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Abstract
Survival rates are a central component of life-history strategies of large vertebrate 
species. However, comparative studies seldom investigate interspecific variation in 
survival rates with respect to other life-history traits, especially for males. The lack of 
such studies could be due to the challenges associated with obtaining reliable data-
sets, incorporating information on the 0–1 probability scale, or dealing with several 
types of measurement error in life-history traits, which can be a computationally 
intensive process that is often absent in comparative studies. We present a quan-
titative approach using a Bayesian phylogenetically controlled regression with the 
flexibility to incorporate uncertainty in estimated survival rates and quantitative life-
history traits while considering genetic similarity among species and uncertainty in 
relatedness. As with any comparative analysis, our approach makes several assump-
tions regarding the generalizability and comparability of empirical data from separate 
studies. Our model is versatile in that it can be applied to any species group of inter-
est and include any life-history traits as covariates. We used an unbiased simulation 
framework to provide “proof of concept” for our model and applied a slightly richer 
model to a real data example for pinnipeds. Pinnipeds are an excellent taxonomic 
group for comparative analysis, but survival rate data are scarce. Our work elucidates 
the challenges associated with addressing important questions related to broader 
ecological life-history patterns and how survival–reproduction trade-offs might 
shape evolutionary histories of extant taxa. Specifically, we underscore the impor-
tance of having high-quality estimates of age-specific survival rates and information 
on other life-history traits that reasonably characterize a species for accurately com-
paring across species.
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1  | INTRODUC TION

The power of basic science lies in the comparison of similar empirical 
studies, and the comparative method can be useful for contextu-
alizing broad hypotheses and identifying patterns across different 
studies (Adams, 2008; Freckleton, 2009; Stearns, 1983). Ecological 
and evolutionary meta-analyses make several assumptions about 
data mined from empirical studies including independence of data 
from different studies, reasonable inclusion criteria for datasets 
given incomplete data reporting, comparability of data across stud-
ies, representativeness of data across a taxonomic group, and that 
available data for a specific species are representative of that spe-
cies (Adams,  2008; Freckleton,  2009; Gurevitch & Hedges,  1999; 
Nakagawa et  al.,  2017; Noble et  al.,  2017; Pagel,  1999). A meta-
analysis is a statistical tool that specifically evaluates effect sizes 
calculated from parameters (or functions of parameters) associated 
with variables that represent the “size” of the relationship of interest 
(or “effect”) based on continuous data, binary data, or correlations 
(Vetter et  al.,  2013). Comparative analyses are similar to meta-
analyses but do not adhere to the requirement of comparing effect 
sizes (e.g., magnitude of change a covariate has with respect to the re-
sponse variable, proportion of change in response variable from the 
treatment groups compared with the control groups) across studies 
(Felsenstein, 1985; Koricheva & Gurevitch, 2014; Vetter et al., 2013). 
As such, ecological and evolutionary comparative studies rely more 
heavily on the assumption that available data across a taxonomic 
group are representative of the taxonomic group. Additionally, they 
often assume that values gleaned from empirical studies are known 
without measurement error, but ignoring measurement error can 
lead to underestimating covariation between life-history traits (Ives 
et al., 2007). Hierarchical models that incorporate variances and/or 
standard errors can better reflect this source of uncertainty in com-
parative data. Hierarchical models can incorporate phylogeny (spec-
ifying correlation structure among species when nonindependence 
issues are caused by species relatedness) to handle lack of indepen-
dence in the data (Adams, 2008; Freckleton et al., 2002; Nakagawa 
et al., 2017). As ancestral traits can be maintained through several 
recent nodes of a phylogeny from phylogenetic inertia, it is import-
ant to account for a lack of independence across related species 
(Pagel, 1999). Further, ecologists have recently started incorporat-
ing measurement error (Hansen & Bartoszek, 2012; Ives et al., 2007) 
and phylogenetic uncertainty regarding tree topology or branch 
lengths (de Villemereuil et al., 2012) in comparative studies.

Comparative methods that evaluate variation in male survival 
rates across species can serve as a useful method for addressing a va-
riety of life-history evolution questions. Males of some species have 
unique energy investments related to growth and precopulatory or 
postcopulatory competition that might affect survival. Survival rates 
for juveniles and adults are fundamental characteristics of fitness 
and influence the diversity of life-history strategies observed across 
iteroparous vertebrate species (Berta et al., 2018; Eberhardt, 1985; 
Gaillard & Yoccoz, 2003; Langtimm et al., 1998; Lemaître et al., 2015; 
Promislow & Harvey, 1990; Toïgo & Gaillard, 2003). However, few 

studies have investigated the connection between various life-
history strategies and survival rates in monophyletic groups, espe-
cially in long-lived vertebrates (Sacher, 1978), and the relationships 
among life-history traits seem to be better understood in females 
than males (Festa-Bianchet, 2012). Because it is challenging to ob-
tain sex- and age-specific survival data in long-lived vertebrate spe-
cies (Hupman et al., 2018; Kanive et al., 2019; Lebreton et al., 1992), 
empirical data on survival rates for multiple species in a monophy-
letic group are limited. For groups with adequate data, information 
is also needed on measurement errors in life-history traits (either 
through pseudoreplication or through standard errors on mea-
surements from a single study) and evolutionary pathways so that 
uncertainties in these measurements can be incorporated into the 
comparative analyses (Ives et al., 2007; Revell & Reynolds, 2012; de 
Villemereuil et al., 2012).

Here, we present a model to demonstrate how to incorporate 
uncertainty in a response variable on the probability scale while also 
accounting for phylogeny for comparative analysis. We anticipate 
our model to be especially useful for addressing life-history evolu-
tion questions pertaining to variation in rates of survival or repro-
duction. We provide results for simulated data to provide a “proof 
of concept” for the model, demonstrating its ability to recover as-
sumed relationships engineered through the data-generating pro-
cess. Finally, we use real data from the suborder and monophyletic 
group, Pinnipedia, to preliminarily explore possible life-history trait 
trade-offs related to this taxonomic group and discuss limitations of 
data deficiencies through the application of our model to these real 
data. To further this avenue of research, we provide an organized 
compilation of currently available life-history trait data for males of 
pinniped species. We also present recommendations for future com-
parative studies aimed at investigating relationships between life-
history traits, specifically the importance of more coordinated data 
collection efforts.

Pinnipedia serves as an interesting taxonomic group to investi-
gate various relationships between age-specific survival and repro-
ductive traits. Pinniped species have a cosmopolitan distribution, 
represent a wide range of polygynous mating strategies, and ex-
hibit diverse sexual selection in the form of body size (Ferguson & 
Higdon, 2006; Krüger et al., 2014; Le Boeuf, 1991; Stirling, 1983). 
Male pinnipeds also tend to undergo physiological and/or behav-
ioral changes years after reaching sexual maturity. Greater selection 
for longevity is expected to occur when traits are differentially ex-
pressed at sexual maturity and social maturity—defined here as the 
mean age at which males begin to successfully engage in reproduc-
tive activity and/or sire offspring (Bonduriansky et al., 2008). Finally, 
Fitzpatrick et al. (2012) recently found that pinniped species tend to 
invest either in body mass, a precopulatory trait, or testes mass and 
baculum length, which are postcopulatory traits. An interesting ad-
vancement of the findings of Fitzpatrick et al. (2012) would be to in-
vestigate relationships between precopulatory and postcopulatory 
traits and other life-history traits, such as survival rates.

Below, we detail potential covariates for our modeling 
framework that could address key questions in life-history trait 
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evolution, such as how do survival rates at different ages or life 
stages relate to 1) investment in precopulatory traits, 2) invest-
ment in postcopulatory traits, 3) age at sexual and social maturity, 
and 4) body length. In the following subsections, we provide the 
biological motivation for the aforementioned life-history traits as 
applied to pinnipeds. Although our focus here is on pinnipeds, our 
modeling framework and our proposed life-history trait evolution 
questions are also appropriate for other well-studied taxonomic 
groups (e.g., ungulates).

1.1 | Body size

Body mass typically serves as a useful indicator for the slow–fast 
life-history continuum because larger body sizes tend to correlate 
with longer lifespans and higher survival rates (Gaillard et al., 2003; 
Promislow & Harvey, 1990), and achieving larger bodies can prove 
useful when living off of energy reserves when fasting during the 
mating season (Bartholomew, 1970; Le Boeuf, 1991). However, ac-
quiring and maintaining energy sufficient for large bodies can become 
challenging in times of limited resources (Toïgo & Gaillard,  2003). 
In mammalian species, body mass can fluctuate to a great extent 
throughout the year, among years, with age, and among individuals 
of a species (Gaillard et al., 2003). Additionally, blubber concentra-
tions can vary with season in pinnipeds (McLaren, 1993), and body 
mass metrics for all pinniped species are not prevalent enough for 
standardization to account for the variation associated with season, 
year, age, and individual. For these reasons, comparing body mass 
among pinniped species is inappropriate, but comparisons of body 
length can be informative (McLaren, 1993). We chose to use stand-
ard body length as a proxy for body size.

1.2 | Mating system

Mating system can be used as a proxy for precopulatory traits. The 
range in the degree of polygyny across pinniped species exceeds 
that for most other taxonomic groups of mammals or birds and 
extends from a single mate during the breeding season to harems 
reaching as many as 100 females per male (Bartholomew, 1970; Bleu 
et al., 2016; Liker & Székely, 2005; Promislow, 1992; Stirling, 1983). 
In pinnipeds, mating systems can be defined using the following 
definitions by Le Boeuf (1991): mild polygyny as males siring 2–5 off-
spring per breeding season, moderate polygyny as males siring 6–15 
offspring per breeding season, and extreme polygyny with males sir-
ing 16 or more offspring per breeding season. A high degree of male–
male competition tends to accompany extreme polygyny and often 
results in lower longevity relative to species with lesser degrees 
of polygyny or monogamy (Clutton-Brock & Isvaran, 2007; Tidière 
et al., 2015). However, Gaillard et al. (2003) found that the ratio of 
male mortalities to female mortalities was higher for populations 
with weak polygyny than strong polygyny in ungulates. Their finding 
suggests that a high degree of polygyny is not always a prerequisite 

for a reproduction–survival trade-off in ungulates, which might also 
be the case for pinnipeds.

1.3 | Sperm competition

We evaluated baculum length as a proxy for sperm competition. 
Baculum length has been found to vary independently of body 
length (Ramm,  2007). A larger baculum likely evolved in response 
to females mating with multiple males in a single breeding sea-
son because a baculum can facilitate sperm competition (Miller 
et al., 2000). However, baculum size also correlates with the copula-
tion environment (terrestrial with dry bodies or aquatic or ice with 
wet bodies, Scheffer & Kenyon, 1963), and logistical properties for 
successful copulation might have also helped drive selection for bac-
ulum size. Given that females choose the frequency with which they 
mate, males with sperm that can move through the female reproduc-
tive tract with greater efficiency would have an advantage (Parker 
et al., 2012). The size and shape of the baculum in pinnipeds are also 
likely important for stimulating the female reproductive tract (Miller 
et al., 1998), which can add further selection pressure for a larger 
baculum.

As allocation of energy to sperm competition decreases the 
available energy for both precopulatory trait investment (e.g., large 
body size, weaponry) and somatic maintenance, greater invest-
ment in sperm competition might come with reduced investment in 
precopulatory traits and/or a cost to survival (Parker et al., 2012). 
Investing in both precopulatory and postcopulatory traits can in-
crease the reproductive competitiveness of males in species that do 
not monopolize access to females, but exclusive investment in pre-
copulatory traits in lieu of postcopulatory investment seems com-
mon for species in which males can restrict their competitor's access 
to females (Lüpold et al., 2014). Pinnipeds illustrate this pattern in 
that species that form harems have smaller bacula than species that 
do not form harems (Fitzpatrick et al., 2012).

2  | MATERIAL S AND METHODS

2.1 | Bayesian measurement error model framework

To provide a framework for investigating the relationships between 
stage-specific survival rates and other life-history traits in future 
comparative studies, we present a phylogenetically controlled lin-
ear regression model in a Bayesian framework (similar to that pre-
sented by de Villemereuil et  al.,  2012) that can be written in the 
JAGS language (Plummer, 2003). We fit our model using the pack-
ages rjags (Plummer et al., 2016) and runjags for R (Denwood & 
Plummer, 2016). We use a simple linear model with standard length 
as a covariate to illustrate our general modeling framework. We 
explored model performance using simulated data and applied our 
model to real pinniped data. Our model incorporates one source of 
uncertainty in average survival and average standard body length 
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estimates (i.e., standard error). Our model also incorporates uncer-
tainty in the topology and branch lengths of the phylogenetic tree 
that represents the phylogeny of the species in our study. Unless 
noted otherwise, we used R Statistical Software version 3.5 (R Core 
Team, 2018) for all of our analyses.

Incorporating measurement error in comparative phylogenetic 
analyses is rare even though it can yield better parameter estimates 
and better detect phylogenetic signal (Ives et al., 2007). We adjusted 
the methodology presented by de Villemereuil et al. (2012) to include 
measurement error in survival rates when standard errors (SEs) are 
only reported on the probability scale (i.e., SE on the logit scale is 
often not reported). Specifically, we used the beta distribution pa-
rameterized for regression (Ferrari & Cribari-Neto, 2004) to assume 
the observed survival rate for a particular species was a beta random 
variable with mean equal to the latent (true) survival probability and 
standard deviation close to the estimated standard error for each 
population. That is, the observed data were used to help specify the 
one unknown parameter in the species-specific prior distribution for 
the observed survival rate, where the mean is assumed to be the 
true survival probability. The beta distribution has been used in a 
similar fashion to account for measurement error in imperfectly ob-
served plant cover data (See Irvine et al., 2019). We assumed classi-
cal additive Berkson measurement error (Berkson, 1950) for average 
standard body length and used a normal distribution for the general 
species-wide standard body length estimate, as it is reasonable to 
assume average body lengths will be approximately normally distrib-
uted. Specifically, the estimated/observed average standard body 
length for a species was assumed to be a normal random variable 
with mean equal to true standard body length for that species and 
standard deviation equal to the standard error that came from the 
empirical study estimating standard body length for that species.

To specify the model, let Yi be the true logit-transformed overall 
survival rate for species i (i = 1,2,…, ni, and ni is the number of species 
in the jth stage, j = yearling, sexual maturity, social maturity), Wi be 
the observed average standard body length, and Xi be the true aver-
age standard body length of species i. Then, the logit-linear regres-

sion model can be written as, Ynj × 1 ∼ ℳ𝒱𝒩nj × 1

(
� + �Xnj × 1 , �

2
�
Σk

)
 

where Σk is the nj × nj scaled variance–covariance matrix (or correla-
tion matrix) calculated from the kth (k = 1,2,…,100) phylogenetic tree 
as described by de Villemereuil et al. (2012), and a uniform categori-
cal prior was used to provide equal prior probability to each candi-
date correlation matrix Σk (associated with one of the 100 
phylogenetic trees). Weakly informative normal (0, σ2 = 4) priors 
were used on the partial regression coefficients (α and β) to con-
strain the estimates within a reasonable range on the logit scale (i.e., 
between −10 and 10), and a weakly informative gamma(1, 1) prior 
was used for the residual precision, � − 2

�
 to help reduce autocorrela-

tion in the MCMC (as described by de Villemereuil et al., 2012). The 
Berkson measurement error on the average body lengths was incor-
porated assuming Wi |Xi ∼ N(Xi, �

2
ui
) and that the true average spe-

cies lengths can be assumed to have come from a normal population 

distribution (i.e., assumes exchangeability), X ∼ ℳ𝒱𝒩nj

(
�x , �xΣk

)
 

with a uniform prior on the population mean between 100 and 700, 
�x ∼ Uniform(100, 700) correlation structure equal to that specified 
by the phylogenetic tree, Σk and an inverse gamma prior on the com-
mon variance � − 2

x
∼ gamma(1, 1). We selected the prior for the 

standard length based on the mean standard lengths observed 
across species; the shortest species in our dataset was 144 cm, and 
the longest species was 540 cm. As such, we deem standard body 
lengths shorter than 100 cm or longer than 700 cm to be impossible. 
We chose a uniform prior because this distribution made biological 
sense and would restrict the Markov Chain Monte Carlo (MCMC) 
sampling to only reasonable values for our specific variable of stan-
dard length. For future use of our model, researchers should select 
the distribution that best fits their covariates with regard to the 
question they are investigating. For our study, the joint distribution 
for the average standard body length might be improved by setting 
each species to its own prior with an appropriate distribution to 
match standard body lengths specific to that species and allowing 
each species to have its own posterior distribution that would better 
reflect the variation present in each species rather than including the 
variation across species. Measuring the phylogenetic influence of 
standard body length can help elucidate the potential of the stan-
dard body lengths of pinnipeds coming from a common distribution 
by ruling out the possibility if there is no phylogenetic influence on 
standard body length. The measurement error variance for the ith 
species (�2

ui
) must be provided as data (or could be estimated from 

the data if more than one observation per species is taken into ac-
count), and it was assumed to be equal to the squared standard error 
estimate for species i.

Measurement error information is often not available for the 
logit survival rates, as was the case for our real pinniped data. 
For our model, it was induced on the probability scale by letting 
pi = logit-1(Yi), and assuming Di|pi ~Beta(piϕi, pi(1–pi) ϕi). That is, we 
let pi be the true, unknown survival rate for species i and specify ϕi, 
a function of the typical beta distribution parameters (ϕi=αi + βi), 
where α and β were set to reflect a Beta(αi, βi) distribution with 
mean and standard deviation similar to the observed survival rates 
and standard errors for species i (see Appendix S1 Example code for 
details and model code).

We constructed phylogenetic trees for the species we included 
in our analyses and incorporated uncertainty in branch lengths (de 
Villemereuil et al., 2012) to account for any lack of independence in 
life-history traits from shared ancestry (Adams, 2008; Chamberlain 
et  al.,  2012; Felsenstein,  1985). Nucleotide sequences were re-
trieved from the NCBI nucleotide database using the rentrez pack-
age for R version 3.6 (R core Team, 2019). Up to, but no more than, 
the first 50 records for each of the 33 mitochondrial genes for each 
pinniped species in the model were retrieved. Species representa-
tion within each gene varied between 0 and 50 individual records 
(Table S1). Sequences were aligned with ClustalW using the msa 
package for R (Bodenhofer et al., 2015), and the most likely nucle-
otide substitution model for each gene was determined with the 
modelTest function of the phangorn package for R (Schliep, 2011). 
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Internal and terminal gaps were both represented with a dashed 
line. Phylogenetic species supertrees were generated using the 
*BEAST method (Heled & Drummond, 2010). Briefly, BEAUti ver-
sion 2.6.1 was used to create input files for all genes and species, 
and nucleotide substitution models were assigned for each gene 
according to the modelTest output. An estimated random local 
clock was set as the evolutionary rate prior for all genes, and an 
estimated Yule model was used as the tree prior. Species for which 
there were no representative sequences for a gene were simply 
entered in the alignment series as “N” ambiguities to satisfy the re-
quirements of the BEAST program. BEAST version 2.6.1 was used 
to create two MCMC chains sampled every 1 × 104 generations 
for 1.74  ×  108 generations. Convergence and chain diagnostics 
were visualized and assessed with the rwty package for R (Warren 
et al., 2017). The average standard deviation of split frequencies 
ended at 0.003 (95% CI  =  0.000, 0.020). The pseudo-estimated 
sample size (pseudo-ESS, Lanfear et al., 2016) of the tree topol-
ogy from the last 1,000 trees sampled from each chain was 176 
(95% CI = 138, 340). Using the vcv function of the ape package 
for R (Paradis & Schliep, 2019), variance–covariance matrices were 
generated from a random selection of 100 of the last 1,000 trees 
sampled from the posterior distribution of each of the two MCMC 
runs. Using at least 100 trees with associated uncertainty esti-
mates can provide regression parameter estimates for life-history 
trait models with greater precision and reduce the frequency of 
making a type I error (de Villemereuil et al., 2012).

For our example, we incorporated the phylogenetic information 
into our model by using a known variance–covariance structure for 
the survival probabilities and standard body length by assuming it is 
equal to the corresponding particular phylogenetic tree. To incorpo-
rate uncertainty in the tree, we allowed the sampler to explore mul-
tiple trees (each with equal prior probability of being the “true tree”; 
that is, we introduced a discrete uniform prior on Σk with probability 
1/100). We adjusted for phylogenetic influence of standard body 
length by incorporating Pagel's λ; a λ value of 0 indicates phyloge-
netic independence, and a λ value of 1 indicates strong phylogenetic 
dependence assuming Brownian motion (Freckleton et  al.,  2002; 
Pagel, 1999). We specified an uninformative uniform prior on λ, uni-
form(0, 1), because the whole range of lambda values is plausible 
within any comparative study.

2.2 | “Proof-of-concept” simulation study

We used an unbiased simulation framework to demonstrate the ability 
of our model to estimate relationships between covariates of interest 
and median survival probability with nominal coverage and negligible 
bias. For simplicity and computational feasibility, we assumed one con-
sensus tree for the 34 extant pinniped species (i.e., we did not allow 
for uncertainty in the phylogenetic structure of the tree in our simula-
tion). We wrote a data-generating function to produce datasets with 
a single male survival rate at the age of social maturity and centered 
and scaled standard body lengths for the 34 extant pinniped species. 

Survival rates and centered standard body lengths were assumed to be ob-
served with error. True standard lengths (X) were generated as multivariate 
normal random variables with mean of 0 and variance–covariance matrix 
calculated from shared phylogenies for each species multiplied by a com-
mon variance of 0.25 to reflect a scaled covariate with standard deviation 
0.5 (mathematically, Xn × 1 ∼ ℳ𝒱𝒩(0n × 1, �

2
x
Σn × n). Observed standard 

lengths (W|X) were generated conditional on the true values with normal 
measurement error variance of �2

ui
(mathematically, Wi |Xi ∼ N(Xi, �

2
ui
), i = 1, 

2, …, n). Measurement error variances were the same for all simulated 
datasets, and they were set by calculating 10% of |Xi| for each spe-
cies, reflecting more error than what was observed in the real data. 
We assumed a logit-linear relationship between true survival rate and 
standard body length such that the true logit-transformed survival 
rates were generated conditional on the true standard body lengths 
Y = logit

(
p34 × 1

)
= � + �X34 × 1 + �34 × 1;�34 × 1 ∼ ℳ𝒱𝒩(034 × 1, �

2
�
Σ34 × 34) ) . 

We chose values for the intercept and slope terms to represent a real-
istic hypothetical relationship between adult survival rate for male pin-
nipeds and standard body length. Specifically, we set �=0.2, implying 
a survival probability of about 0.55 for a male with average standard 
length, and a fixed coefficient for standard length (� = −1) to represent 
a relationship such that as standard body length increases, survival rate 
decreases in male pinnipeds. We assumed a residual standard error of 
�� = 0.55. We generated observed survival rates condition on the true 
survival rates using beta measurement error (Di |pi ∼ Beta(pi�i(1 − pi)), 
where the �parameter was set to induce a beta distribution centered at 
pi with variance close to the squared standard errors for survival rates. 
Standard errors for survival rates were assumed to be known and gen-
erated from a uniform(0.01, 0.03), which reflected similar standard er-
rors to those observed in the real data. A single random tree topology 
with 34 tips was generated with the rtree function of the ape package 
for R (Paradis & Schliep, 2019). We wrote a simulation wrapper to gen-
erate a dataset according to the process described above and then fit a 
Bayesian model described in the previous section to the simulated data 
with two slight modifications. As described above, we did not allow 
for uncertainty in the phylogenetic relatedness of the 34 species, and 
because the latent Xs were centered and scaled, we assumed a known 
prior mean of 0 and variance of 0.25.

Tuning revealed adequate convergence of the MCMC when 3 
chains were run with the settings adapt = 5,000, burn-in = 15,000, 
thin = 4, and sample = 35,000. We ran 100 iterations of this simu-
lation, and for each parameter, we computed the posterior mean, 
95% credible interval, number of effective samples, and Gelman–
Rubin R̂diagnostic. We inspected MCMC convergence using the 
coda package for R (Plummer et  al.,  2006) and ggmcmc package 
for R (Fernández-i-Marín, 2016) to observe Geweke convergence 
diagnostics (Geweke, 1991), trace plots, and calculate R̂(Gelman & 
Rubin, 1992) for each monitored parameter. To assess the goodness 
of fit for our model, we created residual plots and plots to compare 
the observed data values and values predicted from the models 
(Conn et  al.,  2018). Additional goodness-of-fit testing can be per-
formed following the guidelines by de Villemereuil et al. (2012). We 
evaluated the 95% credible interval coverage across the 100 itera-
tions (see Appendix for additional details).
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Future use of our modeling framework could include multiple ob-
servations per species and additional covariates (e.g., mating system 
or baculum length). To incorporate repeated measures of survival 
rates for the same species and estimate measurement error from the 
data, a hierarchical structure at the species level can be added to the 
model as in Lemaître et al. (2020). However, this approach assumes 
that all survival estimates for a particular species are exchangeable 
(reasonably modeled as having come from one common distribu-
tion), which will require assessment. Additionally, as different stud-
ies might have used different methods to estimate survival rates, it is 
important to consider the potential consequences of including mul-
tiple observations per species for making inferences.

2.3 | Pinniped data collection

Applying consistent selection criteria for comparative studies limits 
the pool of data for comparative studies and, thus, the scope of in-
ference. To emphasize the importance of defining inclusion criteria 
aimed to include life-history trait estimates that represent each pin-
niped species as a whole, we outline our selection criteria in the next 
section.

To find peer-reviewed published studies (published up through 
June 2019) that provided age-specific survival rate data, we 
searched the Google Scholar database using the common and Latin 
names for each pinniped species and any and all combinations of 
the following search terms—“survival”, “survival rate”, “Cormack-
Jolly-Seber”, “mark-recapture”, “capture-recapture”, and “mortal-
ity.” We used Google Scholar to maximize our opportunity to find 
usable studies, as it tends to return more results than other data-
bases, such as Web of Science. We included survival data from all 
pinniped species for which we found reported survival or mortal-
ity data from nonlethal methods for at least one of the following 
stages: yearling (i.e., the survival interval between 1  year of age 
and 2 years of age), age at sexual maturity, and age at social matu-
rity (Table 1). Studies varied in duration, models used to estimate 
survival (i.e., model type and its included covariates), methods of 
marking individuals, and sample size. However, these variations in 
survival rate estimation methods were unavoidable with available 
data, and we expect that these differences only accounted for 
minor changes in survival rate estimates. For studies using tagging 
techniques, many accounted for possible tag loss, but not all stud-
ies reported this adjustment to survival rate estimates. We limited 
our data to only studies that also included an uncertainty estimate 
associated with the estimated age- and sex-specific survival rates 
(e.g., standard error or a confidence interval) to allow us to reflect 
this source of uncertainty in our analysis.

For each species, we also searched the literature for species-
specific information on body size, age at sexual maturity and at social 
maturity, type of male–male contest, baculum length, and specific 
type of mating system (Table  1). For most species, data for each 
of the life-history traits were compiled from different populations 
(i.e., from different studies), but data for multiple life-history traits 

from the same population (study) were used whenever possible. We 
summarized quantitative life-history traits using averages and by sex 
when appropriate, including an associated uncertainty measurement 
(e.g., a standard error for an average) when possible.

We categorized our data collection into two main tiers of age-
specific annual survival rates based on available information for 
each species. The first tier, which includes those species for which 
we have the most complete data, included age-specific survival with 
associated measurement error from all ages throughout the known 
life span for each species from a single population. Some studies 
grouped multiple ages (e.g., 1 year of age, 2–3 years of age, 3–7 years 
of age), and we used these age groupings as our second tier of sex- 
and age-specific data collection. Depending on available survival 
data for each age, species were included in the analyses of survival 
rates for the following ages: yearling, age at sexual maturity, and/or 
age at social maturity. When multiple papers reported survival rates 
for the same species, we selected papers that presented age-specific 
results with the smallest age ranges (e.g., a paper with survival rate 
data for “2 to 3 and 4 to 7 years of age” was used instead one with 
survival rate data for “adults ≥3 years of age”). Given that survival 
rate estimates for some species included in our analyses were not 
specific to a single age but were estimated from an age range that in-
cluded either the age at sexual maturity or the age at social maturity 
(tier 2 species), we assume that the survival rate estimated for the 
age range that includes sexual or social maturity is representative 
of the single age at sexual or social maturity. If multiple papers pre-
sented age-specific survival rate data for each age, we selected the 
study that provided the most complete methods (e.g., accounting for 
individual heterogeneity to represent variation in unmodeled traits 
that could relate to survival rates). We used this method to maximize 
the comparability and generalizability of empirical data for our com-
parative analysis. For one of the second-tier species (Arctocephalus 
tropicalis, age at sexual maturity), the authors reported that there 
was no significant difference in annual survival rates between males 
and females and presented survival rates from male and female 
grouped data.

2.4 | Example with real pinniped data

We applied our model to available male pinniped data for survival 
rate at the age of social maturity and standard body length (n = 12). 
We ran an MCMC with 3 chains, a burn-in of 10,000 iterations, and 
retained every 5th sample to reduce autocorrelation in the chains for 
a final sample of 300,000 MCMC iterations used to fit the model. 
We present 90% credible intervals for all analyses we conducted 
(90% CrI). When describing reported data from empirical studies, 
we present 95% confidence/credible intervals for survival rates pro-
vided by the empirical studies, as they provided 95% confidence/
credible intervals but not enough essential information to transform 
these values to 90% confidence/credible intervals. As our model ap-
plied to real data results in more noise than signal (direct result of 
limited data availability/quality), we also present graphical analyses. 
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TA B L E  2   Summary of results from 100 iterations through unbiased simulation study of our modeling approach

Parameter
Average estimate (data-
generating values)

Average 95% CrI 
width Capture rate

Average effective 
sample size Average R̂

Average 
bias

α 0.22 (0.2) 0.80 1.00 4,871 1.001 0.023

β −0.99 (−1) 0.99 0.97 2,212 1.002 0.011

σε 0.50 (0.5) 0.53 0.94 817.2 1.004 −0.002

Note: The capture rate for each parameter represents the percentage of simulated datasets that, after fitting the model, resulted in 95% posterior 
intervals including the true data-generating value used for the parameter.

F I G U R E  1  Residuals by species for simulated data. Residuals were calculated from subtracting the predicted log-odds of survival at the age of 
social maturity from the observed log-odds of survival at the age of social maturity (generated from our simulated datasets). The predicted log-
odds of survival values were simulated from the posterior distribution of the Bayesian phylogenetically controlled generalized least squares model
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Graphical analyses can be useful for discerning patterns and possible 
relationships between life-history traits but should not be used for 
quantitative prediction (Roff, 1992). Although graphical analyses can 
be performed to evaluate the optimal combination of trait values to 
maximize fitness (Real & Ellner, 1992; Roff, 1992), we simply employ 
a visualization approach.

3  | RESULTS

3.1 | Simulation study

The 95% credible interval coverage across each of the model pa-
rameters demonstrated the ability of the model to capture data-
generating parameters with nominal coverage. The percentage of 
the simulated data means that were within the 95% credible inter-
vals of the posterior predictive distribution ranged from 94% for �� 
to 100% for α (Table 2).

3.2 | Example with standard body length data

Visual inspection of model diagnostics revealed abundant mixing 
of chains and all R̂ values lower than 1.1, which indicated model 
convergence (Gelman, 2013). Our posterior predictive checks dem-
onstrated the lack of statistical power with small sample sizes in 
that uncertainty associated with point estimates was large, but 
our goodness-of-fit testing did not reveal any obvious issues using 
simulated data (Figures 1 and 2). Given the complexity of the model 
and possible low sample size with future applications, model con-
vergence can be slow (specifically, autocorrelation in chains can be 
high). We recommend careful selection of priors and attention to 
possible effects of prior when sample sizes are moderate. From the 
results of applying our model to real data, the estimated change 
in the log-odds of survival for one-unit increase in standard body 
length was −0.82 (90% CrI = −2.07, 0.49). A negative value would 
indicate that larger body sizes are related to lower survival rates, 
but a credible interval overlapping zero indicates that an increase in 

F I G U R E  2   Posterior predictive check 
comparing model estimates and simulated 
data. The relationship between standard 
body length and the log-odds of survival 
for male pinnipeds at the age of social 
maturity is shown for the observed data 
generated from our simulated datasets 
(purple diamonds) and simulated data 
from the Bayesian phylogenetically 
controlled generalized least squares 
posterior distribution (orange regression 
lines)
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body size could result in higher or lower survival rates and provides 
further evidence of the necessity to increase the number of species 
with male survival rate data. Additionally, we observed large uncer-
tainty in the posterior for λ (mean = 0.92, 90% CrI = 0.80, 0.99), 
which is to be expected with a sample size of fewer than 20 species 
(Münkemüller et al., 2013) and can influence the relationship be-
tween covariates analyzed and the response variable (Chamberlain 
et al., 2012).

3.3 | Summary of survival rate data for 
male pinnipeds

We were able to compile survival data for 13 species (Table 1) and 
additional life-history trait data for 23 species (Table 1). Sequence 
data availability also varied across species, as some were heav-
ily represented, but 8 extant pinniped species had no sequence 

information available from the NCBI nucleotide database. We found 
complete age-specific male survival data for five species (first tier, 
see Methods) and data for an additional eight species for which 
some ages were combined (second tier). Similar to many other life-
history traits, survival rates of male pinnipeds vary substantially 
across species. Of the five species with full age-specific male sur-
vival estimates, peak survival rates ranged from 0.72 (95% CI = 0.45, 
0.95, Condit et al., 2014) for northern elephant seals to 0.94 (95% 
CrI  =  0.92, 0.96, Brusa et  al.,  2020) for Weddell seals (Figure  3). 
However, the age at which peak survival rates were reached varied 
considerably among species, and uncertainty associated with age-
specific estimates also varied among species. Although we did not 
have a strong enough signal in our limited subset of reliable data 
for pinniped species to assess a relationship using our modeling ap-
proach, we see a weak log-linear relationship between mating sys-
tem and survival rate in male pinnipeds in our data visualizations/
graphical analyses (Figures  4).

F I G U R E  3   Age-specific male survival 
rates for 5 pinniped species. Error bars 
indicate either 95% confidence intervals 
or 95% credible intervals. Data are 
displayed according to species (symbols) 
and mating systems of extreme, moderate, 
and mild polygyny (colors)
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4  | DISCUSSION

Comparative studies are a useful method for understand-
ing life-history trait evolution (e.g., Dines et  al.,  2015; Festa-
Bianchet,  2012; Fitzpatrick et  al.,  2012; Lemaître et  al.,  2020; 
Tidière et al., 2015). However, robust comparative analyses pre-
sent several challenges, such as incorporating uncertainty. We 
have built upon previous work from de Villemereuil et al.  (2012) 
and Ferrari and Cribari-Neto (2004) to present a versatile Bayesian 
model that can accommodate a response variable measured on the 
probability scale and can incorporate measurement error for re-
sponse variables, covariates, and phylogenetic tree topologies and 
branch lengths. Although comparative analyses provide an op-
portunity to make higher-order conclusions than afforded by the 
individual empirical studies upon which they are based (Arnqvist & 
Wooster, 1995), they require assumptions that can be unrealistic. 
For example, it can be difficult to acquire comparable data for mul-
tiple characteristics of a set of species that represent a taxonomic 
group (Freckleton, 2009; Gerstner et  al.,  2017). Additionally, fo-
cusing on a single taxonomic group can improve the comparability 
of data for a comparative analysis (Lanyon, 1994), but narrowing 

the scope of inference to a single monophyletic group can reduce 
sample size. We recommend the careful consideration of inclu-
sion criteria for life-history trait data in future comparative stud-
ies even though it can limit sample sizes. From our exploration of 
life-history traits in male pinnipeds, mating system appears to be 
related to interspecific variation in annual survival rates of male 
pinnipeds for each stage. However, additional high-quality sur-
vival rate data are necessary for further exploration of this pos-
sible connection. As age- and stage-specific survival rates of male 
pinnipeds varied widely across species, pinnipeds should serve as 
a useful taxonomic group for investigating broad questions related 
to life-history trait trade-offs.

We posit that the most critical step of a comparative study is 
selecting which empirical data to include in the analysis. As demon-
strated here with survival rates of male pinnipeds, the use of strict 
selection criteria can severely limit sample size. However, one must 
carefully consider the consequences of including additional data. For 
example, survival rate data are often analyzed differently for adult 
male and female pinnipeds. Because it is often obvious to identify 
which females have bred in a given year (i.e., they are found with a 
pup), female survival rates are sometimes presented as subgroups 

F I G U R E  4   Empirical relationship 
between mating system, which is defined 
using the guidelines of Le Boeuf (1991), 
and interspecific variation in survival rates 
for pinnipeds at 2 years of age (a), age 
at sexual maturity (b), and age at social 
maturity (c). Survival rates are on the logit 
scale

(a)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Lo
g 

od
ds

 o
f s

ur
vi

va
l

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Extreme Moderate Mild Monogamy

(b)

(c)



7994  |     BRUSA et al.

consisting of prebreeders, breeders, or nonbreeders (e.g., Beauplet 
et al., 2006; Paterson et al., 2018). Survival rate data reported for 
subgroups would not be comparable to data that included an unbi-
ased sampling of the population. For this reason, data about males, 
rather than females, might be more useful for comparative analyses.

Sexual selection is a common focus for comparative studies 
(e.g., Dines et al., 2015; Fitzpatrick et al., 2012; Lüpold et al., 2014; 
Promislow,  1992), but only a few studies have investigated the 
relationship between survival rates and sexually selected traits 
(Festa-Bianchet,  2012; Kemp,  2006). Strong competition for mat-
ing opportunities often constrains male life histories, especially in 
species with polygynous mating systems (Festa-Bianchet,  2012; 
Mysterud et al., 2003). We found that pinniped species exhibiting 
extreme polygyny tended to have the lowest adult survival rates. 
For nearly all species evaluated within all of the literature we con-
sidered, the estimated survival rate at the age of sexual (n = 7) and 
social maturity (n = 8) exceeded the estimated survival rate for year-
lings. However, yearlings had higher survival rate estimates than 
adults reaching sexual or social maturity in southern elephant seals, 
a species that engages in extreme polygyny. Pistorius et al.,  (1999) 
suggested that the relatively low adult survival rate estimate for 
male southern elephant seals might be the result of stress from 
male–male contests and the inability of males to meet increased nu-
tritional demands coincident with the breeding season and growth 
spurts following sexual maturity.

To fully address broadscale life-history trait evolution questions, 
robust empirical data are necessary. This study specifically under-
scores the paucity of data on male survival rates for many pinni-
ped species and the importance of high-quality and long-term data 
collection for survival rates. High-quality survival data for many 
long-lived vertebrate species are absent because many logistical 
and temporal challenges often accompany the collection of survival 
data for these species (Gaillard et al., 1993; Hiby & Mullen, 1980; 
Lebreton et  al.,  1992, 1993). Wickens and York (1997) initially 
brought this issue to attention for pinniped species, specifically for 
fur seals, and recent studies focusing on survival rates in pinnipeds 
have emerged. To increase the abundance of high-quality data for 
comparative studies of survival rates in pinniped species, data from 
live animals, such as mark–recapture or telemetry methods, are nec-
essary (Loison et al., 1999). There is high potential for increasing the 
number of demographic studies on additional pinniped species be-
cause their amphibious behavior, annual reproductive pulse found in 
most species, and predictable aggregation patterns facilitate mark–
recapture techniques.

Although data deficiencies prevent a full analysis of the relation-
ship between survival rates and other life-history traits in male pin-
nipeds, our model is flexible and broadly applicable for other taxa. 
As multiple life-history traits are measured or summarized on the 
probability scale (e.g., survival, reproduction rates), but few compar-
ative studies have investigated such life-history traits, we demon-
strate a widely applicable model for such analyses. Further, we have 
identified a possible link between mating system and survival rate 
in male pinnipeds that warrants further exploration. We exemplify 

the importance and relative ease of incorporating uncertainty into a 
comparative analysis using a Bayesian model when empirical data are 
presented with estimates of uncertainty, and the model can be easily 
adjusted to analyze relationships between life-history traits in other 
species groups. Our comparative study illustrates the importance of 
high-quality survival estimates, and advances in quantitative popu-
lation biology have provided avenues for acquiring these estimates 
(Clutton-Brock & Sheldon, 2010). We provide a foundation for un-
derstanding the complexities of the relationships between survival 
rates and other life-history traits in male pinnipeds. Our initial explo-
ration allowed us to make novel predictions about life-history strat-
egies in male pinnipeds, and, to provide more concrete answers to 
our research questions posed in the Introduction, we plan to follow 
up with a more formal analysis once data for additional species are 
available. For taxa that are not restricted by a dearth of data, we 
provide a basic model that can be extended as a flexible way forward 
including an example of its use with simulated data and our limited 
data for male pinnipeds.
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