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ABSTRACT

Given a collection of𝑛 points inR𝑑 , the goal of the (𝑘, 𝑧)-Clustering
problem is to find a subset of 𝑘 “centers” that minimizes the sum
of the 𝑧-th powers of the Euclidean distance of each point to the
closest center. Special cases of the (𝑘, 𝑧)-Clustering problem in-
clude the 𝑘-Median and 𝑘-Means problems. Our main result is a
unified two-stage importance sampling framework that constructs
an 𝜀-coreset for the (𝑘, 𝑧)-Clustering problem. Compared to the
results for (𝑘, 𝑧)-Clustering in [Feldman and Langberg, STOC
2011], our framework saves a 𝜀2𝑑 factor in the coreset size. Com-
pared to the results for (𝑘, 𝑧)-Clustering in [Sohler and Woodruff,
FOCS 2018], our framework saves a poly(𝑘) factor in the coreset
size and avoids the exp(𝑘/𝜀) term in the construction time. Specif-
ically, our coreset for 𝑘-Median (𝑧 = 1) has size 𝑂̃ (𝜀−4𝑘) which,
when compared to the result in [Sohler and Woodruff, FOCS 2018],
saves a 𝑘 factor in the coreset size. Our algorithmic results rely on a
new dimension reduction technique that connects two well-known
shape fitting problems: subspace approximation and clustering, and
may be of independent interest. We also provide a size lower bound
of Ω

(
𝑘 ·min

{
2𝑧/20, 𝑑

})
for a 0.01-coreset for (𝑘, 𝑧)-Clustering,

which has a linear dependence of size on 𝑘 and an exponential
dependence on 𝑧 that matches our algorithmic results.
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1 INTRODUCTION

We study the problem of constructing coresets for (𝑘, 𝑧)-Clustering
in Euclidean space R𝑑 where 𝑧 ≥ 1 is a constant.

(𝑘, 𝑧)-Clustering in R𝑑 . The input is a collection of 𝑛 points
𝑋 ⊆ R𝑑 , and the goal is to find a set 𝐶 ⊆ R𝑑 of 𝑘 points, called a
center set, that minimizes the objective function

cost𝑧 (𝑋,𝐶) :=
∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥,𝐶), (1)

where, throughout, 𝑑𝑧 denotes the Euclidean dis-
tance raised to power 𝑧 ≥ 1, and 𝑑 (𝑥,𝐶) :=
min

{
𝑑 (𝑥, 𝑐) =

√∑
𝑖∈[𝑑 ] (𝑥𝑖 − 𝑐𝑖 )2 : 𝑐 ∈ 𝐶

}
.

This formulation captures classical problems, including the 𝑘-
Median problem (where 𝑧 = 1) and the 𝑘-Means problem (where
𝑧 = 2). Moreover, this formulation can be generalized to weighted
point sets where each point 𝑥 ∈ 𝑋 has a weight 𝑢 (𝑥) and the goal
is to compute a 𝑘-center set 𝐶 ⊂ R𝑑 that minimizes

cost𝑧 (𝑋,𝐶) :=
∑
𝑥 ∈𝑋

𝑢 (𝑥) · 𝑑𝑧 (𝑥,𝐶).

The (𝑘, 𝑧)-Clustering problem is an essential tool in data analysis
and arises in areas such as approximation algorithms, unsupervised
learning, and computational geometry [2, 12, 26, 34]. Due to its
importance, several approximation algorithms for this clustering
problem have been proposed [3, 5, 15, 29].

Coresets. In recent years, a powerful data-reduction technique –
coresets – has been used to find approximately optimal clustering in
large datasets [18, 19, 21]. Roughly speaking, a coreset is a “compact”
summary of the data set, represented by a collection of weighted
points, that approximates the clustering objective for every possible
choice of center set. Let C denote the collection of all ordered
subsets (repetitions allowed) of R𝑑 of size 𝑘 (𝑘-center sets).

Definition 1.1 (Coreset [18, 25]). Given a collection 𝑋 ⊆ R𝑑 of
𝑛 weighted points and 𝜀 ∈ (0, 1), an 𝜀-coreset for (𝑘, 𝑧)-Clustering
is a subset 𝑆 ⊆ R𝑑 with weights 𝑤 : 𝑆 → R≥0 such that for any
𝑘-center set 𝐶 ∈ C, the (𝑘, 𝑧)-Clustering objective with respect
to 𝐶 is 𝜀-approximately preserved, i.e.,∑

𝑥 ∈𝑆
𝑤 (𝑥) · 𝑑𝑧 (𝑥,𝐶) ∈ (1 ± 𝜀) · cost𝑧 (𝑋,𝐶) .

Coresets have been extensively studied in Euclidean spaces. For
(𝑘, 𝑧)-Clustering in R𝑑 , Feldman and Langberg [18] construct
an 𝜀-coreset 𝑂 (𝜀−2𝑧𝑘𝑑 log(𝑘/𝜀)) based on an importance sampling
framework. Specifically, the dependence on dimension 𝑑 can be
removed for 𝑘-Median [33] and 𝑘-Means [6, 7, 19, 33].

However, it was unknown whether we can similarly remove
the dependence on 𝑑 for general (𝑘, 𝑧)-Clustering for arbitrary
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constant 𝑧 ≥ 1. Also, the coreset for 𝑘-Median [33] has a quadratic
dependence of size on 𝑘 , that does not match the size lower bound.
Moreover, the constructions of [6, 33] need a generalized notion of
coreset instead of Definition 1.1, which may increase the difficulty
of applying existing clustering algorithms on coresets. Thus, it is
an important problem to understand whether there exists a unified
framework that constructs coresets satisfying Definition 1.1 for
general (𝑘, 𝑧)-Clustering, with a linear dependence on 𝑘 , and no
dependence on 𝑑 .

1.1 Our Contributions

The main contribution of this paper is a unified frame-
work that constructs 𝜀-coresets for (𝑘, 𝑧)-Clustering of size
𝑂̃ (min

{
𝜀−2𝑧−2𝑘, 22𝑧𝜀−4𝑘2

}
) and a nearly matching lower bound.

We first propose a two-stage importance sampling framework that
constructs coresets for (𝑘, 𝑧)-Clustering (constant 𝑧 ≥ 1); summa-
rized in the following theorem.

Theorem 1.2 (Informal, see Theorem 5.1). There exists a

randomized algorithm that, given a dataset 𝑋 of 𝑛 points in R𝑑 ,
𝜀 ∈ (0, 1/2), constant 𝑧 ≥ 1 and integer 𝑘 ≥ 1, constructs an 𝜀-coreset
of size 𝑂̃ (min

{
𝜀−2𝑧−2𝑘, 22𝑧𝜀−4𝑘2

}
) for (𝑘, 𝑧)-Clustering, and runs

in time 𝑂̃ (𝑛𝑑𝑘).
We compare our results with existing coreset results for (𝑘, 𝑧)-
Clustering in Table 1. This is the first result that constructs an
𝜀-coreset for (𝑘, 𝑧)-Clustering whose size is independent of 𝑑 and
near-linearly dependent of 𝑘 . Note that if 𝜀, 𝑧 are constants, this re-
sult saves a 𝑑 factor compared to prior results [18, 35] and matches
the size lower bound. Compared to the result in [33], our coreset
saves a poly(𝑘) factor in the size and can be constructed in polyno-
mial time – avoids the expontential term (exp(𝑘/𝜀)) and the depen-
dence of 1/𝜀 (𝑛 poly(𝑘/𝜀)) in the construction time of [33]. Specifi-
cally, for 𝑘-Median, our result saves a 𝑘 factor compared to [33].
Our construction applies a unified two-stage importance sampling
framework (Algorithm 1). Compared to existing approaches [6, 33]
that require to apply projection methods, our construction is simple
to implement. Also note that our coreset satisfies (the standard)
Definition 1.1, instead of the one that requires offsets as in recent
results [6, 33]. Consequently, we can directly combine existing clus-
tering algorithms with our coresets to estimate (𝑘, 𝑧)-Clustering
objectives. It is an interesting open problem to investigate whether
one-stage importance sampling could produce coresets with a com-
parable size.

We also extend Theorem 1.2 to ℓ𝑝 -metrics whose distance func-

tion is 𝑑𝑝 (𝑥,𝑦) =
(∑

𝑖∈[𝑑 ] |𝑥𝑖 − 𝑦𝑖 |𝑝
)1/𝑝

(𝑥,𝑦 ∈ R𝑑 ) instead of the
Euclidean distance in Equation (1); see the following corollary.

Corollary 1.3 (Informal, see Corollary 5.18). There exists a
randomized algorithm that, given a dataset 𝑋 of 𝑛 points in R𝑑 , 1 ≤
𝑝 < 2, 𝜀 ∈ (0, 1/2), constant 𝑧 ≥ 1 and integer 𝑘 ≥ 1, constructs an
𝜀-coreset of size 𝑂̃ (min

{
𝜀−4𝑧−2𝑘, 24𝑧𝜀−4𝑘2

}
) for (𝑘, 𝑧)-Clustering

with ℓ𝑝 -metric, and runs in time 𝑂̃ (𝑛𝑑𝑘).
The main idea is that for 1 ≤ 𝑝 < 2, there exists an isometric
embedding from ℓ𝑝 to ℓ22 [24]. Using this idea, we can reduce the
1The paper did not present this result directly. But their approach can be easily gener-
alized to (𝑘, 𝑧)-Clustering.

problem of constructing an 𝜀-coreset for (𝑘, 𝑧)-Clusteringwith ℓ𝑝 -
metric (Definition 5.17) to constructing an 𝑂 (𝜀)-coreset for (𝑘, 2𝑧)-
Clusteringwith ℓ2-metric (Definition 1.1). It is interesting to inves-
tigate whether the above corollary can be extended to all constant
𝑝 ≥ 1.

We also provide a matching size lower bound (Theorem 1.4).

Theorem 1.4 (Size lower bound). For every 𝑧 > 0 and inte-

gers 𝑑, 𝑘 ≥ 1, there exists a point set 𝑋 in the Euclidean space R𝑑

such that any 0.01-coreset for (𝑘, 𝑧)-Clustering over 𝑋 has size

Ω
(
𝑘 ·min

{
2𝑧/20, 𝑑

})
.

To the best of our knowledge, this is the first result that shows that
the coreset size for (𝑘, 𝑧)-Clustering should exponentially depend
on 𝑧. However, tight dependence of size on the parameter 𝜀 is still
unknown. The proof can be found in the full version of this paper.

For the algorithmic result (Theorem 1.2), our main technical con-
tribution is a new dimension reduction technique which reduces
the dimension of the space of 𝑘-center sets to poly(𝑘/𝜀). Towards
this, we develop two new notions: representativeness and weak-
coreset (Section 2). Given a collection 𝑋 in R𝑑 , we first divide all
𝑘-center sets into sub-groups by defining “equivalence classes” of
𝑘-center sets. Our equivalence classes are induced by some sub-
space Γ ⊆ R𝑑 , in which each class is induced by a 𝑘-center set in
Γ (Definition 2.1). Based on these equivalence classes, we define a
representativeness property (Definition 2.3), i.e., (𝑘, 𝑧)-Clustering
objectives over 𝑋 with respect to all 𝑘-center sets in an equivalence
class are roughly the same. We show that 𝑋 satisfies the represen-
tativeness property with respect to certain poly(𝑘/𝜀)-dimensional
subspace Γ constructed by [33, Algorithm 1] (Observation 5.13).
Moreover, we present a sufficient condition for any weighted subset
𝑆 ⊆ 𝑋 such that the representativeness property also holds for 𝑆 ,
i.e., (𝑘, 𝑧)-Clustering objectives over 𝑆 with respect to all 𝑘-center
sets in an equivalence class are roughly the same (Observation 5.14).
The sufficient condition roughly requires that 𝑆 is a “weak-coreset”
for (𝑘, 𝑧)-subspace approximation over 𝑋 (Definition 2.5). To sat-
isfy this requirement, we only need the size of 𝑆 to be poly(𝑘/𝜀)
(Theorem 5.10). This enables us to only approximately preserve
(𝑘, 𝑧)-Clustering objectives in the low-dimensional subspace Γ
instead of R𝑑 , which leads to an 𝜀-coreset 𝐷 for (𝑘, 𝑧)-Clustering
of size poly(𝑘/𝜀).

Compared to the Feldman-Langberg framework [18], we suc-
cessfully remove the dependence in coreset size of 𝑑 (Theorem 5.2).
Moreover, by a well-known dimension reduction approach, called
“terminal embedding” (Definition 3.2), the dimension of 𝐷 can be
further reduced to 𝑂 (𝜀−2 log(𝑘/𝜀)). Thus, we can further reduce
the coreset size to 𝑂̃ (𝜀−2𝑧−2𝑘) by applying an importance sam-
pling framework over 𝐷 (Theorem 5.3). Overall, our dimension
reduction technique connects two well-known shape fitting prob-
lems: subspace approximation and clustering, and leads to a unified
two-stage importance sampling framework for (𝑘, 𝑧)-Clustering
that removes the dependence of coreset size on 𝑑 . The geomet-
ric observations and notions, including equivalence classes and
representativeness property, may be of independent interest.

To establish a nearly tight size lower bound (Theorem 1.4), we
construct an instance 𝑋 of size Ω

(
𝑘 ·min

{
2𝑧/20, 𝑑

})
such that for

any point 𝑥 ∈ 𝑋 , there exists a 𝑘-center set 𝐶𝑥 which satisfies the
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Table 1: Summary of coreset size for (𝑘, 𝑧)-Clustering.

Reference Objective Coreset Size

Upper bounds

[18] (𝑘, 𝑧)-Clustering 𝑂
(
𝜀−2𝑧𝑘d log(𝑘/𝜀)

)
[35] (𝑘, 𝑧)-Clustering 𝑂

(
22𝑧𝜀−2𝑘d log(𝑘/𝜀)

)
[33] (𝑘, 𝑧)-Clustering poly(𝑘/𝜀𝑧) 1

This paper (𝑘, 𝑧)-Clustering 𝑂
(
min

{
𝜀−2𝑧−2, 22𝑧𝜀−4𝑘

}
· 𝑘 log𝑘 log(𝑘/𝜀)

)
[18] 𝑘-Median 𝑂

(
𝜀−2𝑘d log𝑘

)
[33] 𝑘-Median 𝑂

(
𝜀−4𝑘2 log𝑘

)
This paper 𝑘-Median 𝑂

(
𝜀−4 · 𝑘 log𝑘 log(𝑘/𝜀)

)
[7] 𝑘-Means 𝑂

(
𝜀−3𝑘2 log(𝑘/𝜀)

)
[6] 𝑘-Means 𝑂

(
𝜀−6𝑘 log2 (𝑘/𝜀) log(1/𝜀)

)
This paper 𝑘-Means 𝑂

(
𝜀−6 · 𝑘 log𝑘 log(𝑘/𝜀)

)
Lower bounds [9] 𝑘-Median (𝑑 = 1) Ω

(
𝜀−1/2𝑘

)
This paper (𝑘, 𝑧)-Clustering Ω(2𝑧/20𝑘)

condition that the clustering objective 𝑑𝑧 (𝑥,𝐶𝑥 ) ≈ cost𝑧 (𝑋,𝐶𝑥 ). To
gain some intuition about the construction, if 𝑘 = 1 and 𝑑 ≈ 2𝑧/20
we let 𝑋 = {𝑒1,−𝑒1, . . . , 𝑒𝑑 ,−𝑒𝑑 } and observe that 𝑑𝑧 (𝑒𝑖 ,−𝑒𝑖 ) =

2𝑧 ≈ cost𝑧 (𝑋,−𝑒𝑖 ) for any 𝑖 ∈ [𝑑]. Suppose 𝑆 is a 0.01-coreset and
𝑆 ⊆ 𝑋 . Then 𝑆 satisfies that cost𝑧 (𝑆,−𝑒𝑖 ) ≈ cost𝑧 (𝑋,−𝑒𝑖 ) for each
𝑖 ∈ [𝑑]. Intuitively, each 𝑒𝑖 should be included in 𝑆 and, hence,
|𝑆 | = 𝑂 (2𝑧/20𝑘). The technical difficulty is that points in a coreset
can come from R𝑑 \ 𝑋 . We show that even though 𝑒𝑖 may not be
included in 𝑆 , a point close to 𝑒𝑖 must be included. This results in a
matching lower bound |𝑋 |.

1.2 Other Related Works

Har-Peled and Mazumdar [21] constructed the first coreset for
both 𝑘-Median and 𝑘-Means, however the size of their coresets
depended exponentially on 𝑑 . Subsequently, Chen [10] improved
dependence on the dimension to be polynomial for both 𝑘-Median
and 𝑘-Means. For 𝑘-Means, Feldman et al. [19] designed core-
sets of size independent of 𝑑 , which was improved by [7] to be
𝑂̃ (𝜀−3𝑘2). Recently, the dependence on 𝑘 has been improved to
near-linear by [6]. For 𝑘-Median, Sohler and Woodruff [33] show
how to remove the dependence on 𝑑 . Recently, coreset for gen-
eralized clustering objective receives attention from the research
community, for example, Braverman et al. [9] obtain simultane-
ous coreset for Ordered 𝑘-Median. Coresets for the fair version
of 𝑘-Median and 𝑘-Means have also been investigated [23, 31].
For another special case 𝑧 = ∞, which is the 𝑘-Center clustering,
an 𝜀-coreset of size 𝑂 (𝜀−𝑑+1𝑘) can be constructed in near-linear
time [1, 20]. This size has been proved to be tight for 𝑘-Center
[D. Feldman, private communication and [9]]. For general (𝑘, 𝑧)-
Clustering (constant 𝑧 ≥ 1), Feldman and Langberg [18] construct
an 𝜀-coreset of size 𝑂̃ (𝜀−2𝑧𝑘𝑑), and recently this result has been
generalized to doubling metrics [22].

For general metrics, an 𝜀-coreset for the (𝑘, 𝑧)-Clustering prob-
lem of size 𝑂 (𝜀−2𝑧𝑘 log𝑛) can be constructed in time 𝑂̃ (𝑛𝑘) [18],
and the log𝑛 factor is unavoidable [8]. Specifically, for 𝑘-means
clustering, Braverman et al. [7] show a construction of size
𝑂 (𝜀−2𝑘 log𝑘 log𝑛).

2 OUR NOTIONS OF REPRESENTATIVENESS

ANDWEAK-CORESET

In this section, we propose new definitions that are important
for our dimension reduction technique. Recall that C denotes the
collection of all ordered subsets (repetition allowed) of R𝑑 of size 𝑘
(𝑘-center sets). We first define equivalence classes of 𝑘-center sets
that partition C.

Equivalence classes of 𝑘-center sets and representativeness property.

Given a subspace Γ ⊊ R𝑑 , we denote by 𝜋Γ : R𝑑 → Γ the projection
function from R𝑑 to Γ, i.e., for any 𝑥 ∈ 𝑋 ,

𝜋Γ (𝑥) := argmin
𝑦∈Γ

𝑑 (𝑥,𝑦).

If Γ is clear from the context, we may denote 𝜋Γ by 𝜋 .

Definition 2.1 (Equivalence relations and equivalence

classes induced by a subspace). Given a subspace Γ ⊊ R𝑑 , we
define an equivalence relation ∼Γ between 𝑘-center sets as follows:
for two 𝑘-center sets 𝐶 = (𝑐1, . . . , 𝑐𝑘 ) and 𝐶 ′ =

(
𝑐 ′1, . . . , 𝑐

′
𝑘

)
, we say

𝐶 ∼Γ 𝐶 ′ if and only if for all 𝑖 ∈ [𝑘],
𝜋Γ (𝑐𝑖 ) = 𝜋Γ (𝑐 ′𝑖 ) and 𝑑 (𝑐𝑖 , 𝜋Γ (𝑐𝑖 )) = 𝑑 (𝑐 ′𝑖 , 𝜋Γ (𝑐

′
𝑖 )).

Let Γ′ be obtained from Γ by appending an arbitrary dimension
𝑢 ∈ R𝑑 that is orthogonal to Γ.1 Let CΓ denote the collection of
𝑘-center sets 𝐶 all of whose points lie in Γ′, i.e.,

CΓ :=
{
𝐶 = (𝑐1, . . . , 𝑐𝑘 ) ∈ C : 𝑐𝑖 ∈ Γ′ ∀𝑖 ∈ [𝑘]

}
.

The relation ∼Γ also induces equivalence classes of 𝑘-center sets{
Δ
(Γ)
𝐶

: 𝐶 ∈ CΓ
}
where each Δ

(Γ)
𝐶

:= {𝐶 ′ ∈ C : 𝐶 ∼Γ 𝐶 ′}.

In the following, we explain why
{
Δ
(Γ)
𝐶

: 𝐶 ∈ CΓ
}
are equivalence

classes induced by Γ. Given a subspace Γ ⊊ R𝑑 , we define amapping
𝜙 : R𝑑 → R𝑑+1 where for any point 𝑥 ∈ R𝑑 ,

𝜙 (𝑥) := (𝜋Γ (𝑥), 𝑑 (𝑥, 𝜋Γ (𝑥)) .
Let 𝐴 := {𝜙 (𝐶) : 𝐶 ∈ C} denote the collection of images of 𝜙 with
respect to C. By the discussion above, each image 𝑎 ∈ 𝐴 naturally
1Here, Γ′ = {𝑎𝑥 + 𝑏𝑢 | 𝑥 ∈ Γ, 𝑎 ∈ R, 𝑏 ∈ R}.
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corresponds to an equivalence class Δ(Γ)𝑎 := {𝐶 ∈ C : 𝜙 (𝐶) = 𝑎}.
Note that for any 𝑥 ∈ R𝑑 , there must exist a point 𝑥 ′ ∈ Γ′ such that

𝜋Γ (𝑥) = 𝜋Γ (𝑥 ′) and 𝑑 (𝑥, 𝜋Γ (𝑥)) = 𝑑 (𝑥 ′, 𝜋Γ (𝑥 ′)),
since Γ′ includes an additional dimension that is orthogonal to Γ.
By the above equations, we have that 𝜙 (𝑥) = 𝜙 (𝑥 ′). Thus, for any
𝑎 ∈ 𝐴 and 𝐶 ′ ∈ C satisfying that 𝜙 (𝐶 ′) = 𝑎, there must exist a
𝑘-center set 𝐶 ∈ CΓ such that 𝜙 (𝐶) = 𝜙 (𝐶 ′) = 𝑎. This implies that
Δ
(Γ)
𝑎 = Δ

(Γ)
𝐶

. Since
{
Δ
(Γ)
𝑎 : 𝑎 ∈ 𝐴

}
are equivalence classes induced

by Γ, we conclude that
{
Δ
(Γ)
𝐶

: 𝐶 ∈ CΓ
}
are also equivalence classes

induced by Γ.

Example 2.2. Let 𝑑 = 3, 𝑘 = 1 and Γ denote the the first axis. Let
𝑥 = (𝑥1, 𝑥2, 𝑥3) and 𝑥 ′ = (𝑥 ′1, 𝑥

′
2, 𝑥
′
3) be two 1-center sets in R3. By

Definition 2.1, we have that 𝑐 ∼Γ 𝑐 ′ if and only if

𝑥1 = 𝑥 ′1, and
√
𝑥22 + 𝑥

2
3 =

√
(𝑥 ′2)2 + (𝑥

′
3)2 .

i.e., their first coordinates are the same and their distances to the
first axis are the same. Hence, all points with the same 𝑥-coordinate
form an equivalence class.

Without loss of generality, let Γ′ be the plane spanned by the
first and the second axes. Then each center 𝑥 = (𝑥1, 𝑥2, 0) ∈ Γ′

corresponds to an equivalence class

Δ
(Γ)
𝑥 =

{
𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ R𝑑 : 𝑥1 = 𝑥1,

√
𝑥22 + 𝑥

2
3 = |𝑥2 |

}
.

We also propose the following definition that indicates that (𝑘, 𝑧)-
Clustering objectives within an equivalence class are almost the
same.

Definition 2.3 (Representativeness property). Given a
weighted point set 𝐴 ⊆ R𝑑 together with a weight function
𝑤 : 𝐴 → R≥0, 𝜀 ∈ (0, 1) and a subspace Γ, we say that 𝐴 satisfies
the 𝜀-representativeness property with respect to Γ if for any
equivalence class ΔΓ

𝐶
and any two 𝑘-center sets 𝐶1,𝐶2 ∈ ΔΓ

𝐶
, the

following property holds:

cost𝑧 (𝐴,𝐶1) ∈ (1 ± 𝜀) · cost𝑧 (𝐴,𝐶2).

It follows from the definition above that, if both the given dataset
𝑋 and a weighted point set 𝑆 satisfy the representativeness prop-
erty with respect to a certain low-dimensional subspace Γ, then
𝑆 is a coreset if 𝑆 approximately preserves all (𝑘, 𝑧)-Clustering
objectives with respect to 𝑘-center sets 𝐶 ∈ CΓ . This observation
enables us to only consider 𝑘-center sets in Γ instead of R𝑑 , which
is the key for our dimension reduction technique.

(𝑘, 𝑧)-subspace approximation. Let P denote the collection of all
𝑗-flats in R𝑑 with 𝑗 ≤ 𝑘 , i.e., all subspaces in R𝑑 of dimension at
most 𝑘 .

Definition 2.4 ((𝑘, 𝑧)-subspace approximation problem).

Given a dataset 𝑋 in R𝑑 , 𝑧 > 0 and an integer 𝑘 ≥ 1, the goal
of the (𝑘, 𝑧)-subspace approximation problem is to find a subspace
𝑃★ ∈ P that minimizes

∑
𝑥 ∈𝑋 𝑑𝑧 (𝑥, 𝑃) over all 𝑃 ∈ P.

Subspace approximation is a well-studied shape fitting problem.
Several prior works have focussed on designing approximation
algorithms [4, 11, 16] and constructing coresets [14, 18, 33] for

subspace approximation. In this paper, we propose the following
version of “weak-coreset” for subspace approximation.

Definition 2.5 (Weak-coreset for (𝑘, 𝑧)-subspace approxima-

tion). Given a collection 𝑋 ⊆ R𝑑 of 𝑛 weighted points and an
𝜀 ∈ (0, 1), an 𝜀-weak-coreset for (𝑘, 𝑧)-subspace approximation is a
subset 𝑆 ⊆ R𝑑 with weights𝑤 : 𝑆 → R≥0 such that

min
𝑃 ∈P

∑
𝑥 ∈𝑆

𝑤 (𝑥) · 𝑑𝑧 (𝑥, 𝑃) ∈ (1 ± 𝜀) · min
𝑃 ∈P

∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝑃) . (2)

Note that a weak-coreset may not approximately preserve all sub-
space approximation objectives like Definition 1.1. However, we
can approximately compute the minimum (𝑘, 𝑧)-subspace approxi-
mation objective via a weak-coreset. We remark that Definition 2.5
is a different version of a notion in [18], in which a weak-coreset 𝑆
satisfies that any (1 + 𝜀)-approximate solution for (𝑘, 𝑧)-subspace
approximation over 𝑆 is an (1 +𝑂 (𝜀))-approximate solution over
𝑋 .

3 PRIOR RESULTS ON IMPORTANCE

SAMPLING AND TERMINAL EMBEDDINGS

We first introduce two general frameworks for coresets for (𝑘, 𝑧)-
Clustering that will be used in our algorithm. Both were proposed
by Feldman and Langberg [18], and the second one is an improved
version by [7]; summarized as follows.

Theorem 3.1 (Feldman-Langberg Framework [7, 18]). Let
𝜀, 𝛿 ∈ (0, 1/2), 𝑘 ≥ 1 and constant 𝑧 ≥ 1. Let 𝑋 ⊆ R𝑑 denote

a weighted point set of 𝑛 points together with a weight function

𝑢 : 𝑋 → R≥0. Let 𝐶★ ∈ C denote a 𝑘-center set that is an 𝑂 (1)-
approximate solution for (𝑘, 𝑧)-Clustering over 𝑋 . We have two

importance sampling frameworks as follows.

(1) ([18, Theorem 15.5]) Suppose 𝜎 : 𝑋 → R≥0 is a sensitivity

function satisfying that for any 𝑥 ∈ 𝑋 ,

𝜎 (𝑥) ≥ 𝑢 (𝑥) · 𝑑𝑧 (𝑥,𝐶★)∑
𝑦∈𝑋 𝑢 (𝑦) · 𝑑𝑧 (𝑦,𝐶★) ,

and G :=
∑
𝑥 ∈𝑋 𝜎 (𝑥). Let 𝐷 ⊆ 𝑋 be constructed by taking

𝑂

(
𝜀−2𝑧 (𝑑𝑘 log𝑘 + log(1/𝛿))

)
samples, where each sample 𝑥 ∈ 𝑋 is selected with probability

𝜎 (𝑥)
G and has weight 𝑤 (𝑥) := G

|𝐷 | ·𝜎 (𝑥) . For each 𝑐 ∈ 𝐶★
, let

𝑤 (𝑐) := (1 + 10𝜀) · ∑𝑥 ∈𝑋𝑐
𝑢 (𝑥) − ∑

𝑥 ∈𝐷∩𝑋𝑐
𝑤 (𝑥) where 𝑋𝑐

is the collection of points in 𝑋 whose closest point in 𝐶★
is 𝑐 .

Then, with probability at least 1−𝛿 , 𝑆 := 𝐷∪𝐶★
is an 𝜀-coreset

for (𝑘, 𝑧)-Clustering over 𝑋 .
2

(2) ([7, Theorem 5.2]) Suppose 𝜎 : 𝑋 → R≥0 is a sensitivity

function satisfying that for any 𝑥 ∈ 𝑋 ,

𝜎 (𝑥) ≥ sup
𝐶∈C

𝑢 (𝑥) · 𝑑𝑧 (𝑥,𝐶)∑
𝑦∈𝑋 𝑢 (𝑦) · 𝑑𝑧 (𝑦,𝐶) ,

and G :=
∑
𝑥 ∈𝑋 𝜎 (𝑥). Let 𝑆 ⊆ 𝑋 be constructed by taking

𝑂

(
𝜀−2G(𝑑𝑘 logG + log(1/𝛿))

)
2This conclusion is based on [18, Theorem 15.5]. We discuss the theorem in Section 6.
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samples, where each sample 𝑥 ∈ 𝑋 is selected with probability

𝜎 (𝑥)
G and has weight𝑤 (𝑥) := G

|𝑆 | ·𝜎 (𝑥) . Then, with probability

at least 1 − 𝛿 , 𝑆 is an 𝜀-coreset for (𝑘, 𝑧)-Clustering over 𝑋 .

The Feldman-Langberg framework applies one-staged importance
sampling and is easy to implement. We only need to compute an
approximate solution 𝐶★, sensitivities 𝜎 (𝑥), and take samples with
probability proportional to 𝜎 (𝑥). For the first framework, note that
we can further guarantee that the output 𝑆 is a subset of𝑋 by adding
an additional constraint that 𝐶★ ⊂ 𝑋 .3 For the second framework,
the total sensitivity G is shown to be 𝑂 (22𝑧𝑘) by [35] and, hence,
the resulting coreset size is quadratic in 𝑘 by plugging the value of
G = 𝑂 (22𝑧𝑘) in the size bound 𝑂

(
𝜀−2G(𝑑𝑘 logG + log(1/𝛿))

)
in

Theorem 3.1.

Terminal embedding. We introduce the definition of terminal em-
bedding that is useful for our dimension reduction result. Roughly
speaking, a terminal embedding projects a point set 𝑋 ⊆ R𝑑 to a
low-dimensional space such that all pairwise distances between 𝑋

and R𝑑 are approximately preserved.

Definition 3.2 (Terminal embedding). Let 𝜀 ∈ (0, 1) and 𝑋 ⊆
R𝑑 be a collection of 𝑛 points. A mapping 𝑓 : R𝑑 → R𝑚 is called a
terminal embedding of 𝑋 if for any 𝑥 ∈ 𝑋 and 𝑦 ∈ R𝑑 ,

𝑑 (𝑥,𝑦) ≤ 𝑑 (𝑓 (𝑥), 𝑓 (𝑦)) ≤ (1 + 𝜀)𝑑 (𝑥,𝑦) .

Note that a terminal embedding must be a one-to-one mapping
over 𝑋 by definition. The following is a recent result on terminal
embedding.

Theorem 3.3 (Small terminal embeddings [30]). Let 𝜀 ∈
(0, 1) and 𝑋 ⊆ R𝑑 be a collection of 𝑛 points. There exists a terminal

embedding with a target dimension𝑚 = 𝑂 (𝜀−2 log𝑛).

It follows from this theorem that, if |𝑋 | = poly(𝑘/𝜀), then there is
a terminal embedding of target dimension 𝑂

(
𝜀−2 log(𝑘/𝜀)

)
, which

is independent of 𝑑 . This is useful for analyzing the correctness of
the second stage of our framework.

4 TECHNICAL OVERVIEW

In this section, we will show how to prove our algorithmic result
(Theorem 1.2) and how to achieve a nearly matching size lower
bound (Theorem 1.4). We first introduce a new dimension reduction
technique that is useful for our algorithmic result.

Dimension reduction. For simplicity, we take the 𝑘-Median prob-
lem (𝑧 = 1) as an example and let 𝑋 ⊆ R𝑑 be the input point set.
By Theorem 3.1, there exists an 𝜀-coreset for 𝑘-Median of size
𝑂 (𝜀−2𝑑𝑘 log𝑘). However, the coreset size contains a factor 𝑑 and
our goal is to construct a coreset that does not depend on 𝑑 .

To this end, a commonly used approach is called dimension reduc-

tion [7, 13, 19, 33]. Roughly speaking, we would like to show that it
suffices to only consider all 𝑘-center sets in some low-dimensional
space instead of R𝑑 , and that enables us to remove the dependence

3Suppose 𝐶★ is a 𝑘-center set that is an 𝑂 (1)-approximate solution for (𝑘, 𝑧)-
Clustering over 𝑋 . Then

{
argmin𝑥∈𝑋 𝑐★

𝑖
: 𝑖 ∈ [𝑛]

}
is a 𝑘-center set that is an

𝑂 (2𝑧 )-approximate solution for (𝑘, 𝑧)-Clustering over 𝑋 . Hence, we can add this
additional constraint.

on 𝑑 in the coreset size. One can try the dimension reduction ap-
proach proposed by [27], however, this can be shown not to work.
We explain the details in the full version.

Representativeness property can allow to remove the dependence

on 𝑑 . Our second attempt is motivated by the work of [33] and
projects 𝑋 to a low-dimensional subspace such that all 𝑘-Median
objectives can be estimated by the projections of 𝑋 . For a subspace
Γ ⊊ R𝑑 , recall that Γ′ is obtained from Γ by appending an arbitrary
dimension in R𝑑 that is orthogonal to Γ. Also recall that CΓ denotes
the collection of 𝑘-center sets 𝐶 ⊂ Γ′, i.e.,

CΓ :=
{
𝐶 = (𝑐1, . . . , 𝑐𝑘 ) : 𝑐𝑖 ∈ Γ′ ∀𝑖,𝐶 ∈ C

}
Now suppose we have a subspace Γ ⊊ R𝑑 of dimension poly(𝑘/𝜀)
and a weighted point set 𝐷 , together with a weight function 𝑢 :
𝐷 → R≥0, that approximately preserves all 𝑘-Median objectives
with respect to 𝑘-center sets in CΓ , i.e., for any 𝑘-center set𝐶 ∈ CΓ ,∑

𝑥 ∈𝐷
𝑢 (𝑥) · 𝑑 (𝑥,𝐶) ∈ (1 ± 𝜀) · cost1 (𝑋,𝐶) . (3)

By Theorem 3.1, the size of 𝐷 can be upper bounded by poly(𝑘/𝜀).
If we can show that Inequality (3) holds for all 𝑘-center sets in C,
then we obtain an 𝜀-coreset 𝐷 of size independent of 𝑑 . Moreover,
by the result on terminal embeddings (Theorem 5.3), we can further
reduce the dimension to𝑂

(
𝜀−2 log(𝑘/𝜀)

)
. This observation leads to

an 𝜀-coreset 𝑆 for 𝑘-Median of size 𝑂̃ (𝜀−4𝑘) by applying the first
framework in Theorem 3.1 to 𝐷 . In the following, we show how to
construct sufficient conditions for Γ and 𝐷 such that Inequality (3)
holds for all 𝑘-center sets in C, which leads to Theorem 5.2.

Our key idea is to construct a Γ such that both 𝑋 and 𝐷 satisfy
the representativeness property with respect to Γ. Recall that an
equivalence class ΔΓ

𝐶′ for a center set 𝐶
′ ∈ CΓ is the collection of

center sets 𝐶 ∈ C such that 𝐶 ∼Γ 𝐶 ′. Now suppose we have that
Inequality (3) holds for all 𝑘-center sets in CΓ . Consequently, for
any 𝐶 ∈ ΔΓ

𝐶′ ,∑
𝑥 ∈𝐷

𝑢 (𝑥) · 𝑑 (𝑥,𝐶) ≈
∑
𝑥 ∈𝐷

𝑢 (𝑥) · 𝑑 (𝑥,𝐶 ′)

≈cost1 (𝑋,𝐶 ′) ≈ cost1 (𝑋,𝐶).

Then 𝐷 is an 𝜀-coreset for 𝑘-Median in R𝑑 . Hence, we focus on
proving the representativeness property.

Given a subset 𝐴 ⊆ R𝑑 , let Conv(𝐴) denote the convex hull of
𝐴. Recall that OPT1 denotes the optimal 𝑘-Median objective over
𝑋 . Sohler and Woodruff [33, Algorithm 1] show how to construct
a subspace Γ of dimension 𝑂 (𝜀−2𝑘) such that for any 𝑘-center set
𝐶 ∈ C, letting 𝜋𝐶 denote the projection from 𝑋 to Conv(Γ ∪𝐶),∑

𝑥 ∈𝑋
𝑑 (𝑥, 𝜋Γ (𝑥)) − 𝑑 (𝑥, 𝜋𝐶 (𝑥)) = 𝑂 (𝜀2) · OPT1 . (4)

By [33] (summarized in Lemma 5.4), this implies that for any 𝑘-
center set 𝐶 ∈ C,∑
𝑥 ∈𝑋

(
𝑑2 (𝜋Γ (𝑥),𝐶) + 𝑑2 (𝑥, 𝜋Γ (𝑥))

)1/2
∈ (1 ± 𝜀) · cost1 (𝑥,𝐶), (5)

i.e., we can use Γ to approximately preserve all𝑘-Median objectives.
Note that for any two center sets𝐶1,𝐶2 in an equivalence class, we
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have ∑
𝑥 ∈𝑋

(
𝑑2 (𝜋Γ (𝑥),𝐶1) + 𝑑2 (𝑥, 𝜋Γ (𝑥))

)1/2
=

∑
𝑥 ∈𝑋

(
𝑑2 (𝜋Γ (𝑥),𝐶2) + 𝑑2 (𝑥, 𝜋Γ (𝑥))

)1/2
.

Combining the above equation with Inequality (5), we conclude
that 𝑋 satisfies the representativeness property with respect to Γ
(Observation 5.13). The technical difficulty is to show that 𝐷 also
satisfies the representativeness property with respect to Γ.

A failed attempt. By a similar construction as [33, Algorithm 1],
we can construct a subspace Γ for any given 𝐷 that satisfies for any
𝑘-center set 𝐶 ∈ C,∑

𝑥 ∈𝐷
𝑢 (𝑥) ·

(
𝑑2 (𝜋Γ (𝑥),𝐶) + 𝑑2 (𝑥, 𝜋Γ (𝑥))

)1/2
∈(1 ± 𝜀) · cost1 (𝐷,𝐶),

(6)

i.e., we can also use Γ to approximately preserve 𝑘-Median objec-
tives over the weighted point set 𝐷 . Similarly, we conclude that
𝐷 also satisfies the representativeness property with respect to Γ.
Then assuming Inequality (3) holds for all 𝑘-center sets 𝐶 ⊂ Γ′, 𝐷
is an 𝑂 (𝜀)-coreset for 𝑘-Median and we are done. However, this
assumption only has a guarantee when Γ is independent of the
choice of 𝐷 . Thus, our task is to construct a subspace Γ satisfying
Inequalities (4) and (6), and meanwhile independent on the choice
of 𝐷 .

Weak coreset for subspace approximation implies the represen-

tativeness property for 𝐷 . By [33, Algorithm 1], we construct a
subspace Γ of dimension poly(𝑘/𝜀) that satisfies Inequality (4) and
only depends on 𝑋 , which implies that Γ is independent on the
choice of 𝐷 . The remaining task is to find a sufficient condition
for 𝐷 such that Inequality (6) holds. Again by [33] (summarized in
Lemma 5.4), Inequality (6) holds if for any 𝑘-center set 𝐶 ∈ C,∑

𝑥 ∈𝐷
𝑢 (𝑥) · (𝑑 (𝑥, 𝜋Γ (𝑥)) − 𝑑 (𝑥, 𝜋𝐶 (𝑥))) = 𝑂 (𝜀2) · OPT1 . (7)

Since Inequality (4) holds, for the above inequality it suffices to
guarantee that∑

𝑥 ∈𝐷
𝑢 (𝑥) · (𝑑 (𝑥, 𝜋Γ (𝑥)) − 𝑑 (𝑥, 𝜋𝐶 (𝑥)))

≈
∑
𝑥 ∈𝑋

𝑑 (𝑥, 𝜋Γ (𝑥)) − 𝑑 (𝑥, 𝜋𝐶 (𝑥)) .
(8)

Our first assumption is that the total projection distance to Γ is
approximately preserved by 𝐷 :∑

𝑥 ∈𝐷
𝑢 (𝑥) · 𝑑 (𝑥, 𝜋Γ (𝑥)) ≈

∑
𝑥 ∈𝑋

𝑑 (𝑥, 𝜋Γ (𝑥)).

Then for Inequality (8), it suffices to ensure that

min
𝐶∈C

∑
𝑥 ∈𝐷

𝑢 (𝑥) · 𝑑 (𝑥, 𝜋𝐶 (𝑥)) ≈ min
𝐶∈C

∑
𝑥 ∈𝑋

𝑑 (𝑥, 𝜋𝐶 (𝑥)). (9)

Interestingly, this relates to the subspace approximation problem
by regarding 𝑋 as a point set in space Γ⊥. From this viewpoint,
Inequality (9) can be reduced to ensuring that 𝐷 is a weak-coreset

for (𝑘, 1)-subspace approximation over 𝑋 (Definition 2.5). Over-
all, roughly, a weak-coreset 𝐷 for (𝑘, 1)-subspace approximation
satisfies the representativeness property with respect to Γ.

We still need to verify that the size of a weak-coreset 𝐷 can be
independent of dimension 𝑑 . By applying [32], we know that 𝐷
is a weak-coreset if 𝐷 approximately preserves all (𝑘, 1)-subspace
approximation objectives in the collection P ′ of all 𝑘-flats spanned
by at most 𝑂̃ (𝜀−1𝑘2) points from 𝑋 (Lemma 5.11), i.e., 𝐷 is an 𝜀-
coreset for (𝑘, 1)-subspace approximation over 𝑋 with respect to
P ′. By [35, Theorem 4], it follows that the coreset size |𝐷 | only
depends on 𝑘, 𝜀 and the “function dimension” of P ′4 Since the
function dimension of P ′ is poly(𝑘/𝜀) by [35, Theorem 4], the size
of a weak-coreset |𝐷 | can be also upper bounded by poly(𝑘/𝜀),
which is independent of 𝑑 (Theorem 5.10).

Overall, we develop a two-stage importance sampling frame-
work that constructs an 𝜀-coreset for 𝑘-Median of size 𝑂̃ (𝜀−4𝑘)
(Algorithm 1). In the first stage, we construct a weighted point set
𝐷 of size poly(𝑘/𝜀) that is a coreset for 𝑘-Median in Γ′ and an
𝜀-weak-coreset for (𝑘, 1)-subspace approximation in Γ⊥. By the
discussion above, 𝐷 is an 𝜀-coreset for 𝑘-Median in R𝑑 of size
poly(𝑘/𝜀) (Theorem 5.2). In the second stage, we further construct
an 𝜀-coreset 𝑆 over 𝐷 of size 𝑂̃ (𝜀−4𝑘) using the result on termi-
nal embeddings (Theorem 5.3), where 𝑆 is also an 𝑂 (𝜀)-coreset for
𝑘-Median over 𝑋 (Theorem 1.2).

For general 𝑧 > 1, the proof is similar to 𝑧 = 1. The difference is
that in the first stage of Algorithm 1, we need the weighted point
set 𝐷 to be a coreset for (𝑘, 𝑧)-Clustering in Γ′ and an 𝜀-weak-
coreset for (𝑘, 𝑧)-subspace approximation in Γ⊥. To achieve this,
the number of samples |𝐷 | should be 𝑧𝑂 (𝑧) ·poly(𝑘/𝜀), which is still
independent of 𝑑 . Again, using the result on terminal embeddings,
we can construct a coreset for (𝑘, 𝑧)-Clustering of size 𝑂̃ (𝜀−2𝑧−2𝑘)
(Theorem 1.2).

Size lower bounds. We also provide a nearly matching size lower
bound of coresets for (𝑘, 𝑧)-Clustering (Theorem 1.4), by con-
structing a point set 𝑋 ⊂ R𝑑 in R𝑑 such that any 0.01-coreset for
(𝑘, 𝑧)-Clustering over𝑋 has size Ω

(
𝑘 ·min

{
2𝑧/20, 𝑑

})
. The main

idea is to ensure that for any point 𝑥 ∈ 𝑋 , there exists a 𝑘-center set
𝐶𝑥 satisfying that the clustering objective𝑑𝑧 (𝑥,𝐶𝑥 ) ≈ cost𝑧 (𝑋,𝐶𝑥 ) .
Intuitively, we need to include a close point for each 𝑥 ∈ 𝑋 in any
coreset such that cost𝑧 (𝑋,𝐶𝑥 ) can be approximately preserved.

We discuss a simple case that 𝑘 = 1 and 𝑑 ≈ 2𝑧/20, and show how
to construct such a bad instance 𝑋 . The general case that 𝑘 ≥ 1 can
be proved by making 𝑘 copies of 𝑋 in which all copies are far away
from each other. We let 𝑋 = {𝑒1,−𝑒1, . . . , 𝑒𝑑 ,−𝑒𝑑 } and observe that
for each 𝑒𝑖 ∈ 𝑋 ,

𝑑𝑧 (𝑒𝑖 ,−𝑒𝑖 ) ≈ cost𝑧 (𝑋,−𝑒𝑖 ) .
Suppose 𝑆 is a 0.01-coreset for (𝑘, 𝑧)-Clustering together with
weights𝑤 (𝑥). If we restrict that 𝑆 ⊆ 𝑋 , we can conclude that 𝑆 = 𝑋

which implies that |𝑆 | = 2𝑑+1 = Ω(2𝑧/20). Intuitively, if there exists
𝑒𝑖 ∈ 𝑋 \ 𝑆 , then it is unlikely that the (𝑘, 𝑧)-Clustering objective
with respect to center −𝑒𝑖 can be approximately preserved by 𝑆 .
The obstacle is that points in a coreset can come from outside of 𝑋 .
4Since this paper only uses function dimension as a black box, we do not present the
definition. We refer interested readers to [18, Definition 6.4] or [7, Definition 4.5] for
concrete definitions.
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We divide R𝑑 into |𝑋 | Voronoi cells (𝑃𝑥 )𝑥 induced by 𝑋 , where
each 𝑃𝑥 is the collection of points in R𝑑 whose closest point in 𝑋 is
𝑥 . If |𝑆 | < |𝑋 |, there must exist a Voronoi cell that does not contain
points in 𝑆 , say 𝑃𝑒1 without loss of generality. The key idea is to
show that 𝑆 can not approximately preserve the (𝑘, 𝑧)-Clustering
objectives with respect to center 0 and center −𝑒1 simultaneously,
which implies that the size of 𝑆 should be at least |𝑋 | = 2𝑑 .

Let 𝐻 denote the unit 𝑙2-ball centered at the origin. On the one
hand, we can show that the contribution

∑
𝑥 ∈𝑆∩𝐻 𝑤 (𝑥) ·𝑑𝑧 (𝑥,−𝑒1)

is tiny compared to
∑
𝑥 ∈𝑋 𝑑𝑧 (𝑥,−𝑒1) ≈ 2𝑧 , since each point 𝑥 ∈

𝐻 \ 𝑃𝑒1 satisfies that

𝑑𝑧 (𝑥,−𝑒1) ≤ 20.9𝑧

and the total weights
∑
𝑥 ∈𝑆∩𝐻 𝑤 (𝑥) can be shown at most 20.05𝑧 .

On the other hand, for point 𝑥 ∈ 𝑆 \ (𝐻 ∪ 𝑃𝑒1 ), we can verify that
𝑑𝑧 (𝑥,−𝑒1)
𝑑𝑧 (𝑥, 0) ≤ 20.9𝑧 .

This gap is much smaller compared to
∑

𝑥∈𝑋 𝑑𝑧 (𝑥,−𝑒1)∑
𝑥∈𝑋 𝑑𝑧 (𝑥,0) ≈ 20.95𝑧 ,

which implies that 𝑆 can not approximately preserve the (𝑘, 𝑧)-
Clustering objectives with respect to center 0 and center −𝑒1
simultaneously. This indicates that any 0.01-coreset for 𝑘-Median
over 𝑋 has size at least |𝑋 | = 2𝑑 , which proves Theorem 1.4.

5 OUR ALGORITHM AND MAIN THEOREM

Let 𝑋 ⊆ R𝑑 denote a collection of 𝑛 points in R𝑑 . Let OPT𝑧 denote
the optimal (𝑘, 𝑧)-Clustering objective over 𝑋 . The main theorem
of this paper is the following.

Theorem 5.1 (Coreset for (𝑘, 𝑧)-Clustering; near-linear
size in 𝑘). There exists a randomized algorithm that, for a given

dataset 𝑋 of 𝑛 points in R𝑑 , 𝜀, 𝛿 ∈ (0, 0.5), constant 𝑧 ≥ 1 and integer
𝑘 ≥ 1, with probability at least 1 − 𝛿 , constructs an 𝜀-coreset for

(𝑘, 𝑧)-Clustering of size

𝑂

(
min

{
𝜀−2𝑧−2, 22𝑧𝜀−4𝑘

}
𝑘 log𝑘 log 𝑘

𝜀𝛿

)
and runs in time

𝑂

(
𝑛𝑑𝑘 + 𝑛𝑑 log(𝑛/𝛿) + 𝑘2 log2 𝑛 + log2 (1/𝛿) log2 𝑛

)
.

We propose a unified two-stage importance sampling framework
for (𝑘, 𝑧)-Clustering; see Algorithm 1. Note that Algorithm 1
provides an 𝜀-coreset of size 𝑂̃ (𝜀−2𝑧−2𝑘). By applying another im-
portance sampling approach in the second stage (see discussion in
Remark 5.9), we can achieve an 𝜀-coreset of size 𝑂̃ (22𝑧𝜀−4𝑘2). This
gives the size bound stated in Theorem 5.1.

5.1 Proof of the Main Theorem 5.1

The proof of Theorem 5.1 relies on the following two theorems. The
first theorem shows that the first stage of Algorithm 1 constructs
a coreset for (𝑘, 𝑧)-Clustering of size 𝑁1 = poly(𝑘, 1/𝜀) with
high probability. The second one is a size reduction theorem that
constructs a coreset of size 𝑁2 = 𝑂̃ (𝜀−2𝑧−2𝑘) based on the output
of the first stage.

Theorem 5.2 (First stage of Algorithm 1). For every dataset

𝑋 of 𝑛 points in R𝑑 , 𝜀, 𝛿 ∈ (0, 0.5), constant 𝑧 ≥ 1 and integer

Algorithm 1: Coreset construction for (𝑘, 𝑧)-Clustering
Input: A dataset 𝑋 of 𝑛 points in R𝑑 , 𝜀, 𝛿 ∈ (0, 1/2),

constant 𝑧 ≥ 1 and an integer 𝑘 ≥ 1.
Output: A point set 𝑆 ⊆ R𝑑 together with a weight

function𝑤 : 𝑆 → R≥0.

/* The first importance sampling stage */

1 𝑁1 ← 𝑂

(
(168𝑧)10𝑧𝜀−5𝑧−15𝑘5 log 𝑘

𝛿

)
;

2 Compute a 𝑘-center set 𝐶★ ⊆ R𝑑 as an 𝛼-approximation of
the (𝑘, 𝑧)-Clustering problem over 𝑋 (𝛼 = 𝑂 (1));

3 For each 𝑥 ∈ 𝑋 , compute 𝑐★(𝑥) to be the closest point to 𝑥
in 𝐶★ (ties are broken arbitrarily). For each 𝑐 ∈ 𝐶★, denote
𝑋𝑐 to be the set of points 𝑥 ∈ 𝑋 with 𝑐★(𝑥) = 𝑐;

4 For each 𝑥 ∈ 𝑋 , let
𝜎1 (𝑥) ← 22𝑧+2𝛼2

(
𝑑𝑧 (𝑥,𝑐★ (𝑥))
cost𝑧 (𝑋,𝐶★) +

1
|𝑋𝑐★ (𝑥 ) |

)
;

5 Pick a non-uniform random sample 𝐷1 of 𝑁1 points from 𝑋 ,
where each 𝑥 ∈ 𝑋 is selected with probability 𝜎1 (𝑥)∑

𝑦∈𝑋 𝜎1 (𝑦) .

For each 𝑥 ∈ 𝐷1, let 𝑢 (𝑥) ←
∑

𝑦∈𝑋 𝜎1 (𝑦)
|𝐷1 | ·𝜎1 (𝑥) ;

/* The second importance sampling stage */

6 𝑁2 ← 𝑂

(
𝜀−2𝑧−2𝑘 log𝑘 log 𝑘

𝜀𝛿

)
;

7 For each 𝑐 ∈ 𝐶★, compute 𝐷𝑐 to be the set of points in 𝐷1
whose closest point in 𝐶★ is 𝑐 (ties are broken arbitrarily);

8 For each 𝑥 ∈ 𝐷1, let 𝜎2 (𝑥) ← 𝑢 (𝑥) ·𝑑𝑧 (𝑥,𝐶★)∑
𝑦∈𝐷1 𝑢 (𝑦) ·𝑑

𝑧 (𝑦,𝐶★) ;
9 Pick a non-uniform random sample 𝐷2 of 𝑁2 points from 𝑋 ,

where each 𝑥 ∈ 𝑋 is selected with probability 𝜎2 (𝑥)∑
𝑦∈𝐷1 𝜎2 (𝑦)

.

For each 𝑥 ∈ 𝐷2, let𝑤 (𝑥) ←
∑

𝑦∈𝐷1 𝜎2 (𝑦)
|𝐷2 | ·𝜎2 (𝑥) . For each 𝑐 ∈ 𝐶★,

let𝑤 (𝑐) ← (1 + 10𝜀)∑𝑥 ∈𝐷𝑐
𝑢 (𝑥) −∑

𝑥 ∈𝐷2∩𝐷𝑐
𝑤 (𝑥);

10 𝑆 ← 𝐷2 ∪𝐶★;
11 Output (𝑆,𝑤);

𝑘 ≥ 1, with probability at least 1 − 𝛿/2, the first stage of Algorithm 1

constructs an 𝜀-coreset 𝐷1 for (𝑘, 𝑧)-Clustering, and runs in time

𝑂

(
𝑛𝑑𝑘 + 𝑛𝑑 log(𝑛/𝛿) + 𝑘2 log2 𝑛 + log2 (1/𝛿) log2 𝑛

)
.

Theorem 5.3 (Second stage of Algorithm 1). Let 𝑋 ⊆ R𝑑 be a

collection of 𝑛 points, 𝜀, 𝛿 ∈ (0, 1/2), constant 𝑧 ≥ 1 and integer 𝑘 ≥ 1.
Suppose the first stage of Algorithm 1 constructs an 𝜀-coreset 𝐷1 for
(𝑘, 𝑧)-Clustering. Then with probability at least 1 − 𝛿/2, the second
stage of Algorithm 1 outputs an𝑂 (𝜀)-coreset 𝑆 for (𝑘, 𝑧)-Clustering,
and runs in time 𝑂 (𝑛𝑑).

The proof of Theorem 5.2 can be found in Section 5.2 and the
proof of Theorem 5.3 can be found in Section 5.3. Observe that
Theorem 5.1 is a direct corollary of Theorems 5.2 and 5.3.

Proof of Theorem 5.1. The overall running time is a direct
corollary of Theorems 5.2 and 5.3.

By Theorem 5.2, with probability at least 1 − 𝛿/2, (𝐷1, 𝑢) is an
𝜀-coreset for (𝑘, 𝑧)-Clustering of size 𝑁1. Then by Theorem 5.3,
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with probability at least 1 − 𝛿 , the output 𝑆 is an 𝜀-coreset which
completes the proof. □

5.2 Analyzing the First Stage of Algorithm 1

In this section, we prove Theorem 5.2 that provides a theoretical
guarantee for the first stage. Given a subset 𝐴 ⊆ R𝑑 , let Conv(𝐴)
denote the convex hull of𝐴. For preparation, we have the following
lemmas. The first lemma shows that there exists a subspace Γ such
that the projections of 𝑋 to Γ can be used to estimate all (𝑘, 𝑧)-
Clustering objectives. Note that [33] only considers unweighted
point sets, but it can be easily generalized to weighted point sets.

Lemma 5.4 (Restatement of [33, Lemma 6 and Theorem

10]). Let 𝐴 ⊆ R𝑑 be a weighted point set together with a weight

function 𝑤 : 𝐴 → R≥0. Let OPT𝑧 be the optimal weighted (𝑘, 𝑧)-
clustering objective over 𝐴, 𝜀 ∈ (0, 0.5), constant 𝑧 ≥ 1, and Γ be a

subspace of R𝑑 . Suppose for any 𝑘-center set 𝐶 ∈ C, we have∑
𝑥 ∈𝐴

𝑤 (𝑥) ·
(
𝑑𝑧 (𝑥, 𝜋 (𝑥)) − 𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥))

)
≤ 𝜀𝑧+3

3 · (84𝑧)2𝑧
· OPT𝑧 ,

(10)

where 𝜋 and 𝜋𝐶 denote the projection from 𝐴 to Γ and Conv(Γ ∪𝐶)
respectively. Then for any 𝑘-center set𝐶 ∈ C, the following inequality
holds ∑

𝑥 ∈𝐴
𝑤 (𝑥) ·

(
𝑑2 (𝜋 (𝑥),𝐶) + 𝑑2 (𝑥, 𝜋 (𝑥))

)𝑧/2
∈(1 ± 𝜀) ·

∑
𝑥 ∈𝐴

𝑤 (𝑥) · 𝑑𝑧 (𝑥,𝐶) .
(11)

we have the following lemma showing that 𝐷1 is a coreset in an
arbitrary low dimensional subspace with high probability.

Lemma 5.5 (𝐷1 is a coreset in a low-dimensional subspace).
Suppose Γ is an arbitrary subspace of dimension 𝑂

(
(84𝑧)2𝑧𝜀−𝑧−3𝑘

)
inR𝑑 . Let Γ′ be obtained from Γ by appending an arbitrary dimension

in R𝑑 that is orthogonal to Γ. With probability at least 1 − 𝛿/4, for
any 𝑘-center set 𝐶 ⊂ Γ′ we have∑

𝑥 ∈𝐷1

𝑢 (𝑥) · 𝑑𝑧 (𝑥,𝐶) ∈ (1 ± 𝜀) · cost𝑧 (𝑋,𝐶) .

Proof. Let 𝜀 ′ = 𝜀𝑧+3

6· (84𝑧)2𝑧 and𝑚 = 𝑂 (𝑘/𝜀 ′) be the dimension of
Γ. We first have the following claim.

Claim 5.6. For any 𝑥 ∈ 𝑋 ,

sup
𝐶∈C

𝑑𝑧 (𝑥,𝐶)
cost𝑧 (𝑋,𝐶)

≤ 2𝑧 · 𝑑
𝑧 (𝑥, 𝑐★(𝑥))
OPT𝑧

+ 22𝑧+1𝛼 · 1
|𝑋𝑐★ (𝑥) |

.

Proof. The proof idea is similar to [35, Theorem 7]. We first
note that 𝑑𝑧 satisfies the relaxed triangle inequality, i.e., for any
𝑥, 𝑥 ′, 𝑥 ′′ ∈ R𝑑 , we have

𝑑𝑧 (𝑥, 𝑥 ′′) ≤ 2𝑧 ·
(
𝑑𝑧 (𝑥, 𝑥 ′) + 𝑑𝑧 (𝑥 ′, 𝑥 ′′)

)
. (12)

Then for any 𝑥 ∈ 𝑋 and any 𝑘-center set 𝐶 ∈ C, we have
𝑑𝑧 (𝑥,𝐶)

≤ 2𝑧
(
𝑑𝑧 (𝑥, 𝑐★(𝑥)) + 𝑑𝑧 (𝑐★(𝑥),𝐶)

)
(Ineq. (12))

≤ 2𝑧 · 𝑑𝑧 (𝑥, 𝑐★(𝑥)) + 2𝑧
|𝑋𝑐★ (𝑥) |

·
∑
𝑦∈𝑋

𝑑𝑧 (𝑐★(𝑦),𝐶)

(Defn. of 𝑋𝑐★ (𝑥) )
≤ 2𝑧 · 𝑑𝑧 (𝑥, 𝑐★(𝑥))

+ 2𝑧
|𝑋𝑐★ (𝑥) |

·
∑
𝑦∈𝑋

2𝑧 ·
(
𝑑𝑧 (𝑐★(𝑥), 𝑥) + 𝑑𝑧 (𝑥,𝐶)

)
(Ineq. (12))

= 2𝑧 · 𝑑𝑧 (𝑥, 𝑐★(𝑥))

+ 22𝑧
|𝑋𝑐★ (𝑥) |

·
(
cost𝑧 (𝑋,𝐶★) + cost𝑧 (𝑋,𝐶)

)
.

(Defn. of cost𝑧)

(13)

Thus, we have that
𝑑𝑧 (𝑥,𝐶)

cost𝑧 (𝑋,𝐶)

≤ 2𝑧 · 𝑑
𝑧 (𝑥, 𝑐★(𝑥))
cost𝑧 (𝑋,𝐶)

+ 22𝑧
|𝑋𝑐★ (𝑥) |

· (1 + cost𝑧 (𝑋,𝐶★)
cost𝑧 (𝑋,𝐶)

)

(Ineq. (13))

≤ 2𝑧 · 𝑑
𝑧 (𝑥, 𝑐★(𝑥))
OPT𝑧

+ 22𝑧
|𝑋𝑐★ (𝑥) |

· (1 + 𝛼)

(Defn. of 𝐶★)

≤ 2𝑧 · 𝑑
𝑧 (𝑥, 𝑐★(𝑥))
OPT𝑧

+ 22𝑧+1𝛼 · 1
|𝑋𝑐★ (𝑥) |

,

which implies the claim since 𝐶 is arbitrary. □

Then for any 𝑥 ∈ 𝑋 ,

sup
𝐶∈C

𝑑𝑧 (𝑥,𝐶)
cost𝑧 (𝑋,𝐶)

≤ 2𝑧 · 𝑑
𝑧 (𝑥, 𝑐★(𝑥))
OPT𝑧

+ 22𝑧+1𝛼 · 1
|𝑋𝑐★ (𝑥) |

(Claim 5.6)

≤ 2𝑧𝛼 · 𝑑
𝑧 (𝑥, 𝑐★(𝑥))

cost𝑧 (𝑋,𝐶★) + 2
2𝑧+1𝛼 · 1

|𝑋𝑐★ (𝑥) |
(Defn. of 𝐶★)

≤ 𝜎1 (𝑥).

Also note that∑
𝑥 ∈𝑋

𝜎1 (𝑥)

= 22𝑧+2𝛼2 ·
∑
𝑥 ∈𝑋

(
𝑑𝑧 (𝑥, 𝑐★(𝑥))
cost𝑧 (𝑋,𝐶★) +

1
|𝑋𝑐★ (𝑥) |

)
≤ 22𝑧+2𝛼2 · (1 + 𝑘) ( |𝐶★ | = 𝑘)
≤ 22𝑧+3𝛼2𝑘.
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Thus, we have

𝑁1 = Ω

(∑
𝑥 ∈𝑋 𝜎1 (𝑥)
(𝜀 ′)2

· (𝑘𝑚 log(
∑
𝑥 ∈𝑋

𝜎1 (𝑥)) + log
1
𝛿
)
)
,

Then by Theorem 3.1, we complete the proof. □

Next, we give the main technical lemma. It indicates that if a sub-
space Γ satisfies Inequality (10), then clustering objectives over 𝐷1
can be estimated by the projections of 𝐷1 to Γ, similar to Inequal-
ity (11). The proof can be found in Section 5.4.

Lemma 5.7 (Γ preserves (𝑘, 𝑧)-Clustering objectives over

𝐷1). Suppose Γ is a subspace of R𝑑 satisfying that 𝐶★ ⊂ Γ and for

any 𝑘-center set 𝐶 ∈ C,∑
𝑥 ∈𝑋

(
𝑑𝑧 (𝑥, 𝜋 (𝑥)) − 𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥))

)
=

𝜀𝑧+3

3 · (84𝑧)2𝑧
· OPT𝑧 ,

where 𝜋 and 𝜋𝐶 denote the projection from 𝑋 to Γ and Conv(Γ ∪𝐶)
respectively. Let 𝐷1 together with 𝑢 be the weighted point set obtained

by the first stage of Algorithm 1. With probability at least 1 − 𝛿/4,
for any 𝑘-center set 𝐶 ∈ C,∑

𝑥 ∈𝐷1

𝑢 (𝑥) · 𝑑𝑧 (𝑥,𝐶)

∈(1 ± 2𝜀) ·
∑
𝑥 ∈𝐷1

𝑢 (𝑥) ·
(
𝑑2 (𝜋 (𝑥),𝐶) + 𝑑2 (𝑥, 𝜋 (𝑥))

)𝑧/2
.

By the above lemmas, we are ready to prove Theorem 5.2. The
proof idea is to first show the existence of a subspace Γ that satis-
fies Inequality (10) for 𝐴 = 𝑋 in Lemma 5.4. By Lemma 5.4, we can
prove that 𝑋 satisfies the representativeness property with respect
to Γ. Similarly, we can also show that 𝐷1 satisfies the representa-
tiveness property with respect to Γ by Lemma 5.7. Recall that Γ′ is
obtained from Γ by appending an arbitrary dimension in R𝑑 that
is orthogonal to Γ. Finally, by Lemma 5.5, 𝐷1 is an 𝜀-coreset for
(𝑘, 𝑧)-Clustering in Γ′. Combining with these properties, we can
conclude that𝐷1 is an 𝜀-coreset for (𝑘, 𝑧)-Clustering in R𝑑 , which
proves the theorem.

Proof of Theorem 5.2. Let 𝜀 ′ = 𝜀𝑧+3

6· (84𝑧)2𝑧 . By [33, Algorithm 1],
there exists a subspace Γ satisfying the following properties:

P1. Γ satisfies that for any 𝐶 ∈ C,∑
𝑥 ∈𝑋

(
𝑑𝑧 (𝑥, 𝜋 (𝑥)) − 𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥))

)
≤ 𝜀 ′ · OPT𝑧/2,

where 𝜋 and 𝜋𝐶 denote the projection from 𝑋 to Γ and
Conv(Γ ∪𝐶) respectively.

P2. Γ is of dimension 𝑂 (𝑘/𝜀 ′).
Since the dimension of Γ′ is𝑂 (𝑘/𝜀 ′), we have that with probability
at least 1 − 𝛿/4, 𝐷1 is an 𝜀-coreset for (𝑘, 𝑧)-Clustering in Γ′ by
Lemma 5.5. It means that for any 𝑘-center set 𝐶 ⊂ Γ′,∑

𝑥 ∈𝐷1

𝑢 (𝑥) · 𝑑𝑧 (𝑥,𝐶) ∈ (1 ± 𝜀) · cost𝑧 (𝑋,𝐶) . (14)

Moreover, with probability at least 1 − 𝛿/4, for any 𝑘-center set
𝐶 ∈ C,∑

𝑥 ∈𝑋

(
𝑑2 (𝜋 (𝑥),𝐶) + 𝑑2 (𝑥, 𝜋 (𝑥))

)𝑧/2
∈ (1 ± 𝜀) · cost𝑧 (𝑋,𝐶) (15)

by Lemma 5.4, and∑
𝑥 ∈𝐷1

𝑢 (𝑥) · 𝑑𝑧 (𝑥,𝐶)

∈(1 ± 𝜀)
∑
𝑥 ∈𝐷1

𝑢 (𝑥) ·
(
𝑑2 (𝜋 (𝑥),𝐶) + 𝑑2 (𝑥, 𝜋 (𝑥))

)𝑧/2
.

(16)

by Lemma 5.7. Then we have the following claim.

Claim 5.8. Both 𝑋 and 𝐷1 satisfy the 2𝜀-representativeness prop-
erty with respect to Γ.

Proof. For any equivalence class ΔΓ
𝐶
and any two 𝑘-center sets

𝐶1,𝐶2 ∈ ΔΓ
𝐶
, we have

cost𝑧 (𝑋,𝐶1)

∈ (1 ± 𝜀) ·
∑
𝑥 ∈𝑋

(
𝑑2 (𝜋 (𝑥),𝐶1) + 𝑑2 (𝑥, 𝜋 (𝑥))

)𝑧/2
(Ineq. (15))

∈ (1 ± 𝜀) ·
∑
𝑥 ∈𝑋

(
𝑑2 (𝜋 (𝑥),𝐶2) + 𝑑2 (𝑥, 𝜋 (𝑥))

)𝑧/2
(Defition 2.1)

∈ (1 ± 2𝜀) · cost𝑧 (𝑋,𝐶2) .
(Ineq. (15))

By the same argument, Inequality (16) implies that 𝐷1 also satisfies
the 𝜀-representativeness property. This completes the proof. □

Now we are ready to prove the theorem. Given a 𝑘-center set
𝐶 ∈ C, suppose 𝐶 belongs to the equivalence class ΔΓ

𝐶′ for some
𝐶 ′ ∈ Γ′. ∑

𝑥 ∈𝐷1

𝑢 (𝑥) · 𝑑𝑧 (𝑥,𝐶)

∈ (1 ± 2𝜀) ·
∑
𝑥 ∈𝐷1

𝑢 (𝑥) · 𝑑𝑧 (𝑥,𝐶 ′) (Claim 5.8)

∈ (1 ± 2𝜀) · cost𝑧 (𝑋,𝐶 ′) (Ineq. (14))
∈ (1 ± 4𝜀) · cost𝑧 (𝑋,𝐶), (Claim 5.8)

which completes the proof of correctness by letting 𝜀 ′ = 𝑂 (𝜀).
For the running time, it costs

𝑂

(
𝑛𝑑𝑘 + 𝑛𝑑 log(𝑛/𝛿) + 𝑘2 log2 𝑛 + log2 (1/𝛿) log2 𝑛

)
time to

construct a 2𝑂 (𝑧) -approximate solution 𝐶★ [28],5 𝑂 (𝑛𝑑𝑘) time to
compute all 𝑋𝑐 and 𝜎1 (𝑥), and 𝑂 (𝑁1) = 𝑂 (𝑛) time to construct 𝐷1.
Hence, we prove for the overall running time. □

5.3 Analyzing the Second Stage of Algorithm 1

Next, we prove the reduction theorem (Theorem 5.3) that provides
a theoretical guarantee for the second stage. The main idea is to
apply the result on terminal embeddings such that the dimension
is further reduced to 𝑂

(
𝜀−2 log(𝑘/𝜀)

)
.

Proof. It costs 𝑂 (𝑁1𝑑𝑘) = 𝑂 (𝑛𝑑𝑘) time to compute all 𝐷𝑐 and
𝜎2 (𝑥), and𝑂 (𝑁2) = 𝑂 (𝑛) time to construct 𝑆 . Hence, we only need

5[28] only discuss 𝑘-median, but their construction can be easily generalized to (𝑘, 𝑧)-
Clustering by the relaxed triangle inequality of 𝑑𝑧 .
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to focus on the correctness. Since we suppose that the ouput 𝐷1 of
the first stage is an 𝜀-coreset over 𝑋 , we have that∑

𝑥 ∈𝐷1

𝑢 (𝑥) · 𝑑𝑧 (𝑥,𝐶★) ≤ (1 + 𝜀) · cost𝑧 (𝑋,𝐶★) ≤ 2𝛼 · OPT𝑧 .

Hence, 𝐶★ is also an 𝑂 (1)-approximation of the (𝑘, 𝑧)-Clustering
problem over 𝐷1. Let 𝑓 : R𝑑 → R𝑚 be a terminal embedding of 𝐷1
where𝑚 = 𝑂 (𝑧2𝜀−2 log𝑁1). By Theorem 3.3, we have that for any
𝑥 ∈ 𝐷1 and 𝑦 ∈ R𝑑 ,

𝑑𝑧 (𝑥,𝑦) ≤ 𝑑𝑧 (𝑓 (𝑥), 𝑓 (𝑦))

≤
(
1 + 𝜀

10𝑧

)𝑧
· 𝑑𝑧 (𝑥,𝑦) ≤ (1 + 𝜀) · 𝑑𝑧 (𝑥,𝑦) .

(17)

Hence, we have for any set 𝐴 ⊆ R𝑑 ,

𝑑𝑧 (𝑥,𝐴) ≤ 𝑑𝑧 (𝑓 (𝑥), 𝑓 (𝐴)) ≤ (1 + 𝜀) · 𝑑𝑧 (𝑥,𝐴) . (18)

Then 𝑓 (𝐶★) is an 𝑂 (1)-approximation of the (𝑘, 𝑧)-Clustering
problem over the weighted point set 𝑓 (𝐷1) with weights 𝑢 (𝑥). By
Theorem 3.1, with probability at least 1 − 𝛿/2, 𝑓 (𝑆) together with
weights𝑤 (𝑥) is an 𝜀-coreset for (𝑘, 𝑧)-Clustering over (𝑓 (𝐷1), 𝑢)
since 𝑁2 = Ω

(
𝜀−2𝑧 (𝑘𝑚 log𝑘 + log(1/𝛿)

)
. Then it suffices to prove

that 𝑆 together with weights 𝑤 (𝑥) is an 𝑂 (𝜀)-coreset for (𝑘, 𝑧)-
Clustering over 𝑋 . For any 𝑘-center set 𝐶 ∈ C, we have the
following

P1.
∑
𝑥 ∈𝐷1 𝑢 (𝑥) · 𝑑

𝑧 (𝑥,𝐶) ∈ (1 ± 𝜀) · cost𝑧 (𝑋,𝐶) by the assump-
tion of the theorem.

P2.
∑
𝑥 ∈𝑆 𝑤 (𝑥) · 𝑑𝑧 (𝑓 (𝑥), 𝑓 (𝐶)) ∈ (1 ± 𝜀) · ∑𝑥 ∈𝐷1 𝑢 (𝑥) ·

𝑑𝑧 (𝑓 (𝑥), 𝑓 (𝐶)) by the definition of 𝑆 and Theorem 3.1.
P3.

∑
𝑥 ∈𝐷1 𝑢 (𝑥) ·𝑑

𝑧 (𝑓 (𝑥), 𝑓 (𝐶)) ∈ (1±𝜀) ·∑𝑥 ∈𝐷1 𝑢 (𝑥) ·𝑑
𝑧 (𝑥,𝐶)

by Inequality (18).
P4.

∑
𝑥 ∈𝑆 𝑤 (𝑥) ·𝑑𝑧 (𝑥,𝐶) ∈ (1± 𝜀) ·

∑
𝑥 ∈𝑆 𝑤 (𝑥) ·𝑑𝑧 (𝑓 (𝑥), 𝑓 (𝐶))

by Inequality (18).
Combining the above properties, we have that∑

𝑥 ∈𝑆
𝑤 (𝑥) · 𝑑𝑧 (𝑥,𝐶)

∈ (1 ± 𝜀) ·
∑
𝑥 ∈𝑆

𝑤 (𝑥) · 𝑑𝑧 (𝑓 (𝑥), 𝑓 (𝐶)) (P4)

∈ (1 ± 2𝜀) ·
∑
𝑥 ∈𝐷1

𝑢 (𝑥) · 𝑑𝑧 (𝑓 (𝑥), 𝑓 (𝐶)) (P2)

∈ (1 ± 3𝜀) ·
∑
𝑥 ∈𝐷1

𝑢 (𝑥) · 𝑑𝑧 (𝑥,𝐶) (P3)

∈ (1 ± 4𝜀) · cost𝑧 (𝑋,𝐶) . (P1)

which completes the proof. □

Remark 5.9. In the second stage of Algorithm 1, we apply the

first framework stated in Theorem 3.1. This is because we want

to reduce the dependence of size on 𝑘 to be linear. In the case

that 𝜀 is small, we can apply the second framework stated in

Theorem 3.1 instead. By Theorem 3.1, the coreset size should be

𝑂
(
(22𝑧𝜀−2𝑘 · (𝑘𝑚 log𝑘 + log(1/𝛿))

)
where𝑚 = 𝑂 (𝜀−2 log(𝑁1/𝜀))

by Theorem 5.3. This provides us an 𝜀-coreset of size

𝑂 (22𝑧𝜀−4𝑘2 log(𝑘/𝜀) log(𝑘/𝜀𝛿)).

5.4 Proof of the Main Technical Lemma 5.7

For preparation, we introduce the following theorem showing the
existence of a weak-coreset 𝑆 for (𝑘, 𝑧)-subspace approximation
over 𝑋 of size independent of 𝑛,𝑑 . Recall that P is the collection of
all 𝑗-flats in R𝑑 with 𝑗 ≤ 𝑘 , i.e., all subspaces in R𝑑 of dimension at
most 𝑘 .

Theorem 5.10 (Weak-coreset for subspace approximation).
Given a dataset 𝑋 of 𝑛 points in R𝑑 , 𝜀, 𝛿 ∈ (0, 0.5), constant 𝑧 ≥ 1
and integer 𝑘 ≥ 1, suppose 𝜎 : 𝑋 → R≥0 is a sensitivity function

satisfying that

𝜎 (𝑥) ≥ sup
𝑃⊆P

𝑑𝑧 (𝑥, 𝑃)∑
𝑦∈𝑋 𝑑𝑧 (𝑦, 𝑃)

for each 𝑥 ∈ 𝑋 . Let G =
∑
𝑥 ∈𝑋 𝜎 (𝑥) denote the total sensitivity.

Suppose 𝑆 ⊆ 𝑋 is constructed by taking

𝑂

(
G2
𝜀2
· (𝜀−1𝑘3 log(𝑘/𝜀) + log(1/𝛿))

)
samples, where each sample 𝑥 ∈ 𝑋 is selected with probability

𝜎 (𝑥)
G

and has weight𝑤 (𝑥) := G
|𝑆 | ·𝜎 (𝑥) . Then with probability at least 1−𝛿 ,

𝑆 is an 𝜀-weak-coreset for the (𝑘, 𝑧)-subspace approximation problem

over 𝑋 .

Actually, the above construction implies an algorithm to compute a
nearly optimal solution for the (𝑘, 𝑧)-subspace approximation prob-
lem over 𝑋 ; see discussion in Remark 5.12. To prove the theorem,
we need the following lemma based on [17, Theorem 9]. It indicates
that a nearly optimal solution for (𝑘, 𝑧)-subspace approximation
exists in some low dimensional space.

Lemma 5.11 (Existence of approximate 𝑘-flats in low di-

mensional subspaces). Given a weighted dataset 𝑋 of 𝑛 points

together with weights 𝑢 (𝑥) in R𝑑 , 𝜀 ∈ (0, 0.5), constant 𝑧 ≥ 1 and
integer 𝑘 ≥ 1, there exists a 𝑘-flat 𝑃 that is spanned by at most

𝑂 (𝜀−1𝑘2 log(𝑘/𝜀)) points from 𝑋 , such that∑
𝑥 ∈𝑋

𝑢 (𝑥) · 𝑑𝑧 (𝑥, 𝑃) ≤ (1 + 𝜀) · min
𝑃 ′∈P

∑
𝑥 ∈𝑋

𝑢 (𝑥) · 𝑑𝑧 (𝑥, 𝑃 ′).

Proof. By [32, Theorem 1.3], there exists a collection 𝐷 ⊆ 𝑋

of 𝑂 (𝜀−1𝑘 log(1/𝜀) points such that the spanned subspace of 𝐷
contains a 𝑘-flat 𝑃 satisfying that∑

𝑥 ∈𝑋
𝑢 (𝑥) · 𝑑𝑧 (𝑥, 𝑃) ≤ (1 + 𝜀) (𝑘+1)𝑧 · min

𝑃 ′∈P

∑
𝑥 ∈𝑋

𝑢 (𝑥) · 𝑑𝑧 (𝑥, 𝑃 ′) .

Replacing 𝜀 ′ = 𝑂 (𝜀/𝑧𝑘), we complete the proof. □

We are ready to prove the theorem.

Proof of Theorem 5.10. Denote P ′ to be the collection of all
𝑘-flats that are spanned by at most 𝑂

(
𝜀−1𝑘2 log(𝑘/𝜀)

)
points from

𝑋 . By [18, Lemma 8.2], the function dimension6 of (𝑋,P ′) is
𝑂

(
𝜀−1𝑘3 log(𝑘/𝜀)

)
. Then by [35, Theorem 4], with probability at

least 1 − 𝛿 , for any 𝑘-flat 𝑃 ∈ P ′,∑
𝑥 ∈𝑆

𝑤 (𝑥) · 𝑑𝑧 (𝑥, 𝑃) ∈ (1 ± 𝜀) ·
∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝑃). (19)

6Since this paper only uses function dimension as a black box, we do not present the
definition. We refer interested readers to [18, Definition 6.4] or [7, Definition 4.5] for
concrete definitions.



Coresets for Clustering in Euclidean Spaces STOC ’20, June 22–26, 2020, Chicago, IL, USA

Then we have

min
𝑃 ∈P

∑
𝑥 ∈𝑆

𝑤 (𝑥) · 𝑑𝑧 (𝑥, 𝑃)

≥ (1 − 𝜀) · min
𝑃 ∈P′

∑
𝑥 ∈𝑆

𝑤 (𝑥) · 𝑑𝑧 (𝑥, 𝑃)

(Lemma 5.11)

≥ (1 − 𝜀)2 · min
𝑃 ∈P′

∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝑃)

(Ineq. (19))

≥ (1 − 𝜀)2 · min
𝑃 ∈P

∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝑃) .

We also have

min
𝑃 ∈P

∑
𝑥 ∈𝑆

𝑤 (𝑥) · 𝑑𝑧 (𝑥, 𝑃)

≤ min
𝑃 ∈P′

∑
𝑥 ∈𝑆

𝑤 (𝑥) · 𝑑𝑧 (𝑥, 𝑃)

≤ (1 + 𝜀) · min
𝑃 ∈P′

∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝑃)

(Ineq. (19))

≤ (1 + 𝜀)2 · min
𝑃 ∈P

∑
𝑥 ∈𝑋

𝑤 (𝑥) · 𝑑𝑧 (𝑥, 𝑃).

(Lemma 5.11)

Letting 𝜀 ′ = 𝑂 (𝜀), we complete the proof. □

Remark 5.12. Theorem 5.10 actually provides an approach to com-

pute a (1 + 𝜀)-approximate solution for the (𝑘, 𝑧)-subspace approxi-
mation problem. Suppose 𝑃★ ∈ P ′ is a 𝑘-flat satisfying that∑

𝑥 ∈𝑆
𝑤 (𝑥) · 𝑑𝑧 (𝑥, 𝑃★) ≤ (1 + 𝜀) · min

𝑃 ∈P′

∑
𝑥 ∈𝑆

𝑤 (𝑥) · 𝑑𝑧 (𝑥, 𝑃) .

Then by the above proof, we directly have

(1 − 𝜀) · min
𝑃 ∈P

∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝑃) ≤
∑
𝑥 ∈𝑆

𝑤 (𝑥) · 𝑑𝑧 (𝑥, 𝑃★)

≤ (1 + 𝜀)3 · min
𝑃 ∈P

∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝑃),

which indicates that

∑
𝑥 ∈𝑆 𝑤 (𝑥) · 𝑑𝑧 (𝑥, 𝑃★) is a (1 ± 𝑂 (𝜀))-

approximation of the (𝑘, 𝑧)-subspace approximation objective

min𝑃 ∈P
∑
𝑥 ∈𝑋 𝑑𝑧 (𝑥, 𝑃). Moreover, since 𝑃★ ∈ P ′, we also have that∑
𝑥 ∈𝑆

𝑤 (𝑥) · 𝑑𝑧 (𝑥, 𝑃★) ∈ (1 ± 𝜀)
∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝑃★)

by Inequality (19). Thus, 𝑃★ is a (1 +𝑂 (𝜀))-approximate solution for

the (𝑘, 𝑧)-subspace approximation problem.

Now we can prove the main lemma.

Proof of Lemma 5.7. Let 𝜀 ′ = 𝜀𝑧+3

6· (84𝑧)2𝑧 . Recall that we have Γ

is a subspace of R𝑑 satisfying that 𝐶★ ⊂ Γ and for any 𝑘-center set
𝐶 ∈ C, ∑

𝑥 ∈𝑋

(
𝑑𝑧 (𝑥, 𝜋 (𝑥)) − 𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥))

)
=
𝜀 ′

2 · OPT𝑧 ,

We first have the following observations∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝜋 (𝑥)) ≤
∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥,𝐶★) (𝐶★ ∈ Γ)

≤ 𝛼 · OPT𝑧 , (Defn. of 𝐶★)
(20)

and

𝜎1 (𝑥) > 22𝑧+2𝛼2 · 𝑑
𝑧 (𝑥, 𝑐★(𝑥))

cost𝑧 (𝑋,𝐶★) (Defn. of 𝜎1 (𝑥))

≥ 22𝑧+2𝛼 · 𝑑𝑧 (𝑥, 𝜋 (𝑥))
OPT𝑧

, (𝐶★ ∈ Γ)
(21)

and∑
𝑥 ∈𝑋

𝜎1 (𝑥) = 22𝑧+2𝛼2
∑
𝑥 ∈𝑋

(
𝑑𝑧 (𝑥, 𝑐★(𝑥))
cost𝑧 (𝑋,𝐶★) +

1
|𝑋𝑐★ (𝑥) |

)
≤ 22𝑧+2𝛼2 · (1 + 𝑘) ( |𝐶★ | = 𝑘)
≤ 22𝑧+3𝛼2𝑘.

(22)

For a 𝑘-center set 𝐶 ∈ C, recall that 𝜋𝐶 is the projection from 𝑋

to Conv(Γ ∪𝐶). We claim that

min
𝐶∈C

∑
𝑥 ∈𝐷1

𝑢 (𝑥) · 𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥))

≥ min
𝐶∈C

∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥)) −
𝜀 ′ · OPT𝑧

2 .

(23)

Let 𝐶 ∈ C denote the 𝑘-center set such that
∑
𝑥 ∈𝑋 𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥))

is minimized. To prove this inequality, we consider two cases. If∑
𝑥 ∈𝑋 𝑑𝑧 (𝑥, 𝜋

𝐶
(𝑥)) ≤ 𝜀′ ·OPT𝑧

2 , we directly have

min
𝐶∈C

∑
𝑥 ∈𝐷1

𝑢 (𝑥) · 𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥))

≥0 ≥ min
𝐶∈C

∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥)) −
𝜀 ′ · OPT𝑧

2 .

Otherwise, suppose
∑
𝑥 ∈𝑋 𝑑𝑧 (𝑥, 𝜋

𝐶
(𝑥)) > 𝜀 ′ ·OPT𝑧/2. Since𝐶★ ⊆

Γ, we have that for any 𝑘-center set 𝐶 ∈ C, ∑𝑥 ∈𝑋 𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥)) ≤
cost𝑧 (𝑋,𝐶★). We regard 𝑋 as a point set in Γ⊥ (i.e., the orthogonal
complement of Γ). Then each 𝑘-center set 𝐶 ∈ C corresponds
to a subspace 𝐻 ⊆ Γ⊥ of dimension at most 𝑘 , satisfying that
Conv(Γ∪𝐶) = Conv(Γ∪𝐻 ). This enables us to apply Theorem 5.10
to Γ⊥. We set 𝜎 (𝑥) in Theorem 5.10 as follows:

𝜎 (𝑥)

:= 𝜎1 (𝑥)
22𝑧+2𝛼2

· cost𝑧 (𝑋,𝐶★)∑
𝑥 ∈𝑋 𝑑𝑧 (𝑥, 𝜋

𝐶
(𝑥))

=
𝑑𝑧 (𝑥, 𝑐★(𝑥))∑

𝑥 ∈𝑋 𝑑𝑧 (𝑥, 𝜋
𝐶
(𝑥)) +

cost𝑧 (𝑋,𝐶★)

|𝑋𝑐★ (𝑥) | ·
(∑

𝑥 ∈𝑋 𝑑𝑧 (𝑥, 𝜋
𝐶
(𝑥))

)
(Defn. of 𝜎1 (𝑥))

≥ sup
𝐶∈C

𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥))∑
𝑥 ∈𝑋 𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥))

.

(𝐶★ ∈ Γ and Defn. of 𝐶)
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Note that the sampling distribution with respect to 𝜎 is exactly the
same as to 𝜎1. Moreover, we have

G :=
∑
𝑥 ∈𝑋

𝜎 (𝑥)

=
∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝑐★(𝑥))∑
𝑥 ∈𝑋 𝑑𝑧 (𝑥, 𝜋

𝐶
(𝑥))

+ cost𝑧 (𝑋,𝐶★)

|𝑋𝑐★ (𝑥) | ·
(∑

𝑥 ∈𝑋 𝑑𝑧 (𝑥, 𝜋
𝐶
(𝑥))

)
=

(𝑘 + 1) · cost𝑧 (𝑋,𝐶★)∑
𝑥 ∈𝑋 𝑑𝑧 (𝑥, 𝜋

𝐶
(𝑥)) ( |𝐶★ | = 𝑘)

≤ 𝛼 (𝑘 + 1) · OPT𝑧
𝜀 ′ · OPT𝑧/2

(
∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝜋
𝐶
(𝑥)) > 𝜀 ′ · OPT𝑧

2 )

=
2𝛼 (𝑘 + 1)

𝜀 ′
.

Hence, 𝑁1 = Ω
(
G2

(𝜀′)2 · ((𝜀
′)−1𝑘3 log 𝑘

𝜀′ + log
1
𝛿
)
)
as stated in The-

orem 5.10. By Theorem 5.10, we have that with probability at least
1 − 𝛿/8,

min
𝐶∈C

∑
𝑥 ∈𝐷1

𝑢 (𝑥) · 𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥))

≥ (1 − 𝜀 ′

2𝛼 ) · min
𝐶∈C

∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥))

≥ min
𝐶∈C

∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥)) −
𝜀 ′

2𝛼 · cost𝑧 (𝑋,𝐶
★).

≥ min
𝐶∈C

∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥)) −
𝜀 ′ · OPT𝑧

2 ,

which completes the proof of Inequality (23).
Next, we prove that with probability at least 1−𝛿/8, the following

property holds:∑
𝑥 ∈𝐷1

𝑢 (𝑥) · 𝑑𝑧 (𝑥, 𝜋 (𝑥)) ≤
∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝜋 (𝑥)) + 𝜀 ′ · OPT𝑧
2 . (24)

For each sample 𝑥 ∈ 𝐷1, we note that
|𝐷1 | · 𝑢 (𝑥) · 𝑑𝑧 (𝑥, 𝜋 (𝑥))

=

∑
𝑦∈𝑋 𝜎1 (𝑦)
𝜎1 (𝑥)

· 𝑑𝑧 (𝑥, 𝜋 (𝑥))

≥ 22𝑧+3𝛼2𝑘
22𝑧+2𝛼 ·𝑑𝑧 (𝑥,𝜋 (𝑥))

OPT𝑧

· 𝑑𝑧 (𝑥, 𝜋 (𝑥))

(Ineqs. (21) and (22))
= 2𝛼𝑘 · OPT𝑧 .

(25)

Then by Hoeffding’s inequality, we have that

Pr

������∑𝑥 ∈𝑋 𝑑𝑧 (𝑥, 𝜋 (𝑥)) −

∑
𝑥 ∈𝐷1

𝑢 (𝑥) · 𝑑𝑧 (𝑥, 𝜋 (𝑥))

������ ≥ 𝜀 ′ · OPT𝑧
2


≤ 2 · exp

(
−

2( 𝜀
′ ·OPT𝑧

2 )2

𝑁1 · (2𝛼𝑘 · OPT𝑧)2

)
(Ineq. (25))

≤ 𝛿

8 , (value of 𝑁1)

which completes the proof of Inequality (24).
Now we are ready to prove the lemma. With probability at least

1 − 𝛿/4, Inequalities (23) and (24) hold (union bound). Then for any
𝑘-center set 𝐶 ∈ C,∑

𝑥 ∈𝐷1

𝑢 (𝑥) · 𝑑𝑧 (𝑥, 𝜋 (𝑥)) −
∑
𝑥 ∈𝐷1

𝑢 (𝑥) · 𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥))

≤
∑
𝑥 ∈𝐷1

𝑢 (𝑥) · 𝑑𝑧 (𝑥, 𝜋 (𝑥)) − min
𝐶′∈C

∑
𝑥 ∈𝐷1

𝑢 (𝑥) · 𝑑𝑧 (𝑥, 𝜋𝐶′ (𝑥))

≤
∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝜋 (𝑥)) + 𝜀 ′ · OPT𝑧
2

− min
𝐶′∈C

∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝜋𝐶′ (𝑥)) +
𝜀 ′ · OPT𝑧

2

(Ineqs. (23) and (24))

≤
∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝜋 (𝑥)) −
∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥)) + 𝜀 ′ · OPT𝑧

≤ 2𝜀 ′ · OPT𝑧 .
(by assumption)

By Lemma 5.4, we complete the proof of Lemma 5.7. □

5.5 Geometric Observations

Note that the first stage of Algorithm 1 is almost the same to the
second framework stated in Theorem 3.1 except that the coreset
size𝑁1 is independent of𝑑 . In this section, we discuss the geometric
observations that makes 𝑁1 samples enough for an 𝜀-coreset.

Construct a subspace Γ ⊊ R𝑑 of dimension poly(𝑘/𝜀) by [33,
Algorithm 1], which leads to Inequality (15) by Lemma 5.4. Recall
that Γ′ is obtained from Γ by appending an arbitrary dimension
in R𝑑 that is orthogonal to Γ. Also recall that CΓ denotes the col-
lection of 𝑘-center sets 𝐶 ⊂ Γ′. We have the following geometric
observations implying that we only need to approximately preserve
all (𝑘, 𝑧)-Clustering objectives with respect to 𝑘-center sets in Γ′

instead of the whole C. This reduces the function dimension of 𝑘-
center sets from 𝑂 (𝑑𝑘) to poly(𝑘/𝜀). The first observation follows
from Claim 5.8.

Observation 5.13 (Representativeness property for 𝑋 ). 𝑋
satisfies the 𝜀-representativeness property with respect to Γ.

Moreover, the representativeness property can be generalized to
subsets of 𝑋 that are weak-coresets for the (𝑘, 𝑧)-subspace approxi-
mation problem.

Observation 5.14 (Representativeness property for

weighted subsets of 𝑋 ). Let 𝑆 be a weighted subset of 𝑋 together

with a weight function 𝑤 : 𝑆 → R≥0 and 𝜀 ′ = 𝜀𝑧+3

6· (84𝑧)2𝑧 . 𝑆 satisfies

the 𝜀-representativeness property with respect to Γ if the following

holds:

(1) 𝑆 is an 𝜀 ′-weak-coreset for the (𝑘, 𝑧)-subspace approximation

problem in Γ⊥.
(2) 𝑆 approximately preserves the 𝑙𝑧-subspace approximation ob-

jective with respect to Γ, i.e.,∑
𝑥 ∈𝑆

𝑤 (𝑥) · 𝑑𝑧 (𝑥, Γ) ∈
∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, Γ) ± 𝜀 ′ · OPT𝑧 .
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Proof. By the proof of Lemma 5.7, these two conditions imply
that for any 𝑘-center set 𝐶 ∈ C,∑
𝑥 ∈𝑆

𝑤 (𝑥) · 𝑑𝑧 (𝑥, 𝜋 (𝑥)) −
∑
𝑥 ∈𝑆

𝑤 (𝑥) · 𝑑𝑧 (𝑥, 𝜋𝐶 (𝑥)) ≤ 𝑂 (𝜀 ′) · OPT𝑧 ,

where 𝜋 and 𝜋𝐶 denote the projection from𝑋 to Γ and Conv(Γ∪𝐶)
respectively. Then by Lemma 5.7, Inequality (16) holds. By Claim 5.8,
we complete the proof. □

Now suppose we have a weighted subset 𝑆 ⊆ 𝑋 that satisfies the
𝜀-representativeness property. By Definition 2.3, if 𝑆 approximately
preserves the (𝑘, 𝑧)-Clustering objective for some 𝑘-center set
𝐶 ∈ CΓ over 𝑋 , then we directly have that 𝑆 approximately pre-
serves all (𝑘, 𝑧)-Clustering objectives with respect to 𝑘-center
sets within the whole equivalence class ΔΓ

𝐶
. Hence, we only need

to consider those 𝑘-center sets in Γ instead of R𝑑 and conclude the
following corollary. The corollary indicates that coreset for cluster-
ing in low dimensional subspace plus weak-coreset for subspace
approximation implies coreset for clustering in R𝑑 .

Corollary 5.15 (Dimension reduction for

(𝑘, 𝑧)-Clustering). For every dataset 𝑋 of 𝑛 points in R𝑑 ,

𝜀, 𝛿 ∈ (0, 0.5), constant 𝑧 ≥ 1 and integer 𝑘 ≥ 1, let 𝜀 ′ = 𝜀𝑧+3

6· (84𝑧)2𝑧 .

There exists a subspace Γ ⊊ R𝑑 of dimension 𝑂 (𝑘/𝜀 ′) such that

for any weighted point set 𝑆 ⊆ 𝑋 together with a weight function

𝑤 : 𝑆 → R≥0, 𝑆 is an 𝑂 (𝜀)-coreset for (𝑘, 𝑧)-Clustering if

(1) 𝑆 is an 𝜀-coreset for (𝑘, 𝑧)-Clustering in subspace Γ′;
(2) 𝑆 is an 𝜀 ′-weak-coreset for the (𝑘, 𝑧)-subspace approximation

problem in Γ⊥.
(3) 𝑆 approximately preserves the 𝑙𝑧-subspace approximation ob-

jective with respect to Γ, i.e.,∑
𝑥 ∈𝑆

𝑤 (𝑥) · 𝑑𝑧 (𝑥, Γ) ∈
∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, Γ) ± 𝜀 ′ · OPT𝑧 .

In fact, the above corollary can be generalized to other shape fitting
problems. The main reason is that Lemma 5.4 not only holds for
𝑘-center sets but also holds for an arbitrary non-empty set that is
contained in a 𝑘-dimensional subspace by [33, Theorem 10]. For
instance, if we consider P that is the collection of all 𝑗-flats ( 𝑗 ≤ 𝑘),
then Corollary 5.15 can be translated to a dimension reduction
result for subspace approximation as follows.

Corollary 5.16 (Dimension reduction for subspace approx-

imation). For every dataset 𝑋 of 𝑛 points in R𝑑 , 𝜀, 𝛿 ∈ (0, 0.5), con-
stant 𝑧 ≥ 1 and integer 𝑘 ≥ 1, let 𝜀 ′ = 𝜀𝑧+3

6· (84𝑧)2𝑧 . There exists a

subspace Γ ⊊ R𝑑 of dimension 𝑂 (𝑘/𝜀 ′) such that for any weighted

point set 𝑆 ⊆ 𝑋 together with a weight function 𝑤 : 𝑆 → R≥0, 𝑆 is

an 𝑂 (𝜀)-coreset for (𝑘, 𝑧)-subspace approximation if

(1) 𝑆 is an 𝜀-coreset for (𝑘, 𝑧)-subspace approximation in subspace

Γ′;
(2) 𝑆 is an 𝜀 ′-weak-coreset for the (𝑘, 𝑧)-subspace approximation

problem in Γ⊥.
(3) 𝑆 approximately preserves the 𝑙𝑧-subspace approximation ob-

jective with respect to Γ, i.e.,∑
𝑥 ∈𝑆

𝑤 (𝑥) · 𝑑𝑧 (𝑥, Γ) ∈
∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, Γ) ± min
𝑃 ∈P

∑
𝑥 ∈𝑋

𝑑𝑧 (𝑥, 𝑃) .

Similarly, by the Feldman-Langberg framework, this corollary
provides an 𝜀-coreset for (𝑘, 𝑧)-subspace approximation of size
poly(𝑘/𝜀), which matches the result in [33]. Moreover, the core-
set size can be further decreased by applying terminal embedding
similar to Theorem 5.3.

5.6 Generalization of Theorem 5.1 to ℓ𝑝-Metrics

Given 𝑝 ≥ 1, ℓ𝑝 -metric is induced by distance function 𝑑𝑝 : R𝑑 ×
R𝑑 → R≥0, where for any two points 𝑥,𝑦 ∈ R𝑑 ,

𝑑𝑝 (𝑥,𝑦) :=
©­«

∑
𝑖∈[𝑑 ]

|𝑥𝑖 − 𝑦𝑖 |𝑝
ª®¬
1/𝑝

. (26)

The formulation captures classic distances, including Manhattan
distance (where 𝑝 = 1), Euclidean distance (where 𝑝 = 2) and
Chebyshev distance (where 𝑝 = ∞). With ℓ𝑝 -metric, the (𝑘, 𝑧)-
Clustering objective with respect to some 𝐶 ∈ C is defined as
follows

cost𝑝,𝑧 (𝑋,𝐶) :=
∑
𝑥 ∈𝑋

𝑑𝑧𝑝 (𝑥,𝐶),

where, throughout, 𝑑𝑧𝑝 denotes ℓ𝑑𝑝 -distance raised to power 𝑧 ≥ 1,
and

𝑑𝑝 (𝑥,𝐶) := min
{
𝑑𝑝 (𝑥, 𝑐) : 𝑐 ∈ 𝐶

}
.

We can generalize Definition 1.1 to ℓ𝑝 -metrics.

Definition 5.17 (Coresets for (𝑘, 𝑧)-Clustering with

ℓ𝑝 -metric in R𝑑 ). Given a collection 𝑋 ⊆ R𝑑 of 𝑛 weighted points
and 𝜀 ∈ (0, 1), an 𝜀-coreset for (𝑘, 𝑧)-Clustering in ℓ𝑑𝑝 metric
spaces is a subset 𝑆 ⊆ R𝑑 with weights 𝑤 : 𝑆 → R≥0 such that
for any 𝑘-center set 𝐶 ∈ C, the (𝑘, 𝑧)-Clustering objective with
respect to 𝐶 is 𝜀-approximately preserved, i.e.,∑

𝑥 ∈𝑆
𝑤 (𝑥) · 𝑑𝑧𝑝 (𝑥,𝐶) ∈ (1 ± 𝜀) · cost𝑝,𝑧 (𝑋,𝐶) .

Note that Theorem 5.1 considers the Euclidean distance where
𝑝 = 2 and we want to generalize Theorem 5.1 to all 𝑝 ≥ 1. In this
section, we show that Theorem 5.1 can be generalized to ℓ𝑝 -metrics
for 1 ≤ 𝑝 ≤ 2; see the following corollary. The main idea is that
for 1 ≤ 𝑝 < 2, there exists an isometric embedding from ℓ𝑝 to ℓ2
square [24]. By this idea, we can reduce the problem of constructing
an 𝜀-coreset for (𝑘, 𝑧)-Clustering with ℓ𝑝 -metric to constructing
an 𝑂 (𝜀)-coreset for (𝑘, 2𝑧)-Clustering with ℓ2-metric.

Corollary 5.18 (Coresets for (𝑘, 𝑧)-Clustering with

ℓ𝑝 -metrics (1 ≤ 𝑝 < 2)). There exists a randomized algorithm

that, for a given dataset 𝑋 of 𝑛 points in R𝑑 , integer 𝑘 ≥ 1, 1 ≤ 𝑝 < 2,
constant 𝑧 ≥ 2 and 𝜀 ∈ (0, 0.5), with probability at least 1 − 𝛿 ,

constructs an 𝜀-coreset for (𝑘, 𝑧)-Clustering with ℓ𝑝 -metric of size

𝑂

(
min

{
𝜀−4𝑧−2, 24𝑧𝜀−4𝑘

}
𝑘 log𝑘 log 𝑘

𝜀𝛿

)
and runs in time

𝑂

(
𝑛𝑑𝑘 + 𝑛𝑑 log(𝑛/𝛿) + 𝑘2 log2 𝑛 + log2 (1/𝛿) log2 𝑛

)
.

The proof can be found in the full version of this paper.
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6 PROOF OF [18, THEOREM 15.6]

The proof of Theorem 15.6 in [18] has some typos for proving (85)
by (84), where (84) does not satisfy the condition of [18, Lemma
14.2]. To fix the typo, it suffices to prove the following lemma.

Lemma 6.1. Let 𝑎, 𝑏, 𝑐 ≥ 0, 𝜀 > 0 and 𝑧 ≥ 1. If |𝑎 − 𝑏 | ≤ 𝑐 and

|𝑎𝑧 − 𝑏𝑧 | > 𝑧𝑐𝑧

𝜀𝑧−1
, then we have |𝑎𝑧 − 𝑏𝑧 | ≤ 𝑧𝜀 · (max {𝑎, 𝑏})𝑧 .

Proof. Without loss of generality, assume that 𝑎 > 𝑏 > 0. By
scalability, we can also assume that 𝑏 = 1. Then we have

𝑎𝑧 − 1 >
𝑧𝑐𝑧

𝜀𝑧−1
≥ 𝑧 (𝑎 − 1)𝑧

𝜀𝑧−1
.

Moreover, we claim that
𝑎𝑧 − 1 ≤ (𝑎 − 1)𝑧 · 𝑎𝑧−1 .

This is because that considering function 𝑓 (𝑎) = (𝑎 − 1)𝑧 · 𝑎𝑧−1 −
(𝑎𝑧 − 1), we have ∇𝑎 𝑓 (𝑎) = (𝑧 − 1)𝑧 (𝑎𝑧−1 − 𝑎𝑧−2) ≥ 0 when 𝑎 ≥ 1
and, hence, 𝑓 (𝑎) ≥ 𝑓 (1) = 0. Combining the above inequalities, we
have 𝑎−1

𝑎 ≤ 𝜀. Then we have

𝑎𝑧 − 1 ≤ (𝑎 − 1)𝑧 · 𝑎𝑧−1
𝑎−1
𝑎

<𝜀

≤ 𝑧𝜀 · 𝑎𝑧 ,
which completes the proof. □

Let 𝑎 = dist(𝑝, 𝑥), 𝑏 = dist(𝑝 ′, 𝑥), 𝑐 = dist(𝑝, 𝑝 ′) and 𝜀 ′ = 𝜀/𝑧 in
Lemma 6.1, we complete the proof of Theorem 15.6 in [18] from
(84) to (85).
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