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ABSTRACT

We initiate a study of the following problem: Given a continuous
domain Q along with its convex hull K, a point A € K and a prior
measure ¢ on Q, find the probability density over Q whose marginal
is A and that minimizes the KL-divergence to p. This framework
gives rise to several extremal distributions that arise in mathematics,
quantum mechanics, statistics, and theoretical computer science.
Our technical contributions include a polynomial bound on the
norm of the optimizer of the dual problem that holds in a very
general setting and relies on a “balance” property of the measure p
on Q, and exact algorithms for evaluating the dual and its gradient
for several interesting settings of Q and p. Together, along with the
ellipsoid method, these results imply polynomial-time algorithms
to compute such KL-divergence minimizing distributions in several
cases. Applications of our results include: 1) an optimization char-
acterization of the Goemans-Williamson measure that is used to
round a positive semidefinite matrix to a vector, 2) the computability
of the entropic barrier for polytopes studied by Bubeck and Eldan,
and 3) a polynomial-time algorithm to compute the barycentric
quantum entropy of a density matrix that was proposed as an alter-
native to von Neumann entropy by Band and Park in the 1970s: this
corresponds to the case when Q is the set of rank one projection
matrices and p corresponds to the Haar measure on the unit sphere.
Our techniques generalize to the setting of rank k projections using
the Harish-Chandra-Itzykson-Zuber formula, and are applicable
even beyond, to adjoint orbits of compact Lie groups.
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1 INTRODUCTION

Entropy maximizing distributions. Let Q be a subset of R4 and
let K = hull(Q) denote the convex hull of Q. Suppose one is given
an A € K. A natural question arises: Is there a canonical way to
choose a probability measure supported on Q that can be used to
express A as a convex combination of points on Q? When Q is a
discrete and finite set, this problem has been extensively studied
and a canonical probability distribution was proposed by Jaynes
[24, 25]: among all probability distributions that can be used to
express A as a convex combination of points in Q, pick the one that
maximizes the Shannon entropy. These distributions are referred
to as maximum entropy (max-entropy) distributions and arise in
machine learning, statistics, mathematics, and theoretical computer
science (TCS). In TCS, these distributions have found many uses due
to duality, connections to polynomials, and algorithms to compute
them [1, 2, 11, 13, 19, 34]; see [36].

In this paper we initiate a study of the computability when Q is
a continuous (and often nonconvex) manifold. Examples of interest
include

V= {vv" v eR"},
Py = {vv* v e C",|v|lz = 1},
the set of rank k Hermitian projection matrices
Pr={Y:YeC”" Tr(Y) =k, Y =Y*, Y2 =Y}

(related to the Grassmanian), or a convex body (where K = Q).

Unlike the discrete setting, in the continuous setting the notion
of a max-entropy distribution is not well-defined since a canonical
notion of entropy does not necessarily exist. We instead consider
relative entropy, Kullback-Leibler (KL) divergence, with respect to
a prior measure p on Q that corresponds to the density function
f(X) =1forall X € Q. For all of the manifolds mentioned above,
there is a canonical measure that has this property and is called
the uniform measure; see Section 2. This leads us to the following
infinite dimensional convex optimization problem which gives a
canonical way to write A as a convex combination of points in Q:
Find a measure v on Q that is continuous with respect to y and,
subject to the constraint that the expected point in K with respect
to v is A, v minimizes the KL divergence to u. Note that, by choice,
v is as close to the distribution p as possible; hence we call it a
maximum entropy distribution.

The class of extremal entropy maximizing distributions that
arise in this manner have several properties that have led to their
appearance, implicitly or explicitly, in several different areas:

o the work of Klartag (inspired by a work of Gromov) on the
isotropic constant [15, 27],
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o the work of Khatri and Mardia on the Matrix Bingham distribution
in statistics with applications to various scientific and engineering
problems [6, 21, 26],

e as shown here, the work of Goemans and Williamson on rounding
semidefinite programs [14],

o the works of Giiler, Bubeck and Eldan on barrier functions for
interior point methods [7, 17, 18],

o the works of Band, Park, and Slater that defined the barycentric
quantum entropy and proposed it as an alternative to the von
Neumann entropy in the 1970s [3, 30, 35].

Computability of entropy maximizing distributions. One of the
reasons why the entropy maximizing problem defined earlier is
interesting (and unifies the above problems) is duality: the dual
optimization problem roughly has the form:

eV X0au(x),

€Q

inf (Y, A) + Iog/
Y X

where (-, -) is an inner product and y is the given measure. If strong
duality holds, it can be shown that the optimal distribution v* to
the entropy maximizing problem can be described by the optimizer
Y* to the dual above: v*(X) o e=Y"X) for X € Q. As for com-
putability of v*, Y* lives in a small, convex, and finite dimensional
(same dimension as K) domain. Hence in principle, one could hope
to represent v* efficiently. However, bounding the running time of
a optimization method to find Y* reduces to 1) a bounding some
norm of Y* and, 2) coming up with efficient algorithms to compute
/XeQ e_<Y’X>d,u(X) for matrices Y with that norm. These are the
main technical problems studied in this paper.

1.1 Our Contributions

The main contributions of this paper are to initiate a study of the
computability of entropy maximizing distributions on continuous
domains, to present an ellipsoid method-based framework to com-
pute them, to derive polynomial time algorithms for computing
maximum entropy distributions for specific manifolds mentioned
earlier, and to present implications to some of the applications listed
above.

The continuous maximum entropy framework and duality. Our
general framework is presented Section 3. The focus is on the setting
when the manifold Q and the base measure y is fixed to either the
set of all rank one matrices over reals (V1) with the measure induced
by Lebesgue measure on R”, or the set of all rank k projections
over complexes (Py) for k > 1 with the appropriate Haar measure.
The input consists of an element A (which is a matrix in the cases
of interest) and the goal is to compute a representation for v* that
is the KL-divergence minimizing distribution to p with marginal
A. We start by writing down the dual of this optimization problem
(see Figure 1). We show (see the full version) that strong duality
holds under Slater’s condition — that there is a density function that
is strictly positive (and bounded) on Q and has marginal A. This
is implied by the condition that A is in the relative interior of the
convex hull K of Q, which is true quite generally. Strong duality
implies that the optimal measure v* is determined by the optimal
dual solution Y* as v*(X) « e~ {Y".X). see Theorem 4.1.
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Norm of the optimal dual solution. However, to solve the dual
convex program one needs, at the bare minimum, that the norm of
Y* is reasonably bounded. It is not difficult to see that as A tends
to the boundary of K, the optimal measure is concentrated on a
face of K implying that the norm of Y* must tend to infinity. Thus,
one needs some assumption on the “interiority” of A to ensure
polynomial time computability. The situation is exacerbated by
the fact that the Y* appears in the exponent and, hence, to have
any hope of computability of the entropy maximizing distribution,
the bound on Y* should be polynomial in the bit complexity of
A. Unlike the case when Q is discrete (studied in [34]), the fact
that the base measure p is continuous makes it harder. Our main
contribution towards the problem of bounding the norm of Y*
involves identifying a certain “balance” property of the measure
u on the manifold Q (Definition 4.1) and showing that, roughly,
[IY*]| < poly(d, 1/n) where 7 is the distance of A from the boundary
of K; see Theorem 4.2. We show that this balance property holds
for a wide class of manifolds and obtain as corollaries a bound of
poly(n, 1/n) for both Q = P (Corollary 7.4) and when Q is an
n-dimensional convex body (Corollary 4.15). This bounding box
result is quite general and expected to find further applications.

Computing the integral in the dual for matrix manifolds. A bound
on the norm of Y* allows us to show that we can use the ellipsoid
method to solve the dual convex program, provided the measure
 is balanced on Q, and we can evaluate the dual and its gradient
at a specified Y of norm up to that of Y*. The tasks of evaluating
the dual and its gradient essentially reduce to the computation of
the integral erQ e_<Y’X>d,u(X). In the case when Q = V; with p
being the measure induced by the Lebesgue measure, we observe
that the dual optimization problem is finite only when Y > 0, and
thus we need to evaluate the integral only for such a Y. The integral
above then turns out to have a simple formula: roughly, log det Y.

In other interesting cases, computing such an integral turns out
to be a nontrivial task. In the case when Q = P; and py is the
uniform measure induced by the Haar measure on the complex
unit sphere, the entropy maximizing measure cannot be obtained
by solving the problem first for V; and then “projecting” it on the
sphere; see Section 6.2. Further, the integral does not reduce to a
product of n integrals as in the Lebesgue case, and there is no easy
way around this. We need an algorithm to integrate the density
e~V Y2 over the complex unit sphere where the only thing we know
about Y is that it is Hermitian. Neither the density is log-concave,
nor the support (unit sphere) is convex. Our main contribution
here is to give an exact algorithm to compute this integral whose
running time depends single exponentially on the bit complexity
of the input Y to it (Theorem 4.5). As remarked earlier, because Y
is being exponentiated, this is the best one can hope for and also
turns out to be sufficient to obtain polynomial time algorithms for
computing maximum entropy distributions on ;.

Interestingly, the algorithm to compute this integral and its proof
relies on an connection between the manifold #; and the probabil-
ity simplex in n dimensions. Specifically, one can naturally push
forward the entropy maximizing measure from #; to a log-linear
measure on the corresponding simplex. There are then algorithms
to sample from such a density function on the simplex to estimate
such an integral; however, to obtain an 1 + § approximation to
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it, the running time of these methods depends polynomially on
1/6 instead log 1/8. We give an exact algorithm to compute this
integral. Our method relies on Laplace transforms, is elementary,
and a significant effort is needed to deal with the case when Y has
repeated eigenvalues. Importantly, this viewpoint also leads us to
an exact algorithm for computing such an integral for Py for k > 1
using the Harish-Chandra-Itzykson-Zuber formula [12, 20, 23, 37];
see Theorem 6.1.

Efficient algorithm via the ellipsoid method. Our general ellipsoid
method-based algorithm requires 1) a full dimensional embedding
of hull(®?) in a d-dimensional real Hilbert space, 2) y is a balanced
measure on Q, 3) Q is contained in a ball of radius r, 4) the point A
is in the p-interior of hull(Q) and, 5) that we have an exact count-
ing/integrating oracle. It runs in time polynomial in d, 1/n,logr
and log 1/¢, to solve the dual problem to an additive ¢; see Theorem
4.4, Our bound on the norm of Y* and exact algorithms to compute
the dual objective/gradient for the case of £y imply a polynomial
time algorithm to compute the entropy maximizing measure in this
case when A is in the polynomial interior of hull(#); see Corollary
4.10.

1.2 Applications

SDP rounding. One approach to semi-definite programming
(SDP) based approximation algorithms, starting with the work of
Goemans-Williamson [14] for the maximum cut problem, is SDP
rounding. Here, typically, A is a positive semi-definite (PSD) matrix,
that is computed using a SDP relaxation to some non-convex prob-
lem, and one of the goals is to round A to a vector. This involves
choosing a distribution on the set V; defined above, and typical
choices have been somewhat magical and lack an explanation. In
the Goemans-Williamson setting, A is an n X n PSD matrix, and the
density v on Q they choose to express A as a convex combination
is as follows: pick a vector v € R" from the normal distribution
with covariance matrix A. We show that this distribution is the
maximum entropy distribution v* (corresponding to A) on V; with
base measure induced by the Lebesgue measure on R”, thus giving
an optimization characterization of this measure; see Corollary 4.14.
The proof relies on strong duality and a closed form expression for
the dual objective integral on V;; see Theorem 4.1.

Quantum entropy. In quantum mechanics, a density matrix p is
a trace one complex n X n PSD matrix and describes the statistical
state of a system. The extreme points in the set of density matrices
are the pure states or ;. von Neumann defined a notion of entropy
[38] of p that is computed by first writing p as a convex combination
27 Aiuiu, where {u;};e[p) is an orthonormal basis for C", and
then computing the negative Shannon entropy of the A;’s. While
the von Neumann entropy is a mathematically elegant notion, it
was vigorously argued in the 1970s that it does not capture the
uncertainty in p [3, 30, 35]. In fact, von Neumann’s way to write p
as a convex combination of pure states can be viewed as “the most
terse”, or entropy minimizing one. In the same papers, an alternative
way to define entropy of a density matrix was suggested — as the
entropy of the entropy maximizing distribution with marginal p
— and referred to as the barycentric quantum entropy. Unlike the
von Neumann entropy, that has a simple formula (- Tr p log p)),
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the barycentric entropy did not have an efficient algorithm that
could compute it. Our algorithm to compute entropy maximizing
distributions for 1 mentioned above directly implies a polynomial
time algorithm to compute the barycentric entropy of a density
matrix (that is sufficiently in the interior) along with the probability
density that achieves it; see Corollary 4.13.

Entropic barrier function. Bubeck and Eldan in [7] proved that
the entropic barrier of a convex body K C R is a (1 + o(1))n-self-
concordant barrier on K. Roughly speaking, this barrier function,
for a point in K is defined to be the optimal value of a dual maxi-
mum entropy optimization problem when Q = K and the measure
is the Lebesgue measure on K. The computability of this barrier
function for a point K is not known in general. One obstacle is to
get a reasonable bound on the optimal solution. An almost direct
consequence of Theorem 4.2 implies such a bound for points that
are sufficiently in the interior of K; see Corollary 4.15.

2 PRELIMINARIES

Notation. Let C,R, R4, N denote the complex, real, nonnegative
real, and natural numbers respectively. For k,n € N, let Ck*n and
RKX™ denote the sets of k xn complex and real matrices respectively.
A matrix M € C™" is said to be Hermitian if A = A* where *
denotes the conjugate transpose. A Hermitian matrix M is said
to be PD (positive definite) and PSD (positive semidefinite) if its
eigenvalues are positive and nonnegative respectively. For an n X n
matrix X, we define diag(X) to be the length-n vector of the diagonal
entries of X. If x is a vector, then we define diag(x) to be the diagonal
matrix with entries the entries of x. For any k,n € N, we equip
the vector space C¥*" with the Frobenius inner product (Y, Z) :=
Tr(YZ*). We also denote ||Y]| := +/(Y,Y). Note that (Y,Z) € R
whenever Y, Z are Hermitian, so that the set of n X n Hermitian
matrices is a real Hilbert space of dimension n?. Also (Y, Z) > 0
whenever Y, Z are PSD. We further let B,(Y) denote the open ¢-ball
centered at Y in the space in which Y lives (e.g., the n X n Hermitian
matrices). Finally, we let hull(S) denote the convex hull of a set S
in some ambient vector space.

Manifolds. In general, we let Q be any smooth manifold that is
embedded in a d-dimensional real Hilbert space V with inner prod-
uct (-,-). Let £(X) = B denote the affine space in which hull(Q)
is full dimensional, i.e., every element X € hull(Q) satisfies the
equation £(X) = B. The concrete manifolds we consider are collec-
tions of matrices with some structure. In particular, for fixed n € N,
consider the following manifold within C"*". An n X n rank-k PSD
projection is a PSD matrix with k eigenvalues equal to 1 and the
rest equal to 0.

Pr. = Pr(n) := {n X n rank-k PSD projections}.

Note that P is also a manifold within the space of n x n Hermitian
matrices.! Other manifolds we consider are the complex unit sphere
S& C C" (which is related to #;), the manifold of all rank one
matrices (not necessarily trace one): V; := {voT : v € R"*}, and a
convex body K c R".

INote that Py is homeomorphic to a Grassmannian, i.e., the manifold of k-dimensional
subspaces within an n-dimensional space. The homeomorphism is explicitly given as
the map which sends a rank-k PSD projection to the k-dimensional subspace given
by its image.
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We would also like to consider the convex hull of a given man-
ifold Q. To make sense of such a notion, we need to consider the
manifold as being embedded in some ambient vector space. This
ambient space often the space of n X n Hermitian matrices in our ex-
amples. In general, we refer to the elements of hull(Q) as marginals
or marginals matrices.

Group actions. It is useful to understand the symmetries of some
of the manifolds mentioned above in terms of groups that act on
them. Recall that an n X n unitary matrix is an invertible matrix U
for which U~! = U*, and an n x n orthogonal matrix is an invertible
matrix O for which O~! = OT. The unitary and orthogonal groups
(U(n) and O(n)) act on the manifolds discussed above as follows:

e U(n) acts on column vectors in S(g and on hull(S(g) by left
multiplication.

e U(n) acts on Py and on hull(Py) by conjugation.

e O(n) acts on V; and on hull(V;) by conjugation.

Note that the actions of U(n) on S” and on $; are compatible in
the sense that for x € Sg and U € U(n), we have (Ux)(Ux)* =
U(xx*)U* where xx* € P;.

Relative interior. The convex set hull(Q) is not necessarily full
dimensional in the ambient Hilbert space. To define a notion of
interior for hull(Q), we restrict to the minimal affine subspace in
which Q lives (this is given explicitly by £(X) = B discussed above).
More generally, we make the following definition.

DEFINITION 2.1 (RELATIVE INTERIOR). Fix a convex subset S in a
vector space V, and let Vg be the minimal affine subspace in which
S lives. We say that Y € V is in the n-interior of S (forn > 0) if

By(Y)NVypCS.

We say that Y is in the interior of S if there exists > 0 such that Y
is in the n-interior of S.

Here we usually consider S = Py (n), and we will be interested

in the case where n > m.

Measures and densities. Often, the manifolds Q we consider have
some geometric structure (e.g., it is a manifold with a group action),
and we want to consider measures which interact nicely with this
structure. To make sure this happens, we restrict to the class of
measures which are given by continuous density functions on Q. To
make sense of this, we need a natural base measure g on Q which
corresponds to the density function f(X) = 1. (E.g., in the case of
Q = C" or Q = R", the Lebesgue measure often plays this role.) In
particular, the support of i should be equal to Q.

In the case of Q = Py, there is a canonical measure which is ap-
propriately called the uniform measure: we define y. be the unique
unitarily invariant measure on P, where U(n) acts by conjugation
(as discussed above). Hence, equivalently (and more formally), we
restrict to the class of measures on £ which are absolutely contin-
uous with respect to .. We also consider the standard Lebesgue
measure on R” for convex bodies and its pushforward measure p
through the map v — vvT on V;. Note that S™ also has a canonical
unitarily invariant measure, usually called the Haar measure. The
pushforward of this measure through the map v — vov* yields the
unitarily invariant measure y; on P;.
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Integration/Counting oracle. We are interested in computing the
following exponential integral for a given Y in our Hilbert space V.

DEFINITION 2.2 (EXPONENTIAL INTEGRALS). Fixn € N and let 1
be a measure with support Q, a manifold embedded in the real Hilbert
space V. We define the following function on an inputY € V:

E(Y) = Eu(Y) = log /Q e X du(x).

Whenever i = p. and Q = Py, we use the following shorthand nota-
tion E.(Y). We sometimes also refer to these integrals as exponential
integrals.

A strong integration/counting oracle for Q and p outputs two quan-
tities, given an element Y from the ambient Hilbert space V of
Q:
(1) Eu(Y)
(2) the matrix VE,(Y), defined so that the following holds for
any Z € V:

(VEL(Y), Z) = diSH(Y +tZ)

t £=0
In the case of Q = Py, Y and Z are Hermitian. Further, since the
measure i is unitarily invariant, we can assume that Y is diagonal
and expect the running time of the counting oracle should depend
polynomially on n and the number of bits needed to represent e~ Y
for any i, where y1, . . ., y, are the eigenvalues (diagonal elements)
of Y.

As we will show, in the special case when Q = V; and y is the
pushforward of the Lebesgue measure, we can compute the integral
&Eu(Y) exactly in time polynomial in the bit complexity of Y due to
a direct formula. This happens because the measure y is a product
measure, which is not the case for .

3 THE MAXIMUM ENTROPY FRAMEWORK

In this section we present our maximum entropy convex program.
Fix a manifold Q in a d-dimensional real Hilbert space with inner
product (-, -), and let L(X) = B denote the corresponding affine
space containing Q. Let y be the base measure on Q and A in
K := hull(Q). Our goal is to find a density function v with marginal
A that minimizes the KL-divergence with respect to p.

We use the shorthand Primy,(A) (or Primy (A) if p = pig) to refer
to this primal optimization program. We mainly consider the case of
p = pp and Q = Py or Q = V; with p the pushforward of Lebesgue
measure. In these cases Y will comes from some subspace of the
nxn Hermitian matrices. Drawing from the intuition that these base
measures are uniform over the manifold, and hence in some sense
maximize entropy, we say the KL-divergence minimizing measure
is entropy maximizing. However, we note that this framework is
also applicable to other base measures, in particular to the case
when Q is a convex body in R4 and 1 is the Lebesgue measure. The
fact that the entropy integral (without the minus sign) is convex as
a function of the density v follows from the fact that this integral
is precisely the KL divergence between the probability distribution
corresponding to v and the distribution p. Convexity of the KL
divergence for probability distributions is then a well-known fact.

Efficiently solving this convex program directly is a priori impos-
sible as the support of v is infinite. To find a succinct representation
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Primal
sup [— [ w0108 600 dpx)

subject to:
v:Q — Rsp, y-measurable

/ Xv(X)du(X)=A
Q
/ VX du(X) = 1

Q

STOC 20, June 22-26, 2020, Chicago, IL, USA

Dual
inf Fo(Y) = inf [(Y,A) + Iog/ e_<Y’X>dy(X)]
Y Y Q
subject to:
L(Y)=0

Figure 1: Primal and dual maximum entropy convex programs for A in the interior of hull(Q).

for the optimal v*, we turn to the dual program (see Figure 1),
which gives us a nice representation of the max-entropy density
function v*. We often use the shorthand Dual, (A) (or Dualy (A) if
1 = ) to refer to this program.

In the case of P} with uniform measure y, the optimal solution
to Dualy (A) is given by a Hermitian matrix Y*. By strong duality
(see Theorem 4.1), this in turn shows that the max-entropy density
function v* takes on a nice form:

V¥(X) e Y X),

As a note, in the case of Q = P} this matrix Y* is only unique up
to a shift by a multiple of the identity matrix. Issues arising from
non-uniqueness can be handled by restricting to the minimal affine
subspace in which hull(#y) lives, as referred to in the discussion
surrounding Definition 2.1. However, as A tends to the boundary
of hull(®2), Y* can be seen to tend to infinity as the support of the
measure v* tends to lower dimensions.

4 FORMAL STATEMENT OF OUR RESULTS

4.1 Mathematical and Computational Results
Our first result shows that strong duality holds.

THEOREM 4.1 (STRONG DUALITY). Let Q be a manifold that is
embedded in a d-dimensional real Hilbert space with an inner product
(-, ), and let u be a measure supported on Q. For any A in the relative
interior of the convex hull of Q, the optimal values of the primal and
dual objective functions coincide, and the corresponding max-entropy
distribution has density function of the form v*(X) o e~ (Y. X) for
some Y*.

The proof of this result uses standard techniques and thus is omitted
from this paper (see the full version). This result applied to Py
and py shows that optimizing Dualy(A) is in fact equivalent to
optimizing Primy (A), and therefore the max-entropy measure has
the exponential form described above.

With strong duality in hand, we focus on the computability of
the optimal matrix Y* for the dual program. To do this we use a
version of the ellipsoid algorithm (see Theorem 8.1), for which we
need two things.

First, we need an upper bound on some norm of the dual optimal
solution. If Y* is the optimal solution, then the number of itera-
tions of the ellipsoid algorithm depends on log || Y*||. That said, it
may seem that a bound depending on !/ where n is such that

934

By(A) C hull(Q), is enough to achieve polynomial dependence on
1 'However, this is not enough, since the integral appearing in
the dual is polynomially dependent on the number of bits needs to
represent e Yi, where the y;’s are the entries or eigenvalues of a
given input Y. Hence, we actually need polynomial dependence on
%, which is achieved in our bounding box result below. Note that
this issue is not surprising, as it crops up in exactly the same way
in the discrete maximum entropy case (see [34]).

We give here a bounding box result which is more general than
we need for the rank-k projections case (Q = Py and p = pg). It
relies on a key “balance” property of the measures. This notion
extends important properties of the discrete uniform measure to
continuous measures on manifolds and is one of the key notions
we introduce.

DEFINITION 4.1 (BALANCED MEASURE). A measure  is said to be
balanced if for any § > 0 and X € Q C R?, we have that at least
exp(—poly(8~1, d)) of the mass of i is contained in the 5-ball about
X.

We see in Definition 7.2 how this notion can be used to give a more
refined notion of interior (beyond the 5 parameter discussed above).
Conceptually, it allows us to give an measure-theoretic relaxation
of the notion of a separating hyperplane.

We now state the main bounding box result. The precise bound
is given in Theorem 7.2.

THEOREM 4.2 (BOUNDING BOX). Let pi be a measure supported
on a manifold Q embedded in a d-dimensional real Hilbert space.
Suppose that i is balanced, in the sense of Definition 4.1. Further, let
A be an element of the n-interior of the convex hull of Q. Then there
is an optimal solution Y* to the dual program such that: ||Y*|| <
poly(y~", d).

Corollary 7.4 and Corollary 4.15 give bounds for rank-k projections
and convex bodies as corollaries.

REMARK 4.3. Our bounding box result significantly generalizes
the discrete case (Theorem 2.7 in [34]). Uniform distribution in the
discrete case has atoms of uniformly strictly positive (at worst singly-
exponentially small) mass at all points, and this implies a bound on
optimal dual solutions. In the continuous case this is no longer true,
the notion of balance then fills the gap.

Second, at each step of the ellipsoid algorithm, we need to be able to
evaluate the dual objective function and its gradient at given input
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Y. The hardest part of such a computation comes in evaluating &,
the exponential integral portion of the objective function. We show
that if we have access to such an evaluation oracle, then under
very general conditions, we can compute the maximum entropy
distribution.

THEOREM 4.4 (ELLIPSOID METHOD-BASED GENERAL ALGORITHM).
Let u be a balanced measure with support on a manifold Q embedded
in a d-dimensional real Hilbert space. Let the affine space in which Q
lies, L(X) = B, be given as input (L, B). Assume that Q is contained
in a ball of radius r. There exists an algorithm that, given A in the
n-interior of hull(Q2), any ¢ > 0, and a strong counting/integration
oracle for the exponential integral &,,(Y), returns Y° such that

FA(Y®) < FA(Y*) + ¢

where F4 is the objective function for the dual program Dual,(A),
and Y* is an optimum of the dual program. The running time of the
algorithm is polynomial ind, 7!, log(¢™"), log(r), and the number
of bits needed to represent A, L, and B.

Our next result says that in fact we have an efficient strong counting
oracle for &; on the domain Py with measure yy.

THEOREM 4.5 (COUNTING ORACLE FOR Py). There is an algorithm
that, givenn € N, k € [n], an n X n real diagonal matrix Y = diag(y),
and a § > 0, returns numbers E, G such that

(1) |[E=&r(Y)[ <6

2) 1G=VE(Y)| <6,
where Ey. is the exponential integral defined above (and in Definition
2.2). The running time of the algorithm is polynomial in n, log(%),
and the number of bits needed to represent e”Yi for anyi € [n].

The proof of this theorem for k = 1 is elementary but relies on the
interesting connection between the complex unit sphere and the
probability simplex. This connection also yields an exact sampling
algorithm.

PROPOSITION 4.6 (RANK-ONE SAMPLING). Let Y = diag(y) be a
real diagonal n X n matrix. The following process produces samples
from the measure e’<Y’X>d/,11(X) on Py.

(1) Sample v from the measure e’<y*”>d/1Al(v) on the simplex Aq
by iteratively sampling v; conditioned on vy, . .

(2) Sample z1, . . ., zn independently uniformly from the complex
unit circle.

(3) Construct X := (z\/0)(z\v)* € P1 where z+[v is the column

vector (21401, . - ., Zn\On)-
For k > 1, the proof of Theorem 4.5 above relies on the Harish-
Chandra-Itzykson-Zuber formula; see Theorem 6.1.

., 0i-1.

REMARK 4.7. In the case of V1 with the pushforward of Lebesgue
measure, there is an exact formula to compute the corresponding dual
optimum for positive definite marginals A: Y* = %A‘l; see Corollary
9.4. Positive-definiteness of the input Y is in fact required for the
dual objective to be finite, which is in stark contrast with the Py
case where any Hermitian matrix is allowed. These points suggest a
conceptual divide between the Lebesgue measure case and the rank-k
projections case. We do not expect such a formula for Y* in the case
of P1 and, indeed, the lack of one has been one of the obstacles for
efficient algorithms for quantum barycentric entropy and computing
the normalizing constant of the matrix Bingham distribution.
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REMARK 4.8. In this paper we primarily consider the best possible
setting where the running time of the counting oracle depends log-
arithmically on the accuracy. We refer to such counting oracles as
exact. We note that our framework does allow for counting oracles
where the dependence is polynomially in 1/4.

REMARK 4.9. Giiler in [16] studies the characteristic function of a
convex cone. In our language, the characteristic function of a cone is
the exponential integral Ex (y) with respect to the Lebesgue measure
on the dual cone K:

Ex(y) = log/ e (8% gy,
K

For the case of homogeneous convex cones, Giiler gives a nice way
to construct explicit formulas for the characteristic function. (A ho-
mogeneous cone is a cone K such that for all u,v € K theres is a
linear isomorphism of K which maps u tov.) Given a fixed vector e
in the interior of K, any other vector y in the interior of K, and an
automorphism Ay of K mapping e toy, the dual objective for K can
be written up to additive constant as:

_ 1
Fo(y) = (5. 0) ~log | ¢ dx = (4.6) = 5 logder(Ay AT ).

Such an explicit formula gives a route to efficiently computing the dual
objective function in the homogeneous case. Orthants, Lorentz cones,
and semidefinite cones are all homogeneous, and in those specific cases
the above formula for Fg(y) becomes completely explicit. See Sections
3 and 7 of [16] for more details.

The bounding box and counting oracle for y; and P then imply
that the ellipsoid method-based algorithm from Theorem 4.4 gives
a polynomial time algorithm for approximately computing Y*, the
optimum of the program Dualy (A).

COROLLARY 4.10 (ELLIPSOID METHOD-BASED EFFICIENT ALGO-
RITHM FOR Py). There exists an algorithm that, givenn € N, k € [n],
a trace-k PD matrix A in the n-interior of the convex hull of the set of
n X n rank-k PSD projection matrices (i.e., hull(P)), and an ¢ > 0,
returns a Hermitian matrix Y° such that

FA(Y®) < Fa(Y*) + ¢,

where F is the dual objective function and Y* is an optimal solution
to the dual program Dualy (A). The running time of the algorithm is
polynomial in n, %, Iog(%), and the number of bits needed to represent
A.

REMARK 4.11. Notice that the dependence on 1 means that we do
not achieve a polynomial time algorithm for A near the boundary
of hull(Py). This dependence comes from the fact that the bounding
box (Theorem 4.2) is dependent on % One may then naturally ask
whether this bounding box dependence can be improved, but it turns
out that it cannot in this case. Note that this differs from the discrete
case, where in [36] the authors are able to remove this % dependence
under certain assumptions on the polytope.

Finally, the closeness of the distributions associated to Y° and Y*
is then given in the following.

PROPOSITION 4.12. Let Y* be the optimal to the dual objective
function Fa(Y), and let Y° be such that FA(Y®) < Fo(Y*) + &. If



On the Computability of Continuous Maximum Entropy Distributions with Applications

P*(X) o e~ "X and uo(X) e~ Y X) are the probability distri-
butions associated to Y* and Y° respectively, then

> = p°llry < Ve,

4.2 Applications

Barycentric quantum entropy. In [35], Slater discusses the notion
of barycentric quantum entropy of a density matrix, and compares
it to that of von Neumann entropy. His investigation of this notion
was prompted by the work of Band and Park [3, 30], who critiqued
the use of von Neumann entropy as a good indicator of the uncer-
tainty of the given density matrix. In particular, they argue that a
better notion of entropy would relate to distributions on all possible
pure states, whereas the von Neumann entropy is derived from the
discrete distribution on the pure states corresponding to eigenvec-
tors of the matrix. In response to this, Slater defines a notion of
quantum entropy in terms of a max-entropy program on the set of
all pure states. He then goes on to show how one might determine
the quantum entropy in a few specific cases.

DEFINITION 4.2 (BARYCENTRIC QUANTUM ENTROPY). Let p be an
n X n Hermitian density matrix (trace-1, positive semidefinite). Then
the barycentric quantum entropy of p is defined (in our notation) as

Hy(p) := in /P V() Log(v(X))dyi1 (X)

1
subject to:
v(X)>0 VX ePy

/ Xv(X)d(X) = p
P1

/ V(X0 () = 1
p

1
where Py denotes the set of pure states and yi; denotes the unitarily
invariant measure on P .

Our results for computing max-entropy measures on $; imme-
diately imply efficient computability of the barycentric quantum
entropy for density matrices that are polynomially in the interior.

COROLLARY 4.13 (COMPUTABILITY OF BARYCENTRIC QUANTUM
ENTROPY). There exists an algorithm that, given a Hermitian density
matrix p in the n-interior of the set of Hermitian density matrices
and an ¢ > 0, returns a number H such that |H — Hy(p)| < ¢. The
running time of the algorithm is polynomial in n, %, log(%), and the

number of bits needed to represent p.

Goemans-Williamson SDP rounding. In their seminal paper,
Goemans-Williamson [14] gave a rounding scheme that gives a
way to round a given PD matrix A to a vector. Their method goes
by drawing a vector v from a particular distribution on R” based
on the matrix A.

DEFINITION 4.3 (GOEMANS-WILLIAMSON MEASURE). Givenn € N
and a real positive definite n X n matrix A, the Goemans-Williamson
measure pigw can be defined via a sampling process on R™ as follows.

(1) Sample g € R™ from the standard multivariate Gaussian dis-

tribution.

(2) Computev := Vg whereV is a square root of A, i.e, A = VvT.

(3) v is a sample from ugw.
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It is then straightforward to compute the marginals matrix asso-
ciated to this distribution as follows:

E[vo'] = ./R" (o Ndpgw (@) =V [/]R;" g9 dg| VT =VVT = A

Thus, if we map R" to V; via v — ovv' and also pushforward
the Lebesgue measure through this map, the above is precisely the
marginal constraint in our max-entropy framework. This observa-
tion implies that the pushforward of the measure pgw is a (strictly)
feasible solution to the max-entropy primal program on the domain
V1 with the pushforward of the Lebesgue measure. We show that
it is also the optimal solution to the max-entropy program.

COROLLARY 4.14 (GOEMANS-WILLIAMSON MEASURE MAXIMIZES
ENTROPY). For any positive definite matrix A, let ugw be the measure
corresponding to the Goemans-Williamson rounding scheme for A.
Then the pushforward of pgw to Vi is the max-entropy measure
with marginals A on Vi with respect to the pushforward of Lebesgue
measure.

Entropic barrier function. Bubeck and Eldan in [7] prove that
the entropic barrier of a convex body K C R is a (1 + o(1))n-self-
concordant barrier on K, improving a seminal result of Nesterov and
Nemirovski [29]. In fact this gives the first explicit construction of a
universal barrier for convex bodies with optimal self-concordance
parameter.

DEFINITION 4.4 (ENTROPIC BARRIER). Given a convex body K C
RY, define the entropic barrier for K as the real-valued function on
the interior of K defined as:

Bk (v) := sup
yeRd

(y,v) — log/ e<y’x>dx] .
K

Note that —Bg (v) is precisely the maxium entropy dual program, up
to negation of y in the expression.

Open questions still remain about the efficient computability of
the entropic barrier. This is in particular true in the case where
K is a polytope, given as a membership oracle. Towards this, the
following is essentially a corollary to Theorem 4.2 (see Section 7.3
for a full proof), and can be used to efficiently compute the entropic
barrier at points which are in the n-interior of K.

COROLLARY 4.15 (BOUNDING BOX FOR CONVEX BODIES). Let yi be
the uniform distribution on a d-dimensional convex body Q contained
in a ball of radius R. Given v in the n-interior of the convex hull of
Q, there is an optimal solution y* to the dual program such that

lly* Il < poly(n~", d, log(R)).

Details of how this implies computability of the entropic barrier
are omitted from this paper.

5 ORGANIZATION OF THE PAPER

Section 6 contains a detailed technical overview of the proofs of
the main results. Section 7 contains a complete proof of Theorem
4.2 (bounding box). Section 8 contains the proof of Corollary 4.10
(main ellipsoid-based algorithm). Section 9 contains the proof of
Corollary 4.14 (Goemans-Williamson measure maximizes entropy).
Section 10 disucusses the generalization of the maximum entropy
framework to Lie groups. The rest of the proofs are omitted here
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due to space restrcitions and can be found in the full version of the
paper.

6 TECHNICAL OVERVIEW

In this section, we give overviews of the proofs of the main results of
this paper and compare our techniques with those of previous work.
We start by describing the approach of [34] in the case of discrete
uniform measures p with finite support Q C {0, 1}9. In this case,
the marginals vector A of a measure v on Q is defined by setting
Ay to be the expected value of the kth entry of x when x is chosen
according to v. Note that the marginals vector A is always an ele-
ment of hull(Q). The problem the authors of [34] solve is described
as follows: given a finite subset Q and a desired marginals vector A
in the -interior of hull(Q), compute the probability measure on Q
with marginals A which maximizes entropy.
They consider the dual formulation
Z e~ ey)

inf  Fa(y) := (. A) +log
yer? xX€EQ

which gives rise to measures on Q of the following succinct form
for some real vector y*:

v(x) oc e~ (V")

By strong duality v = v* is the entropy maximizing measure, and
they then use the ellipsoid method to approximate y*.

We generalize their approach to continuous measures y on con-
tinuous domains Q. For the most part, the ellipsoid algorithm can
be applied in the same way as in the discrete case once we have
the three main pieces in hand: (1) strong duality, (2) a bound on
Y*, and (3) the strong counting oracle. Even in the continuous case,
one can show that strong duality holds via a certain Slater-type
condition. What makes the passage from the discrete case to the
continuous case much more interesting and nontrivial is proving
the remaining two main pieces.

6.1 Proof Overview: Bounding Box

The goal of this section is to explain the proofs of the main bounding
box result and its corollaries. We first describe the approach of the
discrete p case discussed above. Note that for B € hull(Q), there
exists some Xy € Q such that

(-Y*,Xo—-B) 2 0,

since every closed half-space containing B contains an extreme
point Xy € hull(Q). If A is in the p-interior of hull(Q2), we can

choose B=A— 77”5—:” to get:
(=Y*,Xo = A) = pllY™|I.

Because y is a discrete uniform measure, we have u({Xo}) = |Q|7!.
This implies a bound on Y* as follows, via the dual objective func-
tion Fa(Y):

0 = F4(0) > Fao(Y™)
= log / YN X=4) gy(x)

> log (enllY*H ) |Q|71)
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log |Q
R ||Y*|| < &ll

The lower bound on F4(Y*) above follows from restricting the
integral (which is a sum in the discrete case) to the single point Xj.
This demonstrates exactly why this argument fails in the continuous
case, because in that case we have p({X}) = 0 forall X € Q.

This is the first difficulty we must overcome. We need a way
to restrict the dual objective integral to a region of Q which has
positive mass, emulating the role of atoms in the discrete case.

We introduce a two-parameter interior for the measure y. We say
that A is in the (7, §)-interior of y if every half-space intersecting
the n-ball about A contains at least 6 mass of y (Definition 7.2).
Instead of restricting the dual integral to a single point of Q, we
restrict it to the appropriate §-mass to obtain a bound on ||Y*||:

0> log/e<‘y*’X‘A>du(X) > log (71711 6)
1 1
= [IY*|| < = log =
n 1

We explain this formally in Lemma 7.1.

This leads to the second difficulty. Our bounding box theorem
only refers to the n parameter, and so we need a way to handle or
control § in terms of n and d.

Here is where the key balance property comes into play. We say
that a measure p is balanced if for all ¢ > 0 and X € Q, the ¢-ball
about X contains exp(—poly(¢~!, d)) of the mass of y (Definition
4.1). This links the two interiority parameters: from any point of
the e-interior of hull(Q), there will be at least exp(—poly(¢~!, d))
mass in the direction of any X € Q on the boundary.

The crucial feature of the balance property is then how this
linking of the parameters allows one to transfer between them.
Specifically for a balanced measure, the g-interior of hull(Q) is
contained in the (%,exp(—poly(%,d)))—interior of u. To see this,
let A be in the -interior of hull(Q). Hence, any half space which
intersects the g-ball about A contains another g-ball in hull(Q).
By translating this ball toward a point of Q, we can assume that
the half-space contains an g-ball about a point of Q. Since y is
balanced, this implies A is in the (%, exp(—poly(Z, d)))-interior of
o

At this point, the rest of the proof of Theorem 4.2 is straightfor-
ward. For balanced p and A in the p-interior of hull(Q), we actually
have that A is in the (g, exp(—poly(Z, d)))-interior of y. The two
parameter bound described above then implies || Y*|| < poly(%, d).

To obtain bounding boxes for yx on P, nx n rank k projections,
(Corollary 7.4) and to uniform measures on convex bodies (Corollary
4.15), we then demonstrate balance properties. In the case of g,
Pr C B\/E(O) can be covered by at most exp(poly(log §~1, n)) balls
of radius § for any § > 0, morally because:

(2

)
Therefore a §-ball about some point of ;. must contain at least
exp(—poly(log 571, n)) of the mass of yi, and unitary invariance
then implies that this is actually true for all points of P.
For uniform measures y on convex bodies K contained in a ball
of radius R, we prove the bounding box using similar arguments

vol(B\/E) ~ (zVk)" /n!
vol(Bs) ~ (n8)"/n!

n
) = exp(poly(log 571, n)).
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as follows. By the volume ratio computation above, every d-ball
contained in K contains at least (%)d of the mass of y. Therefore
every A in the g-interior of hull(Q) is also in the (%, (%)d)-interior
of y1, since every half-space intersecting the %-ball about A contains
another g—ball in K. The bounding box then follows from the two-
parameter bound discussed above (Lemma 7.1).

6.2 Proof Overview: Counting Oracle for #;

and V;

The goal of this section is to explain why we can efficiently evaluate
and compute the gradient of

£,(1) = log | ¢ X0du(x)
Q

in the case of Q = 1 and Q = V.

First consider the case of Q = Vj, where p is the pushforward
of the Lebesgue measure through x > xx . In this case we have a
very explicit formula whenever Y is positive definite:

Eu(Y) = log / e X au(x) = glog(n)— %log det(Y).

Since y is the pushforward of the Lebesgue measure through x —
xx ", this expression follows from the following classical Gaussian
integral formula:

/ e~V Xap(x) = / e dx = Vdet(ry). (1)
q/l Rn

We show how leads to our optimality characterization of the
Goemans-Williamson measure at the end of this section.

The above Gaussian formula for V; suggests a natural approach
for computing &; on P;. Allowing complex Hermitian matrices,
note that #7 is the set of norm-1 elements of V. Hence, we “inte-
grate out” the norm of the elements of Vi, in an attempt to obtain a
similar formula for $;. We do this via a standard change of variables
(equalities are up to scalar):

/ e X0ap(x) = / / eVt X) 2n-1g, 0, ()
WV P, J0
- /P (Y. X) M duy (X) % E4(Y).

This shows that this approach fails: that is, integrating out the norm
does not provide us a formula for &;(Y).

This demonstrates the first difficulty for constructing a counting
oracle for ;. Normalizing the max-entropy measure on V; as
above yields a measure on 1 which is not a max-entropy measure.
Max-entropy measures on $; an V; are therefore fundamentally
different objects, and thus constructing the associated counting
oracles requires different techniques. In particular the well-known
Gaussian integral formulas cannot help us in the case of P;.

The remarkable fact is then that max-entropy measures on $;
can be translated into max-entropy measures on a very simple poly-
tope: the standard simplex in R". We have the following equality for
real Y = diag(y), where m is the Lebesgue measure on the simplex
Ap={peRY: YNl pi=1}

/e_<Y’X>d/J1(X)=/ e dm(x).
P1 Ay
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Put another way, max-entropy measures on $1, a nonconvex mani-
fold, correspond to max-entropy measures on A1, a convex polytope.
To see this, first note the following for any my, . .., my. The first
equality is the Bombieri inner product formula (see e.g. Lemma
3.2 of [31]), and the second inequality is a basic induction after a
change of variables:

my!l---myl(n—1)!
(my+---+myp+n-1)"

=/ xI"1~--x,r1""dm(x).
Ay

The exponential equality then follows from limiting, since 1 and
—(¥,X)

Xm0 -
P

A; are compact and since e and e~ %) are limits of poly-
nomials.
This argument also implies the more general fact: that m is the

pushforward of y; through the map ¢ : X — diag(X):

/ FGOONp (X) = / FGdm(x).
Py Ay

This transfer to the simplex now leads to an explicit computation
for £1(Y) when Y = diag(y). (Considering diagonal Y is actually
without loss of generality.) By making a change of variables, the
simplex integral is an iterated convolution:

1 _
(n—1)! /P e M)
° 1

1 1-x1 1-x1——Xp-2
_ / / / o (03 gy
0o Jo 0

Applying the Laplace transform £ converts this convolution into a
partial fraction decomposition problem for distinct values of y;:

(1

[Ti(s +yi)

=1 [Z - iiyi

i
= Z cie Yi.
i

Computing the values of ¢; via a standard partial fractions formula
gives:

¢y

1 n e_yi
—(Y,X) _
— | e dnX)= ) =——F——
(n—1)! ./901 ; [1j2i(y; = 1)
__det(M(-y))
Hi<j(yj -yi)

Here M(—y) is a Vandermonde-like matrix which arises when form-
ing the common denominator of the last expression, defined as
follows.

DEFINITION 6.1 (MATRIX FOR DUAL INTEGRAL, k = 1). Given
Y1,.---Yn € R, let Ay < -+ < A denote the distinct values of y;
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with multiplicities my, . . ., my. We define an n X n matrix M(y) as:

1 0 cee 0 1 0
A 1 cee 0 Ao 1
n (Hu 0 3 ()
B LS () e (s
et et el el ehe
LT 4 oy v T

This brings us to the second difficulty for constructing a counting
oracle for ;. When the values of y; are not distinct, then the de-
nominator vanishes and this formula cannot be used. Even though
&1 is continuous, this could still be a major problem: if for exam-
ple the gradient of &;(Y) becomes large as y; approaches y;, then
computing &;1(Y) could become computationally infeasible.

To handle this difficulty, we take limits by successively applying
L’Hopital’s rule. One iteration for y; = y, goes as follows:

i det(M(-y)) _ Jy, det(M(-y))
Y21 Hi<j(yj ) 5’yz Hi<j(yi - yj) Y=y
) det(M(-y))
" o<iCwi =912 Tacicji —yp)

The key observation here is the fact that the numerator is still
a determinant, due to the fact that only one column of M(-y)
depends on y; for all i. Applying L'Hopital’s rule as many times as
is necessary leads to the following, where A; represent the distinct
values of y with multiplicities m;:

- det(M(-y))
exp(En(1) = [ Xy () = (- i T
b ?, [Ty i = 2™
Note that the definition of M(y) (Definition 6.1 above) already han-
dles the non-distinctness of the eigenvalues. A similar expression
for the gradient is achieved using the same techniques, and so we
state it here without further detail:

mi det(Mp(-y)
Ap—Ai  det(M(-y))

(V&(Y) = -
i%p

Here M (y) is obtained by applying the operator % to the right-
most column of M(y) that depends on A,.

Since the entries of M(~y) and My (~y) have bit complexity poly-
nomial in n and the bit complexity of e~Yi, their determinants have
the same bit complexity. Therefore these formulas, for &;(Y) and
its gradient, lead to an efficient counting oracle for #;.

Proof overview: sampling for 1. We now discuss how to sample
from max-entropy distributions on #;. Our main algorithm (Theo-
rem 4.4) gives an efficient oracle for approximating the max-entropy
density function:

v(X) e (Y X)

The main problem is that it is not at all clear how to use such a
density function to sample from a manifold.

We avoid this difficulty by transferring the problem of sampling
to the simplex A; for Y* = diag(y*), using the following fact
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discussed in the previous section:

5 [ e o
P1

(n—1)

1 1-x1 1-x1——Xp-2 N
:/ / / ) gy
0 Jo 0

The sampling process for P then occurs in two parts.

First, we sample from the max-entropy distribution on the sim-
plex, one coordinate at a time. We use the right-hand side of the
above expression to compute the cumulative density function (CDF)
for each coordinate, conditioned on the previously sampled coor-
dinates. Formulas and computations for these conditioned CDFs
are very similar to that of the counting oracle, and hence we omit
them here.

Once we have a sample x on the simplex, we need to convert
it into a sample on $; by considering its inverse image under the
map ¢ : X +— diag(X). The difficulty that now arises is the fact
that there are many elements of $; which map to the same simplex
element under ¢.

Fortunately, there is a principled way to select from these possi-
bilities. The fiber ¢~!(x) is an orbit of the action of diagonal unitary
matrices on P; by conjugation. Since Y* is diagonal, this implies
the max-entropy measure v(X) is uniform when restricted to ¢~ (x).
Given x, we then sample X from ¢~!(x) by picking an arbitrary
Xo € ¢~!(x) and conjugating by a uniformly random diagonal
unitary matrix.

Hence, to sample X from $; we (1) sample x from the simplex,
and then (2) sample X uniformly from ¢~!(x). This samples X from
the correct measure due to the disintegration theorem (see [9]),
which says the following for any f:

/P 1 fX)dm(X) = /A 1 /¢ ) FOOpy-1(0)(X)dm(x).

That is, the measure y; can be split into measures on Aj and on the
fibers ¢~ 1(x).

Therefore, the above sampling process efficiently samples the
max-entropy measure on P; with density v(X).

6.3 Proof Overview: Extending the Counting
Oracle for P; to Py

For the case of P, and yy, we want to generalize the formulas of the
k = 1 case. To do this, we make use of the famous Harish-Chandra-
Itzykson-Zuber formula for integrals over the Haar measure of the
unitary group U(n).

THEOREM 6.1 (HCIZ FORMULA). For n X n Hermitian matrices Y
and B with distinct eigenvaluesy; < -+ < yp and 1 < --- < By
respectively, we have the following where u is the Haar measure on
the unitary group U(n):

. 1| det(e¥iPilic; j<n)

(Y,UBU™) _ 1<i,j<n
e du(U) = | | .
/U(n) H) pzlp [Ti<j(j = yi)(Bj - Bi)

For B = diag(1,...,1,0,...,0) with k 1s and n — k 0s, notice that
P = {UBU* : U € U(n)}. This leads to the following:

exp(E(Y)) = /P X () = /U .

87<Y’UBU*>dU.
k
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To handle the issue of the denominator vanishing, and to compute
the gradient, one can apply all the same techniques which were
required for the k = 1 case. These formulas end up having the right
bit complexity, and so they immediately imply an efficient strong
counting oracle for Py.

Unlike in the case of k = 1, the problem of sampling in the
case of k > 1 is more difficult as the image of ;. under the map
¢ : X +— diag(X) is much more complicated. Thus we leave as
an open problem the question of sampling from the associated
maximum entropy distributions in the case of P for k > 1.

7 BOUNDING BOX

In this section, we prove the general bounding box result (Theorem
4.2). With this, we then specialize to the cases of rank-k projections
and convex bodies.

7.1 General Bounding Box

In what follows we will discuss “interiors” of a probability distribu-
tion p given by two parameters, (17, §). The n parameter will control
how far we are from the boundary, and the § parameter will control
how well-distributed y is on its support. At the end of the day, we
will prove that for nice situations one only needs to consider the n
parameter (as in the bounding box result of [34]).

We now define the two-parameter interior. In what follows, we
willlet V; be the vector subspace given by £(X) = 0, where L(X) =
B is the maximal set of linearly independent equality constraints
for Q. More informally, V is the vector space corresponding to the
minimal affine space in which K = hull(Q) lives (i.e., translate the
affine space so that 0 € Vz). The fact that L(X) = B is a maximal
linearly independent set means that the optimal solution to the
dual program is unique when restricted to V.

DEFINITION 7.1. We define the (0, §)-interior of i1 to be the set of
all A € K such that for allY € Vp we have:

H{X e Q| (X -AY)>0})> 6.

Morally, this says that every closed half-space containing A contains
more than § of the mass of y. Note that this is not always an open
set (which is perhaps a bit odd for something called the “interior”,
but this will be our convention).

DEFINITION 7.2 (TWO-PARAMETER INTERIOR). We define the
(n, 8)-interior of u to be the set of all A € K such that the ball
of radius n about A is contained in the (0, §)-interior of y. Note that
this is not necessarily an open set.

The next lemma is then precisely how to combine the two pa-
rameters to get a bounding box for the optimal solution to the dual
program.

LEMMA 7.1 (TWO-PARAMETER BOUNDING BOX). Given A € K, let
Y* € Vg be the optimal solution to the dual program. Recall the dual
objective:

inf F4(Y) = inf log / e XA gu(x).
Y Y Q

If A is in the (1, §)-interior of i, then | Y*|| < % log (%)
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ProOF. By definition, we have that A— 7 - ”’;—:” is in the (0, §)-
interior of K. Therefore:
S<p({X e QX —(A-n-Y*/IY™])),-Y™) = 0})
=p({X € QX ~A-Y*) 2 - [IY¥|I}).
This gives the bound:

log/ Y XA 41(X) > log (5 : e”'”Y*”) =log(8) + 7 - |Y*|.

On the other hand, plugging in Y = 0 gives an upper bound on the
optimal value of the above dual program:

0> Iog/e<_Y*’X_A>dy(X) > log(8) + - ||IY*]|.

Rearranging this gives the result. |

This gives us a good way of bounding solutions corresponding
to interior points of K. In general however, trying to get a bound on
the § parameter of the interior is much more difficult than that of
the 1 parameter. To deal with this we define a property of i which
allows us to only have to consider the  parameter.

DEFINITION 7.3 (§-BALANCED MEASURE). We say that u is -
balanced if for any X € Q, we have that at least exp(—poly(§~1, d))
of the mass of u is contained in the 5-ball about X (where d is
the dimension of K). If f is the polynomial in the exponent (i.e.,
exp(—f(671,d))), then we say that y is §-balanced with bound f.

We now prove the main bounding box theorem for such balanced
measures. We then use this to obtain a bounding box for rank-k
projections and for convex bodies in the following sections.

THEOREM 7.2 (BOUNDING BOX FOR BALANCED MEASURES). Sup-
pose p is %-balanced with bound f. If A is in the (n, 0)-interior of
uand Y* € Vjp is the optimal solution to the corresponding dual
program, then ||[Y*|| < 2571 - f(2n71,d) = poly(y~!, d).

Proor. We first show that the (%, 0)-interior of y is contained
in the (0, exp(—f(%, d)))-interior of p1. To see this, let Ay be some
element of the ( %, 0)-interior of y. Then any closed half-space con-

taining Ay also contains an %—ball about some X € Q. That is, for
every Y € V there exists X such that:

Byjo(X) S{Z € Q[(Z - Ao, Y) = 0}.

Since p is g-balanced, we have that exp(—f (%, d)) of the mass of p

is contained in the g—ball about X. This implies:
exp(—f(2/n.d)) < u(By2(X)) < p({Z € Q[ (Z - Ao, Y) 2 0}).

That is, Ay is in the (0, exp(—f(%, d)))-interior of .

Now for A in the (1, 0)-interior of y, we have that the g-ball
about A is contained in the (g, 0)-interior of p. Therefore A is in
the (2, exp(—f(%,d)))-interior of p. By Lemma 7.1, this implies
IY*|l < 277" f(2p7",d). u

REMARK 7.3. Note that Theorem 7.2 is immediately applicable to
uniform discrete measures on (singly) exponentially sized sets S. In
particular, such a measure is automatically balanced with constant
bound f =log]|S|.
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7.2 Rank-k Projections

We now prove bounding box result for Py, by showing that p is
balanced and applying the previous theorem. Note that in this case
L(X) = Breduces to Tr(X) = k, and so V is the set of traceless
Hermitian matrices in this case.

COROLLARY 7.4 (BOUNDING BOX FOR Py). Let . be the uniform
distribution on Py. Then given A in the (n,0)-interior of yy, the
optimal traceless solution Y* of the corresponding dual program is

* 2n? snvk
such that ||[Y*|| < o log (T)

ProoOF. We prove that y. is balanced and then apply the previous
proposition. The number of balls of size § required to cover the unit
ball in R™* (with Euclidean/Frobenius norm) is at most (2n/ 5)"2.
Since the set of projections of rank k is contained in the sphere
of radius Vk, we have that it requires at most (2nvk/ 5)”2 §-balls
to cover all such projections. With this, there exists some §-ball
(call it Bs) in this cover which contains at least (2nVk/ 5)_”Z of the
mass of pig. Pick some X € P N Bg, and let By5(X) be the ball of
radius 28 which is centered at X. Thus, in fact By5(X) contains at
least (2n\/E/5)_"2 of the mass of . By unitary invariance of pp,
we have that the ball of radius 26 about any point of . contains
at least (2n\/E/5)_”2 of the mass of p. That is, p is 6-balanced
with bound (871, n) = n? log(4nVk - 671) for all § > 0. Applying
the previous proposition then gives the result. |

7.3 Convex Bodies

We now prove bounding box result for convex bodies. Instead of
applying the previous theorem directly, we make a simpler compu-
tation in the same spirit.

ProOF OoF COROLLARY 4.15. Note that v in the y-interior of y is

d
automatically in the (g, (&) )—interior of p, since:

Vol(B,]/4) B (l)d
4R

ll(Bn/4)2 vol(Bg) =

By Lemma 7.1, this implies ||y* || < 24 log(%).

8 COMPUTING MAXIMUM ENTROPY
MEASURES

In this section we describe the entire algorithm for computing the
optimum Y* for the dual program Dual,(A), which is essentially
an application of the ellipsoid algorithm. First though, we discuss
how the linear equality constraints £(X) = B come into play here.
We want to restrict our search space to the vector space Vo defined
as the set of all X such that £(X) = 0. The main reason for this is,
since the constraints given by £(X) = B pick out an affine space
in which K is full dimensional, restricting the search space to V¢
causes the optimum Y* to be unique. Further, the bounding box
results above apply specifically to this particular Y*.

Since we are given L effectively and explicitly, we assume for
the ellipsoid algorithm that we can project the gradient (given by
the strong counting oracle) onto V. That said, we will from now
on assume V to be the domain in which we are optimizing.
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8.1 The Ellipsoid Framework

Using a standard argument via Holder’s inequality, we have that
the dual objective function is convex:

Fa(Y) = (Y, A) + Eu(Y) = (Y, A) + log (/ e‘<Y’X>d,u(X)) .
Q

With this, the main optimization tool we use to approximate the the
dual optimum Y™ is the ellipsoid algorithm. Recall the following
from [34] Theorem 2.13, which was essentially taken from [5].

THEOREM 8.1 (ELLIPSOID ALGORITHM). Given any f§ > 0 and
R > 0, there is an algorithm which, given a strong first-order oracle
for Fy, returns aY° € Vp such that:

Fa(Y°) < inf  Fa(Y)

YeVL Y <R

+p Fa(Y) Fa(V)].

sup

inf
YeVe, |IYllo<R YeVy, [[Y[lo<R

The number of calls to the strong first-order oracle for F4 is bounded
by a polynomial in d, log R, and log(1/f). Here, d is the dimension of
the ambient Hilbert space in which Q lies.

We now prove the main theorem (Theorem 4.4) regarding the exis-
tence of an algorithm for approximating the optimum to the dual
objective.

ProoF oF THEOREM 4.4. To apply the ellipsoid algorithm, we
need to choose the two parameters, f and R. Since p is balanced
with some polynomial bound f, we choose for R the bounding box
given for balanced measures in Theorem 4.2:

R:=2p"1 f2n7L,d).

So, the set {Y € V¢ [[YI <R} c {Y € V¢ IY]lo < R}
contains the optimal Y* for the dual program. Next, we need to
choose f. Note that for ||Y||e < R we have:

IFA(Y)| < (Y, A)| + [log / e‘<Y’X>du<x>'

< rliYlleo + rllYlloo
< 2rVd||Y|| < 2rRVd.
. Y S
Therefore, choosing f§ := wRYd implies:
€ €

i

4rRVd ~ SWyev,, |y <k FA(Y) —infycy, |y |,<r Fa(Y)
The ellipsoid algorithm then guarantees a Y° such that:

Fa(Y®) < inf

< Fa(Y)+e=Fq(Y*) +e.
YeVy, |IYllo <R

The number of calls to the strong counting oracle is polynomial
in d, log(R) = log(2n~ - f(2p™1)) and log(1/p) = log(4rRVde™1).
Given the bounding box, each oracle call (now including computing
(Y, A)) can be implemented in time polynomial in d, 5!, and the
number of bits needed to represent A. This completes the proof. W
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8.2 Rank-k Projections

Next we apply the above result to the case of Q = P and p = pg,
i.e., the case of rank-k projections. To do so we make a few tweaks
to the proof of the theorem for the general algorithm given in the
previous section. In particular, even though our domain $y lies in
the space of Hermitian matrices, our strong counting oracle for &y
only applies to real diagonal matrices Y. That said, we now prove
the result for rank-k projections (Corollary 4.10) and discuss such
issues in the proof.

PRrROOF OF COROLLARY 4.10. The result essentially follows from
the general case, with a few details that need to be dealt with. First,
the maximal linear equalities for #}. boils down to something very
simple within the space of Hermitian matrices. It is simply given
by Tr(X) = k. Thus, our search space V, then becomes the set of
traceless Hermitian matrices.

Next, by unitary invariance of ;. we can assume A is diagonal by
unitary conjugation. Once we obtain an approximate optimum Y°
for the diagonalized A, we can obtain an approximate optimum for
the original A via conjugation by this unitary. Next, by the Schur-
Horn theorem [22, 33] we can further assume that Y* is diagonal.
That is, we can assume A is real diagonal and restrict the domain
of FA(Y) to real diagonal matrices Y.

Once we make this simplifying assumption, we have access to
a strong counting/integration oracle for &(Y) by Theorem 4.5.
The proof for the general case then goes through (using this strong
counting oracle and the bounding box result for rank-k projections),
giving the desired result. |

9 THE GOEMANS-WILLIAMSON MEASURE

In this section, we demonstrate how the measure associated to the
Goemans-Williamson SDP rounding scheme can be interpreted as a
max-entropy measure. We abuse notation in this section by letting
pgw refer to the pushforward measure on V. Omitted proofs are
simple and appear in the full version of the paper.

We describe the Goemans-Williamson SDP rounding scheme
formally as follows.

DEFINITION 9.1 (GOEMANS-WILLIAMSON ROUNDING SCHEME).
Given an n X n real symmetric positive definite matrix A, let V be
a real n X n matrix such that VV' = A. The Goemans-Williamson
rounding scheme proceeds as follows:

(1) Sample a random standard Gaussian vector g from R™.

(2) Return the rank-1 PSD matrix (Vg)(Vg)T.

The measure associated to this sampling process we refer to as the
Goemans-Williamson measure and denote it ugw. This measure is
supported on the rank-1 real symmetric PSD matrices, which is the
set of extreme points of the real symmetric PSD cone.

Now let m be the Lebesgue measure on R", and let i be the measure
on the real symmetric PSD cone which is the pushforward of m
through the map @ : x +— xx'. With this we can also give an
explicit description of the Goemans-Williamson measure.

PROPOSITION 9.1 (GOEMANS-WILLIAMSON DENSITY FUNCTION).
The Goemans-Williamson measure on the set of rank-1 real symmetric
PSD matrices is given by

dpgw(X) o e=$FAX) g (x),
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where i is the pus