΣKi−1

4 4eΣKi−1
.

Therefore, we have that
1

e
ΣKi−1 4 ΣKi 4 4eΣKi−1 ,

and hence that
1

e

1

4
In 4

1

e
ΣK̃i−1

4 ΣK̂i 4 2eΣK̃i−1
4 16eIn.

Therefore we have shown that the fact that K̃i−1 is 2-
isotropic implies that K̂i is 4

√
e ≤ 15-isotropic. Therefore

K̂i is 15-isotropic and contains the ball B(0, 14), since

K̂i ⊇ K̃i−1 ⊇ B(0,
1

4
).

We now show that the centers of mass of K̂i and K̃i−1 are
a distance at most roughly

√
n apart. Suppose (towards a

contradiction) that

‖µK̂i − µK̃i−1
‖2 > 10

√
n log(

40n

ε
).

6See the inductive case for why we get a bound for the uniform
distribution on K̂i even though the Markov chain is on K̂i ∩ ρB for
ρ = 20

√
n log(40n

2

ε
)B.

By Lemma 24 in [11], 1− ε
40n of the volume of the convex

body K̂i is inside the ball of radius 2
√
n log(40n

ε) with
center at µK̂i . Hence, if the assumption

‖µK̂i − µK̃i−1
‖2 > 10

√
n log(

40n

ε
)

were true, we would have (for ε < 0.1) that a nonzero
portion of the volume of K̂i is a distance of at least 40n

√
n

from µK̂i , since

Vol(K̂i)

Vol(K̃i−1)
≤ e and K̂i ⊇ K̃i−1.

This is a contradiction since the convex body K̂i is entirely
contained in a ball of radius 15n because it is 15-isotropic.
Hence by contradiction we have that

‖µK̂i − µK̃i−1
‖2 ≤ 10

√
n log

(
40n

ε

)
.

By inductive assumption we have that ‖µK̃i−1
‖2 ≤ 1

5 , and
hence that

‖µK̂i‖2 ≤ ‖µK̂i − µK̃i−1
‖2 + ‖µK̃i−1

‖2 ≤ 12
√
n log

(
40n

ε

)
.

By Lemma 24 in [11], 1− ε
40n2p2 of the volume of the convex

body K̂i is contained in a ball of radius 2
√
n log(40n2p2

ε)

centered at µK̂i . Hence, since K̂i being 15-isotropic implies
that it is contained in a ball of radius 15n, we have that

K̂†i := K̂i ∩ 20
√
n log(

40n2p2

ε
)B

is 30-isotropic. Moreover, by Lemma 24 in [11] and the fact
that

‖µK̂i‖2 ≤ 12
√
n log(

40n

ε
),

we have
Vol(K̂†i) ≥

(
1− ε

2p2

)
Vol(K̂i).

Therefore, since the rejection step in the “While” loop of
Algorithm 2 ensures that X0 is in the n−3-interior of

K̃i ∩ 20
√
n log(

40n2

ε
)B,

by Lemma IV.10 we have that the points Z1, . . . , Zp are
independent, and are each a TV distance at most ε

p2 from
the uniform distribution on K̂i.

Therefore, by Lemma V.1 we have that K̃i is 2-isotropic
and

‖µK̃i‖2 ≤
1

20

with probability at least 1 − ε
p (Since we can cou-

ple Z1, . . . , Zp to independent random vectors Ẑ1, . . . , Ẑp
which are exactly uniformly distributed on K̂i, such that

P(Zk = Ẑk) ≥ 1− ε

p2
,

and apply Lemma V.1 to these vectors. Therefore, we have
Z1, . . . , Zp independent with

‖L(Zk)− πK̃i‖TV ≤
ε

10p2 log(Rr)

for all k ∈ [p]).
Bounding the number of iterations of the “While”

loop. First, we bound dist(X̂ ′0, ∂[K̃i ∩ ρB]) for

ρ = 20
√
n log(

40n2

ε
).

Since K̃i is 2-isotropic, it contains a ball of radius 1√
2

.
Therefore, by a statement in the proof of Corollary 4.6 in
[8], we have that

Voln−1(∂K̃i) ≤
n

1/
√
2
Vol(∂K̃i).

Therefore, we have that

PY∼unif(K̃i)(dist(Y, ∂K̃i) < n−3) ≤ n−3Voln−1(∂K̃i)

Vol(∂K̃i)

≤ n−2
√

2.

Moreover, by Lemma 24 in [11], 1− ε
10n2p2 of the volume

of the convex body K̃i is contained in B(µK̃i ,
ρ
2), and since

K̃i is in 2-isotropic position,

‖µK̃i‖2 ≤
1

5
.

Thus, 1 − ε
10n2p2 of the volume of the convex body K̃i is

contained in the ball B(0, ρ).
Now, since X̂0 and Z1 are generated by the ball walk

with the same starting point and parameters, we have

‖L(X̂ ′0)− πK̃i‖TV = ‖L(X̂0)− πK̂i‖TV

= ‖L(Z1)− πK̂i‖TV

≤ ε

p2
.

Therefore, we have

P
(

dist
(
X̂ ′0, ∂[K̃i ∩ ρB]

)
< n−3

)
≤ n−2

√
2 +

ε

10n2p2
+ ‖L(Zk)− πK̃i‖TV

≤ n−2
√

2 +
ε

10n2p2
+

ε

p2
.

But X̂ ′0 ≡ X̂ ′k0 is generated independently at each iteration
k of the while loop, implying that

P
(

min
j≤k

dist
(
X̂ ′j0 , ∂[K̃i ∩ ρB]

)
≤ n−3

)
≤
(
n−2
√

2 +
ε

10n2p2
+

ε

p2

)k
≤ 2−k.

Therefore, the expected number of iterations of the “While”
loop is bounded by

∞∑
k=1

2−(k−1) ≤ 2.

B. Bounding the expected running time of Algorithm 2

In this section we bound the expected frequency at which
Algorithm 2 checks any given inequalities. From now on we
set the parameter α of Algorithm 1 to be

α = 4 log

(
2npimax

ε

)
.

Lemma V.3. Suppose that, at each step of Algorithm 2,
X0 is a β-warm start with respect to both the uniform
distribution and the speedy distribution. Fix b? ≤ imax

40I . Then
with probability at least 8

10 the total number of inequality
checks made during the first b? times that Algorithm 2 with
Modified = ON invokes the ball walk Markov chain is
≤ 40βb?I ×m

[
16n−1γ + 32γ

n × log(n/γ) + ε
np

]
.

Proof: Let Sk be the number of proper+improper steps
for the kth Markov chain in Algorithm 2, and let Fkj be
the frequency at which the kth Markov chain checks the
inequality (Aj , bj).

Let

S† :=
b?∑
k=1

Sk

be the sum of the steps for the first b? runs of the Markov
chain in Algorithm 2, and let

F† :=
1

b?

b?∑
k=1

m∑
j=1

Fkj

be the frequency at which Algorithm 2 checks any inequality.
Now, if Y0 is a β-warm start for the speedy distribution,

by Lemmas IV.8 and IV.7 we have

E[S†] ≤ β × 4b?I.

Hence, we have, by Markov’s inequality, that

S† ≤ 40b?I ≤ imax,

with probability at least 9
10 .

Thus, by Lemma IV.5 we have

E[F†1{S† ≤ imax}]

≤ m×
[
16n−1γβ +

32γ

n
× β log (n/γ) +

εβ

nb?

]
.

Hence, by Markov’s inequality we have with probability at
least 9

10 that

F†1{S† ≤ imax} ≤ 160n−1γβ +
320γ

n
β log (n/γ) + 10

βε

nb?
.

Therefore, with probability at least 8
10 we have that both

S† ≤ 40βb?I ≤ imax

and

F† ≤ 160n−1γβ +
320γ

n
× β log (n/γ) + 10

βε

nb?
,

since

F†1{S† ≤ imax} = F†

whenever

S† ≤ 40βb?I ≤ imax.

Therefore, with probability at least 8
10 we have that the total

number of times Algorithm 1 computes an inequality is

S†F† ≤ 40βb?I ×m
[
16n−1γβ +

32γ

n
β log (n/γ) +

βε

nb?

]
.

C. Bounding the warmness of the start in Algorithm 2 with
respect to the speedy and uniform distributions

Lemma V.4. With probability at least 6
10 − ε we have that,

the total number of inequality checks for the duration of
Algorithm 2 with Modified = ON, is at most

220(2 + p)i?I ×m
[
16n−1γ +

32γ

n
× log (n/γ) +

ε

np

]
.

Moreover, if Σ̂i? , µ̂i? , X0 are the outputs of Algorithm 2,
we have that X0 is O(1)-warm with respect to the uniform
distribution on Σ̂

− 1
2

i? (K − µ̂i?).

Proof: First, we bound the number of times Algorithm 1
runs the ball walk. By Lemma V.2 we have that the expected
number of iterations of the “While” loop at each “For” loop
iteration of Algorithm 1 is at most 2. Hence, the expected
number of times the ball walk is run by Algorithm 1 is
at most (2 + p)i?. Therefore, by Markov’s inequality, we
have that with probability at least 9

10 the ball walk is run by
Algorithm 1 no more than 10(2 + p)i? times.

Next, we bound the speedy and uniform warmness. The
main observation of this section is that, for our step size, any
distribution which is β-warm with respect to the uniform
distribution is 2β-warm with respect to the speedy distri-
bution. This is true since, by Remark 4.12 in [8], one can
obtain speedy-distributed samples by starting with uniformly
distributed samples, if we take one step of the ball walk
starting at each sample, and reject the original point if and
only if the ball walk step leaves the convex body. By Lemma
IV.7, for our choice of step size η the average acceptance
probability λ is at most 1

2 . Therefore, any sample which is
β-warm with respect to the uniform distribution must also

be 2β-warm with respect to the speedy distribution7, since
then

π̂K(x) = πK(x)
1

λ
P({one step of ball walk

starting at x is rejected}).

Therefore, to apply Lemma V.3, it is enough to show that
the initial points in Algorithm 1 are β-warm with respect to
the uniform distribution.

Denote the value of X̂ ′0 at the ith iteration of the “For”
loop and k’th iteration of the “While” loop of Algorithm 2
by X̂ ′0 ≡ X̂

′i,k
0 . Next, we note that by the proof of Lemma

V.2 we have

‖L(X̂ ′i,k0)− πK̃i‖TV ≤
ε

10p(i?)2

for each i, k. Moreover, since we are using a fixed starting
point, X̂ ′10 , X̂

′2
0 , . . . are independent. Thus, there exists a

sequence of random variables

{X̃i,k
0 }i∈[i?],k∈[10(2+p)i?]

such that X̃i,k
0 = X̂ ′i,k0 with probability at least 9

10 − ε,
where X̃i,k

0 ∼ πK̃i . Hence, X̃i,k
0 are 1-warm with respect to

the uniform distribution on K̃i.
Recall from the proof of Lemma V.2 that

Ki ⊆ Ki+1 and Vol(Ki+1) ≤ eVol(Ki).

Thus, we have

K̃i ⊆ K̂i+1 and Vol(K̂i+1) ≤ eVol(K̃i),

since

K̃i := Σ̂
− 1

2
i+1(Ki − µ̂i+1) and K̂i+1 := Σ̂

− 1
2

i+1(Ki+1 − µ̂i+1).

Therefore, the fact that X̃i,k
0 is 1-warm with respect to

the uniform distribution on K̃i implies that it is e-warm
with respect to the uniform distribution on K̂i+1. Hence,
we have that X̃i,k

0 is 2e-warm with respect to the speedy
distribution on K̂i+1.

Hence, by Lemma V.3 we have that with probability at
least 6

10 − ε, the total number of inequality checks for the
duration of Algorithm 2, is at most

80e(2 + p)i?I ×m
[
16n−1γ +

32γ

n
× log (n/γ) +

ε

np

]
.

7Note, however, that the converse is not true: β-warm with respect to the
speedy distribution does not imply 2β warm with respect to the uniform
distribution.

D. Counting the running time of subroutines with negligible
contributions to the running time

Sorting: First, we argue that the cost of sorting the hj’s
can be ignored.

Algorithm 1 must sort the m inequalities into

O

(
n

αη

)
= O(n1.5)

bins, since, if K is O(1)-isotropic, the diameter of K is
O(
√
n). This takes O(m log(n)) time. This only occurs

once, at the start of the algorithm. Since our bound for the
entire algorithm is O(mn4.5) and mn4.5 >> m log(n), we
can ignore this cost.

At each step of the Markov chain, Algorithm 1 must move
all the bins over by 1 to “add” n

αη to each bin, and select
all hj’s such that

hj < α
η√
n
× i.

This can be done in O(1) operations by simply moving a
“pointer” at the bin for elements in [α η√

n
×(i−1), α η√

n
×i]

one bin to the right. This is only done once every Markov
chain step, and is negligible in comparison to the cost of
computing a Markov chain step, implying that we can ignore
this O(1) cost.

After computing the new values for all the hj’s that were
selected, Algorithm 1 must then sort these hj’s into the
corresponding bins. Since there are O(n1.5) bins, this takes
O(log(n)) time for each selected hj . This is negligible in
comparison to the cost of recomputing the value of each hj ,
which is O(n) (since we have to take an inner product).
Therefore we can ignore this cost.

Applying the linear transformation to Ki: Next, we
argue that the cost of applying the linear transformation
to put Ki into isotropic position at each iteration of Algo-
rithm 2 can be ignored. This linear transformation requires
computing AΣ̂

1
2
i , which takes O(mn2) operations, and com-

puting b − Aµ̂i, which takes O(mn) operations. There are
i? = n log(Rr) iterations in Algorithm 2, so applying the
linear transformations contributes at most O(mn3 log(Rr))
arithmetic operations. This is much smaller than our bound
of O(mn4.5 log(Rr)) on the number of operations, so we can
ignore the cost of applying the linear transformations.

E. Proof of main theorem for rounding

We now consider the following procedure, where we run
Algorithm 2 multiple times until it succeeds. This allows us
to put the polytope into isotropic position with a bound on
the running time that holds with very high probability (as
opposed to just holding in expectation).

Algorithm 3 Rounding in bounded time

input: A ∈ Rm×n, b ∈ Rm
input: r,R > 0 such that rB ⊆ K ⊆ RB, where
K := {x ∈ Rn : Ax ≤ b}
input: p ∈ N, ε > 0
input: I, imax ∈ N

1: Set Success = False
2: while Success = False do
3: Run Algorithm 2 with Modified = ON and with

the above inputs until either it outputs Σ̂i? , µ̂i? , X0 or
until it completes I inequality checks.

4: If Σ̂i? , µ̂i? , X0 were obtained, output
Success = True

5: end while
6: output: Σ̂i? , µ̂i? , X0

From now on we choose I, imax to satisfy

I = 2000(2 + p)i?I (14)

×m
[
16n−1γ +

32γ

n
log (n/γ) +

6ε

np

]
,

imax =

(
2000(2 + p)i?I

×m
[

320mη̂

nε
+

640mη̂

nε
log

(
nε

20mη̂

)
+

ε

np

])2

.

In particular, we have imax ≥ I.

Lemma V.5. Fix ε > 0. Then with probability at least 1−
2ε log(1

ε) Algorithm 3 outputs, after at most log(1
ε) calls to

Algorithm 2, an affine transformation (Σ̂i? , µ̂i?) and a point
X0, for which

K† := Σ̂
− 1

2
i? (K − µ̂i?)

is in 2-isotropic position. Moreover we have that X0 is
O(log(1

ε))-warm with respect to the uniform distribution on
K†.

Proof: First, we note that by Lemma V.4 we have that
the “While” loop of Algorithm 3 completes at least one run
of Algorithm 2 after log(1

ε) runs of the “While” loop of
Algorithm 3 with probability at least

1− 2− log(1
ε) ≥ 1− ε.

Moreover, by Lemmas V.2 and V.4, if Algorithm 2 were
allowed to keep running even after it uses up its alotted
number of arithmetic operations and ball walk steps, it would
return an affine transformation which puts K into 2-isotropic
position, and an O(1)-warm start for the uniform distribution
on this affine transformation of K, with probability at least
1 − ε at each run. Therefore, if we do stop Algorithm 2
after its alotted number of arithmetic operations and ball
walk steps, after log(1

ε) steps we obtain, with probability at

least 1−ε−ε log(1
ε), an affine transformation (Σ̂i? , µ̂i?) for

which

K† := Σ̂
− 1

2
i? (K − µ̂i?)

is in 2-isotropic position and an O(log(1
ε))-warm start X0

for the uniform distribution on K†.
Fix

p = n× c log2(
1

ε
) log2(n).

Recall the shorthand notation

η̂ :=
1

10
η
√
n and γ := 10αη̂,

and that we have fixed the parameters p, I, η, α of Algorithm
1 as follows:

• I = c2n
220
√
n log

(
40n2p2

ε

)
×
(

log log 20
√
n log

(
40n2p2

ε

))
log3

(
np2

ε

)
log log(Rr),

• η = 1

30
√
n log(n/ε)

,

• α = 4 log
(
2npimax

ε

)
.

Also recall that we have fixed I and imax in Equation 14,
and that i? is set to

i? = n log2(
R

r
)

in Algorithm 2.

Theorem V.6 (Version of Main Theorem (Th. I.1) specific
to our algorithm). Fix ε > 0. With probability at least
1− 2ε log(1

ε) Algorithm 3 outputs an affine transformation
(Σ̂i? , µ̂i?) and a point X0 for which

K† := Σ̂
− 1

2
i? (K − µ̂i?)

is in 2-isotropic position, and X0 is O(log(1
ε))-warm

with respect to the uniform distribution on K†, in
Õ(mn4.5 log9(1

ε) log9(Rr)) arithmetic operations.

Proof: By Lemma V.5, with probability at least 1 −
2ε log(1

ε) Algorithm 3 outputs an affine transformation
(Σ̂i? , µ̂i?) which puts K into 2-isotropic position, in at
most I log(1

ε) inequality checks. The number of arithmetic
operations for each inequality check is no more that 3n,
implying that the number of arithmetic operations performed
by Algorithm 3 in this event is at most

3n× I log(
1

ε
)

= 6000(2 + p)i?I ×m
[
16γ + 32γ log(n/γ) +

6ε

p

]
log(

1

ε
)

= Õ(mn4.5 log9(
1

ε
) log9(

R

r
)).

VI. PROOFS OF COROLLARIES FOR VOLUME
COMPUTATION AND SAMPLING

In this section we prove Corollaries I.2 and I.3 from
the introduction. First, we prove Corollary I.2 on volume
estimation.

Proof of Corollary I.2: By Lemma V.6 we have that
with probability at least 1− ε Algorithm 3 obtains an affine
transformation (Σ̂i? , µ̂i?) such that

K† := Σ̂
− 1

2
i? (K − µ̂i?)

is in 2-isotropic position, in Õ(mn4.5polylog(1
ε ,

R
r)) arith-

metic operations. Thus, with probability at least 1 − ε, K†
contains a ball B(µK† ,

1
2) where

‖µK†‖2 ≤
1

5
,

implying that

B(0,
1

4
) ⊆ K†.

Thus, with probability at least 1− ε, 4K† contains the unit
ball B and is 8-isotropic. Hence, if we then apply the volume
algorithm [5] to 4K†, by Theorem 1.1 of [5] with probability
at least 1 − ε we can compute the volume of 4K† up to a
factor of 1 + δ in

mn4

δ2
log6(

n

δ
) log(

1

ε
)

arithmetic operations. But

Vol(K) =
1

4n
det(Σ̂

1
2
i?)Vol(4K†).

Since det(Σ̂
1
2
i?) can be computed in O(n3) arithmetic oper-

ations, we can compute with probability at least 1 − ε the
volume of K up to a factor of 1 + δ in

Õ

(
mn4.5polylog

(
1

ε
,
R

r

)
+
mn4

δ2
log6

(n
δ

)
log

(
1

ε

))
arithmetic operations.
We then prove Corollary I.3 on sampling:

Proof of Corollary I.3: By Theorem V.6 we have that,
with probability at least 1−ε, Algorithm 3 obtains an affine
transformation (Σ̂i? , µ̂i?) and a random vector X0 such that

K† := Σ̂
− 1

2
i? (K − µ̂i?)

is in 2-isotropic position and X0 is O(1)-warm with respect
to the uniform distribution on K† in

Õ

(
mn4.5polylog

(
1

ε
,
R

r

))
arithmetic operations.

Since K† is in 2-isotropic position it is contained in
B(µK† , 4n) where

‖µK†‖2 ≤
1

5
.

Moreover, by Lemma 24 in [11], 1− ε of the volume of the
convex body K† is contained in a ball of radius 2

√
n log(1

ε)
centered at µK† .

Hence, by Theorem 1.1 of [18], if we the run the hit-
and-run Markov chain sampling algorithm for Õ(n3 log(1

ε))
Markov chain steps on the convex body

K† ∩B(0, 4
√
n log(

1

ε
))

with O(1)-warm start X0, we obtain a point Z uniformly
distributed on

K† ∩B(0, 4
√
n log(

1

ε
)),

with TV error ε.
But since

Vol(K† ∩B(0, 4
√
n log(

1

ε
))) ≥ (1− ε)Vol(K†),

we have that Z is also uniformly distributed on K† with TV
error 2ε. To obtain a point on K, we compute

Z̃ = Σ̂
1
2
i?Z + µ̂i? .

Since Z is uniformly distributed on K† with TV error 2ε,
Z̃ must be uniformly distributed on K with TV error 2ε as
well.

Therefore, we obtain a point Z from the uniform distri-
bution on K with TV error 2ε, in a number

Õ(mn4.5polylog(
1

ε
,
R

r
) + n3 log(

1

ε
))

= Õ(mn4.5polylog(
1

ε
,
R

r
))

of arithmetic operations.

ACKNOWLEDGMENT

The authors would like to thank Sushant Sachdeva and
the anonymous reviewers for their helpful comments and
suggestions. This research was partially supported by NSF
CCF-1908347 and SNSF 200021 182527 grants.

REFERENCES

[1] David Applegate and Ravi Kannan. Sampling and integration
of near log-concave functions. In Proceedings of the twenty-
third annual ACM symposium on theory of computing, pages
156–163. ACM, 1991.

[2] Dimitris Bertsimas and Santosh S Vempala. Solving convex
programs by random walks. In Proceedings of the thiry-fourth
annual ACM symposium on theory of computing, pages 109–
115. ACM, 2002.

[3] Yuansi Chen, Raaz Dwivedi, Martin J Wainwright, and Bin
Yu. Fast MCMC sampling algorithms on polytopes. The
Journal of Machine Learning Research, 19(1):2146–2231,
2018.

[4] Benjamin Cousins. Efficient high-dimensional sampling and
integration. PhD thesis, Georgia Institute of Technology,
2017.

[5] Benjamin Cousins and Santosh S Vempala. Bypassing KLS:
Gaussian cooling and an O∗(n3) volume algorithm. In
Proceedings of the forty-seventh annual ACM symposium on
theory of computing, pages 539–548. ACM, 2015.

[6] Martin Dyer, Alan Frieze, and Ravi Kannan. A random
polynomial-time algorithm for approximating the volume of
convex bodies. Journal of the ACM (JACM), 38(1):1–17,
1991.

[7] Hulda S Haraldsdóttir, Ben Cousins, Ines Thiele, Ronan MT
Fleming, and Santosh S Vempala. CHRR: coordinate hit-and-
run with rounding for uniform sampling of constraint-based
models. Bioinformatics, 33(11):1741–1743, 2017.

[8] Ravi Kannan, László Lovász, and Miklós Simonovits. Ran-
dom walks and an O∗(n5) volume algorithm for convex
bodies. Random Structures & Algorithms, 11(1):1–50, 1997.

[9] Ravindran Kannan and Hariharan Narayanan. Random walks
on polytopes and an affine interior point method for linear
programming. Mathematics of Operations Research, 37(1):1–
20, 2012.

[10] Michel Ledoux. The concentration of measure phenomenon.
American Mathematical Soc., 2001.

[11] Yin Tat Lee and Santosh S Vempala. Eldan’s stochastic
localization and the KLS hyperplane conjecture: An improved
lower bound for expansion. In Foundations of Computer
Science (FOCS), 2017 IEEE 58th Annual Symposium on,
pages 998–1007. IEEE, 2017.

[12] Yin Tat Lee and Santosh S Vempala. Geodesic walks in
polytopes. In Proceedings of the 49th Annual ACM SIGACT
Symposium on theory of Computing, pages 927–940. ACM,
2017.

[13] Yin Tat Lee and Santosh S Vempala. Convergence rate of
Riemannian Hamiltonian Monte Carlo and faster polytope
volume computation. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, pages 1115–
1121. ACM, 2018.

[14] Yin Tat Lee and Santosh S Vempala. The Kannan-Lovász-
Simonovits conjecture. arXiv preprint arXiv:1807.03465,
2018.

[15] László Lovász and Miklós Simonovits. Random walks in a
convex body and an improved volume algorithm. Random
structures & algorithms, 4(4):359–412, 1993.

[16] László Lovász and Santosh Vempala. The geometry of
logconcave functions and sampling algorithms. Random
Structures & Algorithms, 30(3):307–358, 2007.

[17] László Lovász and Santosh S Vempala. Fast algorithms for
logconcave functions: Sampling, rounding, integration and
optimization. In Foundations of Computer Science, 2006.
FOCS’06. 47th Annual IEEE Symposium on, pages 57–68.
IEEE, 2006.

[18] László Lovász and Santosh S Vempala. Hit-and-run from a
corner. SIAM Journal on Computing, 35(4):985–1005, 2006.

[19] László Lovász and Santosh S Vempala. Simulated annealing
in convex bodies and an O∗(n4) volume algorithm. Journal
of Computer and System Sciences, 72(2):392–417, 2006.

[20] Robert Osserman. The isoperimetric inequality. Bulletin of
the American Mathematical Society, 84(6):1182–1238, 1978.

[21] Grigoris Paouris. Small ball probability estimates for log-
concave measures. Transactions of the American Mathemat-
ical Society, 364(1):287–308, 2012.

[22] Mark Rudelson. Random vectors in the isotropic position.
Journal of Functional Analysis, 164(1):60–72, 1999.

[23] Santosh S Vempala. Geometric random walks: a survey.
Combinatorial and computational geometry, 52(573-612):2,
2005.

