
Just as surface waves exist along the sharp density 
interface at the boundary between the ocean and 
atmosphere, internal waves are often supported by 
smooth, vertical gradients in density far beneath the 
ocean’s surface. Internal waves often become unstable 
and break, generating turbulence. A single patch of 
ocean turbulence from an unstable internal wave dis-
sipates energy, alters the stratification by mixing water 
of different densities and, thereby, plays an important 
dynamical role in the local environment. Close to the 
surface and the seafloor, instabilities that are unrelated 
to internal waves often dominate the production of 
turbulence1,2. However, away from surface and bottom 
boundaries, internal waves are the primary cause of 
turbulent mixing.

In aggregate, such small-​scale (centimetre to metre) 
mixing from internal waves is essential for sustaining the 
global overturning circulation3–6 and closing the global 
ocean energy budget7–9. Internal wave-​driven mixing is 
also important for transporting tracers such as nutrients, 
greenhouse gases and carbon10–14 around the planet, thus 
shaping the biological landscape of the global ocean14. 
Mixing from internal waves varies substantially in both 
space and time throughout the ocean. Its distribution is 
set by the diverse processes that generate internal waves 
(including tides, winds or larger-​scale geostrophic ocean 
currents), alter their propagation and facilitate their dis-
sipation. The complexity of the internal wave life cycle 
leading to turbulent mixing has inspired many avenues 
of inquiry.

Early work focused on understanding the local 
physics of internal waves15–18 and hypothesized that the 
mixing caused by these waves has global implications19. 
More recent efforts to study internal wave-​driven mix-
ing have advanced understanding of the local physics 
and linked internal wave processes that induce mix-
ing and are disparate in space and time to a holistic 
view of the entire ocean system. Recent reviews have 
focused on specific areas of rapid development, includ-
ing parameterization of internal wave-​driven mixing in 
climate models20 and internal waves near the inertial 
frequency21.

In this Review, we adopt a wider perspective by tar-
geting internal wave physical processes and how they 
contribute to setting the complex spatio-​temporal struc-
ture of mixing in the ocean. After describing the physics 
of mixing due to breaking internal waves, we examine 
internal wave energy pathways categorized according to 
the waves’ energy source: tides, winds and geostrophic 
currents. Subsequently, we outline implications of inter-
nal wave-​driven mixing for global ocean circulation and 
climate, emphasizing knowledge frontiers.

Physics of mixing from internal waves
Internal waves are ubiquitous in the stratified ocean 
interior. Flow along the uneven seafloor, perturbations 
at the base of the mixed layer or fluctuating ocean cur-
rents can all generate internal waves (Fig. 1). The signa-
ture of the generation mechanism is imprinted on the 
internal waves’ spatial and temporal characteristics, 
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leading to internal waves that have horizontal scales 
of order 0.1–100 km and vertical scales that range 
from metres to scales comparable to the ocean depth. 
The structure and behaviour of internal waves is often 
modelled using orthogonal modes22; waves with vertical 
scales comparable to the ocean depth have small mode 
numbers (low-​mode internal waves), whereas those 
with smaller vertical scales have large mode numbers 
(high-​mode internal waves)22. High-​mode internal 
waves can often occur in packets with vertical extents 
of hundreds of metres. The horizontal group velocity 
(that is, the velocity of energy propagation) is inversely 
proportional to mode number, such that low-​mode wave 
energy travels faster than high-​mode energy. The fre-
quencies of internal waves are roughly bounded on the 
high end by the buoyancy frequency (N) and on the low 
side by the local Coriolis frequency (that is, the inertial 
frequency, f). A single generation event generally pro-
duces a spectrum of waves with a range of spatial scales  
and frequencies.

Once the internal waves are generated, they prop-
agate throughout the ocean, interacting with other 
waves, currents and topography in ways that lead to a 
transfer of energy across scales and a loss of coherence 
of the initial waves. Far from boundaries, wave–wave 
interactions are a major process of energy transfer23–25. 
These wave–wave interactions involve a resonance or 
near-​resonance between three or more internal waves, 
causing an exchange of energy between waves of differ-
ent wavelengths and frequencies, and shifting energy to 
waves of smaller spatio-​temporal scales. A particularly 
efficient class of wave–wave interactions occurs when 
high-​mode internal waves grow owing to energy trans-
fer with a low-​mode wave of approximately double their 
frequency, through a process known as parametric sub-
harmonic instability26–28. Additionally, as internal waves 
propagate through variable background velocity and 
stratification, their length scales and group velocity can 
change. For example, substantial variability in the back-
ground field can induce a rapid decrease in the vertical 
scale of the wave, referred to as a critical layer29–31. Close 
to the seafloor, the dominant dynamics change and scat-
tering of internal waves off rough topographic features 
or continental slopes becomes the most important class 
of processes that reduces the spatial scale of the internal 
waves32–36.

Ultimately, internal waves cascade to small enough 
scales to trigger a mixture of shear and convective insta-
bilities, turbulently dissipating wave energy through  
the internal wave equivalent of breaking37. For exam-
ple, shear instabilities can extract kinetic energy from 
an internal wave, inducing turbulence (Fig.  2a,b). 
Alternatively, an internal wave can generate turbu-
lence through convective instability that occurs when 
denser water at the wave crest moves over lighter water38, 
extracting potential energy from the wave (Fig. 2c,d). 
Turbulence generated by internal waves in the open 
ocean is typically patchy and intermittent, exhibit-
ing spatial scales of order 0.1–100 m and timescales 
of minutes to hours39,40. Where and when an internal 
wave dissipates energy depends strongly on the mode 
number of the wave, as the mode sets the vertical 
scale, group velocity and susceptibility to wave–wave  
interactions41,42.

Breaking internal waves create turbulent kinetic 
energy, which is then either lost to viscous dissipation (at 
a rate ε) or to work against the ocean’s density gradients 
(expressed as a buoyancy flux, Jb). The two are related by 
the flux coefficient Γ = Jb/ε (refs43,44). The buoyancy flux 
can be expressed as a down-​gradient mixing of density at 
a rate given by a diapycnal diffusivity K, so that Jb = KN2, or

K ε
N

= Γ , (1)2

where K is the variable ultimately needed to model ver-
tical mixing of oceanic tracers. Realistic representation 
of internal wave-​driven mixing thus requires knowl-
edge of the turbulent kinetic energy dissipation rate ε and 
of the flux coefficient Γ43. In open-​ocean internal wave 
environments, the flux coefficient is often close to 0.2; 
however, a number of studies indicate that Γ can vary 
throughout the ocean44.

There are two primary observational approaches 
to estimate the intensity of turbulence associated with 
internal waves: direct and indirect methods. Spectra 
of oceanic shear on centimetre scales measured with 
microstructure probes can be compared directly to 
theoretical turbulence spectra and used to calculate ε 
(refs45,46). Indirect methods use finescale measurements  
(on 1–10 m scales) that are analogously compared to  
internal wave spectra via the adoption of more assump-
tions, in order to provide the turbulent kinetic energy 
dissipation rate expected from an observed internal wave 
field47–50. In the open-​ocean thermocline, finescale meas-
urements generally agree with microstructure measure-
ments within a factor of 2–3 (refs49,51,52) when compared 
on equivalent timescales and length scales. Given that 
dissipation rates vary over many orders of magnitude, 
this consistency is considered a strong agreement.

Global internal wave energy budget
Knowledge of the global wave energy budget (Fig. 3), 
including the pathways to and from the reservoir of 
internal wave energy, is key to fully characterizing the 
impact of internal wave-​driven mixing on global-​scale 
ocean dynamics. Energy from three major sources 
contributes to internal waves: tides, surface winds 

Key points

•	Tides, winds and geographic currents can generate oceanic internal waves and, as a 
result, are major sources of energy for the internal wave field.

•	Interactions between internal waves and topography, currents or other internal waves 
can transfer energy to smaller spatio-​temporal scales. How these processes combine 
to yield the observed internal wave environment, however, is not well understood.

•	Internal waves can eventually become unstable, causing them to turbulently dissipate 
energy and mix water across density classes, thereby altering ocean dynamics.

•	The location and timing of internal wave generation, energy transfer to smaller scales 
and subsequent turbulent dissipation conspire to form the continually evolving global 
distribution of mixing from internal waves.

•	The global climate is shaped by the magnitude and geography of internal wave 
mixing, including the global oceanic overturning circulation, water property 
distribution and air–sea interactions.

Orthogonal modes
In the context of internal 
waves, orthogonal modes are a 
theoretical framework used to 
describe the vertical structure 
of internal waves, where 
low-​mode internal waves  
have larger vertical scales and 
high-​mode internal waves have 
smaller vertical scales.

Buoyancy frequency
(N ).The oscillation frequency  
of a vertically displaced water 
parcel, which scales with the 
local vertical stratification 
gradient.

Coriolis frequency
(f ). Alternatively referred  
to as the interial frequency.  
The oscillation frequency of a 
horizontally displaced water 
parcel influenced solely by the 
Earth’s rotation and defined by 
2Ω sinϕ, where Ω is the angular 
velocity of the Earth and ϕ is 
the latitude.

Diapycnal diffusivity
(K ). Diffusivity across density 
surfaces, with unit m2 s−1.

Turbulent kinetic enregy 
dissipation rate ε
Rate of energy dissipation due 
to viscosity, with units W kg−1.
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associated with synoptic and mesoscale atmospheric 
disturbances, and geostrophic currents. Tidal flow 
moving water over uneven seafloor topography adds 
about 1 TW of power to the internal wave field53,54. 
A resonant response in the surface mixed layer to 
time-​varying wind stress is estimated to provide an 
additional 0.3–1.4 TW, part of which fuels the internal 
wave field55–59. Finally, geostrophic currents flowing 
over small-​scale topographic features or losing geo-
strophic balance transfer energy to internal waves at 
estimated global rates of 0.15–0.75 TW (refs60–64) and 
0.1–0.36 TW (refs8,65,66), respectively.

Once internal waves are generated, they enter the 
global reservoir of internal wave energy (Fig. 3). This 
reservoir has a remarkably consistent distribution of 
wavenumbers and frequencies, presumably owing to 
the prevalence of wave–wave interactions in distribut-
ing energy across length scales and timescales67, which 
is modelled by the empirically derived Garrett–Munk 
spectrum68,69. Observations reveal a more complex inter-
nal wave spectrum with considerable spatio-​temporal 
variability33,70. The spectrum includes peaks at the tidal 
and inertial frequencies that are respectively attributed 
to generation by tides and time-​variable winds, in addi-
tion to pronounced deviations near topography71 and in 
shallow water72,73. However, a complete understanding 
of what sets the energy level and shape of the internal 
wave spectrum, in particular the ‘continuum’ of the  
spectrum where there are no peaks, is still an area of 
active research.

Globally, the energy in the internal wave field is either 
lost through turbulent dissipation or transferred to the 

background ocean currents. Dissipation can occur close 
to the waves’ generation sites or up to thousands of kilo-
metres away, making tracking energy through the system 
extremely challenging. Along the way, the internal waves 
are thought to exchange energy with the background cur-
rent field, adding to the difficulty of closing the global 
internal wave energy budget and comprehensively  
mapping internal wave-​driven mixing.

Tides
Energy from the tides is a major contributor to the 
internal wave field energy budget74, converting about 
1 TW of energy to open-​ocean internal tides53,54. Once 
internal waves at the tidal frequencies and their harmon-
ics are generated, they travel through the ocean differ-
ently, depending on their spatial scale; generally, the 
high-​mode waves dissipate in the near-​field (close to 
the generation site) and low-​mode waves dissipate in the 
far-​field. The many pathways of internal tides from gen-
eration to dissipation yield a complex global geography 
of internal tide dissipation75–78 (Fig. 4a).

Generation. Gravitational attraction of the Moon and 
the Sun generates the ocean’s barotropic tides74, which 
uniformly span the full water column. Barotropic tidal 
currents dissipate about two-​thirds of their energy 
through friction and shear-​driven mixing in shelf seas79 
and breaking coastal lee waves80,81. The remainder is 
dissipated through the generation of internal (baro-
clinic) tides, resulting from the periodic displacement 
of density surfaces by barotropic tidal currents pushing 
stratified fluid along a sloping seafloor18,74.
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Fig. 1 | the primary internal wave mechanisms leading to ocean mixing. Tides flow over many forms of topography, 
from abyssal hills to tall, steep ridges, generating both high-​mode and low-​mode internal waves. Time-​varying winds cause 
near-​inertial oscillations in the mixed layer, radiating high-​mode and low-​mode internal waves. Lee waves are generated 
when deep currents impinge on topographic features. Time-​varying surface currents can also generate internal waves. 
Both high and low modes propagate, undergo wave–wave interactions and scatter off topographic features, eventually 
leading to dissipation. Low modes generated in the open ocean can also propagate and dissipate on continental slopes 
and shelves. Figure adapted from ref.20, MacKinnon, J. A. et al. Climate process team on internal wave-​driven ocean mixing. 
Bull. Am. Meteorol. Soc. 98, 2429–2454 (2017) © American Meteorological Society. Used with permission.
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The character of the topography plays a primary role 
in setting the dominant modes of the internal tide: a tall 
and steep slope (such as a continental slope) tends to gen-
erate low-​mode internal tides, whereas a flatter but corru-
gated bottom (such as an abyssal ridge flank) favours high 
modes82,83 (Fig. 4b). A small number of sharp and steep 
topographic features contribute the majority of the power 
going into the first few modes84,85. Internal tides with the 
smallest scales, corresponding to modes ≳50, are mostly 
generated by ‘abyssal hills’ (refs86,87) that have typical 
widths of several kilometres and heights of a few hundred 
metres88. Generation by abyssal hills has been estimated 
to be about 0.1 TW globally87,89, roughly 10% of the total 
conversion rate from barotropic to baroclinic tides.

Near-​field mixing. After internal tides are generated, a 
portion of the energy is dissipated in the near-​field, close 
to the rough topographic features of origin86,90,91. In par-
ticular, direct nonlinear breaking and wave–wave inter-
actions may both be responsible for the rapid energy 
transfer from high-​mode internal tides to turbulence 
in close proximity to topography92–94 and in the upper 
water column75,89,93. Evidence for this near-​field mixing 
due to internal waves includes 25 years of microstructure 
observations, which show that the turbulent dissipation 
rate is elevated multiple kilometres above or away from 
irregular topography, and that it often increases with 
greater proximity to that topography77,90. Additionally, 
observations and model studies suggest that abyssal hill 
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roughness underpins the bulk of the bottom-​enhanced 
turbulence occurring over ridge flanks of the Pacific, 
Atlantic and Indian basins89,93,95.

The geography of near-​field mixing is challenging 
to model, owing to the numerous factors influencing 
the process, including the local environment and the 
modal content of the internal tide. Consequently, in situ 
observations and theory indicate that the fraction of 
energy dissipated in the near-​field ranges between 
0.1 and 1 (refs77,83,89,93,96,97). The power input to modes 
≥4 compares well with depth-​integrated dissipation rates 
measured with microstructure probes, suggesting that 
modes ≥4 dissipate mostly near their generation site83. 
These high modes represent an estimated 606 GW, or 
49% of the total generation at seafloor depths exceeding 
500 m (ref.83). Parameterizations of the full water column 
vertical distribution of near-​field dissipation89,93 are often 
based on observations from the eastern Brazil Basin. 
As the accuracy of these parameterizations on a global 
scale is largely unknown, observations across different 
regimes of high-​mode internal tide generation95,98 will 
help to develop and improve their confidence.

Propagation and far-​field mixing. The distance that 
low-​mode internal tides travel before dissipating their 
energy — often in the far-​field — depends on the mode 
number of the wave and the oceanic environment along 
the wave’s path. First-​mode internal tides propagating 
up to several thousands of kilometres can be detected 
using acoustic tomography and satellite altimetry99,100, 
and are dominated by distinct beams 100–300 km 
wide85,101 (Fig. 4c). By contrast, identified mode 2 beams 
are more numerous but weaker, narrower and an order 

of magnitude shorter102. Mode 1 accounts for the bulk of 
internal wave horizontal energy transport103, though 
modes 2–5 also contribute substantially104,105; however, 
the exact fraction of energy transport in each mode 
depends on a number of environmental factors.

First, as internal waves propagate, variable bathyme-
try plays an important role in the transfer of low-​mode 
energy to smaller scales, channelling the energy closer 
to the scale at which dissipation occurs78,106,107. When 
a large-​scale wave bounces off short-​scale seafloor 
irregularities, part of its energy is scattered into higher 
modes32,36, leading to bottom-​intensified turbulence and 
dissipation. Larger-​scale seamounts or ridges can also 
cause scattering to higher modes, as well as refraction 
of incident beams33,108,109. Depending on the local top-
ographic slope, beams that ultimately reach continen-
tal margins can reflect backwards, dissipate or shoal. 
Backwards reflection dominates if the continental 
slope is significantly steeper than the wave110,111. If the 
topographic slope is approximately equal to the wave 
slope, energy is transferred to very high modes that 
break into small-​scale turbulence along the slope34,35,112. 
Gentler continental slopes allow the internal tide to 
progress into shallow waters; however, as energy con-
centrates in the vertical direction, shear increases and 
direct breaking of the wave is frequent, particularly at 
the shelf break113.

In addition to interactions with bathymetry, wave–wave  
interactions can also be significant in attenuating the 
mode 1 internal tides, and are likely dominant in draining 
energy from modes ≥2 (refs27,42,78,114). The energy transfer 
is most efficient equatorwards of the latitude at which the 
tidal frequency is twice the inertial frequency — that is,  
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equatorwards of 29° for the dominant semidiurnal tidal 
constituent28. Resonant triads transfer energy to smaller 
vertical wavelengths and, ultimately, to dissipation 
focused in the stratified upper ocean115–117.

Finally, the propagation and modal content of inter-
nal tides can be altered by interactions with the shear, 
strain and varying stratification present in mesoscale 
eddies, equatorial jets and other background ocean 
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currents118–123. The interactions can potentially transfer 
energy to higher modes leading to dissipation or trans-
fer energy between low-​mode internal tides and the 
background ocean currents. However, additional obser-
vational studies of low-​mode internal tide energy loss 
via interactions with background currents are needed, 
since the significance of such interactions for internal 
tide-​driven mixing is not yet well known.

Global estimates of the distribution of mode 1 inter-
nal tide energy dissipation suggest that large-​scale top-
ographic obstacles cause the bulk of that dissipation78,106. 
Using Lagrangian tracking of energy beams and 
parameterized energy sinks, it has been estimated 
that wave–wave interactions explain about 25% of 
mode 1 dissipation but 65–80% of the overall modes 
1–5 dissipation78. Hence, despite major topographic 
features hosting the bulk of mode 1 dissipation, much 
of the observed open-​ocean internal tide dissipation 
might originate from the far-​field dissipation of modes 
2–5. Scattering by abyssal hills could be responsible for 
about 10% of the dissipation of the first five modes78. 
However, additional constraints on attenuation rates 
of low-​mode internal tides by wave–wave interactions, 
as well as improved understanding of interactions with 
rough topography and background currents, are called 
for to narrow down uncertainties in these exploratory 
estimates.

Wind
Time-​variable winds, often associated with passing 
storms, can provide power for near-​inertial waves to 
grow124. As storm activity increases in the winter, so does 
the energy in the near-​inertial wave field and associated 
mixing rates, suggesting that winds are a key driver of 
the seasonal variability of internal wave-​driven mix-
ing in the ocean125,126. However, the main mechanisms 
leading near-​inertial waves to dissipate their energy are 
not yet well constrained, leaving ample opportunity for 
future work.

The following divides the life cycle of near-​inertial 
waves into a generation phase, namely, how near- 
inertial energy injected into the mixed layer by the 
wind is transferred to the ocean interior, followed by 
an internal wave propagation and mixing phase. Note 
that this division is distinct from conceptually parti-
tioning the wave’s life cycle into an active wind forcing 
phase, followed by the ocean’s response after the forc-
ing ends — a framework employed by some studies of  
isolated events127.

Generation. Time-​varying wind stress on the ocean 
surface due to synoptic events, such as a passing mid-​
latitude storm127 or cyclone128–130, can generate a resonant 
response in the mixed layer of water oscillating hori-
zontally at a frequency close to inertial. The signature of 
near-​inertial oscillations can be observed in the circles 
traced by surface drifters distributed beneath a storm127. 
One way that inertial oscillations decay is through 
energy dissipation by shear-​driven turbulence close 
to the mixed layer base131,132; however, the importance 
of this mechanism is poorly known. The second, poten-
tially more important, mechanism is downwards energy 

radiation into the stratified interior ocean. Specifically, 
internal waves are radiated downwards when horizontal 
variability in the magnitude of near-​inertial velocities 
creates divergences and convergences within the mixed 
layer, generating pressure gradients that allow water to 
locally rise and fall at the inertial frequency, thereby 
radiating energy133 (Fig. 5).

The portion of near-​inertial energy escaping the 
mixed layer as internal waves is not well constrained. 
Combining two lower-​bound observational estimates of 
the fraction of energy propagating away as low-​mode134 
and high-​mode135 waves suggests that a minimum of 
27–53% of the energy input into near-​inertial oscillations 
radiates away as internal waves. Roughly consistent with 
this observation, seasonal cycles in the mixed layer and 
deep ocean near-​inertial kinetic energy are all similar in 
magnitude125,136. However, global modelling studies find 
that a smaller fraction of the wind work on near-​inertial 
motions radiates downwards, with estimates of 11–30% 
leaving the vicinity of the mixed layer137–139. Modelling 
studies with high spatio-​temporal resolution suggest 
that resolving the interactions between the mesoscale 
eddy field and inertial oscillations might be important140; 
however, more work is needed to improve and reconcile 
observational and model-​based estimates of downwards 
near-​inertial energy propagation.

Advancing understanding of how the growth and 
decay of near-​inertial oscillations can be modified by 
the background oceanic environment may help con-
strain the magnitude of energy leaving the mixed layer. 
For example, spatial variations in the Coriolis frequency 
may reduce the internal wave length scales127, increasing  
the rate at which near-​inertial energy drains from the 
mixed layer. Additionally, as near-​inertial oscillations 
grow, energy transfer can occur with the background 
flow owing to strong horizontal convergence141 and 
horizontal strain142 at a rate modulated by anticy-
clonic rotation142,143. During the decay of near-​inertial 
oscillations, strong gradients in vorticity can increase 
the radiation of near-​inertial energy from the mixed 
layer144, especially at sharp gradients in the background 
currents144–146.

Global studies commonly target a specific phase of 
the near-​inertial wave generation process: the energy 
flux from winds to near-​inertial oscillations. Estimates 
of the power available for near-​inertial wave generation 
are often made using atmospheric reanalysis-​derived 
winds to force general circulation models58,59 and 1D slab 
models, where the mixed layer is set to a fixed depth and 
energy radiates away at an assigned timescale57,124,127,147,148. 
The slab model produces estimates that agree well with 
observations but with caveats148,149. Products with rela-
tively high temporal and spatial resolutions (reanalysis 
winds available at least every 4 h and satellite altimetric 
data sets with 1° horizontal resolution or finer) yield 
0.9–1.4 TW of global power input from the winds56,59, 
while estimates from winds of coarser temporal and/or  
spatial resolutions suggest 0.3–1 TW (refs55–59). Both 
these estimates are consistent with the first drifter-​based 
estimate that finds a lower bound of 0.3 TW (ref.150); 
however, more observational work is needed to reduce 
the large uncertainties in all estimates.

Near-​inertial waves
Internal waves at or near the 
Coriolis/inertial frequency, 
often, but not always, 
generated by the wind.
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Local and far-​field mixing. Distinct high-​mode near-​
inertial waves can be observed as bands of alternating 
shear at vertical scales of metres to hundreds of metres. 
In the North Pacific, observations reveal that high-​mode 
near-​inertial waves can attain vertical group velocities of 
7–23 m day−1 (ref.135) and horizontal scales of tens to hun-
dreds of kilometres151. Observational estimates indicate 
that the fraction of wind work on mixed layer oscilla-
tions that propagates away as high-​mode near-​inertial 
waves ranges between 12% and 33% (reaching 800 m)135 
or 2% and 33% (reaching 100 m)152. Modelling studies 

provide the slightly smaller estimate that 10% (ref.138) 
of the wind work on the mixed layer reaches 230 m as 
high-mode internal waves.

In addition to high-​mode internal waves, a large frac-
tion of near-​inertial energy is thought to radiate away 
as low modes, with estimates ranging from 15–20% 
of the energy input into mixed layer oscillations134 to 
33–45% of the near-​inertial wave energy in the ther-
mocline (modes 1 and 2)127. As the Coriolis frequency 
decreases towards the equator and sets the internal wave 
low frequency limit, near-​inertial waves are typically 
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constrained to propagate equatorwards134,153, except in 
strongly sheared background flows154. As the low modes 
propagate, they are subject to wave–wave interactions, 
including parametric subharmonic instability155,156, that 
can reduce their length scales and lead to turbulent 
mixing.

Near-​inertial wave activity is elevated beneath 
mid-​latitude storm tracks, with a seasonal cycle that 
peaks in the winter months from the surface to the 
seafloor125,157 (Fig.  5a,b); however, the mechanisms 
underpinning such a deep seasonal cycle are not 
well understood. The stronger near-​inertial wave activ-
ity during the winter months is correlated with an 
enhancement of inferred diapycnal mixing52,126,158 to 
at least a depth of 2 km (Fig. 5c,d). Future work linking 
direct observations of mixing using microstructure 
methods to the seasonal cycle in near-​inertial kinetic 
energy would be valuable to corroborate the implication 
of near-​inertial waves in driving seasonality in mixing.

The mesoscale flow field likely shapes the rate of 
near-​inertial propagation and spatial distribution of the 
energy dissipation, in addition to influencing the gen-
eration processes described in the previous subsection. 
Modelling and theory suggest that the mesoscale vor-
ticity can reduce the horizontal scales of the waves and 
funnel near-​inertial energy into regions of anticyclonic 
vorticity140,159–162. Additionally, a positive strain rate in 
the mesoscale current field can substantially alter the 
length scales and propagation velocities of internal 
waves31,70,120. Finally, internal waves can encounter crit-
ical layers along steeply sloping isopycnals, triggering 
energy dissipation159,163–165. Observations support these 
general ideas, finding altered internal waves and elevated 
dissipation rates at the boundaries of individual mesos-
cale eddies166–170, and relatively large inferred mixing in 
response to increased wind activity in the presence of an 
energetic mesoscale eddy field126.

Geostrophic currents
Winds provide about 1 TW of power to the geostrophic 
current field in the ocean171,172. A portion of the energy 
in ocean currents is then transferred to the internal wave 
field through interactions with topographic features 
or by direct generation of internal waves. However, it 
has been suggested that the bulk of the energy in the 
geostrophic current field is not dissipated through 
internal wave processes but by a combination of bot-
tom friction173,174, hydraulic effects downstream of 
topography175 and suppression by wind work8,176.

Quasi-​steady lee wave generation at topographic fea-
tures. When steady or eddying abyssal flows impinge 
on small-​scale topographic features, they can gener-
ate internal waves, often called lee waves18. Internal 
lee waves have frequencies and length scales set by the 
velocity of the currents and length scales of the bathym-
etry. Estimates made using linear wave theory18 of the 
total global energy transfer rate from geostrophic cur-
rents into internal lee waves range from 0.15 to 0.75 TW 
(refs60–64), with a major contribution from the Antarctic 
Circumpolar Current (ACC) region. The large range 
of these estimates arises from uncertainties in ocean 

stratification, bathymetric products and, principally, the 
representation of near-​bottom current speeds in global 
circulation models62,177.

Once generated, lee waves can travel upwards if 
the frequency in the wave’s reference frame is between 
f and N. In a steady current, propagating lee waves 
appear stationary in the ground reference frame, but 
can shift upstream or downstream if the current var-
ies in time or nonlinear interactions are present18,178. 
Most of the evidence for lee wave activity in the ACC  
has been provided by indirect measurements of elevated,  
upward-​propagating internal wave energy in the deepest 
1–2 km of the water column179–181. However, an unambig-
uous observation was made of the waves themselves182 
(Fig. 6a). Observations in the western boundaries of 
mid-​latitude ocean basins also show evidence for the 
generation and propagation of internal lee waves there183. 
Lee wave radiation is highly intermittent owing to 
changes in the intensity and position of the background 
flow, resulting in temporal variability of the lee wave 
field on timescales up to decadal184–186.

Lee waves’ energy is dissipated as the waves encoun-
ter critical layers or as the energy is transferred to 
other waves via wave–wave interactions or reabsorbed 
into the background current field187. Observations of 
elevated turbulence attributed to lee waves include 
studies in the ACC179–181,188,189, abyssal passages190 and 
canyons191. Estimates of the amount of radiated lee 
wave energy that is dissipated within 1 km of the bot-
tom range from up to 50% using 2D models192 to 2–30% 
using observations179,180. The discrepancy between 
these estimates highlights that lee waves do not play 
as important a role in the internal wave global energy 
budget as early modelling studies suggested. Additional 
complexity, such as including 3D flow effects, is nec-
essary to model lee wave generation, propagation and 
dissipation more accurately than in current modelling 
efforts51,63,175,178,180,187,193.

Generation from geostrophic currents. The generation 
of internal waves directly from the geostrophic current 
field can contribute to sustaining turbulent dissipation 
and mixing, although the contribution is likely rela-
tively small. Modelling results demonstrate that inter-
nal waves near the inertial frequency can be generated 
through resonance with the rapidly varying components 
of background currents194–197 and, more specifically, dur-
ing intense straining of small-​scale fronts by the larger-​
scale currents66,198,199. Additionally, an actively unstable 
front might radiate internal waves with a larger range of 
frequencies200,201. Finally, geostrophic currents can also 
transfer energy to existing near-​inertial waves, provid-
ing an additional energy pathway202,203. Estimates of the 
global energy flux from geostrophic currents to inter-
nal waves range between 0.1 and 0.36 TW (refs8,65,66). 
However, only limited observations of this internal wave 
generation pathway exist66,204, so the prevalence of these 
processes is still unclear.

The eventual fate of the internal waves drawing 
energy from geostrophic flows is either turbulent dis-
sipation (Fig. 6b) or reabsorption into the background 
current field. If a substantial portion of the energy from 
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these internal waves dissipates via wave breaking, then 
the waves could become a significant energy sink for the 
mesoscale eddy field205. However, modelling results 
suggest that only around 15% (ref.66) or 30% (ref.206) of 
the energy is dissipated through turbulence, with the 
remainder returning to the background current field. 
The low fraction of dissipated energy indicates that the 
internal waves generated from ocean currents might be 
an important mechanism for redistributing energy, but 
contribute only modestly to the global internal wave and 
mesoscale eddy kinetic energy budgets.

Global mixing and implications
All the processes governing the generation, propagation 
and dissipation of internal waves deriving their energy 
from tides, winds and geostrophic currents conspire to 
shape the global distribution of the turbulent dissipation 
rate and diapycnal diffusivity9,75–77,126 (Fig. 7a). The inten-
sity of the dissipation rate and diffusivity both range over 
three orders of magnitude across the globe, the bulk of 
values spanning 10−11–10−8 W kg−1 and 10−6–10−3 m2 s−1, 
respectively75–77. When the bottom topography is rough, 
the dissipation rate is often elevated by an order of mag-
nitude or more from the seafloor to near the surface. This 
increase occurs due to near-​field dissipation of internal 
tides or lee waves, as well as mixing from topographic 
scattering of remotely generated internal waves75,76,117. 
Regions with strong sources of tidal and wind energy 
are also associated with elevated dissipation rates, indi-
cating that near-​field dissipation plays an important 
role in shaping the global geography of mixing83,126. For 
example, mixing is elevated above the Hawaiian Ridge, 
Southwest Indian Ridge and Mid-​Atlantic Ridge owing 
to tidal generation and scattering78,90,97. In the Southern 

Ocean around the Kerguelen Plateau and Macquarie 
Ridge, lee waves and tides both contribute63,107,179.

Global overturning circulation
The cold, dense water that sinks to the ocean abyss at 
high latitudes must eventually rise, returning to the 
ocean surface and, thereby, closing the Meridional 
Overturning Circulation (MOC). The simplified model 
of the MOC has two major branches: one branch trans-
ports deep water southwards and is primarily driven 
by wind-​induced upwelling in the Southern Ocean207, 
although in models, its strength is sensitive to changes 
in mixing140,208–210; the second branch, in turn, transports 
abyssal water northwards and upwards4, and is thought 
to be largely driven by internal wave mixing3,5,6,77, with 
additional contributions from geothermal heating along 
the seafloor211,212 and mixing along the deep western 
boundaries213 and within constrictive passages214.

In the northwards branch of the abyssal MOC, turbu-
lence from breaking internal waves transfers buoyancy 
downwards, progressively transforming the dense bot-
tom water into lighter water. This lightening enables new 
inflowing water to intrude below, such that the trans-
formed water rises above the new water, creating the 
upwards branch of the abyssal MOC. The strength of this 
branch has been estimated to be 20–30 sverdrups (Sv; 
1 Sv ≡ 106 m3 s−1)4,215,216. Internal tides are thought to drive 
a substantial portion of the abyssal upwelling, with esti-
mates including both near-​field and far-​field mixing that 
range between the entirety of the abyssal MOC transport 
to 7 Sv (refs5,217), or 5 Sv with a spatially variable mixing 
efficiency218. Lee waves contribute a smaller portion of 
the abyssal upwelling, with estimates ranging between 2 
and 3 Sv (refs5,219). It is not known whether near-​inertial 
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waves play a significant role in driving the abyssal MOC. 
Both the horizontal and vertical distributions of mixing 
alter the magnitude and vertical structure of the MOC 
in models208,209,217,219–222 (Fig. 7b), indicating that the global 
spatial variability (Fig. 7a) is important for setting the 
observed properties of the MOC.

Climate. The broader climate system is also sensitive to 
the distribution and magnitude of internal wave-​driven 
mixing in the ocean. As diffusivity from internal waves 
cannot be explicitly captured by global models, param-
eterizations are currently being developed to include 
the effects of the spatio-​temporally varying diffusivity20.  
To explore how sensitive the ocean and atmosphere are to 
mixing from breaking internal waves, climate models are 
run with a range of parameterizations designed to repre-
sent mixing from the tides117,209,223,224, winds117,224,225 and 
lee waves219,226, in addition to changing the magnitude of 
the model-​prescribed background diffusivity210. These 
studies report that even small perturbations in the mag-
nitude or distribution of the diffusivity in global models 
can lead to substantial changes in the temperature, circu-
lation and fluxes in the atmosphere and ocean. However, 
both the magnitude and the sign of these changes vary 
between studies owing to the range of mixing parame-
terizations and the details of each model. The following 
discussion, therefore, focuses on the broad trends across 
all studies.

Altering the diffusivity changes the vertical profiles 
and horizontal distribution of temperature and salinity 
throughout the ocean, and, therefore, the density and 
stratification209,210,219,223–226. The ocean’s meridional heat 
transport is also sensitive to changing background dif-
fusivity and to the spatial distribution of mixing from 
internal tides209,210, but not to parameterized mix-
ing induced by near-​inertial waves in one study that 
underestimates the magnitude of mixing from the 
wind225. Changes in the properties and circulation of 
the ocean interior lead to variations in the sea surface 
temperature209,210,224,225, mixed layer depth223,225 and air–
sea fluxes140,210. Perturbing interior diffusivity also has 
repercussions above the sea surface, including sea ice 
extent and concentration210,223,225, air temperature, atmos-
pheric circulation and precipitation210,223–225 (Fig. 7c). The 
substantial sensitivity of both the ocean and the atmos-
phere to internal wave mixing indicates that including its 
effects in climate-​scale models is important for a realistic 
representation of the climate system.

Beyond these widespread climatic impacts, inter-
nal wave mixing has been shown to exert a profound 
influence on regional and global climate via its localized 
effects on several important elements of the global ocean 
circulation. For example, the vertical density structure in 
the Indonesian Seas is sensitive to the representation of 
tidal mixing in models — with implications for a range 
of aspects of (sub-)tropical Indo-​Pacific climate, includ-
ing volume transport of the Indonesian Throughflow, 
ocean heat uptake and rainfall227–229. In the equatorial 
Pacific, parameterizing internal wave mixing in the ther-
mocline yields changes in the equatorial upwelling, sea 
surface temperature and wind patterns224,225. However, 
only representing mixing from tides or lee waves has 
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a negligible effect209,219, suggesting that including more 
processes than current tide and lee wave parameteriza-
tions represent may be necessary to accurately model the 
equatorial Pacific. Finally, the latitudinal distribution of 
deep mixing from lee waves and tides has been argued 
to alter the ACC transport, the depth of the ocean ther-
mocline and, by extension, many important features of 
global climate219,230,231. As the operation of internal wave 
mixing in other pivotal elements of the global ocean 
circulation is further unravelled, it is likely that more 
climatic impacts of localized mixing will emerge.

Summary and future directions
Global and regional patterns of internal wave-​driven tur-
bulent mixing are controlled by the complex and convo-
luted processes of internal wave generation, propagation, 
interaction and dissipation. Internal waves act as a con-
duit, eventually funnelling energy from tides, winds and 
currents into turbulence, leading to both energy dissipa-
tion and mixing. In turn, the mixing plays a role in driv-
ing the MOC and aids in setting many characteristics of 
the global climate. While much progress has been made 
recently in understanding significant elements of all 
stages of the internal wave life cycle, several fundamental 
knowledge gaps remain. Here, we synthesize these gaps 
into three broad priority challenges.

The first challenge entails advancing understanding 
of the processes that transfer energy within the internal 
wave field and that ultimately lead to dissipation and 
mixing. As discussed, investigations have improved con-
straints on the wave field’s energy sources and the magni-
tude and placement of wave energy dissipation. However, 
the physics of how the energy is transferred across length 
scales and frequencies along the pathway to dissipation is 
poorly understood. In particular, it is unknown why the 
observed internal wave spectrum varies only modestly 
in shape across the global ocean70. Important likely can-
didates include wave–wave interactions25,28, topographic 
scattering and reflection32, and interactions with the 
background current field232. Studies focused on these 
individual energy transfer processes, and on how they 
combine to form the observed internal wave spectrum, 
would be valuable. For example, recent investigations 
suggest that parametric subharmonic instability, the 
very efficient type of wave–wave interaction, is not suf-
ficient to explain the majority of the down-​scale internal 
wave energy transfer28, indicating that other wave–wave 
interactions25 or wave–wave interactions in the context 
of geostrophic currents98 could be important in shap-
ing the spectrum. Additional theoretical and numerical 
work constraining attenuation due to wave–wave inter-
actions using an internal wave spectrum close to that 
observed in the ocean is especially needed28,42.

The second challenge concerns unravelling how 
internal waves interact with other types of ocean cur-
rents, and how these interactions shape the distribution 
of mixing in the ocean. Interactions between internal 
waves and currents deserve special consideration, as 
they have the largest uncertainties. The mildest form 
of this interaction is a gradual shift in the wave phase 
as waves travel through a current field; for example, 
this dephasing may occur as low-​mode internal tides 

propagate through a variable mesoscale flow. Dephasing 
of low modes renders them invisible to detection by 
satellite altimetry, increasing the uncertainty in esti-
mates of low-​mode attenuation and subsequent energy 
dissipation122,233,234. An improved understanding of the 
weak modulation of internal waves by background cur-
rents is needed, especially with a view to constraining 
low-​mode internal tide attenuation and dissipation in 
global models78,209.

Moderate interactions involve the impact of spatio- 
temporal variability of background currents, which  
present a variable medium for internal waves to exist in 
and propagate through. Background current flow and 
vorticity affect internal wave generation by, for exam-
ple, altering the rate of energy transfer to both internal 
lee waves and wind-​driven, near-​inertial internal waves. 
Then, as waves propagate, structure in the background 
current shear, strain or stratification can lead to signif-
icant wave refraction, reflection or, in extreme cases, 
wave breaking as propagation slows down to a halt in 
critical layers or sharp fronts. Theoretical, modelling 
and observational studies are needed to understand the 
influence of these moderate interactions on the gener-
ation, propagation and dissipation of internal waves, in 
addition to their prevalence in the ocean and cumulative 
impact on energy pathways.

The strongest form of interaction involves substantial 
two-​way energy exchanges between internal waves and 
geostrophic flows. For example, for internal lee waves, 
accurate understanding of refraction in sheared back-
ground flows like the ACC is key to predict where and 
how the waves will deposit their momentum to accel-
erate or decelerate the background flow235. Two-​way 
energy exchanges between internal waves and back-
ground flows are also likely to be important where the 
spatio-​temporal scales of both classes of flows overlap, 
for example, in submesoscale (0.1–10-​km scales) flows 
on the edges of mesoscale eddies or near-​inertial waves 
with slow group velocities and large horizontal wave-
lengths. The small-​scale and quickly varying energy 
exchanges in these settings are extremely difficult to 
observe, calling for the development of new, multi
platform measurement approaches and numerical simu-
lations of increased complexity. We anticipate that a step 
change in understanding of how the ocean’s mesoscale 
eddy field loses its energy to internal waves and turbu-
lence will result in major improvements in the realism 
of climate-​scale ocean models, some of whose key fea-
tures (for example, deep ocean MOC, ACC transport, 
stratification) are now understood to depend on the  
eddy–internal wave energy transfer205.

Building on these challenges, the overarching (and 
arguably most daunting) task is to reformulate internal 
wave-​driven mixing as a fully interactive component of 
ocean circulation and the climate system117, rather than 
the essentially passive and unchanging diffusivity field 
as which wave mixing has been traditionally viewed. 
More work is needed to further develop parameteri-
zations of mixing and quantify their effects on global 
ocean circulation and climate. For example, more stud-
ies are needed that include parameterized mixing from 
near-​inertial waves and explore the impact of time-​varying 
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mixing so that feedbacks on the climate system are rep-
resented. To drive this transformation, we require new  
ways to measure internal wave mixing over the annual 
or longer timescales that are most climatically relevant. 
In addition, the next generation of physically robust rep-
resentations of the key wave mixing processes will need 

to be incorporated into climate-​scale ocean models. The 
spark for this shift in view has been lit by a number of 
recent studies mentioned in this Review, but much work 
remains to be done for the shift to be realized.
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